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Abstract

Why do so many prices end with 99 cents? Firms arguably price at 99-ending prices because of left-digit
bias, the tendency of consumers to perceive a $4.99 as much lower than $5.00. Using retail scanner data
on thousands of products and dozens of retailers, I provide reduced-form support for this explanation. I
then structurally estimate the magnitude of left-digit bias, and find that consumers respond to a 99-ending
price as if it were 15-25 cents lower. Next, I analyze how should firms respond to left-digit biased demand.
I solve and estimate a model that makes three key predictions: (1) prices should bunch at 99-ending prices;
(2) there should be ranges of missing prices with low price-endings; (3) these ranges of missing prices
should increase with the dollar digit. Qualitatively, these predictions hold. Firms respond to the bias with
high shares of 99s and missing low-ending prices. Quantitatively, however, firms price as if the bias were
much smaller and demand were more elastic. I estimate that the retailer is forgoing 1-3 percents of potential
gross profits due to this misperception.
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1 Introduction

Retail prices commonly end with 99 cents (Ginzberg (1936); Conlon and Rao (2016); Stiving and Winer
(1997))1. A leading explanation for this pricing behavior is that consumers are left-digit biased, meaning
they ignore the cents component of the price (referred to as “level effects”, e.g. Bizer and Schindler (2005)).
An alternative explanation, “image effects”, is that consumers learn about a product’s higher quality or
value from its price-ending (Stiving (2000)).

As common as 99-ending pricing is, we do not have a model of left-digit biased demand that is supported
by the data and which can be integrated in optimal pricing models. As a consequence, it is difficult to
evaluate the impact of this pricing behavior on consumers and firms. What level, if any, of left-digit bias do
consumers exhibit? In turn, how should firms respond to the bias? Is the observed prevalence of 99-ending
prices optimal, given the observed degree of left-digit bias by consumers? If not, how sizable are the profit
losses?

To answer these questions, I provide a portable model, exmaine whether it is supported by the data, and
estimate its parameters. I integrate the structure of left-digit biased consumers of Lacetera, Pope and Sydnor
(2012) with a model of profit-maximizing firms to derive a set of predictions on pricing and profits. First, I
provide reduced-form evidence for left-digit bias in consumer demand, and structurally estimate the degree
of the bias on thousands of products in scanner data. I find that consumers are biased, to the extent of
treating a 99 ending price as if it were 15-25 cents lower. Next, I estimate retailer pricing behavior. I find that
firms pricing is aligned with the model’s main predictions, but, they seem to underestimate the magnitude
of the bias significantly. From the firm’s perspective, I estimate that they respond as if a 99-ending price
is treated by consumers as being only 0.5-3 cents lower. Finally, because of these discrepancies, I calculate
economically significant implications on firm profits.

The first step in the paper is to create a framework to understand the phenomenon. As in Chetty et al.
(2009); DellaVigna (2009); Lacetera et al. (2012), I model left-digit bias as if consumers ignore a θ share of a
component of the price – the lower digits. Focusing in this paper on single dollar-digit items, this makes a
price p to be perceived as p̂ = (1− θ) p + θ bpc (a mix with weight θ on the dollar digits, i.e. the price with
no cents, and 1− θ on the exact price). For example, with a bias of 0.15, a consumer perceives $4.00 as $4.00,
but a $3.99 as $3.85. The bias causes aggregate demand to drop when the first digit changes, e.g. from 3.99
to 4.00, and also dampens the price sensitivity to within-dollar price changes, e.g. from $4.00 to $4.01.

How should a firm respond to consumers who perceive prices this way? Optimal pricing exhibits bunching
at 99-ending prices and missing low-ending prices. As left-digit bias increases, as demand becomes less
elastic, or for larger dollar-digits, the missing prices regions increase.

Next, I turn to explore whether the bias is evident on the demand side. A vast literature has explored the
issue, with positive but imprecise results (see Stiving and Winer (1997); Macé (2012) for reviews and results).
First, proper data cleaning and big scanner data allow to give finer and cleaner corroborating evidence for
the bias and rule out other explanations; Second, unlike existing literature, I estimate the bias such that we
can incorporate it into the firms problem. To estimate demand, I use a sample of 1710 popular products in
248 stores of a single US retailer over 3.5 years, and 12 products in AC Nielsen RMS data across more than
60 chains and 11,000 stores, over 9 years. The key idea is that if the model is correct, controlling for demand
shifters, we should observe drops in demand crossing the dollar digits. This holds even though firms are
strategic and price-endings are endogenous, as long as there is some variation in price-endings.

1See also Aalto-Setala (2005); Anderson et al. (2015); Anderson and Simester (2003); Ashton (2014); Ater and Gerlitz (2017); El Sehity
et al. (2005); Kalyanam and Shively (1998); Levy et al. (2011); Macé (2012); Schindler and Kibarian (1996); Shlain (2018); Snir et al. (2017)
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Figure A provides an example of a demand curve for a single product, Tillamook medium cheddar cheese
slices. The horizontal axis is the price and vertical axis is log-quantity sold, residualized from various
controls. Each point is an estimate of the average demand at that price, with standard errors clustered at
the store level. Colors represent the dollar digit. Details regarding data and estimation are described in the
body of the paper. The figure shows that demand is flatter within dollars than across all prices (solid lines
versus dashed line), with drops between dollars. These are the patterns expected if consumers exhibit some
form of left-digit bias.

Figure A: Demand curve of a single product, exhibiting drops at dollar digits
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As a one-sided visual test of the model, I focus on the structure of the unexplained component of demand. I
residualize quantities purchased from the overall price sensitivity (e.g., with constant elasticity), and other
product level controls such as seasonality, substitution with similar products, and promotions; then, I con-
sider the residuals by price. Relative to a smooth decreasing demand, the unexplained component in demand
should be lower than the best fit for low price endings, and higher for high price endings2. So, residuals
should look like a sawtooth pattern - increasing within each dollar digit and dropping sharply across the
dollars. The main advantage of this procedure is that it allows to aggregate over different products (with
different elasticities and average prices).

Several empirical challenges exist when trying to get clean evidence of residuals by price from retail scanner
data. The main threats are (1) that the analysis hinges on precise measurement of prices, but prices in scanner
data are the division of weekly revenue by weekly number of units. Thus each observation is a quantity-
weighted weekly average of possibly different prices. The weekly average price is a mix of different prices
if, for example, the price changed midweek, some consumers used coupons but not all, or club members
faced a lower price; (2) that some price endings are also tied to specific promotion strategies, acting as non-
price demand shifters that are hard to control for; (3) that price endings are chosen endogenously, making
a simple comparison between, e.g., $4.99 and $5 impossible to do; and (4) that as with every attempted
demand estimation we worry about simultaneity and price endogeneity.

I deal with measurement error in scanner data with a new data cleaning approach, and with endogeneity by
using instrumental variables. I restrict attention to what are likely to be observations of “real” prices (prices
consumers actually paid and not averages of different prices paid during the week) by excluding obvious
averages where the price is not to the cent, and by using the length of same-price spells. I argue that

2This holds true even if consumers round up when they ignore the low digits.
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selection on price-endings is not biasing the estimation but limits variation in the data. I use multiple fixed
effects to control for most classic endogeneity worries, and supplement it with instrumental variables as in
Hausman (1996). The price instruments are the concurrent average price of the same product in stores that
share a distribution center but are located in different cities. This is a slight improvement over the classical
Hausman Instruments in that “other” stores are selected based on a shared costs component (common
distribution center).

Following these data cleaning procedure and estimation technique, the drops in demand are clear, as shown
for thousands of products in Figure 3. That is, demand is flatter across cents within a dollar-digit but
is dropping when the dollar digit changes. For example, a change in price from, say, $4.99 to $5.00, is
associated with a drop of about 3-5 percentage points in the number of units sold.

These drops, together with the price level and price elasticity, can then be translated to approximate the
bias parameter. The bias parameter is by how much the price should change absent the bias to generate the
same change in demand as from the discontinuous drop. Namely, consider a drop of 4.5 percentage points
in demand crossing from $4.99 to $5.00, and an estimated price elasticity of -1.5. Then, a change of 4.5% in
demand can also be coming from a 3% change in price. 3% of $5 are 15 cents, implying a bias of 0.15, since
for these parameters the drop in demand is the same as increasing the price from $4.85 (≈ (1− 0.15) ∗ 4.99̇+
0.15 ∗ 4) to $5.00 absent a bias. I then estimate for each product the drops in every dollar digit, and its own
price elasticity (using instrumental variables), to calculate the bias. While this method provides an insight
about what identifies the parameter, an alternatvie is to estimate the model in one step with non-linear least
squares. In essence, I regress log-quantity on log-perceived-price, log ((1− θ) p + θ bpc), and other controls
and fixed effects. As a third alternative and robustness test, I estimate a log-linear model, that also generates
measures of the same bias parameter but assumes a different demand structure. The different estimation
techniques result in similar estimated parameters, with rank correlation of 0.91 between the NLS and log-
linear estimates, and 0.7 between the drops-based estimates and log-linear estimates. The average bias level
is 0.16-0.24 depending on the estimation technique. Meaning, consumers ignore on average about 20 cents
of a 99-ending price. I also estimate a specification with homogeneous left-digit bias and semi-elasticity, and
estimate a bias parameter of θ = 0.16 (0.01).

I then take the product-by-product estimates of left-digit bias and ask what product and clientele charac-
teristics are correlated with higher bias. If the bias is driven by relative thinking (Tversky and Kahneman
(1981)), it should be increasing with price since 10 cents out of $2 might feel relatively more important than
10 cents out of $8. This form of thinking is irrational if there is one unit purchased from each product. How-
ever, such a finding might be misleading if more expensive items are also purchased less often than cheaper
products. That is, it can be a manifestation of rational inattention if the bias is lower for more frequently
purchased products, since each per-unit cent weighs more heavily in the overall budget. Taking the effects
together, a 10% higher priced item is associated with a 0.02 higher bias (meaning, ignoring additional 2 cents
out of a 99 ending price), and an item purchased with 10% more units per trip is correlated with 0.02 lower
bias.

In the first part of the paper I establish the bias existence, and estimate its magnitude. In turn, it allows to
ask how should and how do firms price in response. Given that I find large discrepancies between predicted
and actual pricing patterns, I ask what are the implications of these discrepancies.

The model predicts an optimal price given parameters of left-digit bias, elasticity, and cost. Discontinuities
in demand lead to a pricing schedule by monopolistic firms that has distinct features (also for multiple-
products monopolist in Appendix C, or price-competing firms, in Appendix B). Given a continuous cost
distribution, prices will bunch just below round prices (e.g, bunch at $4.99), and this excess mass will be
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coming mostly from above. That is, there will be a well-defined region of missing prices above the 99-
ending price (but not below). While the prevalence of 99-ending prices has captured the attention of many
researchers, the latter prediction has not yet been explored, and separates this model from the few other
models suggested in the literature.

Qualitatively, firms pricing behavior follows the predictions and comparative statics of the model. Not only
do retail prices end with 99 (24%-34% of popular products) but they rarely end with a price ending lower
than 19. When they do, they are almost always on-sale prices, and likely an artifact of specific promotion
strategies (such as “2 for $6”). A third prediction of the model is that the range of missing prices is increasing
with the dollar digits. For example, under the model, the next-lowest price above $3.99, with left-digit bias
of 0.05 and elasticity of -2, should be $4.65 while the next-lowest price above $4.99 should be $5.69. This is
supported by firm pricing behavior, as low price endings are used less and less as the dollar digit increases.

However, quantitatively, there is a strong discrepancy between what the estimated bias imply for firms
pricing patterns and what they actually do. Under the model, the estimated levels of left-digit bias (0.25
or even 0.16) and price elasticity imply that all prices should end with 99. Either more elastic demand or
lower bias decrease the next-lowest prices and hence lower perceived bias or higher perceived elasticity
can reconcile the patterns in the data. However, calibration exercises show that even for unrealistically
high elasticities (such as -15), there are still big discrepancies. Since price elasticities are one of the key
parameters the seller cares about in pricing, it is unlikely that they will perceive it to be so different. In
converse, estimating the bias level is less likely and not straightforward to do even if the firm is aware of it.

I estimate the firm’s perceived left-digit bias and elasticity that rationalize their pricing behavior under the
model. The estimation technique allows to estimate the perceived price elasticity solely from the price dis-
tribution, even absent knowledge of quantities or costs. The estimation technique relies on strong assump-
tions, and the estimates are noisy, but reasonable. Compared to demand-side estimates, I find perceived
elasticity to be more elastic at -3.35, and the perceived left-digit bias to be much lower at 0.023. Depend-
ing on assumptions, I can reject a perceived bias larger than 0.043, which is lower than the demand-side
estimated levels by a few factors.

Finally, given the demand side estimates, I ask what are the firm profits at different scenarios. Namely, I
compare counterfactual profits from ignoring the bias or underestimating it to a benchmark of full opti-
mization. Compared to ignoring the bias, profits for optimizing firms are higher by 3-5 percents. The result
holds under various scenarios allowing for a multi-product price setting, or for heterogeneity in left-digit
bias, perceived bias, or price elasticity. For example, for the main point estimates, gross profits are higher by
about 4%. Meaning, that at the very least, the mere existence of the bias can have large effects on profits. But
perhaps, the firms respond enough as to recoup most of these profits. The most interesting case is when the
firm prices as if the bias is much weaker, as it seems to do. Still it loses more than half - about 1-3 percents -
of gross profits. The loss occurs regardless of whether consumers adjust prices downward or upward when
they ignore the lower digits.

How can firms respond to the bias but at the same time underestimate it? First, this is not the first paper to
document firms making consistent deviations from profit maximization (e.g. Bloom and Van Reenen (2007);
Goldfarb and Xiao (2011)). Yet, a specific explanation for the partial correction, is that a partial response
to the bias, such as changing $2.00 to $1.99, is both more “intuitive” and brings large gains, while a full
correction, such as changing $2.40 to $1.99, is counter-intuitive and less impactful on profits (and hence
also harder to pin down with noisy data). In the final section I discuss alternative explanations, such as the
model being wrong or the plausable case in which consumers’ bias level responds to the pricing behavior
of the firm. I argue that these can not be ruled out, but seem unlikely.
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This paper adds to the literature on 9-ending prices, on left-digit bias in general, to the literature in behav-
ioral industrial organization, and on retail demand estimation.

Of course, the prevalence of 9 ending prices is not new, and has been extensively explored. Some pa-
pers draw attention to documenting the fact that many prices end with 9 (Hackl et al. (2014); Levy et al.
(2011)) or revert to 9 following currency changes (Aalto-Setala (2005); El Sehity et al. (2005); Shlain (2018)),
as a “revealed preference” argument for its benefits – firms use 9-ending prices because it is beneficial for
them. Many papers test the effect of 9-ending prices on demand in experimental data in the lab and ex-
plore underlying mechanisms (Bizer and Schindler (2005); Carver and Padgett (2012); Schindler and Wiman
(1989); Schindler and Kirby (1997); Schindler and Chandrashekaran (2004); Thomas and Morwitz (2005))3.
Fewer papers examine the effects of 9-ending prices on demand, either in field experiments (Anderson and
Simester (2003); Ashton (2014); Bray and Harris (2006); Dalrymple and Haines Jr (1970); Dube et al. (2017);
Ginzberg (1936); Schindler and Kibarian (1996))4, or in observational data (Blattberg and Wisniewski (1988);
Hackl et al. (2014); Kalyanam and Shively (1998); Macé (2012); Stiving and Winer (1997))5. These papers find
that 9-ending prices increase demand, but the estimates are imprecise. This paper adds to this literature by
providing visual reduced-form evidence for the bias using big data, and a structural estimation and inter-
pretation of the findings allowing to import the bias into the firm’s problem6. This is also the first paper that
quantifies firm response to the bias.

On the formal theory side, few models relate directly to 9-ending prices (Basu (1997, 2006); Stiving (2000)),
and some bounded-rationality models generate discrete price-setting behavior (Chen et al. (2010); Gabaix
(2014); Matějka (2015)). This paper provides a portable model that is straightforward to take to the data,
connecting both the consumer and firm sides. A predecessor smooth model of left-digit bias (DellaVigna
(2009), the one used here on the demand side) was estimated in various economic settings, but not on prices
(Lacetera et al. (2012); Busse et al. (2013)). This difference is crucial, since prices are manipulateable7. This
paper estimates left-digit bias in an everyday environment of grocery shopping, and adds a way to do so in
face of strategic response of firms.

The paper relates to the literature in behavioral IO in two senses. First, by studying a market where firms
respond to biased consumers (e.g., Akerlof and Shiller (2015); DellaVigna and Malmendier (2004, 2006);
Heidhues and Kőszegi (forthcoming); Spiegler (2011)), and second by studying a case where the firms are
also “behavioral”, in the sense that they are not profit-maximizing in a systematic way (Cho and Rust (2008,
2010); DellaVigna and Gentzkow (2017); Goldfarb and Xiao (2011); Hanna et al. (2014)). A companion paper,
Shlain (2018), exploits a natural experiment in Israel and finds that firms do respond to left-digit bias in the
long-run but in a way that is consistent with relearning a rule-of-thumb behavior rather than understanding
the underlying model.

3Common techniques are to do “recall” tests, and find that subjects are worse at recalling a price ending with non-round numbers. A
summary table is available in Carver and Padgett (2012), and the most recent evidence, by Snir et al. (2017), is also exploring consumers
response to the same policy reform I study in a companion paper (Shlain (2018)). Other explanations refer to drop-off mechanisms,
such as in Bizer and Schindler (2005) who find that subjects purchase more out of the same budget when prices are odd.

