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This paper presents a Bayesian approach to regression models with time-varying parameters, or
state vector models. Unlike most previous research in this field the model allows for multiple
observations for each time period. Bayesian estimators and their properties are developed for the
general case where the regression parameters follow an ARMA(s,g) process over time. This.
methodology is applied to the estimation of time-varying price elasticity for a consumer product,
using biweekly sales data for eleven domestic markets. The parameter estimates and forecasting
performance of the model are compared with various alternative approaches.

1. Introduction

Regression models with time-varying parameters have received a great deal
of attention in econometrics. In this article, we are interested in the following
time-varying regression model:

Yi:=Xirﬁt+8in e 2 e i:]-aza"‘!mn [1]

B.—B)=PB,-1—B)+a, t=12,...n, 2)
where Y, is the ith observation at the tth time period; X;, is a 1 x p vector of
independent variables corresponding to Y,; ¢, is the corresponding random
error independently and identically distributed as N(0,6?2); B,, also referred to
as a state variable, is a p x 1 vector of regression coefficients of ¥, on X,,, and
a, is also independently and identically distributed as N(0,A4) and is
independent of ¢,. We refer to the model in (1) as measurement equation,
and (2) as process equation. The first-order autoregressive parameter @, also

referred to as transition matrix in an engineering context, is assumed to have
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all characteristic roots less than one in absolute value. Note that when @ =0,
the model set forth in (1) and (2) is reduced to a random coefficient
regression model.

The model described in (1) and (2) is one type of state vector models that
has been studied for many years in the engineering literature. The state
vector model was first analyzed by Kalman (1960) and Kalman and Bucy
(1961), who originated an extensive literature in control theory and applied
physical sciences, in which the optimal estimation methods are often referred.
to as Kalman, Kalman-Bucy, or Wiener-Kalman filters. In engineering
applications, it is usually assumed that only one data point is observed at
cach time period and ¢2=0. Thus, estimation of secondary parameters @, f,
and A is impossible and must be assumed known [Sarris (1973), Mehra
(1974)]. This is a severe restriction when transferring from engineering
control theory to statistics and econometrics.

In econometrics, most of the literature on state vector models also focuses
on the situation where only one data point is available at each time period
(ie, m=1). In this context, classical estimation procedures for various
models have been proposed by Hildreth and Houck (1968), Rosenberg (1968,
1972), Duncan and Horn (1972), Cooley and Prescott (1973), Cooper (1973),
Belsley (1973), Pagan (1978), Engle (1978), and Ledolter (1979). Bayesian
estimation for an m,=1 situation can be found in Sarris (1973). Few authors,
however, have studied models with m,=1: Rosenberg (1973) studies time-
varying parameters in panel data where a complicated model involving
parameters varying within each cross-section and over a period of time is
proposed. Harvey (1977) studies the model set forth in (1) and (2) with
m,=1. His main interest is an efficient computation of the state variable
using Kalman filter techniques. The GLS and maximum likelihood estimates
of the parameters are discussed in Harvey’s paper.

In this article, we are interested in the state vector model shown in (1) and
(2) which is similar to the model in Harvey (1977). Instead of using a
classical approach, we study this problem from a Bayesian point of view.
Although Sarris (1973) also studies the model in (1) and (2) from a Bayesian
viewpoint for an m,=1 situation, discrimination between different state
vector models for single series is difficult and a particular structure is usually
imposed on the model or some of the secondary parameters must be
assumed known [see Sarris (1973) and Harvey (1977)]. The availability of
time series of cross-sections and panel data provides much more scope for
investigating the nature of state vector models.

In single time-series situations, analysis is usually complicated when data
are missing. However, use of the state vector model can go past unobserved
data points without difficulty.

This paper is organized as follows: first, in section 2 we discuss a special
case of model (1) and (2) in which p=1. We illustrate the results using a
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price elasticity example. The results can be easily extended to a situation
where f, follows a univariate AR(s), MA(g), or ARMA(s,q) model. We then
discuss the model described in (1) and (2).

