Velibor Misic

Profile photo of Velibor Misic
“Businesses are challenged with ever-harder decisions that exceed human ability and managerial intuition. The increasing abundance of data in modern businesses and scientific innovations in analytics hold the key to solving these challenges.”

Assistant Professor of Decisions, Operations and Technology Management

Areas of Expertise

  • Analytics
  • Machine Learning
  • Marketing Science
  • Operations Management
  • Optimization
  • Stochastic Control




What products should a firm launch? What mix of products should a retailer offer? How should a firm leverage data about its customers to make personalized decisions? These are just some of the questions that Assistant Professor Velibor Mišić is interested in.

“Firms nowadays need to make decisions of enormous complexity,” says Mišić. “They simultaneously have more and more data available to guide them in their decisions. My research is focused on developing analytics methodologies that allow firms to transform this data into decisions that create value.”

As an example, Mišić points to product line decisions. “By varying combinations of product features, there could be thousands of possible products, and firms have to select a set of these products to launch, leading to an even larger number of product lines,” he says. “At the same time, the data that tells firms how customers value these attributes is limited and it leads to multiple models of how customers choose. These models are often inconsistent with each other; they lead to different predictions and ultimately imply different product line decisions. One of my research streams has considered how to make good product line decisions in the face of uncertainty about how customers will behave.”

Mišić’s research has spanned a multitude of subjects in the area of analytics, such as choice and assortment problems, robust optimization, dynamic decision making under uncertainty and health care. His research has been published in journals such as Operations Research, European Journal of Operational Research and Computers & Operations Research. He earned his Ph.D. degree at MIT, and master’s and undergraduate degrees from the University of Toronto.

Outside of research, Mišić has also been involved in teaching. At MIT, he was involved in developing the online version of a popular MBA elective known as The Analytics Edge, which has seen a cumulative enrollment to date of over 100,000 students with diverse educational backgrounds from all over the world. He has served as a teaching assistant in the residential version of this class.

“I greatly enjoy teaching,” says Mišić. “I believe teaching can have great impact because students will decide whether or not analytics gain traction in practice. A student who asks me a question about clustering or regression today is someone who might use that knowledge within a company tomorrow. The recognition of the potential for this kind of impact is a major force that guides how I interact with students.”



Ph.D. Operations Research, 2016, Massachusetts Institute of Technology

M.A.Sc. Industrial Engineering, 2012, University of Toronto

B.A.Sc. Industrial Engineering, 2010, University of Toronto


Working Papers

Data-driven assortment optimization. Bertsimas, D., and Mišić, V. V. (2015). In revision for 2nd round review (major revision) in Management Science.

A comparison of Monte Carlo tree search and rolling horizon optimization for large scale dynamic resource allocation problems. Bertsimas, D., Griffith, J. D., Gupta, V., Kochenderfer, M. and Mišić, V. V.(2016). Under review in European Journal of Operational Research.

Refereed Journal Articles

Robust product line design. Bertsimas, D., and Mišić, V. V. (2016). Forthcoming in Operations Research.

Decomposable Markov decision processes: a fluid optimization approach. Bertsimas, D., and Mišić, V. V. (2016). Forthcoming in Operations Research.

The perils of adapting to dose errors in radiation therapy. Mišić, V. V., and Chan, T. C. Y. (2015). PLoS ONE, 10 (5), e0125335. DOI: 10.1371/journal.pone.0125335. An earlier version of this work was titled "Dose-reactive methods in adaptive robust radiation therapy for lung cancer." [PDF]

Adaptive and robust radiation therapy optimization for lung cancer. Chan, T. C. Y., and Mišić, V. V. (2013). European Journal of Operational Research, 231 (3) 745-756. Honorable mention, Canadian Operational Research Society (CORS) 2012 Student Paper Competition, Open Category [PDF] [Supplement]

Computational enhancements to fluence map optimization for total marrow irradiation using IMRT. Aleman, D. M., Mišić, V. V., and Sharpe, M. B. (2013). Computers & Operations Research, 40 (9) 2167-2177. [PDF]

Neighborhood search approaches to non-coplanar beam orientation optimization for total marrow irradiation using IMRT. Mišić, V. V., Aleman, D. M., and Sharpe, M. B. (2010). European Journal of Operational Research, 205 (3) 522-527. [PDF]

Papers in Preparation

Personalized marketing: an analytics approach. Bertsimas, D. and Mišić, V. V. (2015). Paper in preparation; targeted for Management Science.

Model robustness. Bertsimas, D., Mišić, V. V., and Silberholz, J. (2015). Paper in preparation; targeted for Operations Research.

An integer optimization approach to planning and scheduling airlift operations. Bertsimas, D., Chang, A. A., Mišić, V. V., and Mundru, N. (2015). Paper in preparation; targeted for Transportation Science.

Refereed Conference Proceedings

Data-driven assortment optimization. Bertsimas, D. and Mišić, V. V. (2015). Extended abstract for 2015 MSOM Conference, Toronto, Canada.

Total Marrow Irradiation Using Intensity Modulated Radiation Therapy Optimization. Mišić, V. V., Aleman, D. M., and Sharpe, M. B. (2009). Proceedings of the IIE Annual Conference, IERC 2009, Miami, Florida.

Book Chapters   Optimization methods in large-scale radiotherapy. Aleman, D. M., Ghaffari, H. R., Mišić, V. V., Sharpe, M. B., Ruschin, M., and Jaffray, D. A. (2012). Chapter in Systems Analysis Tools for Better Health Care Delivery. Editors: P. M. Pardalos, P. G. Georgiev, P. Papajorgji and B. Neugaard.


Adaptive and robust radiation therapy optimization for lung cancer. University of Toronto, Master of Applied Science thesis. (2012). [PDF]

Computational enhancements to fluence map optimization for total marrow irradiation using IMRT. University of Toronto, Bachelor of Applied Science thesis. (2010). Centennial Thesis Award, University of Toronto, 2010 [PDF]

PhD Theses

Data, Models and Decisions for Large-Scale Stochastic Optimization Problems. Massachusetts Institute of Technology, PhD thesis. (2012).