4Anderson and Simester (2003) and the earlier papers in that list run experiments with varying prices in mail-in catalogs. An
exception of supermarket setting is Ashton (2014) who uses the data from Chetty et al. (2009) and shows in reduced form that all of the
response to experimentally-included sales tax is coming from prices who after the inclusion change their dollar digit versus those that
did not.

5Observational data papers usually find higher demand for 99 or 9-ending prices by including a dummy for these. Surprisingly,
these papers rarely discuss the issue of price averaging that is common across these data. The paper by Stiving and Winer (1997) is
doing a beautiful work in testing various hypotheses of the mechanisms supporting 9-ending prices, but is limited to only 4 products
with low prices (under $1).

6A few papers document that prices tend to end with 9, or 99, and ask questions on the effect of this phenomenon on price stickiness
(Anderson et al. (2015); Ater and Gerlitz (2017); Levy et al. (2011)) and the pass-through of taxes (Conlon and Rao (2016)). This paper
adds to this literature by micro-founding this stickiness as an optimal pricing response of firms.

7Indeed, two papers that examine left-digit bias in house prices, find extensive sorting of prices, but try to argue that the price
ending is chosen as-good-as random, which is clearly not the case in retail pricing (Chava and Yao (2017); Repetto and Solis (2018)).

6



Finally, the paper relates to the vast literature of product demand estimation (see a review by Nevo (2011)),
by contributing a novel method to estimate demand solely from the price distribution. The method exploits
the discontinuities created by the bias, importing insights from public economics (Saez (2010)). Thus, this
paper also contributes to the recent literature in structural behavioral economics with a rare case in which
a behavioral bias allows identification rather than make it impossible (see review by DellaVigna (forthcom-
ing)).

To conclude, in this paper I document a bias that is prevalent in everyday decision making of consumers.
Even though the market reponds to the bias and exploits it, it is not sufficient to drive it out of existence.
More suprisingly perhaps, firms do not seem to fully exploit the bias, leading to significant losses on their
side.

The rest of the paper is organized as follows: Section 2 describes the model with left-digit biased consumers
and solves the problem of an optimally pricing monopolist. Section 3 describes the data and cleaning pro-
cedures. Section 4 provides reduced form and structural estimates of the demand side in light of the model.
Section 5 then moves to the firm side, analyzing firm pricing facing the estimated demand. Section 6 pro-
vides counterfactual exercises regarding firm profits. Section 7 concludes with a discussion of the plausibil-
ity of the results.

2 Model

Existing Theories Most of the literature on 99 pricing is not formally modeled. The literature assumes that
firms price at 99 because they face some non-standard consumers’ response to pricing. Main explanations
are in the form of “level effects”, where consumers drop-off the lowest digits of a price, and “image effects”
where the price carries a signal about the product, either about its quality or price (see Stiving and Winer
(1997) for a review). The model that will be described shortly is a form of “level effect”, but it also has
something to say about image effects.

A few formal models do exist. Most notably, Basu (2006) models rationally inattentive consumers choosing
whether to observe the lower digits or ignore them altogether, and then replacing them with the mean price
ending (conditional on the first digits). Basu finds multiple equilibria that are either complete ignorance
(with firms responding by solely pricing with 99), or full attention. Other papers, assume bounded rational-
ity on the side of consumers or firms, which in turn creates discrete pricing, but not necessarily at 99 (Chen
et al. (2010); Gabaix (2014); Matějka (2015)).

Another popular class of models is of inattention to certain components of a price (such as sale taxes in
Chetty et al. (2009) or shipping fees in Hossain and Morgan (2006)). The model was later translated to
inattention to lower-digits by Lacetera, Pope and Sydnor (2012) and estimated as the effect of odometer
readings on prices in the used cars market. This model of consumer behavior, which I use and complement
with a responding pricing firm, posits that each consumer reads a number left to right, and has a probability
θ of ignoring the rightmost digits. In Lacetera et al. (2012), that number is the odometer of the car, and in
this paper it is the price of a product.

Model The model consists of left-digit-biased consumers and monopolistic firms8. Consumers choose a
quantity to purchase to maximize utility, but may misperceive the price. Firms price to maximize profits,

8In appendix B I solve a case of firms pricing under price-competition with left-digit biased consumers. The case of multi-product
monopolist is in appendix C.
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according to their beliefs of consumer misperception. Misperception is a primitive of consumer behavior,
and is not affected by firm behavior. In the last section of the paper I will discuss how crucial this assumption
might be.

Consider a product whose price is p. Assume that a consumer perceives the price as p̂ = p̂ (p; θ), a distortion
function that causes the consumer to perceive the price as possibly different than it actually is. Given this
paper’s empirical context, the p̂ function is such that consumers observe the left-most digits in full, but
observe the cents digits with a lower level of attention. Specifically, a left-digit bias parameter θ ∈ [0, 1] has
two interpretations9. One interpretation is that it describes that each consumer is putting a relative weight
θ on the lower digits of the price, while a second alternative is that θ share of consumers ignore the lower
digits altogether. Though different in interpretation, these two modes lead to similar qualitative predictions
(see Appendix B for when they differ). The former interpretation is a bit simpler to solve algebraically, and
also captures the observation that “4.99 feels lower than 5.00” at the person-specific level. This is the model
of choice. That is, from now on assume that

p̂ = p̂ (p; θ) = (1− θ) p + θ bpc (1)

A crucial modeling choice made here is that if lower digits are not observed, they are completely dropped.
This is important for welfare and total profits (do consumers over- or under-consume?), but can not be
identified in the data. In addition, it is less consequential for the impact of misoptimization by the firm. I
highlight when this assumption is consequential and discuss alternatives.

If the agent has utility of the form U (y, q) = y +
( q

A )
1+ 1

ε

1+ 1
ε

where y is the residual income, q is the quantity

purchased of a good, and A is translating quantity to numeraire value, then overall demand will be of the
form10

D (p; θ) = Ap̂ε = A ((1− θ) p + θ bpc)ε (2)

To get some intuition, the impact of the θ left-digit bias parameter can be understood by observing three
distinct consequences for price-setting and demand: First, the effect of a 0.01 price increase on demand is
lower than in the standard model if only one digit is changed (i.e. 2.95 to 2.96 ); Second, the penalty of a 0.01
price increase is higher if higher level digits also change (i.e. 2.99 to 3.00). Finally, almost all prices (except
round ones where p = bpc) appear to be lower than they are - hence for every price p that is not a round
price, demand is higher when θ is higher (again, by a non-verifiable assumption).

Consider a monopolist who faces a demand function D (p; θ). The firm earns p per unit, and pays a fixed
unit cost c. Then, the monopolist gross profits are

Π (p; θ) = D (p; θ) (p− c)

i.e., demand is driven by the perceived price while per unit profits are governed by the true price. This is
a common feature of models with inattention (e.g. Farhi and Gabaix (2015)), where there is a discrepancy
between true utility and maximized utility on the consumer side, causing distortions.

9In other papers, θ is termed “inattention”. However, other forces might lead to the same behavior, such as imperfect price recall,
price categorization, or a tendency to choose round numbers for internal values or reference-prices. Therefore, I use the term left-digit
bias which captures all of these, and remain agnostic about the behavioral mechanism.

10Conversely, if there is type mixture as described above, then following the same formulation will lead to demand of the form
D (p; θ) = A

[
(1− θ) pε + θ bpcε

]
.
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In section 5 I consider a specific form of misoptimization by the firm. The monopolist understands the
model and knows the true structural elasticity, but might be wrong about the level of left-digit bias, so will
maximize profits given their belief. i.e., it maximizes Π = D

(
p; θ̂
)
(p− c), where θ̂ might be different than

θ. For now, assume that θ̂ = θ.

optimal pricing given θ For ease of exposition, I decompose a price p into its decimal basis components,
s.t. p = p1 + p0.1 + p0.01. For example, p = 3.49 = 3 + 0.40 + 0.09, so p1 = 3.

With left-digit bias, we get a discontinuity in demand when changing p1 since in the limit from below,
demand is A (p1 − θ)ε versus A (p1)

ε. To simplify the solution, assume that prices can be chosen from
all real numbers between a natural number and a .99 ending number - ∪

q1
[q1, q] ⊂ R+ where q1 ∈ N and

q = q1 + 0.9 + 0.09. Proofs to the following propositions and corollaries appear in Appendix A.

Solving for optimal pricing yields the following:

Proposition 1. Optimal pricing formula, for small θ.

For any cost c and parameters ε and θ find the appropriate .99 ending number q = (q1, .9, .09) such that c ∈[
cq, cq+1

]
,
[
q
(

1 + 1
ε

)
+ θ

1−θ
q1
ε , (q + 1)

(
1 + 1

ε

)
+ θ

1−θ
q1+1

ε

]
. Then, the optimal price for that cost c is

p (c; θ, ε) =

 q if c ∈
[
cq, cq

](
c− θ

1−θ ·
q1+1

ε

)
ε

1+ε if c ∈
[
cq, cq+1

) (3)

Where cq and cq+1 are defined above, and cq is defined below with an implicit equation as the minimal cost for which
it is profitable to price strictly above q.

To make Equation 3 clearer I elaborate on the three threshold costs cq, cq+1, and cq. The former two, cq and
cq+1, are the costs for which the monopolist’s profit is maximized as an interior solution at q and q+ 1 respec-

tively. i.e., where the first order condition is satisfied at q and q + 1. The image of costs in
[
cq, cq+1

]
is hence

prices in [q, q + 1] which allows to use q and q1 in the two cases in Equation 3. The third threshold, cq, is the
cost for which prices will switch between q to a point in the segment [q1 + 1, q + 1]. At cq two conditions are
met: (1) the profit is maximized (with an internal solution) on some price Pq ∈ [q1 + 1, q + 1] > q; and (2)
profits are equal at that price, Pq, and at q11. For ease of notation, I omit q from Pq in the following:

cq =

 P + (1−θ)P+θP1
ε(1−θ)

DPP−Dqq
DP−Dq

(4)

Definition 1. The Next-Lowest Price P is the lowest price used above a 99-ending price q, and is a function
of the parameters θ and ε as defined by the following implicit equation:

P +
(1− θ)P + θP1

ε (1− θ)
− ((1− θ)P + θP1)

ε P− ((1− θ)q + θq1)
ε q

((1− θ)P + θP1)
ε − ((1− θ)q + θq1)

ε = 0 (5)

This equation is not analytically solvable, but can be easily solved numerically. Given P, we get cq from
either part of Equation 4. It means that no prices are set between q1 + 1 and P.

11For very low θ, there is no gap, and Pq = q1 + 1.
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To gain some intuition regarding Equation 3 note that this pricing behavior is different than a no-bias world
in two ways. First, the top case shows that prices bunch at 99, and second, the bottom case describes interior
solutions as a modified markup rule with an added component driven by the bias.

The top equation shows that prices are set at 99 ending prices (q) for a range of unit costs, and hence with
varying markups. This is an admittedly unsurprising, and a motivating prediction, of non-zero mass at
99-ending prices. The mass is caused by the discontinuous drops in demand. Thus, this model generates
price stickiness that is not driven by frictions on the supplier side.

The lower expression in Equation 3, describes the interior solutions, with the lowest price being Pq. It

shows that the optimal price is a modified Lerner equation with an extra term
(
− θ

1−θ ·
q1+1
1+ε

)
. In the interior

solutions region, the price is slightly higher than it would have been absent the bias (recall that ε < −1). This
is due to the left-digit bias making demand less elastic for changes within the same first digit. This added
markup is increasing in the bias (θ) , and the nominal price (q1), and decreasing in the absolute elasticity
(ε).

The pricing schedule is illustrated in Figure 1 showing price as a function of cost with left-digit bias. The
diagonal gray line is the price without bias, and the thick lines are the optimal prices with the bias, exhibiting
regions of costs priced at 99-ending prices and ranges of missing prices with low price endings.

Notice that in Figure 1 products whose price is 99-ending are usually (depending on the cost distribution)
priced with lower markups. This can be seen as a “level effect” micro-foundation of the “image effect” style
of explanations – 99-ending prices are indeed, in expectation, of higher value (insofar as costs are positively
related to value).

Most important are the testable predictions of the model: That there is bunching at 99-ending prices, and
that this bunching is drawn from missing prices above the round price thresholds.

Comparative statics We are interested in the effect of the elasticity and left-digit bias on the next-lowest-
price P, and can show the following results:

Proposition 2. Comparative statics of the Next-Lowest Price: For ε < −1,

The next-lowest price is lower when demand is more elastic, i.e. ∂P
∂|ε| < 0

For q1 > 0, the next-lowest price is higher when there is more bias, i.e. ∂P
∂θ > 0.

The first part of the proposition shows that more elastic demand leads to lower next-lowest price. Higher
elasticity means lower markups, so costs that go to a 99-ending price q are now higher. If the indifference
cost cq is kept fixed, and since cq = P

(
1 + 1

ε

)
+ ..., it means that P must decrease. Of course, the cost is

increasing, but the proof shows that it increases by less than offsetting this primary effect.

The second part of Proposition 2 states that higher bias leads to higher next-lowest prices. The effect of
higher bias is simpler to understand. With higher bias, demand is rotated up, meaning it is higher every-
where in proportion to the price-ending (kept fixed at round prices). It makes the effect on higher-digit
ending prices stronger than on low-digit ending prices. Higher demand at q increases the indifference cost
and P, while higher demand above q decreases the indifference cost, lowering P. Because the effect is
stronger on q than on lower-ending prices, the net effect is to increase P.

In the data we observe prices across time, products and stores. So far, we have not made any assump-
tions about what drives variation in prices – price variation can be generated from differences in costs, in
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elasticities, or in bias levels. Like common in the literature (e.g. Hausman (1996)) I will assume that for
a specific level of observations (e.g., same brand and chain, across stores and time) elasticity and bias are
fixed, and the price-setting variation is driven by changes in costs12. Note, that apart from having a support
that includes cq, cq (i.e., the costs that generate both a 99-ending price and the next-lowest price above it),
we do not need to make any assumptions about the cost distribution, c ∼ F, to test the NLP predictions in
Proposition 2.

A simple corollary is showing that the right-digits component of the next-lowest price is increasing from
one threshold to the next:

Corollary 1. For ε < −1, the lower digits of the Next-Lowest Price (i.e., P− P1) are increasing with the first digits.

This corollary means that more nominally expensive products have larger regions of missing prices. For
example, for the same parameters of left-digit bias and elasticity, the lowest ovserved price beginning with
4 should be $4.30 and with 5 is $5.32.

This is not necessarily tied to larger shares of 99-ending prices, because excess mass depends on the shape of
the underlying cost distribution. The share of observations in a 99-ending price q is F

(
cq
)
− F

(
cq

)
. Higher

left-digit bias or less elastic demand lead to greater cq, but both also shift the costs that go to 99, meaning
also higher cq. It can be shown, even for the simplest uniform cost distribution that the sign of effects on
share of 99-prices depends on the parameters. For example, if costs are uniformly distributed, then a change

in the excess-mass due to an infinitesimal increase in θ is proportional to ∂P
∂θ + 1

ε

(
∂P
∂θ + 1

(1−θ)2

)
. If ε → −1

then this is negative, implying a decreasing mass at q. If ε� −1 then the first term, which is positive as per
Proposition 2, dominates, making the effect positive overall. The same kind of exercise holds also for the
comparative static effects of the price elasticity13.

In other words, unlike the next-lowest price predictions, the excess mass is sensitive to the shape of the
cost distribution and the exact values of parameters. This means that point identification of left-digit bias
and price elasticity from next-lowest prices and excess mass is theoretically possible, in the sense that the
parameters have differing effects on the moments. This avenue is then explored and developed in Section
5.

3 Data

This project relies on various data sources, aiming to provide a thorough investigation of the bias. The
ideal data include a large number of observations of precisely measured prices and quantities, where prices
change due to supply shocks and all demand shifters can be controlled for. For validity purposes, we would
also like the data to reflect many types of products, consumers, and retailers. As is often the case, ideal data
are hard to find. Nielsen scanner data are great for validity, capturing a large share of products and retailers.
It is also a long panel, helping with estimation precision. However, it has a few shortcomings mainly on
the side of price measurement. Prices in the data often represent an average of different prices paid within
a week, but not a price that any consumer actually paid. In contrast, data from a large US grocer have
several advantages in measurement and separation between regular and on-sale prices, but represent only
this retailer and their clientele.

12DellaVigna and Gentzkow (2017) show that there are different elasticities between stores within a chain-product, but that these
differences are not translated to variation in prices; bias heterogeneity is also of course probable, but it seems natural to establish the
mean bias as a first step (compare the mean-bias Chetty et al. (2009) to the heterogeneous-bias Taubinsky and Rees-Jones (2016)).

13For elasticity with uniform cost distribution the first derivative of excess mass at q to changes in ε is ∂P
∂ε

(
1 + 1

ε

)
−
(

P− q + θ
1−θ

)
1
ε2 .
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Therefore, the main dataset I use is the retailer, allowing for cleaner empirical analysis on a large set of
products. I then use a sample from Nielsen as a validity and robustness test, and find similar results across
more than 60 different retailers.