Discussion throughout the paper centers on the following topics:

(1) Inferences about past and current values of f,, t=1,2,...n (In
econometrics, the current value §, usually receives special interest.)

(2) Prediction of g, ;.

(3) Estimation of the ratio 4 and ¢? and some secondary parameters such as
@ and p.

2. State vector model with p=1
In this section, we study a special case of the model described in (1) and
(2) where p=1. This model can be expressed as

Yi::ﬁrXir'l'ain S(-,"-'N[0,0'f), [3)

B:—B)=¢B.-1— P +a, a,~N(0,07), (4)
forsa=1EPu e Sand * p=t. 7 i

A special case of the above model with X, =1 and m,=m is discussed in
Tiao and Ali (1971) and Box and Tiao (1974). The process equation (4) can
be an ARMA(s,q) process in general. For simplicity, we use the following
notations in the discussion: b'=[f,f,,...,6,], Y;=[Y;, Y5,.... Y, ], and
Y =¥, Y, . Y

2.1. Estimation of ;s for known ¢, B, 62, and o?

From (3), the joint distribution of Y given b and o2 can be expressed as

1

p(¥i|ibiod) cellon )= 2 SXP{—Z?_S

[53+(b—5)’D(b—5)]}, (5)

where D is the nxn diagonal matrix with S2, as the tth diagonal element in
which

Sir= Z Xizra Er=< Z Xx'rYir)/S:zcn
i=1 i=1

n my n
$_y ( Yﬁ—ﬁfsiz), S
1 =

=1 \i=
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From (4), the joint distribution of b given ¢, § and o2 can be written as

p(b| ¢, B,02)oc(od)™"2|Z| 7 e"p{_ii [(b—p1,y2" ltb—ﬁml},
(6)

where 1, is a nx 1 vector of 1’s, and ¢2X is the nxn variance-covariance
matrix of §,, t=1,2,...,n. For an AR(1) model, Z~' can be expressed as

B o

S s D - e

meiee ; P : :
it

6 e Eneseigsy

Note that |Z|"*=/1-¢>.

By combining (5) and (6), we obtain the posterior distribution of b given
¢, B, o2 and ¢2 which can be simplified to

p(b|¢.p, 02,02, Y}xexp{-% (b~5)’(D+H)(b—5)]}, (7)

£

where
glz[gl!EZa"':ﬁn]! 5=(D+HJ_1{D5+ﬁHIn)~
H=(1/w)X 1, " w=g2/a2, (8)

i.e., a posteriori, b is normally distributed with mean b and covariance
matrix o2(D+H) .

Assuming ¢=0 and ¢2— o0, the posterior modal estimate of f, is f, and
the posterior variance ¢7/SZ, that is, equivalent to the usual OLS estimates.
Usingthematrixidentity(D+H) " '=D"'—D YD~ '+ H ')D,itisobserved
that the state variable ff, has smaller posterior variance for the state vector

model. This result can easily be extended to the p>1 situation.

Posterior distribution of .., given (B, ¢,02 62). Suppose in the last
observational period t=n we want to predict or make an inference
about the future value f,.,. The posterior distribution of f,., can be
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obtained as follows: Using

=¥, 8.0,  b=0[0501 I=[ 1]

0 0=, 0 0
= B 1 =
D= ;o H==|zt 0 |+| 0 ¢rof =g,
OF () w
0 |0 0 Gk

the posterior distribution of (B, 1, b) given (B, ¢, a2, a2) can be expressed as

p{ﬁn+l,b|¢aﬁa0—3$g§3Y)xcxp{ 2[ {D+H) B b)]}
with
b=[F,p,..1=(D+H) (Db+pHI). 9)

After integrating out b, we obtain

a)

1
fa Y)xexP{—F[(ﬁnﬂ_ﬁnﬂ]z/g]},

where g is the (n+ 1)th diagonal element of (D +H) ! In the AR(1) model,
g=1+¢>C,, where C,, is the nth diagonal element of (D+ H) *. Note that
from (9), we have

Bor1=0B,+ (1—9)B, : (10)

ie., B,., is a weighted average of f§, and B.