3.1 Retailer

The first dataset is scanner data of sales of a US national grocer, with a relatively rich set of variables. The
same data were used in other papers such as Eichenbaum et al. (2011); Gopinath et al. (2011). Data are
collected from the cash registries of the chain’s stores and aggregated at the weekly level. Each observation
is a distinct product (UPC) in a store in a week. As shown in column (1) of Table 1, there are about 74000
distinct products, in 250 stores, and 177 weeks (2004 to mid-2007). The data describe sales of more than 3
billion units, and $7.2 billion worth of sales.

Available variables for each observation include the number of units sold, the net revenue (the actual
amount paid) and the gross revenue (which is the amount the store would have collected if each unit were
priced at its regular price, absent discounts), among other variables (such as two cost measures - wholesale
prices and adjusted gross profits). The price is then the division of net revenue by units sold, and the regular
price is the division of gross revenue by units sold.

The data are used to conduct demand estimation, and therefore we might be worried about price endo-
geneity. Ideally we should get prices to vary due to cost changes (supply shocks), but not due to changes
in demand. I take a common approach to address this issue, with instrumental variables for prices. I am
using leave-out-prices (in the spirit of Hausman et al. (1994); Hausman (1996); Nevo (2001)) for the same
product at the same period in other stores. To increase the likelihood that these other prices capture supply
shocks rather than local demand shocks, I use stores in other cities, that share the same distribution center.
This is another advantage of the data, where each of the 250 stores is assigned to one of 17 distribution
centers supplying it the goods. I discuss the identifying assumptions with this approach when I describe
the estimation in Section 4.

An important issue with such scanner data is that if a product did not sell in a certain week, its price is not
observed (because zero units sold for zero revenues). It is likely that observations are not missing at random.
That is, if a product is less likely to sell when its price is high, then there is a potential for underestimation
of price elasticity. To mitigate this issue, I select popular products. I select all products that were available at
regular prices for at least 50% of all observations (among weeks and stores in which they were at any point
sold) and with at least 10,000 observations. To get some level of minimal price-ending and dollar variation,
I am selecting the 1710 products whose regular prices end with 99 at most 75% of observations, or are all
within a single dollar digit at most 75% of observations, as shown in column (2) of Table 1.

As shown in column 2 of Table 1, this procedure leaves me with 1,710 products and 51.3 Million obser-
vations. Since these are of the most available and popular products, while they are 2.3% of all possible
products, they capture 19.2% of all revenue in the data. The average price is $3.42 (with standard deviation
of 1.63), and the inter-quartile range of prices is $2.29 to $4.19. Meaning, most of the prices have exactly one
dollar digit, limiting exploration of the effects of more or fewer digits (96.35% of observations are strictly
between $1 and $10).

The reader might worry that I am selecting the sample based on outcome-related variables. Hence, I also
present results for the complementary set of popular products, namely those with highly concentrated
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prices, as a robustness14. Another limitation of the data is that it is not possible to infer the unit price for
products paid by weight, such as fresh produce, meat, or deli items. I exclude these product categories15.

In order to investigate the relationship of demand to changes within, versus across, dollar digits, the exact
price paid is crucial. However, the inferred price (net revenue divided by units sold) does not necessarily,
and often do not, describe the actual price paid in store. This happens when some consumers pay with
coupons, if some have club membership specific discounts, or if some products are priced with non-linear
pricing (such as “buy 1 item get the second for 50%”). Another potential source of multiple prices, which is
when prices change during the measurement week, does not occur in this data set, since the measurement
weeks are aligned with the price changing frequency. However, in AC Nielsen RMS data this is a sometimes
severe issue as will be described next. The nature of averaged prices in scanner data is a known issue in
the literature, and some of its implications on inference regarding economic phenomena, such as demand
estimation and price changes, were explored (e.g. Einav et al. (2010); Eichenbaum et al. (2014)). The retailer
data have a unique advantage since there is no rounding. e.g., a price in the data, which is the result of
dividing revenue by units, might be $3.044. In such cases, when the price is not “to the cent” then it must be
the result of weighted averaging of several prices (here, for example one possible mix can be 41 units selling
for 2.99 and 9 units for 3.29). Therefore, I exclude these observations, reducing the number of observations
by about 10%, to 46 Million (column (3) of Table 1). However, this might keep other observations that are
a mixture but happen to have an average that is to-the cent. For example, 9 units purchased at $4.99 and 6
at $4.49 will give an average price of $4.7916. A different approach is to use the length of the price spell. If
the same price appears for two consecutive weeks or more, it is less likely that this price is non-real. Indeed,
as shown in Figure A.3 by the dark circles, already at two-week spells, most prices are to-the-cent. This
method is mostly useful for Nielsen data, where all prices are rounded to the cent, so the former approach
is unavailable. Finally, a sure way to keep only non-averaged prices is to only consider the instances where
the net price equals the regular price (which happens for about two thirds of observations). Regular prices
do not change very often, and are indeed always to-the-cent.

Some statistics about the price endings are shown in Panel B of Table 1. When I include prices that are
not to-the-cent I round the prices, emulating what happens in the Nielsen data. As we move from all
observations to the “real prices”, the share of 9-ending prices increases, meaning that other price endings
are more likely to be the result of averaging of multiple prices. Notice also the higher share of 0-ending
prices for all prices (column (3)) versus only regular prices (column (4)). Meaning, 0-ending prices are
strongly positively correlated with being on-sale17.

If 9-ending prices are mostly not on-sale, while 0-ending prices (and others) are on-sale, it will lead to
spurious higher demand for 0-ending prices without flexible enough controls of sales effects or if the model
is misspecified. Prices are only one determinant of demand, and different promotion techniques can lead to

14The other 2149 products, are characterized by having just as high availability and 10000 observations, but have either more than
75% of observations ending with 99 (only 125 products), or more than 75% of observations starting with the same dollar digit. This
mostly happens for cheaper products, priced under $1. There are 55M observations, representing 170M units sold annually (more than
the main sample) with annual revenue of $292M (less than the main sample). Indeed, the average price is $2.2 (versus $3.5 for the main
sample), with fewer 99 and 9-ending prices (15.4% and 63.7%).

15I exclude the following: Delicatessen, Food Service, Fresh Produce, Meat, Seafood, and Alcoholic Beverages. This is a serious issue
since weight adjustments only work for some products but not for others. For example, sliced turkey breast, packaged in the deli and
priced by weight with a sticker on the wrap will appear as a single unit.

16Under the assumption that there are at most two prices paid, with one of the prices being the regular price, the other price and
quantity purchased at each price can be inferred in theory from the average price, the total number of units, and the facts that prices
should end with a cent. However, this is imperfect and allows for multiple prices, and requires some assumptions to restrict possible
prices to a single price. I therefore prefer to err on the safe side by reducing sample size.

17Note that these findings stand in contrast with the assumptions of “image effects”. First, under image-effects rationalization,
round prices should be linked to high-quality items, but at the product level, they occur mostly when the product is on-sale. Second,
a common explanation for 99 prices effectiveness in this literature is that they are learned through consumer experience to signal a
discount. But, the contrary is true, as 9-ending prices, if anything, should signal the regular, higher, prices.
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stronger effects than others. Indeed, as casual observations suggest, round prices are commonly the result
of quantity sales (e.g., “2 for $5” which means an individual unit price of $2.50) that might have stronger
effects than equally sized sales (e.g. Blattberg and Neslin (1990); Wansink et al. (1998)). Appendix Figure
A.2 shows how the shares of observations with to-the-cent prices (left panel) and on-sale prices (right panel)
depend on the last digit of the price. Indeed, almost all 9-ending prices represent prices actually paid in the
store (98%), but only 9.9% (!) of them are on-sale. Compare that to 0-ending prices, that are also mostly real
(92%), but 91% of them are on-sale prices.

3.2 Nielsen

Nielsen Retail Scanner (RMS) and Consumer Panel (HMS) data are provided by the Kilts Center at the
University of Chicago. Like the retailer data, RMS records weekly UPC-store level quantity and revenues.
Overall the scanner data record observations for over 35,000 stores during 2006-2014 in the US, regarding
about a million different unique products. As per this version, I am using the Nielsen data as a robustness
test using a sample of products and stores selected by DellaVigna and Gentzkow (2017) (see for details on
data selection), of 12 items (termed “high-end” in their paper) in food stores. The summary statistics are
described in Appendix Table 1. The sample consists of 28 million observations of these 12 products, in 11000
stores, with a total of 188 million units sold for $881 million. The data have a few disadvantages relative
to the retailer data, which I elaborate on with possible solutions in Appendix Section D. In a nutshell, an
effective way to identify sales and non-real prices in the data is by using the spell length of a price. If a
popular product’s price changes from week to week, it is likely to be a non-real price. If a product’s price is
kept constant for many weeks, e.g. for six consecutive weeks, it is likely a regular price. I discuss this idea
further in Appendix D.

4 Demand Estimation

In this section I provide reduced-form support for left-digit bias, and structurally estimate the bias parame-
ter as prescribed by the model. Finally, given estimates at the product level, I investigate how do estimates
change with respect to characteristics of the product and its clientele.

4.1 Reduced-Form Evidence

Figure 2(a) illustrates constant elasticity demand curves with and without the bias, i.e. log Q = A +

ε log ((1− θ) p + θ bpc), for θ = 0.15 on the left panels and θ = 0 on the right. On the right, without
bias, demand is a line with slope ε. On the left, the slope is flatter within each dollar digit, and demand
drops when the dollar digit changes (highlighted by different colors). The dashed line is the fitted line from
a log(quantity) on log(price) regression18. In turn, Figure 2(b) shows the residuals by price from these re-
gressions. The sawtooth pattern of residuals for the bias case, with discrete drops at dollar thresholds, is a
manifestation of the bias. If there is no bias, as in the right panel of figure 2(b), residuals are a flat line at 0.
If the model is misspecified, it will exhibit some other general shape.

18The simulated price distribution is uniform. If it were the case that prices are more likely to be 99 ending, a regression line will
be closer to the 99 ending prices. The slope of the regression line, without taking the bias into account, is interpreted as the price
elasticity. The slope is affected by the distribution of price endings, but can go either way. For example, if prices are $4.99 and $5.05,
the regression slope will be steeper, making demand seem more elastic than it is, while if prices were $5.05 and $5.99, the slope will be
flatter and demand less elastic. I assume, as in the model, that the price elasticity is the demand response to true price changes.
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In the following I focus on residualized demand by exact price. The idea is to net out any factors explain-
ing differences in demand across observations that are not due to price-endings, such as seasonality, store
and product characteristics, promotion mix, and price elasticities. This also allows to aggregate over more
flexible demand structures, for example different elasticities and price distributions for different products.

Figure 3 shows that the sawtooth patterns are found in the data. Residualized demand is increasing within
a dollar-digit and drops across digits. But before turning to the results, I would like to make the empirical
strategy clear.

There are four main empirical threats to overcome. The unique challenge in this paper is that the analysis
hinges on exact prices. Because prices are revenue over quantity, there is risk of prices in the data not
representing the price paid. As mentioned above I mitigate that worry by excluding prices that are not
to-the-cent and by excluding one-week spells, or at the extreme by keeping only regular prices.

A second issue is the need to control for the promotion mix. Normally, when a retailer is putting a product
on sale demand will increase by more than the mere price effect. The retailer uses various strategies -
different tags and postage, advertisement in other parts of the store or outside of it might be in place, and
the promotion might be contingent on (or nudging for) purchasing multiple units. As shown in figure A.2,
since 9-ending prices are usually regular prices and 0-ending prices are usually on-sale, proper controls
for sale effects are required. I am using multiple fixed effects for that purpose - a dummy for whether the
product is on-sale, 4 dummies for the last digit of the price (0, 5, 9, or others), and 5 dummies for the spell
length (since sales are usually shorter price spells as shown in Figure A.3) – all proxy different aspects of
sale strategies, but all missing important aspects. A more extreme solution is to conduct the analysis only on
regular prices. This has the downside of capturing a different price elasticity, and cutting down more heavily
on the data. I take both approaches. The main analysis is conducted with all prices and sales controls, but
the results are indeed cleaner for the regular prices.

The third challenge is the sorting of price-endings. As long as prices change due to costs, and as long as there
is enough variation in price-endings (guaranteed by sample selection) this is not a worry. The reason is, that
I am estimating the demand curve, and while prices are a function of the costs, demand is not. From the
consumer perspective, it does not matter that different costs translate to the same price. Meaning, the shape
of the demand, by price, is not affected by sorting on price. Of course, if all prices end with 99 or all prices
begin with the same dollar digit, there is no variation and no hope for separating the price-ending effects
from price effects.

Since the data lack exogenous variation in prices, we worry of elasticity bias driven by unobservables (such
as local demand shocks) affecting prices and quantity sold. However, much of the demand variation is ab-
sorbed by fixed effects, capturing seasonality, products characteristics, permanent store differences, and sale
strategies. As Rossi (2014) argues, long panels with multiple fixed effects might not be subject to substantial
bias19. Relatedly, DellaVigna and Gentzkow (2017) show that chains set uniform prices across stores, hence
implying that price variation is not driven by local shocks and does not equates demand and supply at the
store-week level. Meaning, the worry should not be too big. So, even though I use instrumental variables
for the main results, in some cases I estimate a simple OLS (or a non-instrumented NLLS). I construct in-
strumental variables and find slightly more elastic demand, but small impact, if any, on the patterns and
estimated bias. I instrument for logPist with logPid(s)t, the average log-price of the same item i in same period
t in stores (s) in other cities but the same distribution center d(s). The assumption here is that this average

19In fact, Hausman (1996) argues the following: “to the extent that supermarkets set their prices... under an assumption of constant
marginal costs (in the short run) and do not alter their prices to equilibriate supply and demand in a given week, prices may be
considered predetermined... then IV methods would not necessarily be needed”.
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price is capturing changes in price that are driven by cost changes. The costs are likely to be common across
stores and hence are unlikely to be driven by local demand shocks20. These instruments can not fully re-
solve the issue of endogeneity, since it might be that there are aggregate demand shocks that affect prices
across stores in a certain week.

Finally, cross-elasticities with other products are an important component affecting demand21. I am there-
fore including a variable of the average price of other products in the same category (as defined by the
retailer, e.g., “tea”). The common approach in the literature is to add all “close” products flexibly (as in the
lowest level of almost ideal demand systems, as in Hausman et al. (1994), or to use BLP-like random coef-
ficients (as in Nevo (2001)), or to take a Bayesian approach (Rossi et al. (2012)). Since I am using thousands
of products and tens of millions of observations, and since I am excluding some observations with non-real
prices, these approaches are harder to implement in practice. By adding a single variable of mean log price,
I essentially estimate the average cross-elasticity to products within the category (I find it to be on the order
of 0.1-0.3).

I am using the following specification product-by-product:

logQist = εilogPist + αilogPc(i)st + βis +γi,year(t)+ δi,month(t)+µi,on−sale(ist)+µ′i,spell.length(ist)+ νi,cents.digit(ist)+ eist

(6)
Where i is product, s is store, and t is period. Q is number of units sold, and P is the price. ε captures the
product-chain elasticity as the coefficient on log-price. I instrument for logPist with logPid(s)t, the average
log-price of the product in stores in other cities that share the same distribution center. The second term
captures cross-elasticities, where logPc(i)st is the average log-price of other products of the same product
category c(i) in the same store s at the same period t. β is a store fixed effect capturing a steady state product
average demand in a store; γ is a year fixed effect capturing long-term shifts in demand; δ is month-of-year
fixed effect capturing product specific seasonality; µ is an indicator for whether a product’s price is on-sale
or not (by comparing the actual price to the regular price, and calling it “on sale” if the actual is lower than
the regular). µ′ is a spell-length fixed effect for spells of length 2, 3, 4, 5 weeks, and more than 6 weeks,
capturing on-sale propensity and some stockpiling effects; and ν is a fixed effect for the cents digit being 9,
0, 5, or other, capturing different promotional strategies that are correlated with specific price endings.

I then take the residuals, êist, and regress them on price fixed effects at 10 cents bins (e.g., $2.90-$2.99 is one
bin).

êist = ∑
p̃={1.0,1.1,...,11.9}

α p̃1 (pist,1 + pist,0.1 = p̃) + uist

To get confidence intervals I bootstrap the two steps together 300 times, clustering by store. I do not do this
in a single step due to the large number of fixed effects (about 470,000 fixed effects plus 3,420 coefficients),
making it computationally inefficient.

The main results, for 1,710 products are shown in Figure 3. The horizontal axis is the price, and the vertical
axis is the residualized demand. Each point is the estimated α p̃, the residual demand at a specific price (in 10
cent bins). The top panel shows the residuals from specification 6 on the main sample (column 3 in Table 1).
The bottom panel shows results from a restricted sample of regular prices, and the patterns are cleaner there
(column 4 in Table 1). The figures show that quantity purchased, netted of price, promotion, and seasonality

20The first stage for all products is very strong, with the mean coefficient across products being 0.86 (standard deviation of 0.14) with
the smallest F-stat being 69 and most are on order of tens thousands. This strong relation is likely driven by zone pricing behavior, and
also explains why a simple OLS provides almost identical results, just less noisy.

21Cross elasticities are also important for pricing. To keep the model solvable analytically, and allow for comparative statics, I ignored
cross-elasticities on the theory and estimation of the firm behavior. I add it back in conducting counterfactual exercises.
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effects, is increasing within each dollar-digit and drops at dollar crossings. Such patterns are consistent with
demand of left-digit biased consumers. Meaning, after controlling for all other effects, higher price-endings
are associated with higher demand. Under the model, this is driven by ignoring a fixed proportion of the
price-ending, creating larger discounts of the total price for higher price-endings.

In the main sample, for some prices there is actually no drop crossing the dollar threshold but for the next
10-cent prices (for example, demand only drops at $5.10 rather than at $5.00). A simple comparison of
demand at $4.99 to $5.00 would lead to the conclusion that there is opposite bias, suggesting that perhaps
round prices have some innate appeal. However, as can be seen in the bottom panel focusing on the sample
of regular prices, these patterns are driven solely by promotions. For the restricted sample of regular prices,
the round prices are aligned with the overall sawtooth pattern and all drops are at round prices. It does
mean, however, that despite my efforts, controls for on-sale effects on demand are not fully absorbed.

An alternative explanation for the sawtooth pattern is that firms price at lower-ending prices when there
is a negative demand shock, and at high-ending prices when there is a positive demand shock (beyond
seasonality effects). Yet, since the patterns are weakened due to sale strategies, and on the other hand are
consistent for regular prices which are set for longer periods of time, this explanation seems less likely.

One interesting pattern is that the drop size does not decrease as the dollar digits increase. Decrease in drops
is implied if elasticity and bias are fixed across products and prices. Conversely, fixed drops imply that the
ratio of bias to elasticity is increasing. I will further explore these issues in the next subsections.

The patterns also go against the image-effects explanations, where 9-ending prices have some innate appeal.
These models describe demand as a smooth function that is decreasing in price but exhibits discontinuous
jumps of higher demand for 9- and 99-ending prices (e.g., “blip” description in Stiving (2000) and some
interpretations of findings in Anderson and Simester (2003)). However, such behavior should appear in the
data as flat residuals, with higher estimates only for the .9x fixed effects.

Next, I conduct several robustness tests to verify that the findings are not driven by the retailer, the demand
structure, or the sample selection.

To verify that the behavior is not driven by the specific retailer, Appendix Figure A.4 plots the results of
the same exercise for the Nielsen data, of 12 products from DellaVigna and Gentzkow (2017) sold by more
than 60 retailers. I run the regressions at the product-retailer level. In Nielsen data, cleaning is based on
spell-length only, and so are the on-sale proxy variables. As for the single item and retailer, the patterns
are clear but noisier for prices with fewer observations (as can be inferred from the confidence intervals,
common prices for these 12 products are at $3-$5 and $8-$10).

In appendix figure A.5, I explore the role of the demand structure. The patterns are not driven by the
constant elasticity assumption, since the figure shows that a semi-elasticity specification produces similar
sawtooth patterns (semi-elasticity implies elasticity that is linear in price). To estimate the patterns, I use
the same specification and procedure as in Equation 6, replacing log-price with actual price (also replac-
ing average log-price of other products with average price, and instrumenting with average price in other
stores).

Appendix Figure A.6 provides robustness tests on a different sample, to show that these patterns are not
driven by product selection. The figure shows the residuals from instances with regular prices for all re-
maining 2035 popular products (defined by at least 50% availability at regular prices and at least 10000
observations), with at least 75% of prices ending with 99 (merely 125 products) or at least 75% of prices
starting with the same dollar digits. Meaning, popular products, but those with more concentrated price
distribution, still produce the same sawtooth patterns.
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In summary, patterns are very similar and consistent with the model across various specifications, products,
and retailers. These patterns support the existence and soundness of the model. More is needed in order to
translate these patterns to parametric left-bias estimates.

4.2 Structural Estimation of θ

I now turn to connect the reduced-form evidence with the model, and to estimate the left-digit bias param-
eter θ. This is a parameter of interest for multiple reasons. First, it has a clear interpretation in the sense of
quantifying what fraction of the cents component of a price consumers ignore. Second, structural estimation
allows to describe the demand curve with a functional form, and to find (analytical) optimal response for the
firm pricing in response to it. And finally, structural estimation enables counterfactual exercises regarding
firm profits under various scenarios.

As a benchmark, I estimate a homogeneous left-digit bias parameter with a semi-elasticity specification
(details in section 4.2.3). I find a precise estimate of θ = 0.1635 (0.0096) which means that on average
consumers ignore 16 cents out of a 99-ending price22.

For the main analysis, similar to the reduced-form results, I estimate the left-digit bias parameter at the
product level. That is, I estimate multiple θis. I do so both for computational reasons23, and in order to
explore heterogeneity in the bias estimates. Some of the heterogeneity is coming from sampling bias. Even
with tens of thousands of observations per product, there is only a small finite number of prices used, while
for identification, multiple prices within and across dollar digits are required. Further, the specification
is a simplification of the demand structure, especially lacking in controlling for promotion effects. But,
this heterogeneity is strongly correlated with underlying characteristics of the different products and their
clientele. Learning about this heterogeneity structure informs us about the underlying mechanisms driving
the bias in the field.

4.2.1 Sufficient Statistics Approach

The bias can be inferred from the demand drops at dollar thresholds. For example, assume that demand
drops by 4% when the price crosses the $5 digit. If elasticity is -2, a 4% change in demand can also be driven
by a 2% change in price. 2% out of $5 is $0.10, so this implies a bias of 0.1, since the demand response in
going from $4.99 to $5.00 is like a change from $4.90 to $5.00 if there is no bias. That is, as if the perceived
price just below $5.00 is $4.90 ≈ (1− 0.1) · 5 + (0.1) · 4.

In general, for each triplet of demand drop ∆logQ, elasticity ε, and dollar threshold d, the bias is24:

θ = d
(

1− e∆logQ/ε
)
≈ −d · ∆logQ/ε (7)

The first estimation approach relies on this specification, where I estimate the demand drops for each
product-dollar pair, and complement it with the elasticity from the IV specification in Equation 6. To get the

22The specification is logQist = η (1− θ) Pist + ηθ bPistc+ αlogPc(i)st + βis + γi,year(t) + δi,month(t) + µ′i,on.sale(ist) + νi,cents.digit(ist) + eist.
Errors are clustered at the store level. Standard errors on θ are calculated using the delta method.

23The above single regression takes almost two weeks to run because of the about 470,000 fixed effects. For the NLLS method, it is
unpractical for a numerical algorithm to be able to handle so many parameters.

24This is an approximation of ∆logQ = ε (log ((1− θ) d + θ (d− 1))− log (d)) = εlog
(

1− θ
d

)
≈ −ε θ

d for θ/d� 1.
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demand drops I estimate for each product

logQist = ∑
{d=dollar−digit}

(εidlogPidst + κid) +

αilogPc(i)st + βis + γi,year(t) + δi,month(t) + µi,on−sale(ist) + µ′i,spell.length(ist) + νi,last−digit(ist) + eist

clustering standard errors by store. Then I calculate drops for each product at each dollar digit x as

∆logQx = (ε̂x−1log(x) + κ̂x−1)− (ε̂xlog(x) + κ̂x)

where I calculate standard errors using the delta method. As shown in Panel A of Table 2, I find an average
drop of 9.0 percentage points (median of 8.0), where 86.4% of drops (keeping the most precisely estimated
drop per product, in case there is more than one) are positive, and 54.5% of drops are significantly posi-
tive at the 5% level (compare with 2.8% significantly negative). The drops are a product-level econometric
equivalent of the residuals figure, showing that this phenomenon is occurring product by product and not
only at the aggregate.

Perhaps finding positive drops is an artifact of the data. For that reason I am running placebo tests where
I am estimating the drop size in other cutoff points. For example, instead of assuming that people become
fully aware of the exact price at round numbers (00-ending prices), I assume they do so at other points (e.g.,
at 50-ending prices, so they round to the nearest dollar). In that case, if taking 49 as the cutoff instead of
99, almost exactly half of drops are positive (48.9%), which we’d expect if this is happening at random. The
estimation procedure still leads to 14.3% of drops being statistically significantly positive at the 5% level
(and 19% significantly negative).

The drops, then, provide a reduced-form measure of the effect of a left-digit change. This is similar to An-
derson and Simester (2003) or Macé (2012), who add a dummy for any 9-ending price. This exercise adds to
that existing knowledge by doing so for many products over a large set of stores and chains. Further, com-
bining with elasticity estimates gives a structurally meaningful measure – the left-digit bias is the ignored
share of the last digits. This estimation approach, relying on Equation 7, has the advantage that the vertical
drops are unbiased estimates even if there is price-ending sorting due to the bias, as long as there is no
systematic sorting within product to price-endings by demand shocks. The elasticity estimates are unbiased
to the extent that controls and instrumental variables solve endogeneity issues. Therefore, the left-digit bias
estimates are arguably unbiased.

A histogram of estimates is shown in Figure 4. Table 2 shows that the mean parameter is 0.26, with inter-
quartile range of 0.07 to 0.39. For the figure, I am highlighting in darker shade the estimates where the
estimated drops is in the top three quartiles of precision. As can be seen in the figure, imprecise estimates
generate most of the outliers. A CDF of all estimates is shown as the solid purple curve in Appendix Figure
A.7.

4.2.2 Non-linear Least Squares

An alternative to the sufficient statistic approach is to estimate the model via non-linear least squares. The
advantage of this approach is that it is a direct specification of the model. The disadvantage is that it re-
lies on numerical optimization and is not run with instrumental variables. Namely, instead of regressing
log-quantity on log-price, I regress log-quantity on log-perceived-price, and estimate the elasticity and θ si-
multaneously:
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logQist =εilog ((1− θ) Pist + θ bPistc) + (8)

αilogPc(i)st + βis + γi,year(t) + δi,month(t) + µi,on.sale(ist) + µ′i,spell(ist) + νi,cents.digit(ist) + eist

To estimate it I code the analytical gradient and hessian, and minimize the sum of squared errors with a
numerical optimizer. I get the initial guess from running an OLS without the bias, and guessing a θ of 0.2
(I get the same results for different initial values of θ). The identifying assumption being that variation in
prices and in price-endings is not driven by changes in elasticity. I am relying on variation in prices within
and between dollar digits, absorbing the variation across years, month of year, stores, sale effects, and last
digits with fixed effects. In the NLLS I do not instrument with other prices, and to get standard errors I
use cluster bootstrap, sampling different stores with replacement. The CDF of product level estimates is the
dashed blue curve in Appendix Figure A.7, which is very similar to the estimates coming from the drops.
As shown in Table 2, the mean bias is 0.24 and the median is 0.18.

4.2.3 Semi-elasticity

A third method is to assume a log-linear structure instead of a log-log estimation. This is a further test of the
way left-digit is modeled, since we should get the same estimates under a different demand structure. It has
the key advantage that the bias can be estimated linearly in a simple OLS. That is, instead of the standard
log-linear structure of logQ ∼ P, I regress logQ on P + bPc. That is, I run at the product level

logQist =ηi (1− θi) Pist + ηiθi bPistc+ (9)

αiPc(i)st + βis + γi,year(t) + δi,month(t) + µi,on.sale(ist) + µ′i,spell−length(ist) + νi,cents.digit(ist) + eist

where η is the semi-elasticity (the change in log quantity due to a unit change in prices), and the ratio of
estimated coefficients on the price and the floor of the price gives the ratio of 1−θ

θ . Reassuringly, the estimates
from that approach are similar to the estimates from the NLLS approach, as can be seen in Figure A.7. The
estimates have a correlation of 0.85 and a rank correlation of 0.91. As shown in Table 2, the mean bias is 0.20
with a median of 0.16.

The near-identical estimates across estimation techniques and demand structures imply that the left-digit
bias parameter is robust to the assumed demand curve shape, and supports its interpretation as the neglect
of lower digits.

Using a similar specification, I estimate the model with homogeneous semi-elasticity and left-digit bias
across products (but with product level fixed effects and cross elasticities)25. I estimate a left-digit bias for
these 1710 products of 0.1635 (0.096) and semi-elasticity of -0.3697 (0.0044). Since the mean price is $3.50 it
implies an average elasticity of -1.29.

25Specifically, I estimate

logQist = η (1− θ) Pist + ηθ bPistc+ αi Pc(i)st + βis + γi,year(t) + δi,month(t) + µ′i,on.sale(ist) + νi,cents.digit(ist) + eist
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4.3 Exploring Bias Heterogeneity

The demand-side model makes no assumption about where the bias is coming from and what mental pro-
cess it might represent. One immediate question to ask is what is correlated with the bias (see also Macé
(2012)). The results provide field evidence of relative thinking that co-lives with a form of deliberate inat-
tention. Because this is not at the core of the paper, I defer the analysis and discussion to Appendix E. In a
nutshell, utilizing the Nielsen Consumer Panel (HMS) to gain characteristics of each product and the peo-
ple who consume it, I find that the bias is increasing with the price, decreasing with the number of units a
household purchases in a shopping trip, and is not significantly correlated with the purchasing clientele’s
education or income.

5 Firm Pricing

The demand side estimation corroborates the modeling of consumer behavior. Taking that as given, I turn
to investigate the firm response. I document that qualitatively, firms act as if they respond to left-digit bias
according to the model. The motivation for studying 99-prices is stemming from their prevalence, but the
point is that other predictions of the model are also corroborated.

Since the firm seems to respond to the bias according to the model, I conduct an “as if” exercise, estimating
the perceived left-digit bias from the pricing behavior. I find large gaps between the demand-side estimated
bias and the supply-side estimated perceived bias.

5.1 Qualitative Predictions

As analyzed in section 2, the model prescribes three key qualitative predictions for pricing patterns of firms
facing a demand structure such as the one estimated in section 4. The model predicts for optimizing firms:
(1) excess mass at 99, (2) which is coming from a region of missing prices with low price-endings, (3) and
increasing with the dollar digit.

The data selection process, motivated by the need to have variation in prices for the demand side estimation
is problematic. Basically, I am selecting on the products that exhibit limited 99-pricing, so I am effectively
forcing a lower bound on the mass at 99. Note that since the left-digit bias is estimated on the same set
of products, this exercise is internally consistent. But, to be conservative and alleviate any concerns, I am
also doing robustness tests with the entire sample of popular products without exclusions based on price
distribution.

Excess mass Figure 5 shows the price-ending histograms for the regular prices in the retailer data and the
long price spells in the Nielsen data (at least 6 weeks). The reason I restrict attention to regular, or likely
regular, prices, is that as shown above promotions techniques actually might work to increase demand
better with round prices (see also Anderson and Simester (2003)). This is possibly because such pricing
startegites, such as quantity discounts (“2 for $6”), tap on different psychological forces such as price fluency
and suggestive quantities. These forces are beyond the model. Indeed, the model seems to fit best for the
regular prices as in Figure 3(b).
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High shares of prices indeed end with 99, 27% in the retailer data, and 34% in the Nielsen data. Also, almost
all prices end with 9 (85% and 86% percent)26. This latter finding also implies that there is further bias
ignoring the last digit of the price, hence leading to so many 9s. This effect is probably true, but impossible
to estimate, exactly because there is lack of variation in the last digits, and hence the drops in demand at
the dime thresholds can not be identified. However, I do robustness tests with additional bias regarding the
last digits (that is, assume that with some measure θ2 consumers see the price as the dollar and dime digits
but ignore the cents).

Missing prices Figure 5 also shows that for both the retailer and the Nielsen data, there are few prices
ending with anything lower than 19. This finding has not been described, predicted, or explored in prior
papers. Meaning, this finding provides further support for the model, especially because it is an unantici-
pated pattern and prediction.

It also does not seem that retailers price at 99 out of “convenience” or as if they perceive there is an inherent
higher demand at 99 versus any other price (e.g., a “blip” in demand as discussed above). Such behaviors
are manifested in symmetric missing prices, which is not the case here. In a related paper, Dube et al. (2017)
study wage offer distributions. If employees are left-digit biased and want higher wages, then wages should
be set at round numbers. The authors find excess mass at 0-ending wages, but missing prices are symmetric.
They use the symmetry to argue against left-digit bias in their setting.

Next-lowest price by first digit Figure 5 masks the heterogeneity of how price endings differ across dollar
digits. The model predicts that the next-lowest price should increase with the dollar digit, keeping the bias
and elasticity constant. If, as we have seen above, the bias is increasing with the price, this prediction
intensifies. The share of 99-ending prices is not clearly predicted, since it relies on the distribution of costs.

In order to examine how price-endings change across dollar digits, I display the left tail of a by-dollar CDF of
price endings in Figure 6. Darker lines are higher dollar digits. Indeed, Figure 6 shows that the distribution
of price-endings is shifting to the right, meaning that for higher dollar digits there are less low price endings.

To recap, firm behavior is qualitatively consistent with the model. Prices bunch at 99, there are missing
prices with low price endings, and the mass of low-ending prices is shifting to the right as the dollar digit
increase.

5.2 Quantitative Predictions

But does the firm behavior align with the predictions of the model given the estimated bias and elasticities
from the demand side estimation in Section 4?

Recall from Proposition 2 that next-lowest prices are decreasing as demand is more elastic and as the bias
is weaker. Therefore, I take the low-end estimated bias level, of 0.16, and the mean elasticity from the IV
specification of -1.527. For these levels, the predictions are that next-lowest prices are 99. In that case there
is no ambiguity, all prices should end at 99 regardless of the cost distribution.

Keeping in mind that firms do respond to the bias, qualitatively, I take an “as if” approach to infer the
perceived left-digit bias levels that rationalize the retailer pricing behavior. I assume that the retailer is

26In the Nielsen data, the next most popular price endings are 0 (4.2%), 8 (3.7%), and 5 (2.7%). For the retailer, these are 5 (5.5%), 4
(1.9%) and 0 (1.6%).