In the above discussion we concentrate on the question of predicting §, . ;.
It is clear that following a similar argument, the posterior distribution of
B.+1-1=2,3,..., can readily be obtained. Details are omitted.

2.2. Posterior distributions of the primary and secondary parameters when
(B, d,w,a?) are unknown

In practice ¢? and the secondary parameters f, ¢ and o2 are unknown.

When (B, ¢,02, 02 are unknown, we must incorporate them as variable
parameters in the model and make inferences through their posterior
distribution, but first we must construct a prior distribution for the
parameters. From the results obtained above, we find that (B, ¢,w,62) is a
natural parameterization in this problem. We assume that p(f)oce. For the
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remaining three parameters (¢,w,07), by applying Jeffreys’ rule to the
marginal likelihood function (8, ¢, w,¢2), we find that

P(('ba w, a’f’]g{g‘; zf((pbs W]a

where f does not involve ¢Z. An exact expression for f is exceedingly
complicated; simple approximations are being investigated. For a moderate-
sized sample, precise choice of f (¢, w) is not critical for inference about (¢, w)
and is even less important for the f’s [Liu and Tiao (1980)]. In the following
discussion we simply assume that the prior for (¢, w) is locally uniform.
Under the above prior assumptions for (B, ¢,w,sZ), we combine (5) with
(6) and obtain the joint posterior distribution (b, B, ¢, w, a2). After integrating

out  and ¢?, we obtain

P(b, ¢, w|Y)ocw "2|Z|"H1,H1,|*
x {S2+ (b—p1,)D(D+H) *H(b—P1,)

+(b—b)C (b— iy (et w1z
with

b' =[P, B, Bl

b=(D+H) '(Db+pH1,),
B=1,D(D+H) 'Hb/(1,D(D+H) 'H1,),
C={D+H-(IH1,)"'HII'H}*

=(D+H) '+ (D+H) 'H1,1,HD+H) '/1,D(D+H) 'H1,).

The above expression can be factorized into P(b|¢,w,Y) and P(¢,w|Y)
where

o ESema—al s T =(m.+n—1)/2

62 =(S?+(b—F1,)D(D+H)™‘H(b~f1,))/(m.~ 1),
and

P(¢.w|Y)ocw "?|Z|"#D+H| *|1,D(D+H) 'H1,|™*

x {S +(b—p1,YD(D+H) *H(b—p1,)}~ "~ V2.(12)
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The distribution in (11) is the multivariate ¢ distribution, t,(b,62C, m.—1).
Thus given (¢, w), B, has the univariate ¢ distribution ¢(f;, 62C;;, m.—1) with
C;; the ith diagonal element of C.

Note that in deriving the above formula, D is not required to be a non-
singular matrix, therefore the results above are still valid even if some of the
S2,=0. As a natural extension of the result in (11), it is readily seen that B, .,
given (¢,w) is distributed as ¢(B,,,5.g m.—1), where B,., is the (n+1)th
element of b, i

b=[b,B,+.]'=(D+H) " (Db+BHI),
and ¢ is the (n+1)th diagonal element of C, where
C=(D+H)'+(D+H) "HII'HD+H) '/i'D(D+H) 'HI).

The unconditional posterior distribution of f,t=1,2,..,n+1,... can be
obtained by the following integration ;

P(B,|Y)=[[P(B,|¢,w, Y)P(¢,w|Y)ds dw. (13)

Numerical evaluation of the distribution is computationally expensive. A
simple approximation is

P(B|Y)=P(B,|,, Y), (14)

where (qf), W) is the joint modal estimate of (¢, w) in P(¢>,w| Y). The posterior
mode of 5, in (14) is denoted by f,.