27Since I am comparing the regular prices distribution to the estimates using all prices, it is worth noting that if I estimate the bias
parameters using observations of regular prices only (with NLLS), I get slightly higher estimates, with median bias of 0.23.
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pricing as described by the model, according to what they perceive to be the price elasticity and left-digit
bias. In other words, in Section 4 I estimated the elasticity and bias that rationalize demand behavior, and
here I estimate the elasticity and bias that rationalize supply behavior.

The first simple alternative is that elasticities are estimated with bias, but in reality (known to the firms)
demand is more elastic. However, elasticity alone does not help. Even for extremely elastic demand (e.g.
-15, compare with the most extreme estimates from Hausman (1996) of -3.17 or Nevo (2001) of -4.25), the
next-lowest prices and shares of 99 are much higher than observed. But fundamentally, to the extent that
the model is reasonable and demand estimation is proper, we should doubt extremely different perceived
elasticity argument since the price elasticity is one of the key parameters a pricing firm cares about, so large
discrepancies between the estimated and perceived numbers are unlikely. This might not be the case for the
bias parameter since I am not aware of a portable way to estimate it and use it for pricing (which is what I
try to do here). Indeed, if we assume that the estimated elasticity is correct but the bias is perceived to be
much lower, then the pricing patterns can be rationalized quite well.

Next, instead of calibration I conduct proper estimation. The comparative statics effects of the left-digit
bias and price elasticity allow for identification of the price elasticity and bias solely from the price dis-
tribution under the assumption of constant price elasticity and some parametric cost distribution. This is
of methodological interest, since it allows for price elasticity identification just from the price distribution even
without knowledge of costs or quantities. Absent the bias, this is impossible to do. Price data are becoming
more and more available (e.g, Cavallo and Rigobon (2016); Cavallo (2016)), and this is a rare case in which
a behavioral bias is allowing for estimation rather than adding a degree of freedom.

The idea behind the identification is that left-digit bias creates discontinuities, thus making frictions in
pricing that can be exploited for identification. In a sense, this is the dual of the notch estimation in the
taxation literature (see Saez (2010); Kleven and Waseem (2013))28. However, this estimation approach relies
on measuring with precision an ill-behaved statistic which is the next-lowest price. An extremum moment is
highly sensitive to measurement error, and even small heterogeneity can lead to disproportional large effects
on the estimands29. In addition, the price distribution is more discrete than just masses at 99, as almost all
prices end with 9. If this is driven by added left-digit bias to the cent digit, different parameters would
translate to the same 9-ending next-lowest price, tampering with the variation needed for identification.

From a practical standpoint, this is also a data-intensive method. It hinges on the assumption that the cost
distribution is smooth for regular prices. While this is probably true aggregating over many products, it is
less likely to hold for a single item. Further, if a product is priced identically across stores (as is true in the
data, especially for regular prices), increasing the number of stores does not affect precision.

To satisfy the need for a smooth cost distribution, I am aggregating over products, assuming a constant left-
digit bias and elasticity. Which leads me to the next caveat - the assumption of homogeneous parameters.
Heterogeneity of the bias parameter can of course lead to low-ending prices, and is definitely plausible, as
shown in Section 4. However, identification with heteregoneous bias relies far more heavily on the shape
of the cost distribution, which is an arduous requirement to infer from the data. I argue that since there is
such a stark difference in predictions on aggregate and product-by-product (there are only 11 out of 3859

28In Public Economics the idea is that non-linear tax schedule creates incentives for tax payers to change their reported income (or
labor supply) and bunch at kinks or notches of the tax schedule. The duality can be seen as follows: budget set of taxes is like the
demand (elasticity); the notch given by the tax schedule is like the bias parameter; the utility function is like a profit function; and the
latent ability distribution is like the cost distribution - estimated from the observed income distribution like the observed prices outside
of the bunching and missing prices.

29Kleven and Waseem (2013) face a similar issue where no one should have income in dominate regions. They interpret it as frictions,
and implicitly assume that frictions are random. The approach I follow is implicitly taking a similar stance, since I put equal weight
on many price moments.
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popular products whose prices end solely by 99), assuming a single left-digit bias parameter is a reasonable
first step. In addition, in the next section I explore the implications of heterogeneous parameters on pricing
and profits, and find them to be small.

Given all the caveats, this is an exercise worth doing even if only for getting rough estimates. To be less
sensitive to the exact measure of missing prices, I will use the entire price distribution (binned at 9-ending
prices) and a method-of-moments approach30.

Let Sp be the share of prices set at a price p. I use minimum-distance estimation to match the empirical price
densities,

{
Sp
}

, to the predicted price densities,
{

Ŝp
}

(where p belongs to a grand price vector P). For ex-
ample, take P = {2.29, 2.39, ..., 3.69}. The algorithm is as follows: (1) Fit a polynomial to the empirical price
distribution using prices that are not bunching at 99 or missing due to the bias, call that price distribution
F̂p. Then, for each pair of elasticity ε and left-digit bias θ: (2) take all relevant 99-ending prices, {qi} and cal-
culate the matching next-lowest prices

{
Pqi

}
using Equation 5 (for example, say {qi} = {1.99, 2.99} and that{

Pqi

}
= {2.51, 3.53}) . (3) expand the vector of prices to include {qi},

{
Pqi

}
, and all 9-ending prices between

each pair of Pqi and qi+1, giving a vector of pricesP ′ (e.g. P ′ = {1.99, 2.51, 2.59, 2.69, ..., 2.99, 3.53, 3.59, 3.69}).
(4) Given θ and ε calculate for each pi ∈ P ′ the cost cpi

, such that pi is the profit-maximizing price. By con-

struction this is given by the first order condition as cpi
= pi

1+ε
ε + θ

1−θ
bpic

ε . (5) Then for each price, the

share of observations at that price are Ŝpi = F̂c

(
cpi+1

)
− F̂c

(
cpi

)
. And we get F̂c using the following model-

induced identity:

F̂c(cp) = Pr(c ≤ cp) = Pr
(

p
1 + ε

ε
+

θ

1− θ

bpc
ε
≤ cp

)
= Pr

(
p ≤ cp

ε

1 + ε
− θ

1− θ

bpc
1 + ε

)
= F̂p

(
cp

ε

1 + ε
− θ

1− θ

bpc
1 + ε

)

(6) expand P ′ to P by adding the missing prices, between qi and Pqi , and assign them predicted zero
shares31.

The above procedure generates the predicted price moments Ŝpi as a function of elasticity ε and left-digit
bias θ. I minimize the distance between predicted moments and actual moments. Since I am also estimat-
ing the densities for prices outside of the missing prices and 99s, I am excluding these moments from the
minimization problem.

This procedure might be somewhat sensitive to which moments are chosen, what moments are excluded
from the fit estimation, and the degree of the polynomial fit. I therefore take 32 combinations of estimation
settings32. For example, in one of these settings moments are between $1.29 and $5.89, using all prices with
price endings between 29 and 89 for the F̂p fit, with a polynomial of degree 3. I minimzing the distance
of actual moments from predicted with price endings strictly higher than 89 and lower than 29 (that is 99,
09, and 19), since these are the prices that were not used to predict the price distribution33. Then, for each

30Maximum likelihood will give 0 bias because any low price-ending is a zero-probability event.
31relabel non-9-ending next lowest prices as the lower 9-ending price, without changing the share. For example, 2.51 will be relabeled

as 2.49 with a share Ŝ2.49 = F̂c (c2.59)− F̂c (c2.51)
32I take all combinations of

{bottom− cents}×{top− cents}×{lowest− dollar}×{highest− dollar}×{polynomial − degree} = {0.29, 0.59}×{0.79, 0.89}×{$1, $2}×{$5, $6}×{3, 7}

33Appendix Figure A.11 shows an example of the actual moments, highlighting which were excluded from the fit to create the
counterfactual distribution in light yellow. The purple bars are the shares that are being matched by the predicted moments. The
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setting I run 300 cluster-bootstraps at the product level.

Table 3 presents the estimation results showing the estimated perceived left-digit bias and price elasticity
for the main sample, using regular prices of the 1710 products. I am guessing 50 initial values of bias and
elasticity and choose the estimation with the best fit. To get confidence intervals I run additional thousand
cluster-bootstraps at the product level (each with 50 initial guesses). I am estimating homogeneous parame-
ters and find a mean perceived bias of θ̂ = 0.023 and elasticity of ε̂ = −3.35. I can reject a perceived left-digit
bias larger than 0.043, but can not reject that the price elasticity is -1.5.

If I restrict the elasticity to be -1.5 and only estimate the bias I get tighter estimates (with similar goodness-
of-fit) for the same bootstrapped sample of θ̂ = 0.0047. The similar goodness-of-fit between the unrestricted
and restricted versions means, as predicted by the comparative statics results, that there is weak identifica-
tion separating between the elasticity and left-digit bias parameters. However, the firm is underestimating
the bias at least by a factor of 3, and more likely by an order of magnitude. As a robustness, a break-down
of the estimates by specific setting with 95% confidence intervals per each setting is plotted in Figure 7. The
figure shows that while point estimates are sensitive to the moments choice and the assumed shape of the
cost distribution (via the polynomial fit), confidence intervals are stable.

The two rightmost columns of Table 3 are showing the results using the alternative sample of popular
products, namely those with less variation in prices (out of the 2149 products, 31 have shares of 99-ending
prices above 75%, and the rest have most of their prices concentrated within a single dollar digit). The
same pattern arises, with very similar estimates for both samples, and similar patterns of a flat goodness-
of-fit between the restricted and unrestricted specifications. This is useful since there might be a worry that
by choosing the 1710 products that exhibit less variation in prices leads to a mechanical finding of lower
perceived bias (even though the demand side estimates should be consistent with their pricing if the bias is
perceived correctly). Finding similarly low perceived bias for the products with more 99s and less between
dollars variation adds to the robustness of the results.

This method can be used to estimate the price elasticity from a price distribution in other settings, especially
if one is willing to take a stance regarding the left-digit bias. Meaning, if the researcher does not have access
to quantities sold nor costs but observe multiple prices for similar products with fluctuating costs, they can
estimate what the firm perceives to be the price elasticity. Appendix Figure shows the estimated elasticities
for the various specifications.

6 Counterfactuals

The firm perceives the bias as smaller than it is. But perhaps this is not a costly mistake. Using the estimates
from the demand side as “the truth”, I compare profits under different pricing strategies: if the firm is
ignoring the bias, fully optimizing, or pricing by the perceived bias as estimated in Section 5.

To be precise, I do the following: I am simulating a cost distribution by taking the actual price distribution
scaled down by a constant markup. I calculate the price for each triplet of cost, the firm perceived price
elasticity ε̂, and bias θ̂ (assuming elasticity is perceived correctly ε̂ = ε). Given the true parameters of the
price elasticity ε, and θ, I calculate the profit from each tuple and then integrate. That is, I calculate

Π =
∫

D
(

p
(
c; ε, θ̂

)
; ε, θ

)
·
(

p
(
c; ε, θ̂

)
− c
)

dF
(
c, ε, θ, θ̂

)
predicted moments are shown in semi-transparent bordered bars.
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The formula reflects that pricing is governed by the perceived bias, while demand is governed by actual
left-digit bias.

The results are shown in Table 4, where I present the gross profits lost by pricing according to θ̂ versus the
profits if the firm were to price according to θ. I assume different distributions of the elasticity, left-digit bias,
and perceived left-digit bias parameters. Panel A shows that if the firm were to ignore the bias altogether,
that is price as if θ̂ = 0. Panel B shows the loss if the perceived bias is as estimated, lower than the actual
but not ignored.

I take the point estimates from the demand and supply side as benchmark, and estimate that the retailer
is losing 2.7% of profits versus the optimum, out of a possible loss of 4.3% if were to ignore the bias. If I
assume that the estimation is flawed, and the bias is actually lower, at 0.1, the elasticity is on the high end
from the perceived estimation, at -4, and the perceived bias is also higher at 0.03, I still find losses of 1.1%
of gross profits. I then explore the effect of heterogeneity of each of the parameters, and it does not carry
a large impact on the results. Finally, I also estimate a case of a 2-product monopolist with an elasticity of
substitution of 0.1 between them. For the particular distribution the potential loss is 3%, and the perceived
bias leads to a loss of 1.7%.

In Appendix Table A.3 I add two robustness tests for each of the scenarios. In the first I assume that con-
sumers also ignore the last digit with θ2 = 0.25. It bears very small effect on the results. The second
robustness is more fundamental. I assume that the bias is such that when consumers ignore the lower digits
they replace them with .99 instead of .00. It decreases the losses to be 1%-2% across scenarios.

Across scenarios and assumptions I estimate that the retailer may lose 1.1%-3.2% of gross profits. If, as in
Montgomery (1997), operating margins are about 12%, it means that the firm is losing 9%-27% of operating
profits by underestimating the bias.

The losses are coming from pricing at dominated regions. That is, the firm is pricing below the next-lowest
prices and not at the lower 99-ending price. Pricing in a lower 99-ending price is beneficial exactly because
compared to pricing right above it, consumers purchase higher quantities by more than the pure price
elasticity effects. Note, also, that as Appendix Figure A.9 shows, the overall price level actually does not
change much, and if anything is somewhat lower. This result is driven by 99-ending prices being mostly
drawn from higher prices. Whether consumers replace the price with the floor, ceiling, or any other arbitrary
component, does not affect this result.

7 Conclusions

In this paper I show that a model of left-digit biased consumers and optimizing firms is a good description
of retail data. Consumers exhibit substantial left-digit bias in everyday choices while shopping at super-
markets. The supermarkets, in response, are using 99-ending prices and avoid some low-ending prices to
increase demand. However, retailers also seem to underestimate the extent of left-digit bias. I find that firms
do better than pricing as if there is no bias at all, but not half as good as possible. I estimate that they lose
1%-3% of gross profits, implying losing a significant share of operating profits. How can it be, that firms
both respond to the bias, but stop short of fully optimizing?

Explanations can be divided to two categories, where either the model is missing something fundamental,
or the firms are making a consistent mistake.
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First and foremost, the pricing model is very simple. It simplifies competitive forces to enter through the
price elasticity. Pure price competition with left-digit biased consumers also leads to missing prices as
shown in Appendix B, but I did not solve a full model that can be taken to the data. Insofar as elasticity is
a good approximation for the strength of competition it does reduce the ranges of missing prices. But, as
I argued above, high elasticity by itself is not a plausible resolution to the discrepancy. Next, consider the
case of a multi-product monopolist, as retailers are. Keeping same-price elasticity and left-digit bias fixed,
if differentiated products are substitutes, it leads to higher next-lowest prices. This result holds whether
the other product is more or less elastic, and whether its cost is higher or lower (see Appendix C). The
conclusion, in any case, is that adding cross elasticities to the counterfactual analysis is likely to make the
discrepancy stronger.

Another explanation is that the bias level might be endogenous to the price distribution. Meaning, if all
prices were to end at 99 as the estimation suggests, then the bias would have become much lower. This is
a sensible argument, but the needed effects on left-digit bias seem unlikely strong. For example, assume
that left-digit bias is decreasing in the next-lowest price. Say that it is 0.15 if the next-lowest price is $2.19.
In order for $2.19 to be an optimal next-lowest price, left-digit bias should decrease to the degree that is
eliminated completely if the lowest price used is instead $2.2134. This seems like an unlikely strong effect.

Another avenue is that the model is a reasonable approximation, but firms are wrong. One possibility is
that firms are following a heuristic (“use 99-prices”) and so when the “absent-bias” price they come up with
is close to 99 they round to 9935. The appeal of this story is that it makes intuitive sense that an absent-bias
price of $2.00 should be adjusted to $1.99, but that it is less clear what a $2.50 should change to. But there
is more to it, since not only is it more intuitive to make small changes in prices, but also the impact on
profits is larger for the small changes. For example, consider two products with unit costs of $1 and $1.25,
price elasticity of -2, and bias of 0.15. Absent the bias the product should be priced at $2 and $2.50, but
with the bias both should be priced at $1.99. The gains from changing from a naive $2 to an optimal $1.99
are 15.5 percentage points in profits, while the gains from changing a naive $2.50 to an optimal $1.99 are a
much lower, at 2.6 percentage points. So, given the counter-intuitive nature of big adjustments in price, and
considering the relatively lower gains of big adjustments (masked in fluctuations in demand in real data), it
seems reasonable that firms would stop shy of full adjustment. Making the full adjustment requires either
“brave” and large scale experimentation with prices, or a rigorous analysis with a quantitative model.

A companion paper, Shlain (2018), analyzes a policy reform in Israel where supermarkets had to stop the
common practice of pricing at 99-ending prices, and were only allowed to price “to-the-dime” (i.e, in 0-
ending prices). Before the reform about 40%-50% of prices ended with 99, suggesting substantial levels of
perceived and actual bias. Using the same model as in this paper, I show that for any reasonable level of
left-digit bias, firms should have never round to a 00-ending price. However, all chains did so, and priced
about 20% of products at 00-ending products after the reform. Within 6-12 months, they stopped. This
finding is inline with the heuristic explanation, showing that firms respond to the bias in a limited “trial and
error” sense, but without understanding the underlying model.

34To see that, note that if 2.19 is indeed the next-lowest price, it should satisfy optimality such that ∂Π
∂p = 0, where I allow for θ to

be a function of P. So, it is easy to see that the slope of bias to next-lowest price in that case is ∂θ
∂P =

(
ε (1− θ) + 1

P−P1

)
P− θ, which

equals 8.6 for elasticity of -1.5, bias of 0.15 and P of 2.19.
35also “corroborated” by three anecdotal conversations I held with two mom-and-pop shop owners and a CEO of a large chain of

convenience stores.
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Figure 1: Illustration of the optimal price schedule
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The thick lines represent optimal prices as function of cost, of a monopolist facing constant elasticity demand
with left-digit biased consumers. The gray thin line represents the no-bias counterfactual where p = c ε

ε+1 .
The horizontal sections of the thick lines are the 99-ending prices, emerging for regions of costs. The lowest
cost that translates to a 99-ending price is when this is the interior solution, and the highest cost is when
there is profit indifference between 99 and the next-lowest-price. The resulting ranges of missing prices are
highlighted by vertical arrows.
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Figure 2: Illustration: Demand and residuals with and without left-digit bias

(a) Illustration: Demand with left-digit bias
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(b) Illustration: Residualized demand from log-log regression with left-digit-biased demand
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The figures illustrate simulated demand curves under a model of left-digit bias. The top figures show
simulated log(quantity)-price demand curves where logQ = 5− 1.5log ((1− θ) p + θ bpc). Different colors
represent different dollar digits. The dashed gray line is the curve of best fit from a logQ~logP regression.
The bottom figures show the residualized demand (actual minus predicted) by price. The right figures are
for a case left-digit bias of θ = 0.16, and the left figures are for the standard case of no bias, θ = 0.
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Figure 3: Sawtooth patterns of residualized demand by price

(a) Main sample, IV estimation
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(b) Restricted sample of regular prices, OLS estimation
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Net log-demand by price, residualizing product-level price elasticity, seasonality, cross elasticities, store
fixed effects, and promotion effects. Regressions are conducted at the product level (1710 products, 248
stores, 177 weeks). Different dollar digits are designated by color. Within-dollar linear fits, weighted by
number of observations, are added in solid lines. Plotted fixed effects estimated at 10-cent bins (e.g. $3.90-
$3.99), and 95% confidence intervals are the result of 300 cluster-bootstraps by store.
The top panel is using data on all to-the-cent prices from a national retailer data (Column (3) in Table 1), and
the regression is run with instrumental variables, as specified in equation 6 in Section 4.1. The bottom panel
presents the results of an OLS constructed on regular prices only (column (4) of Table 1). Data is truncated
for prices between $1 and $7.99 for clarity. For further details see Section 4.1.
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Figure 4: Histogram of product-level left-digit bias estimates from drops in demand at the dollar-digit
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The figure shows the histogram of product-level estimates of left-digit bias, calculated from Equation 7,
using estimated drops in demand and price elasticity estimated with instrumental variables. Highlighted
by darker color are the 75% most precise estimates. Most impercise estimates are also outliers and vice
versa.
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Figure 5: Pricing response: Price-endings distributions

(a) Retailer Data
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Source: 1710 products, regular prices, retailer.

(b) Nielsen Data
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Source: 12 products, spells of at least 6 weeks, Nielsen.

The figures show the price-endings histograms of all regular prices in the retailer data (36M observations,
top panel), and all prices that belong to spells of at least 6 weeks in the Nielsen data across more than 60
retailers (11M observations, bottom panel). Main patterns are excess mass at 9- and 99-ending prices, and
missing prices at low price endings.
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Figure 6: Price endings: left-tail of CDF by dollar digit in retailer data

(a) Left tail of CDF for regular prices of main sample
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(b) Left tail of CDF for regular prices of full sample
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The figures show the left-tails of regular prices price-endings empirical CDFs, by dollar digit. The top panel
is the main sample, while the bottom uses all regular prices in the data. Line color represents the first digit
of the price, where $1+ is the lightest and $8+ is the darkest. The figures show that as prices increase, the
firm is using less of lower price endings, qualitatively following the predictions from Corollary 1.
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Figure 7: Estimated firm-perceived left-digit bias
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The figure shows the estimated perceived left-digit bias inferred from the price distribution. On the hori-
zontal axis are different assumptions about the estimation procedure. Namely, the range of prices used for
estimation, the excluded prices from the counterfactual price distribution fit, and the shape of that distribu-
tion via the polynomial degree. Each point is the estimated perceived left-digit bias for each specification,
and the confidence intervals are the 2.5% and 97.5% estimates from 300 cluster-bootstraps of the moments
at the product level (that is why some point estimates are outside of the confidence interval).
For all specifications, I can reject that the perceived bias is 0 or larger than 0.05. While point estimates are
sensitive to the exact specification, bootstrapping the sample provide more similar confidence intervals.
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Table 1: Summary Statistics and Data Selection

Retailer Data
Full 1710 UPCs Main sample Regular Prices Wholesale (costs)
(1) (2) (3) (4) (5)

Panel A: Data Description
Observations (Millions) 375.0 51.0 45.9 36.2 375.0
Products 74224 1710 1710 1710 74224
Stores 250 248 248 248 250
Weeks 177 177 177 177 177
Chains 1 1 1 1 1
Annual Revenue ($Millions) 2060 396 304 227 -
Annual Units Sold (Millions) 883 136 99 70 -
First Date Jan-04 Jan-04 Jan-04 Jan-04 Jan-04
Last Date May-07 May-07 May-07 May-07 May-07

Panel B: Pricing Descriptives
Mean Price 3.10 3.42 3.50 3.66 2.14
Price SD 1.97 1.63 1.64 1.67 1.59
Share on-sale 0.36 0.29 0.22 0.00
Share 99-ending 0.20 0.22 0.24 0.27 0.01
Share 9-ending 0.61 0.67 0.74 0.85 0.11
Share 9-ending (non-sale) 0.82 0.85 0.86 0.85 0.12
Share 0-ending 0.19 0.13 0.13 0.02 0.12
Share 0-ending (non-sale) 0.05 0.02 0.02 0.02 0.12

The table presents summary statistics for the retailer data. Column (1) is the full data set, after exclusion
of by-weight products. Column (2) shows the sample of 1710 products chosen for analysis. Column (3) is
the main sample used in the paper, excluding non-real prices (i.e., keeping only prices that are to-the-cent).
Column (4) provides further information on the instances in which the price charged is the regular price and
not a discounted one. Column (5) provides some descriptive statistics on the price endings of the wholesale
prices the retailer pays for the same products as in column (1).
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Table 2: Estimates of product-level drops and left-digit bias parameter

Mean Number of Percentile
estimate estimates 25th median 75th

Panel A: Drops in demand (percentage points)
(1) All drops 8.89 2518 1.79 8.22 15.5

(4.74) (8.33) (3.99)
(2) Most precise drop per product 9.01 1351 3.26 8.04 13.8

(3.22) (3.51) (6.18)
(3) Drops estimated from regular prices sample 8.71 1029 2.06 7.90 15.2

(2.62) (2.88) (2.21)

Panel B: Left-digit Bias Estimates
(4) Homogeneous, semi-elasticity model 0.164 1

(0.010)
(5) Drops and IV elasticities 0.226 1351 0.065 0.202 0.388

(6) Non-linear least squares 0.239 1701 0.046 0.181 0.374
(0.061) (0.067) (0.159)

(7) Semi-elasticity specification 0.200 1632 0.029 0.165 0.333
(0.054) (0.081) (0.053)

Panel A shows the distribution of product level estimated drops-in-demand at dollar crossing, and panel B
shows the distribution of left-digit bias estimates. In parentheses are standard errors clustered at the store
level (asymptotic in rows 1,2,3,4, and 7; by cluster-bootsrap in row 6). The column titled number of estimates
shows the number of estimates in each row. They differ from the number of products due to convergence
problems, or lack of sufficient variation.
Panel A: Row (1) shows all estimated drops in demand, including multiple drops per products (for exam-
ple if a product prices span $2.19-$4.79 then it will have a drop at $3.00 and at $4.00). Row (2) keeps the
most precisely estimated drop per product. Row number (3) uses a restricted sample, where the drops are
estimated from regular prices only.
Panel B: Row (4) provides the estimate from a homogeneous log-linear model, with a single parameter of
left-digit bias and single semi-elasticity. Rows (5)-(7) show the product-by-product estimates, inferred by
three different approaches: The sufficient statistic approach (Equation 7 in Section 4); estimated by non-
linear least squares (Equation 8); and log-linear OLS (Equation 9), respectively. To calculate means I win-
sorize at θ = −0.5 and 1.5. See Figure A.7 for the CDFs of the complete distributions.
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Table 3: Estimated perceived parameters from firm pricing behavior

Main Sample Alternative Sample

Estimating Both Fixing Elasticity Estimating Both Fixing Elasticity

Left-digit bias 0.023 0.0047 0.028 0.0041
[0.004, 0.043] [0.0040, 0.0069] [0.006, 0.045] [0.0024, 0.0056]

Elasticity -3.35 -1.5 -4.15 -1.5
[-1.40, -4.97] [.] [-1.91, -5.31] [.]

Goodness of fit 0.00347 0.00355 0.00575 0.00580

The table shows the results of minimum distance estimation of homogeneous perceived left-digit bias and
price elasticity using the regular prices distribution of 1710 products priced by the retailer (two left columns)
and an alternative sample of 2149 popular products in the two rightmost columns. Confidence intervals in
square brackets are the result of 300 cluster-bootstraps per 32 different specifications (total of 9632 runs per
column) at the product level.
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Table 4: Profits lost when the firm underestimates left-digit bias

Assumed scenario % profits lost pricing

Left-digit bias Price elasticity Perceived bias by perceived bias
θ ε θ̂ (θ̂ instead of θ)

Panel A: If the firm ignores the bias
(
θ̂ = 0

)
Point estimates 0.16 -1.5 0 -4.3
Extreme estimates 0.10 -4.0 0 -4.4
Heterogeneous bias N (0.16, 0.05) -1.5 0 -4.9
Heterogeneous perceived bias 0.16 -1.5 0 -4.3
Heterogeneous elasticity 0.16 N (−1.5, 0.2) 0 -4.3
2-product monopolist 0.16 -1.5

(
εij = 0.1

)
0 -3.0

Panel B: If the firm underestimates the bias
(
θ̂ < θ

)
Point estimates 0.16 -1.5 0.004 -2.7
Extreme estimates 0.10 -4.0 0.03 -1.1
Heterogeneous bias N (0.16, 0.05) -1.5 0.004 -3.2
Heterogeneous perceived bias 0.16 -1.5 N (0.004, 0.01) -2.2
Heterogeneous elasticity 0.16 N (−1.5, 0.2) 0.004 -2.7
2-product monopolist 0.16 -1.5

(
εij = 0.1

)
0.004 -1.7

The table shows calculated percentage of gross profits lost, relative to optimal pricing. Optimal means that
the firm perceives the bias to be what it actually is, θ̂ = θ, while the other cases take a lower perceived
bias into account. Panel A shows the profits lost if the firm ignores the bias completely, and panel B shows
the profits lost when it partially underestimate it. Each row makes a different assumption about the “true”
parameters and the perceived ones (but always assuming that the firm knows the true price elasticity). For
example, under the point estimates of left-digit bias of 0.16 but perceived bias of 0.004, and elasticity of -1.5,
2.7 percentage points are lost relative to optimal pricing. If the firm were to ignore the bias altogether, and
assume it is non-existing, they would lose 4.3 percentage points.
The first row in each panel shows the lost profits under point estimates taken from the main analysis. The
second row, extreme estimates, makes a firm-forthcoming assumption with lower bias, high price elasticity,
and the upper bound of perceived bias. The next three rows explore the role of heterogeneity and how
consequential it might be: I examine heterogeneity in left-digit bias, in perceived left-digit bias (truncating
from below at 0.001), and in same price elasticity. Finally, the last row takes cross-elasticities into account (I
use the implied perceived bias of 0.004, even though the implied perceived bias with cross-elasticities, given
pricing, is lower. This way I am consistent and provide a lower bound on losses).
At each cell I simulate 3000 costs from a cost distribution that mimics the actual distribution inferred from a
constant markup prices. For the heterogeneous cases I draw 50 values for each parameter. For the last row,
I sample 80 prices for each of 2 products (from the same cost distribution as above).
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A Proofs

A.1 Proof - Proposition 1

To see that equation 3 describes the optimal price, we will proceed in the following steps.

A.1.1 Interior solution

Consider the classic setting. There, since demand is convex, it satisfies the second order condition globally,
and hence the first order condition is sufficient to characterize the solution. Here, the second order condition
is satisfied locally, meaning that any interior solution is a local maximum. However, demand is not convex
when changing the first digits. Therefore, one must also check for other prices, where convexity is not
satisfied.

The first order condition is

∂Π
∂p

= 0 = Aε ((1− θ) p + θp1)
ε−1 (1− θ) (p− c) + A ((1− θ) p + θp1)

ε

0 = ε (1− θ) (p− c) + (1− θ) p + θp1

p = c
ε

1 + ε
− p1

θ

1− θ

1
1 + ε

p =

(
c− θ

1− θ

q1 + 1
ε

)
ε

1 + ε

Where the last transition is due to that p1 = q1 + 1 given a range of costs as in proposition 3, So, first, for any
cost c, we can find a local maximum being the interior solution, as presented in the second row of equation
3. Note that this solution is strictly increasing in c, as long as p1 does not change.

A.1.2 First case, c < cq

Since demand is locally convex, and isoprofits are strictly convex, it is sufficient to rule-out an interior
solution as being optimal if the profits at the highest price below the discontinuity are higher. So, if p∗(c) is
the interior solution and c < cq, we need to show that D (q) (q− c) > D (p∗) (p∗ − c) where q = p1 − 0.01:

D (p∗) (p∗ − c) + D (p∗)
(
c− cq

)
= D (p∗)

(
p∗ − cq

)
< D (P)

(
P− cq

)
= D (q)

(
q− cq

)
= D (q) (q− c) + D (q)

(
c− cq

)
⇔ D (p∗) (p∗ − c) < D (q) (q− c) + (D (q)− D (p∗))

(
c− cq

)
< D (q) (q− c)

Where the first inequality (second row) is due to P being the optimal price for cq, and the last inequality (last
row) is since c < cq and D (q) > D (p∗).

Once we have shown that q is more profitable than p∗, to see that the optimal price in that case is q itself,
note that since demand is locally strictly convex between discontinuity points, if the profit at q is higher
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than at the interior solution it means that the slope of the isoprofit (in the quantity-price dimension) is less
steep than the demand curve, meaning that profits at q must be maximal for these costs. This is only true
for θ low enough, such that there is not another point where demand is crossing the isoprofit36.

A.1.3 Second case, c > cq

We want to show that if c > cq, then the interior solution is more profitable than q. That is, that Π (p∗, c) >
D (q) (q− c) . Define p′ as the price that given demand D (q) results in the same profits as Π∗ = Π (p∗, c).
That is,

p′ =
Π∗

D (q)
+ c

=
Π∗ −Πq

D (q)
+ q +

(
c− cq

)
⇒ p′ − q =

Π∗ −Πq

D (q)
+
(
c− cq

)
>
(
c− cq

) (
1− D (P)

D (q)

)
> 0

where we used that Π∗ = Π (p∗, c) > Π (P, c) = Πq − D (P)
(
c− cq

)
, and that D (P) < D (q). So, since

p′ > q it means that Π (p∗, c) = D (q) (p′ − c) > D (q) (q− c).

A.2 Proof - Proposition 2

Rewriting equation 5,

P +
(1− θ)P + θP1

ε (1− θ)
− ((1− θ)P + θP1)

ε P− ((1− θ)q + θq1)
ε q

((1− θ)P + θP1)
ε − ((1− θ)q + θq1)

ε = 0

P
(

1 +
1
ε

)
+

TP1

ε
− (P + TP1)

ε P− (q + Tq1)
ε q

(P + TP1)
ε − (q + Tq1)

ε = 0

P
(

1 +
1
ε

)
+

TP1

ε
− ΛεP− q

Λε − 1
= 0

P (1 + ε) (Λε − 1) + TP1Λε − TP1 = ΛεPε− qε

(P + TP1)Λε = P + TP1 + (P− q) ε

Λε = 1 +
(P− q) ε

P + TP1
(10)

where T ≡ θ
1−θ , the likelihood ratio of being inattentive and Λ ≡ P+TP1

q+Tq1
.

36i.e., θ needs to satisfy that Π
(

q, cq

)
≥ Π

(
q− 1, cq

)
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A.2.1 The effect of elasticity on nl-price

First, note that ∂Λ
∂ε = ∂P

∂ε
1

q+Tq1 . Then, differentiating equation 10 with respect to ε,

(P + TP1)Λε

(
ε ∂P

∂ε

P + TP1
+ ln Λ

)
+

∂P
∂ε

Λε =
∂P
∂ε

+
∂P
∂ε

ε + P− q

∂P
∂ε

(Λε − 1) (1 + ε) + (P + TP1)Λε ln Λ = P− q

∂P
∂ε

=
P− q− (P + TP1)Λε ln Λ

(Λε − 1) (1 + ε)
> 0

To see that note that the denominator is positive for ε < −1, since Λ > 1. Further, the enumerator is positive
iff

(P− q) (q + Tq1)
ε − (P + TP1)

ε+1 ln
(

P + TP1

q + Tq1

)
> 0

It is easy to see that the above term equals zero for P = q. We now show that it is increasing in P, and hence
positive, since P > q. To see that it is increasing in P, differentiate to show

(q + Tq1)
ε − (ε + 1) (P + TP1)

ε ln
(

P + TP1

q + Tq1

)
− (P + TP1)

ε > 0

⇔ 1 > Λε (1 + (1 + ε) ln Λ)

and note that Λε < 1, and that ln Λ > 0 and ε < −1 hence (1 + (1 + ε) ln Λ) < 1.