Missing data. Assuming that f, in (4) is observable, the secondary
parameter ¢ can be estimated based on the observed f,s [see e.g., Box and
Jenkins (1970)]. In this situation, the likelihood function in (6) cannot be
evaluated if one or more f,’s are missing in the series. However, in the state
vector model, we can still use (12) for making an inference on ¢ and w even
if some of the time periods contain no data. To show this more explicitly, we
can replace (D+H) 'H in (12) by its identity I—(D+H) 'D. When m,=0,
there is no information contained in the design matrix and therefore S2,=0.
Thus the posterior distribution of (12) will remain the same no matter what
B, is assumed to be. The same argument can be applied for the estimation

of f,.

2.3. An example: Price elasticity for a consumer product

We now apply the above estimation and forecasting procedures to a real-
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world case in marketing, focusing on the relationship between product sales
and unit price. The product is an inexpensive branded gift item which is
distributed in eleven markets in the United States." Data on product sales
(Y) and local prices (X) were available for 37 biweekly periods, for a total of
403 observations. The sales data are divided by the percentage retail
availability in each market, so the analysis can focus on the sales—price
relationship. One additional marketing instrument, brand advertising, is not
included because there is virtually no difference in expenditures across the
eleven markets.

Price elasticity is estimated using a constant-elasticity model for each time
period. The data are expressed in deviations from the mean in each period.
Primes are used to denote natural logarithms,

y”ﬂﬁx-‘f;r“*'ﬁ.-“ I=l,2,...,3?, I'=l,2,‘”,mr,
with
Je=Yy—¥: and x,=X;—X,

where B, is the price elasticity at time , and g, is the disturbance term
assumed normally distributed around zero with constant variance.

The first step in the analysis is the specification of a tentative model for
price elasticity over time. The procedure follows a suggestion by Pagan
(1978): compute OLS estimates of B, for each ¢ and examine the
autocorrelation and partial autocorrelation functions of the time series B
(t=1,...,37). The identification procedure reveals that the series f, can be
repreaented parsimoniously by an AR(1) process. The B.’s are shown in fig. 1:
virtually all 37 parameters are negative and significant, explaining up to 56 %
of the variance in sales, depending on the time period.

We decided to use the first thirty biweeks as the development sample and
the remaining seven periods as the holdout sample to evaluate different
approaches. Since one-step-ahead forecast errors are used, the model is
estimated for n=30,31,....37. The results are summarized in table 1. This
table and fig. 1 show that the Bayesian estimates of the state variable are
stable, in spite of the fact that some of the OLS estimates of elasticity over
time (B,) are very volatile. The pooled estimate of price elasticity is around
—2.2 which is realistic for this type of product.

The evaluation of the state vector model consists of two parts: first, we
test if the model has the ability to generate reliable estimates of S,

'The name of the brand and the actual data cannot be revealed for confidentiality reasons.
The number of markets m, =11, except for a few cases of zero availability: mye=myg =10 and
m,;=29. This situation rllustrates the fact that m, need not be constant in the model.
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Fig. 1. Price elasticity over time: a consumer product; ;‘XR,: estimate under state vector model
( ), and f,: OLS estimate (———-).

Table 1

Bayesian parameter estimates for a state vector model using various n: a
consumer product.

Time 3

n B B, ® W 5,

30 —2.184 —1295 0.862 2.511 0.252
31 —2.199 —1.469 0.855 2.510 0.248
32 —2252 —1.800 0.839 2.453 0.251
33 —2.143 —1.408 0.857 2.511 0.246
34 —-2143 ~  -1.517 0.858 2431 0.244
35 —2.174 —1.746 0.875 1.793 0.240
36 —2.294 —2.360 0.826 2.469 0.238

37 —2.246 —2.123 0.829 2.465 0.233

(n=31,32,...,37) with incomplete market information, e.g., data on 5 out of 11
markets. Second, one-step-ahead forecast errors in the holdout sample are
compared with those of three alternative models.