A.2.2 Proof of corollary, effect of dollar digit on nl-price

We know that the NLP satisfies:

((1− θ)P + θP1)
ε
(
− (1− θ)P + θP1

ε (1− θ)

)
− ((1− θ)q + θq1)

ε
(

q− P · 1 + ε

ε
− θP1

(1− θ) ε

)
= 0 (11)

p̂ε p̂
ε (1− θ)

+ q̂ε

(
q− p− p̂

ε (1− θ)

)
= 0 (12)

q̂ε (q− p) ε (1− θ) = p̂ (q̂ε − p̂ε) (13)

Where the transitions are just algebraic simplifications, and writing the perceived price instead of its com-
ponents. To prove the corollary I ask if it is possible that the NLP will be that same for two consecutive
dollar digits, pq+1 = pq + 1. That is if,

(q̂ + 1)ε [(q− p) ε (1− θ)] Q ( p̂ + 1)
(
(q̂ + 1)ε − ( p̂ + 1)ε)

(q̂ + 1)ε [ p̂ (q̂ε − p̂ε) q̂−ε
]
Q ( p̂ + 1)

(
(q̂ + 1)ε − ( p̂ + 1)ε)

p̂
p̂ + 1

Q
1−

(
p̂+1
q̂+1

)ε

1−
(

p̂
q̂

)ε
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if ε = −1 it holds with equality:

p̂
p̂ + 1

=

p̂+1−q̂−1
p̂+1
p̂−q̂

p̂

=
p̂

p̂ + 1

but if ε < −1, as assumed all over, then the RHS is lower. Meaning, that the equality does not hold.

A.2.3 The effect of inattention on nl-price

How does higher inattention affects the next lowest price? Differentiate equation 10 with respect to θ:

(ε + 1)
(

P + TP1

q + Tq1

)ε

(
∂P
∂θ + ∂T

∂θ P1

)
(q + Tq1)− ∂T

∂θ (P + TP1)

q + Tq1
+

∂T
∂θ

q1

(
P + TP1

q + Tq1

)ε+1
− ∂P

∂θ
(1 + ε) =

∂T
∂θ

P1

(ε + 1)
(

∂P
∂θ

+
∂T
∂θ

P1

)
+

∂T
∂θ

(q1 − 1− ε)
P + TP1

q + Tq1
− ∂P

∂θ
(1 + ε)

(
P + TP1

q + Tq1

)−ε

=
∂T
∂θ

P1

(
P + TP1

q + Tq1

)−ε

∂P
∂θ

(
1−

(
q + Tq1

P + TP1

)ε)
=

1

(1− θ)2

(
P1

1 + ε

(
q + Tq1

P + TP1

)ε

− P1 +

(
1− q1

ε + 1

)
P + TP1

q + Tq1

)
the term in parentheses on the left-hand side is negative, so the effect is determined by the opposite sign of

P1
1+ε

(
q+Tq1
P+TP1

)ε
− P1 +

(
1− q1

ε+1
) P+TP1

q+Tq1
. This is sign is always negative for ε < −1 for q1 > 0.

To see that P1
1+ε

(
q+Tq1
P+TP1

)ε
− P1 +

(
1− q1

ε+1
) P+TP1

q+Tq1
< 0, recall that P− q = ∆ < 1 and P1 = 1 + q1. Then, we

need to show that

P1

1 + ε

(
q + Tq1

P + TP1

)ε

+

(
1− q1

ε + 1

)
P + TP1

q + Tq1
< P1

P + TP1

q + Tq1

1 + ε− q1 + P1

(
q+Tq1
P+TP1

)−(1+ε)

1 + ε

 < 1 + q1

focusing on the LHS, using that ε < −1 and P1 = 1 + q1:

P + TP1

q + Tq1

1 + ε− q1 + P1

(
q+Tq1
P+TP1

)−(1+ε)

1 + ε

 <
P + TP1

q + Tq1

(
2 + ε

1 + ε

)
<

P + TP1

q + Tq1

then it is left to show that
P + TP1

q + Tq1
=

q + ∆ + T (1 + q1)

q + Tq1
< 1 + q1

or

q + ∆ + T (1 + q1) < (1 + q1) (q + Tq1)

∆ + T < q1 (q + Tq1)

and since ∆ + T ≤ 1 + T, if q1 ≥ 1, then q + Tq1 > 1 + T. If q1 = 0 then this inequality does not hold.
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B Price Competition

In that section we solve for a price competition model where some consumers are inattentive to the first
digit. However, the solution is for a continuous pricing, and the proof relies on the continuity of the price
domain.

Varian (1980), with a different motivation and interpretation, solved a closely related model in his seminal
paper “A Model of Sales”. We solve a Varian-variant model, where there are N firms that have no costs of
producing a homogeneous good. Prices can be set continuously between 0 and 2. A measure 1− θ of con-
sumers is attentive, and a measure θ is partially inattentive. An attentive consumer buys from the cheapest
firm (or randomizes between all cheapest firms.) A partially inattentive consumer has a coarse perception of
the price, seeing the price as being “weakly less than 1” or “strictly more than 1”. So a partially inattentive
consumer is equally likely to purchase from any firm who prices below 1, or if no firm prices below 1, from
those who price above 1.

Proposition 3. There is no pure strategy equilibrium in this game

Proof. Assume all firms play a strategy p. If p > 0 an ε downward deviation from a positive price will lend
a firm the entire attentive market, while a price strategy of 0 is sub-optimal since setting the price at any
0 < p ≤ 1 gives positive profits from the partially inattentive market.

Think of a mixed strategy as a cumulative distribution function F (with the accompanying PDF f ) over
prices and consider symmetric equilibria. Given F, notate φ ≡ F(1) as the probability of a firm pricing
below 1. Define a simple mixed equilibrium as a symmetric equilibrium where φ = 1, and a truly mixed
equilibrium as a symmetric equilibrium where φ ∈ (0, 1).

Proposition 4. (1) There exists a simple mixed equilibrium where F(1) = 1 and firms mix over [p0, 1] according
to a unique Fθ,N , p0 > 0.

(2) There sometimes exist a truly mixed equilibrium as a function of θ and N, where firms mix over [p0, 1] ∪ [p1, 2]
according to a unique Fθ,N , where p0 > 0 and p1 > 1.

An immediate corollary is that in any equilibrium, firms will not price at the point of discontinuity. Taking
this simplistic, continuous domain model to our setting, the price of “1” represents the highest price before
the drop in demand, i.e. prices that end with 99 before the policy or 90 post policy. So, that model predicts
no pricing at 00.

Proof. Given φ from each firm’s perspective, the number of other firms pricing under 1 is described by a
binomial distribution x ∼ B(N− 1, φ). It must be that φ > 0, since if all firms price above 1, a deviation to 1
gives an expected payoff of 1, while the expected payoff from F must be strictly less than 2

N (since all firms
have the same expected profit, and the maximal industry profit is 2). A firm’s expected market share from a
price p ≤ 1 is

X(p|p ≤ 1) = (1− θ) (1− F(p))N−1 + θE

[
1

1 + x

]
= (1− θ) (1− F(p))N−1 + θ

1− (1− φ)N

Nφ
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A firm’s expected market share from a price p > 1 is

X(p|p > 1) = (1− θ) (1− F(p))N−1 + θ
(1− φ)N−1

N

In each region, above or below 1, the CDF has no mass points. To see that, assume there is a mass point then
it is profitable for a firm to shift that mass a little bit to the left37.

Also, within each region there are no gaps. Assume there is, i.e. f (p) = 0 for all p ∈ (p, p) where either
p < 1 or p > 1 . Then, it is profitable to shift a probability from f (p) > 0 to a price in the gap region, thus
only increasing profit without changing the probability of winning it. For the same reason f (1) > 0 and
f (2) > 0.

Call an equilibrium where φ < 1 a “truly mixed equilibrium”. From the above, the support of the CDF
in a truly mixed equilibrium is [p0, 1) ∪ [p1, 2]. Now, we can find the CDF using the indifference principle,
stating that the expected profit of every price point should be equal. Explicitly, it should be that the payoff
is the same as for p = 1. So, the expected payoff is

(1− θ) (1− φ)N−1 + θ
1− (1− φ)N

Nφ

From that we can also find the lowest price p0, since F(p0) = 0. So,

p0

(
(1− θ) + θ

1− (1− φ)N

Nφ

)
= (1− θ) (1− φ)N−1 + θ

1− (1− φ)N

Nφ

p0 =
(1− θ) (1− φ)N−1 + θ

1−(1−φ)N

Nφ

(1− θ) + θ
1−(1−φ)N

Nφ

Notice that if φ = 1, all firms never price above 1, then p0 = θ
N(1−θ)+θ

, as in Varian 1980.

What is p1? F(p1) = φ, the price is higher than 1, but the expected share of inattentives is conditional on all
firms pricing above 1. That is,

p1

(
(1− θ) (1− φ)N−1 + θ

(1− φ)N−1

N

)
= (1− θ) (1− φ)N−1 + θ

1− (1− φ)N

Nφ

p1 =
(1− θ) (1− φ)N−1 + θ

1−(1−φ)N

Nφ

(1− θ) (1− φ)N−1 + θ
(1−φ)N−1

N

37If there is a mass point at 1, then it is profitable to shift it to just below 1 and gain θ
1−(1−φ)N−(1−φ)N−1φ

Nφ = θ
1−(1−φ)N−1

Nφ > 0
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Next, notice that F(2) = 1, and from the indifference principle,

2θ
(1− φ)N−1

N
= (1− θ) (1− φ)N−1 + θ

1− (1− φ)N

Nφ

(1− φ)N−1
(

2− N
1− θ

θ
+

1− φ

φ

)
=

1
φ

(1− φ)N−1
(

φ

(
2− N

1− θ

θ

)
+ (1− φ)

)
= 1

This equation determines φ, if it even exists. Note that the leftmost term is smaller than 1, and the term in
parentheses is a weighted average of 1 and 2− N 1−θ

θ . If that last term is less than 1, then no φ can solve that
equation. So, a necessary condition for such an equilibrium to exist is that

2− N
1− θ

θ
> 1

N
1− θ

θ
< 1

N <
θ

1− θ
θ >

N
1 + N

For example, if N = 2 then θ > 2
3 . In practice, we assume that the share of inattentives is likely to be small.

However, this restriction relies on the marginal costs being 0. A higher marginal cost 0 < c < 1 will alter
the above indifference,

(2− c)θ
(1− φ)N−1

N
= (1− c)

(
(1− θ) (1− φ)N−1 + θ

1− (1− φ)N

Nφ

)
(1− φ)N−1

(
φ

(
2− c
1− c

− N
1− θ

θ

)
+ (1− φ)

)
= 1

Therefore, the above constraint is relaxed to be θ > N
1

1−c +N
. For example, if N = 2 and c = 0.5, then θ > 1

2

instead of 2
3 . Still, we need a small N and high c to bring the bound on θ to reasonable values.

In any case, if φ = 1 we are almost back to the Varian case, and an equilibrium exists. Call it a “simple
mixed equilibrium”. To see that, assume that all firms play F such that F(1) = 1. Then, deviating any
density to above 1 gains nothing - both attentives and inattentives will not buy at that price. Therefore a
simple mixed equilibrium, as already characterized by Varian, exists. This is actually a way to make the
arbitrary assumption that Varian makes, of a bound on the maximal price, to be weakly less arbitrary.

C Multi-product Monopolist

Even though single-item sellers use 9-ending prices as well (firms such as Netflix, or Amazon, or in house
listings Repetto and Solis (2018)), supermarkets are sellers of multiple items. Substitution between differen-
tiated products is a main focus and an empirical challenge that spans a huge literature (see review by Nevo
(2011)). How does simultaneous pricing of multiple products with cross-elasticities between them affect the
firm pricing behavior regarding 9-ending pricing?
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To keep the problem simple, consider a firm that sells two products setting prices to maximize profit of the
form

Π = D
(

pi, pj; θ
)
(p− c)

where D =
(

Di, Dj
)

is a vector of demand for items i and j, p =
(

pi, pj
)

is the prices vector, and c =
(
ci, cj

)
is the unit costs vector. Let

Di = Ai p̂
εii
i p̂

εij
j

where εii is the same price elasticity, and εij = εji is the cross-product elasticity. Then the firm’s problem is
to maximize

Π = max
pi ,pj

Ai p̂
εii
i p̂

εij
j (pi − ci) + Aj p̂

εij
i p̂

εjj
j
(

pj − cj
)

If the cross-elasticity is 0, we are back to the single item monopolist, since the problem is separable. De-
riving a closed-form solution is possible, but it is not very insightful, in the sense that I do not have any
comparative statics to provide. Instead, I solve the problem numerically, and focus attention on the effects
of adding cross elasticities on the region of missing prices (numerical, local, comparative statics). Figure
A.10 provides an example for such effects. Here, the black curves describe the price versus cost of product
i, when product j has a cost of 1.5, and the orange curves are the price of product j. Both items have same
price elasticity of -2, and cross-elasticity is either zero (the solid lines) or 0.1 (the dashed line). Margins of
product i are higher due to the substitution with product j. Also, the arrows point to the lowest-prices of
4.67 in the single item case, and 4.73 with the cross-elasticity.

The finding of a higher next-lowest price for higher substitution holds in more general simulations – when I
allow for varying costs for the other item as well (taking the next-lowest price regardless of the other items
underlying cost), different same-price elasticities for each product, and at various levels of left-digit bias.
Further, it holds for both the more expensive and cheaper product. While this is hardly a proof, it seems to
be a plausible conjecture.

D Nielsen Data

Here I describe the Nielsen data, and discuss its issues and the solution I propose.

Nielsen Retail Scanner (RMS) and Consumer Panel (HMS) data are provided by the Kilts Center at the
University of Chicago. RMS records weekly UPC-store level quantity and revenues. Summary statistics are
described in column (1) of Appendix Table 1. The sample consists of 28 million observations of 12 products
from DellaVigna and Gentzkow (2017), selling in 11000 stores, with a total of 188 million units sold for $881
million. The average price is at $5.51, with a standard deviation of 2.81.

The data is similar to the retailer’s data, with the key advantage being that it includes the clientele and
pricing behavior of more than 60 retailers rather than one. Another pragmatic advantage is the longer panel
of 9 years instead of 3.5. However, the data have three main disadvantages, and as such is not part of the
main analysis. First, prices are rounded such that they are always “to the cent”, thus not allowing to infer
if an observation represents a fictitious price. Second, Nielsen measurement weeks start on Sunday, and
are not always aligned with a retailer’s price changing frequency. For example, some chains change their
prices weekly but do so on Wednesdays, so if a price changed the Nielsen price will mix sales with one
price for Sunday-Tuesday and another for Wednesday-Saturday. Measurement misalignment leads to far
more fictitious prices than in the retailer data. Finally, only the weekly average price is observed, excluding
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a simple way to infer if a price is on-sale or not. Additional variables, “promotion” and “display”, are
available but are missing for 80% of the observations.

To solve the issues of fictitious prices and sale prices I use a new, yet simple, data cleaning technique. If an
observed price of a unique product in a certain store is the result of averaging different prices, it is unlikely to
be identical to the price in the following week 38. For example, imagine there is a discount to club members
only, so some consumers pay $4.99 and others $4.29. In order for the “weekly” price to be the same across
weeks, the share of club members among weekly consumers must be kept exactly the same. Therefore, I
define for each product-store the spell length of each price and exclude 1-week spells. Longer spells are also
more likely to be regular prices, or conversely, shorter spells are more likely to be on-sale prices. Therefore,
while I can not directly observe if a product is on-sale in a certain week, I proxy for it with the spell length.
The spell length proxy has the advantage of not inferring an on-sale by price, which is problematic since
regular prices also change.

These intuitive arguments are corroborated using the retailer data, where they can be directly examined.
In Appendix Figure A.3 I am testing these conjectures for the 1710 products of the retailer data. The black
circles show the share of observations that are real (to the cent) conditional on the spell length. About 50%
are real for a 1 week spell, and that share jumps to 95% for 2 week spells, and gets close to a 100% for 3
weeks and longer. The yellow triangles show that share of observations that are regular prices (not on-sale)
by spell length. About 25% of 1-week spells represent regular prices, 40% at 2 weeks, and by 6 week spells
almost all are regular prices.

The price ending distributions, depicted in Figure A.1, further depicts and support the data cleaning pro-
cedure. To recap, non-real prices are excluded in the retailer data by excluding non-round prices, and in
Nielsen data by excluding 1 week spells. An observation is on-sale in the retailer data if the net price is
lower than the regular price, and in Nielsen I add dummies for 2,3,4, and 5 week spells to proxy for on-
sale propensity (motivated by Appendix Figure A.3). Indeed, a similar qualitative pattern appears in both
data sets even though the data cleaning procedure is different. The figure shows the shares of observations
that end with 9, 0, or other price-ending, and each color bars describe a different cut of the data. Moving
from all observations to a sample that includes only “real” prices (to-the-cent or at least 2 weeks spells),
decreases the shares of non-9 non-0 observations, which add almost solely to 9-ending prices. i.e., without
that exclusion, about a third to half of observations in other price endings should be attributed to 9-ending
prices. Further focusing on likely regular prices (observable in the retailer data, and defined as at least 6
week spells), increases the share of 9-ending prices, but on the expense of 0-ending ones. That is, 0-ending
prices are mostly on-sale prices or more transient price spells.