The first model evaluation procedure focuses on the quality of estimates of
price elasticity when only partial cross-sectional data are available. The
scenario is that at period n (n=31,32,...,37), price and sales data from only
five out of the eleven markets are available; estimates of price elasticity at
time n are obtained using past observations plus five current observations.
This scenario is simulated for all (*}')=462 combinations of five markets.

The results of this exercise are summarized in table 2, which compares the
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average squared bias for the state vector model to the one for a simple OLS
model in each time period. Two assumptions are made with respect to the
true value of price elasticity: (a) the true value 1s f, from table 1, (b) the true
value is fio s based on complete market information (i.e., 11 data points). In
both cases the superiority of the state vector model is overwhelming, re-
emphasizing the high level of parameter stability obtained by this model.

Table 2
Average squared bias with incomplete information: a consumer
product.®
Assumption (a) Assumption (b)
Time State vector State vector
n model OLS model OLS
31 0.040 5.636 0.729 ST
32 0.099 22.458 0.094 22.209
33 0.125 D 1.292 13.748
34 0.166 6.808 5.360 13.098
35 0.018 6.083 0.017 6.062
36 0.015 13.484 0.763 8.634
517 0.226 6.211 6.529 18.675

“Assumption (a): ‘true’ estimate of f, is the f§, in table 1.
Assumption (b): ‘true’ estimate of f, is the OLS estimate at time n
based on all 11 observations.

The second test examines forecasting performance of the state vector
model against three competing models:

(a)

(©

A state vector model with a random walk process equation (i.e., ¢ =1);
the best one-step ahead forecast for f,,., at time n is the least squares
estimate f3,. This forecasting practice makes intuitive sense. The state
vector model with this process equation was studied in Cooley and
Prescott (1973).

A single OLS model, which postulates that price elasticity is invariant
over time and across markets,

Vi=Px;+e, foralliandt,

where the deviations are taken with respect to the grand mean of Y}, and
X},
A model which postulates that each market has its own price elasticity,
which is invariant over time,

Vi =PBixy + s

where the deviations are now taken from the means of Y;, and X} within
each market. The OLS estimates of f§; are found to be very volatile.
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Table 3

Mean square forecast errors for one-step ahead forecast: a consumer
product.

Random walk

Time State vector state vector Overall OLS by
n model model OLS market
31 0.109 0.110 0.159 0.241
32 0.274 0.275 0.289 0.300
33 0.107 0.119 0.178 0.260
34 0.122 0.137 0.163 0.251
35 0.098 0.099 0.108 0.136
36 0.159 0.148 0.139 0.184

37 0.067 0.091 0.094 0.157

The results of the forecasting comparisons are summarized in table 3. In
all but one case the state vector model outperforms the various OLS models
in forecastability. The differences in mean squares forecast errors (MSFE) are
usually rather substantial, e.g., in periods 31, 33, 34 and 37. The MSFE’s for
a random walk state vector [i.e., model (a)] are close to the state vector
models with estimated ¢. This is probably because the estimated ¢, about
0.85, is close to 1. The improvement of MSFE under appropriate ¢ will be
more significant if ¢ is not this close to 1.

2.4. Extension of the results to other models

When applying the state vector model, the AR(1) model for the process
equation may not be adequate to represent the behavior of f,. Thus we may
need to consider a more general model, such as the ARMA(s, q). Analysis
under this time series model hinges on the expression of the distribution of
B’s given @'=[¢,Ps,...,¢,), 0'=[04,0,,...,0,] and ¢2. The distribution of
b'=[f;, B, B,] given (¢,0, B, a2) in general can be expressed as in (6). The
results in sections 2.1 and 2.2 can thus be extended to ARMA(s, ¢) situations.
Ljung and Box (1978) show explicit expressions for ¥~ ! and |Z| under AR(s),
MA(g) and ARMA(s, ¢) that can be used in this study.