E Bias Heterogeneity

Armed with estimates of the bias at the product level, we can ask how does the bias change according to
the product characteristics? A few mechanisms are interesting to look at. First, a mechanism of relative
thinking might be in place. The idea was introduced by Tversky and Kahneman (1981) with the famous
calculator-jacket example. Namely, 68% of respondents take the same hypothetical effort for a $5 discount if
it is out of a $15 item, while only 29% if it is out of a $125 item. Needless to say, this kind of behavior is not
consistent with utility maximization. While different theories were developed (e.g., Azar (2007); Bushong et
al. (2015)), field evidence for the effect is rare (with the recent exception of Hirshman et al. (forthcoming)).

38Mostly true for a popular product purchased in multiple units each week, otherwise might be likely.
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In this left-digit bias setting, a manifestation of relative thinking is if the bias is higher for high ticket items,
everything else constant. Meaning, if a cent out of a $2 item weighs more heavily than a cent out of an
$8 item. Already hinted in Figure 3, the drops are not shrinking for higher dollar digits. According to the
sufficient statistic formula, with the same elasticity and demand drop size, the bias is increasing linearly
with the dollar digit. Thus, it seems likely to suspect that relative thinking might be affecting the bias.

Higher bias for more expensive products is irrational if a single unit is purchased of each item. However, if
cheaper items are also purchased more frequently and in multiple units by purchasing households, the price
level correlation might be a proxy for a form of rational inattention. Therefore, I turn to Nielsen HomeScan
Panel (HMS), and calculate for each product the average number of units purchased of an item, conditional
on it being purchased in a shopping trip39. If the bias is a form of deliberate inattention, focusing more on
products whose last-digits weight on the budget is higher, we should expect more frequently purchased
items to be correlated with lower bias.

Finally, one might be curious how the demographics of purchasing clientele are related to the bias. I focus on
two main variables, household income and education, also taken as the average level of those by purchasing
households in the HMS. Income has an ex-ante unknown sign, since low income might be correlated with
more behavioral biases (CITES), but high income people might care less about the cents (recall, the bias is
above and beyond the overall product price elasticity). Education is expected to be more clearly, correlated
with less bias (e.g. Bronnenberg et al. (2015)).

Since I have various measures of the bias from the three methods discussed above, each with its benefits
and drawbacks, I use a simple mean as the bias measure. This is a crude way of minimizing sampling error
in the estimates. The simple correlates appear in Figure A.8. As hinted above, price (panel a), is positively
correlated with the bias; demand is negatively correlated (panel b); and education and income are less
clearly correlated (panels c and d).

More important than the univariate correlations, is how are these affected when taken together. In a multi-
variate case we can look at the price effects controlling for number of units purchased, or on the education
effects controlling for income. Table A.2 show these results. Columns 1-4 are the univariate regressions
of the bias on the four different variables, while columns 5-7 are multivariate versions taking all variables
together. Column 7 adds subcategory fixed effects to look at the variation of the bias within products of the
same type (e.g., “coffee”, “rice”, “cottage cheese”, or “refrigerated orange juice”). The overall picture is that
both price and number of units are associated with the bias, where a 1% higher price is associated with a 0.21
(standard error 0.04) points higher bias (that is additional 2.1 cents are ignored), while a 1% higher number
of units purchased is associated with 0.22 (0.09) points lower bias. Income is positively correlated with the
bias, and education negatively so, but the estimates are not significantly different than zero. Meaning, we
find suggestive support for both relative thinking and deliberate inattention.

F Appendix Figures
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Figure A.1: Data comparison, price ending shares, and sample selection

(a) Retailer data
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Source: 1710 products, Retailer.

(b) Nielsen data
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The figures show the shares of 9-ending prices, 0-ending prices and others in the Retailer data (panel A) and Nielsen data
(panel B), and how these change by sample selection. The dark purple bars are the data before cleaning (corresponding
to column (2) in Table 1 and column (1) in A.1). The middle green bars are the shares of “real” prices in the data (columns
(3) and (2)) defined as to-the-cent prices in the Retailer data and at least 2 week price spells in Nielsen. The light yellow
bars are the shares for “regular” prices (columns (4) and (3)), defined as instances in which the net price equals the
regular price in the Retailer data and price spells of at least 6 weeks in Nielsen.
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Figure A.2: Data description: “real” and “on-sale” by last digit of observed price
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`real price` = the weekly average price is `to the cent`. Shares of price endings: 9: 67%, 0: 13%, 5: 6%, others <2%.

       source: retailer data.

The figure shows the shares of observed prices that are to-the-cent (left) and on-sale (right), conditional on
the last digit of the (rounded to the cent) price. For example, on the left, prices ending with 9 are 98% to-the-
cent while 2-ending prices are to-the-cent in 31% of observations. Meaning, for 69% of observed 2-ending
rounded price, the observation represents a mixture of several prices. On the right, an observation is on-
sale if the actual price is lower than the regular price. A 9-ending price is on-sale 9.9% of the time, while a
0-ending price is on-sale for 91% of these observations.
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Figure A.3: Shares of real prices and on-sale prices by length of price spell
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Shares of observations that are to-the-cent prices and on-sale by spell-length for the retailer data (corresponding to
column (3) in Table 1). A product-week-store observation is allocated to spell length T if the price on that week is
identical across T consecutive weeks. The light yellow line is the CDF of observations in the data. The dark circles
are the share of observations, conditional on spell length, that are “real” (i.e., prices ending to-the-cent). The lighter
triangles are the share of observations, conditional on spell length, that are on-sale (i.e. net price is less than the regular
price).
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Figure A.4: Retailer Robustness: Residualized demand of 12 products and 70 retailers using Nielsen data

(a) residualized demand, 2+ week spells
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(b) Residualized demand, 6+ week spells
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Net log-demand by price, residualizing product-level price elasticity, seasonality, store fixed effects, and
promotion effects. Regressions are conducted at the product-chain level (12 products, 11000 stores of 70
retailers, 468 weeks). Different dollar digits are designated by color. Within-dollar linear fits, weighted
by number of observations, are added in solid lines. Fixed effects are estimated at 10-cent bins, and 95%
confidence intervals are result of 300 cluster-bootstraps by store.
The top panel is using data on all observations of at least 2-week spells (Column (2) in Table A.1). The
bottom panel presents the results from a restricted sample of at least 6-week spells (column (3) of Table
A.1). Data is truncated for prices between $1 and $9.99 for clarity. For further details see Section 4.1 for the
empirical specification and Appendix D for data description.
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Figure A.5: Demand structure robsutness: Residualized log-linear demand

(a) Main sample, constant semi-elasticity IV estimation
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(b) Restricted sample of regular prices, constant semi-elasticity OLS estimation
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Robustness: Alternative demand structure. Net log-demand by price, residualizing product-level price
semi-elasticity, cross-semi-elasticity, seasonality, store fixed effects, and promotion effects. Regressions are
conducted at the product level (1710 products, 248 stores, 177 weeks). Different dollar digits are designated
by color. Within-dollar linear fits, weighted by number of observations, are added in solid lines. Fixed
effects are estimated at 10-cent bins, and 95% confidence intervals are result of 200 cluster-bootstraps by
store.
The top panel is using data on all to-the-cent prices from a national retailer data (Column (3) in Table 1),
and the regression is run with instrumental variables, as in Specification 6 but on prices rather than log-
prices. i.e., logQ ~ p, instrumenting for the price with the price of the same item in other stores of the same
distribution center in other cities. The bottom panel presents the results of an OLS constructed on regular
prices only (column (4) of Table 1). Data is truncated for prices between $1 and $7.99 for clarity. For further
details see Section 4.1.
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Figure A.6: Sample robustness: Residualized demand for an alternative sample of products

●

●

●●●

●

●

●

●

●

●

●●
●●

●
●

●
●●

●

●●
●

●●
●

●
●

●

●

●

●
●●●

●

●
●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

−0.10

−0.05

0.00

0.05

0.10

1 2 3 4 5 6 7 8

price

re
si

du
al

iz
ed

 d
em

an
d 

(lo
gs

)

Robustness: alternative sample. Net log-demand by price, residualizing product-level price elasticity, sea-
sonality, store fixed effects, and promotion effects. Regressions are conducted at the product level (2149
products). Different dollar digits are designated by color. Within-dollar linear fits, weighted by number of
observations, are added in solid lines. Fixed effects are estimated at 10-cent bins, and 95% confidence inter-
vals are result of 100 cluster-bootstraps by store. Top panel shows the entire sample of to-the-cent prices,
while the bottom restricts attention to regular prices only.
The sample is of 2149 products of high availability but also highly concentrated prices (125 with more than
75% of observations at 99-ending prices, the rest with more than 75% of observations sharing common dollar
digit). Sample consisted of 55.5 Million observations spanning the same stores and period of time as for the
main sample. Data cover $292 Million in annual revenues via sale of 170 Million units per year. Mean price
of these products is $2.20 (1.27), with 21.7% of observations representing on-sale prices.
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Figure A.7: CDF of left-digit bias estimates on Retailer data, three estimation methods.
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The figure shows the CDF of product-level left-digit bias estimates, corresponding to panel B of Table 2. The
dark solid line, “From drops”, is the CDF of left-digit bias estimates at the product level using the drops in
demand at dollar crossings coupled with elasticity of demand and the dollar digit. Dashed green, “NLS”,
are estimates from non-linear least squares. Light long dashed, “semi elasticity”, are the estimates from a
log-linear regression with constant semi-elasticity of demand. For details see Section 4.
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Figure A.8: Bias Heterogeneity: Correlates of product and clientele characteristics with left-digt bias

(a) Average product price
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(b) Per-trip purchased units
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(c) Household heads education level
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(d) Household annual income
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The figures show the correlation between product-level left-digit bias estimates and underlying character-
istics of the product and its clientele. Product-level estimates are averaged in 50 equally sized bins of the
horizontal axis. In each facet, the horizontal axis is the characteristic variable, and the vertical axis is the left-
digit bias estimates (from non-linear least squares estimates). Data on clientele characteristics are calculated
from Nielsen home panel.
Panels (a)-(d) show the association with the product overall average price, the average number of units a
purchasing household purchase of that item in a single trip, the education level of purchasing household
heads (maximum level if two heads of household), and the annual income of purchasing households. For
further details see Appendix Section E.
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Figure A.9: Simulation: Relative price level by bias
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The figure shows the the average price of products set by an optimizing firm by the level of left-digit bias,
keeping everything else fixed. The horizontal axis is the degree of left-digit bias, the vertical axis is the
relative price to a no-bias case, normalized to 1. Each curve represents a different price elasticity. For low
elasticities, the average price goes down with higher left-digit bias because the dominating force is to push
prices down to 99-endings. For more elastic demand, the price goes up, because the dominating force is on
interior prices, or pushing to a higher 99-ending price.
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Figure A.10: Illustration: pricing schedule of a 2-product monopolist
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The figure gives an example of a pricing schedule of two products with and without cross elasticities of
substitution between the items. The same-price elasticity of each product is -2. Black curves are the prices of
product i and orange curves, which lie on top of another, are the prices of product j (the cost of product j is
kept constant at 1.5). Solid lines are the prices if there is no substitution between the products, and dashed
when there is a cross-elasticity of 0.1. The gray arrows point to the lowest prices of product i starting at 4 in
the two different cases, showing that the next-lowest price is higher for substitutes.
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Figure A.11: Minimum distance estimation: empricial and predicted moments
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The figure shows the empirical moments and predicted moments from a minimum distance estimation.
Each moment is share of prices in a 10-cent bin. The empirical moments are the shares of regular prices for
the 1710 products, shown in solid bars. Dark bars are the moments used for fitting, while the light bars are
excluded from the fit and used to create the counterfactual price distribution. The predicted moments are
shown in semi-transparent light green. For further details see Section 5.
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Figure A.12: Estimated firm-perceived elasticity
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The figure shows the estimated perceived elasticity inferred from the price distribution. On the horizontal
axis are different assumptions about the estimation procedure. Namely, the range of prices used for esti-
mation, the excluded prices from the counterfactual price distribution fit, and the shape of that distribution
via the polynomial degree. Each point is the estimated perceived elasticity for each specification, and the
confidence intervals are the 2.5% and 97.5% estimates from 300 cluster-bootstraps of the moments at the
product level (that is why some point estimates are outside of the confidence interval).
For all specifications, I can reject that the elasticity is larger than -1. While point estimates are sensitive to
the exact specification, bootstrapping the sample provide more similar confidence intervals.
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Table A.1: Summary Statistics and Data Selection, Nielsen Data

Nielsen RMS
Full 2+ weeks 6+ weeks
(1) (2) (3)

Panel A: Data Description
Observations (M) 27.8 20.5 11.5
Products 12 12 12
Stores 11000 11000 11000
Weeks 468 468 468
Chains 70 70 70
Annual Revenue ($M) 97.9 57.2 28.4
Annual Units Sold (M) 20.9 11.5 5.67
First Date Jan-06 Jan-06 Jan-06
Last Date Dec-14 Dec-14 Dec-14

Panel B: Pricing Descriptives
Mean Price 5.51 5.55 5.32
Price SD 2.81 2.78 2.57
Share on-sale
Share 99-ending 0.30 0.35 0.34
Share 9-ending 0.70 0.81 0.86
Share 9-ending (non-sale)
Share 0-ending 0.10 0.09 0.04
Share 0-ending (non-sale)

The table presents summary statistics for the Nielsen data. Column (1) is the full sample as taken from
DellaVigna and Gentzkow (2017). Column (2) is the main sample used, excluding what are likely non-
real prices (i.e., keeping only prices that are part of an at least 2-week spell). Column (3) provides further
information on the characteristics of longer price spells (at least 6 weeks).
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Table A.2: Correlations between product-level estimated bias and product characteristics

Dep: Left-digit bias
(1) (2) (3) (4) (5) (6) (7)

log(average price) 0.195∗∗∗ 0.141∗∗∗ 0.157∗∗∗ 0.210∗∗∗

(0.018) (0.020) (0.030) (0.036)

log(per-trip units) −0.489∗∗∗ −0.332∗∗∗ −0.396∗∗∗ −0.220∗∗

(0.045) (0.050) (0.076) (0.089)

log(income) 0.077 0.129 0.193∗ 0.095
(0.087) (0.104) (0.113) (0.114)

education (z-score) −0.011 −0.022∗∗ −0.019∗ −0.016
(0.008) (0.010) (0.010) (0.010)

Fixed Effects Category SubCategory
Observations 1,504 1,504 1,504 1,504 1,504 1,504 1,504
R2 0.094 0.076 0.001 0.002 0.123 0.214 0.306

The table shows results from regressing product-level left-digit bias estimates on a product average price,
and purchasing households per-trip units bought, income, and education (highest among household heads).
Columns (1)-(4) are the univariate correlates, while (5)-(7) include all variables. Column (6) includes 47
category fixed effects (e.g. “coffee/tea/hot cocoa/cream”) and column (7) includes 121 sub-category fixed
effects (e.g. “coffee”). So in column (7) the variation is between products of the same sub-category.
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Table A.3: Profits lost when the firm underestimates left-digit bias, alternative assumptions

Assumed scenario profits lost pricing

Left-digit bias Price elasticity Perceived bias by perceived bias (%)
θ ε θ̂ (θ̂ instead of θ)

Panel I: If there is also left-digit bias to last digits θ2 = 0.25
Point estimates 0.16 -1.5 0.004 -2.8
Extreme estimates 0.10 -4.0 0.03 -1.0
Heterogeneous bias N (0.16, 0.05) -1.5 0.004 -3.2
Heterogeneous perceived bias 0.16 -1.5 N (0.004, 0.01) -2.3
Heterogeneous elasticity 0.16 N (−1.5, 0.2) 0.004 -2.8

Panel II: If consumers round up when ignoring the last digits
Point estimates 0.16 -1.5 0.004 -1.6
Extreme estimates 0.10 -4.0 0.03 -1.0
Heterogeneous bias N (0.16, 0.05) -1.5 0.004 -1.4
Heterogeneous perceived bias 0.16 -1.5 N (0.004, 0.01) -1.2
Heterogeneous elasticity 0.16 N (−1.5, 0.2) 0.004 -1.1

The table shows calculated percentage of gross profits lost, relative to optimal pricing. Optimal means that
the firm perceives the bias to be what it actually is, θ̂ = θ, while the other cases take a lower perceived bias
into account. Panel I shows the profits lost if the perceived price is p̂ = (1− θ − θ2) p + θp1 + θ2 (p1 + p0.1) ,
that is, with extra ignorance of the cent digit only, assuming the firm prices as if θ̂2 = θ2 = 0.25. Panel II
shows the profits lost when perceived price is p̂ = (1− θ) p+ θ (p1 + 0.99), meaning that consumers assume
the price ends with 99 with weight θ. Each row makes a different assumption about the “true” parameters
and the perceived ones (but always assuming that the firm knows the true price elasticity).
The first row in each panel shows the lost profits under point estimates taken from the main analysis. The
second row, extreme estimates, makes a firm-forthcoming assumption with lower bias, high price elasticity,
and the upper bound of perceived bias. The next three rows explore the role of heterogeneity and how
consequential it might be: I examine heterogeneity in left-digit bias, in perceived left-digit bias (truncating
from below at 0.001), and in same price elasticity. Finally, the last row takes cross-elasticities into account (I
use the implied perceived bias of 0.004, even though the implied perceived bias with cross-elasticities, given
pricing, is lower. This way I am consistent and provide a lower bound on losses).
At each cell I simulate 3000 costs from a cost distribution that mimics the actual distribution inferred from a
constant markup prices. For the heterogeneous cases I draw 50 values for each parameter. For the last row,
I sample 80 prices for each of 2 products (from the same cost distribution as above).
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