3. State vector models with p>1

In this section, we study the model set forth in (1) and (2) with p> 1. Note
that a multiple AR(1) process for the vector B, implies a possible ARMA(p,
p—1) process for individual f;,, j=1,2,...,p. This is one reason why state
vector models can be applied in many situations, despite their simplicity.
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For mathematical convenience, we use the following notation:

b'=[B1,Bs.---B.) Yi=[Y1, Vyp,... X, ], and Y'=[Y}, Y5..., Y, 1.

3.1. Estimation of B,’s for known ®, , A and o>
From (1), the joint distribution of ¥ given b and ¢ can be expressed as in
(5), where D is the np x np diagonal matrix Wit;\l X;X, as the tth diagonal
block matrix,f,— (X:X,)” 1X0¥, S2=Y" ; (¥, ¥.— B X;X)cand m.= Y7 m,.
The joint distribution of the f3,’s given @, B, and A in (2) can be expressed
as

B. @, A)ec|L|~#|A4|7" "V 2 exp {—3[(b—~1,@B)Z " (b —1,,®ﬁ)j}

P(b
(15)
where
DA P+ — P4 0 0 0
—A7 ' AT '+ P4 'd —D'A .. 0 0
= : : : :
0 0 AT '+ P4 ' D — P4
0 0 —A'® A=

P(N)=(1-DPRDP) ' P(A),

and 2 is a pack operator that converts a matrix into a vector by stacking
the column vectors in the matrix one after another.

Combining P(Y|b,s?) with (15), we obtain the posterior distribution of b
given @, B, A and o2, which can be simplified to

P(b|B, @, W, a2, Y)ocexp {—% [(b—bY(D+H)(b— S)}},

with
b=(D+H) ' (Db+H(1,®p)), H=02X"!, W=A/cl.

That is, a posteriori, b is normally distributed with mean b and covariance
matrix oZ(D+H)™ .
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For one-step-ahead forecasting f,,,, we can go through the same
argument as that given in section 2.1 and obtain

B, @, W07, Y~N(B,(1),02G),

Bn+ 1
with
E,,+1:‘pﬁ"+{l—¢}ﬁ,
and G as the (n+1)th diagonal block matrix of (D+H)™ !, where D and H

have a similar definition as in (9).

3.2. Posterior distribution of the primary and secondary parameters
when (B, ®, W,a?) are unknown

Our aim here is to obtain the posterior distribution of g, and the related
secondary parameters. Following a similar argument as that given in section
2.2, we assume the prior distribution of (8, @, W, ¢2) as follows:

P(B)ecc, P(®,W,c%)oca, 2

Under the prior distribution, we can combine P(Y|b, ¢?) with (15) and
obtain the posterior distribution of (b, B, @, W,s?). After integrating out B
and ¢?, we obtain

P(b,@,W|Y)oc|Q| ¥W|~ "~ V2|(1,®1,)H(1,®1,)| *
x{S?+(b—1,B)D(D+H) 'H(b—1,8p)

0 [b_E}xc—l(b_B)}—{m,Hn—l)p},fz’
with

Q=0.T,

b=(D+H) '(Db+H(1,81,)B),

B=[1,®1,)D(D+H) 'H(1,®1,)] ' (1,®1,)D(D +H)Hb,

C={D+H—H(1n®fp}[t1;®1p)H(1n®Ip]]_‘[1;®IP}H}“,
=(D+H) '+ (D+H) 'H(1,®1,)

[1,®1,)D(D+H) 'H(1,®1,)] ' (I,®I1,)H(D+H)™".
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The expression above can be factored into P(b|d5,l’lfj Y) and P(®, W| Y),
where

(16)

—BYC ™Y (h—p)) ~m-+n=—1)p)2
P(b|¢1’>,W,Y)ct{1+(b 2L b}} ;

(m.—p)a?
62=[(S2+(b—1,®ByD(D+H) 'H(b—1,®p)]/(m.—p),
and

-4

P(®,W|Y)x|Q

W|™¥(1,®1,)D(D+H) 'H(1,Q1, )}

x{S2+(h—1,® ByD(D+H) 'H(b—1,® B)} ~™ P72

The distribution in (16) 1s a rnp(E,o‘fC,m.—~p) distribution. Thus, given
(@, W), B, is distributed as t(B,,2C,;, m.—p) with C;; the ith diagonal block
matrix of C if the C matrix is partitioned into n® p x p submatrices. For the
unconditional posterior distribution of B,, we can integrate P(B,|®,W,Y)
over P(®,W|Y), or approximately

P(B|Y)=P(B.|® W, Y),

with (@ W), the joint modal estimate of (@, W) in P(®, W|Y).

Like the p=1 situation, the results in sections 3.1 and 3.2 can be extended
to the situation where the process equation follows a multiple ARMA(s, q)
model. The key point is the specification of the distribution for the process
equation. The exact distribution of b for an MA(q) situation is discussed in
Phadke and Kedem (1978), and Hillmer and Tiao (1979).

4. Discussion

Bayes’ Theorem has been successfully applied in many statistical analyses.
It is especially useful for analyzing random coefficient models [Liu (1978)]. A
Bayesian approach to state vector models makes it easy to combine the
probability density function of the first-stage (measurement equation) and
second-stage (process equation) models. We can then obtain the posterior
distribution of the primary and secondary parameters from the combined
probability density function. The whole practice is rather straightforward.
However, a sampling approach to the same problem, e.g., Harvey (1977),
may involve many ad hoc procedures.

Harvey (1977) studies a state vector model similar to (1) and (2) where he
assumes that E(gé)=0 H, and g=[¢,,¢5,..,&,,]. The Kalman filter
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technique is employed to obtain the GLS (generalized least squares) estimate
of B, the MMSE (minimum mean square error) estimate of g, —f, and a set
of prediction error vectors for given @ and A. He then obtains the
concentrated log-likelihood of @ and A using the results at the first stage of
analysis. A modified Kalman filter technique is used to compute the log-
likelihood. The whole computation procedure must be iterated in order to
obtain stable estimates of the parameters. This approach of parameter
estimation is equivalent to obtaining a joint modal estimate for the like-
lihood function of (B, t=1,...,n, B, @, a2, A), which is equivalent to the joint
posterior distribution of all parameters under a constant prior. However, as
noted by O’Hagan (1976), joint modal estimates may not be appropriate in
many instances. In a Bayesian framework, we prefer to examine the entire
posterior distribution rather than condensing it to one or a few moment
estimates. When it is necessary to obtain point estimates we prefer to
integrate out the nuisance parameters first and then consider, say, the mode
of the marginal posterior of the parameters of interest.

In addition to the statistical advantages, the approach in this paper may
also be more efficient computationally. Harvey’s approach requires two
Kalman filter recursions for each iteration that may be more complicated
than the computations required in this paper. In addition, the Kalman filter
recursion method is an approximation procedure that may be vulnerable
when the root(s) of the transition matrix @ is close to 1. The key
computation in the proposed approach is the inversion of the matrix D +H.
Fortunately, D+ H is a diagonal band matrix (tridiagonal if p=1) that can
be inverted very efficiently using, for example, an algorithm by Martin and
Wilkinson (1965). Computer programs for inverting diagonal band matrices
are available in LINPACK ([Dongarra et al. (1979)]. Phadke and Kedem
(1978) and Ansley (1979) discuss inverting diagonal band matrices in time
series context in more details. Also, the results in this paper can be readily
extended to a general situation where the process equation is an ARMA
process. It is not clear that Harvey’s approach can be easily extended to such
situations. At any rate, we feel it is important to obtain sound statistical
results before computational efficiency is pursued.

In summary, state vector models provide a convenient framework for
combining current observations with a previous forecast, and for forecasting
future B.s. Also, the state vector models help estimate current and past B’s
more accurately than other classical methods. This is especially true for the
time periods where insufficient data are available.
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