Ancestry, Language and Culture*

Enrico Spolaore
Tufts University and NBER

Romain Wacziarg

UCLA and NBER

January 2015

Abstract

We explore the interrelationships between various measures of cultural distance. We first discuss measures of genetic distance, used in the recent economics literature to capture the degree of relatedness between countries. We next describe several classes of measures of linguistic, religious and cultural distances. We introduce new measures of cultural distance based on differences in average answers to questions from the World Values Survey. Using a simple theoretical model we hypothesize that ancestral distance, measured by genetic distance, is positively correlated with linguistic, religious and cultural distance. An empirical exploration of these correlations shows this to be the case. This empirical evidence is consistent with the view that genetic distance is a summary statistic for a wide array of cultural traits transmitted intergenerationally.

[^0]
1 Introduction

Populations that share a more recent common ancestry exchange goods, capital, innovations and technologies more intensively, but they also tend to fight more with each other. ${ }^{1}$ Why does ancestral distance matter for these outcomes? In this paper, we argue that when populations split apart and diverge over the long span of history, their cultural traits also diverge. These cultural traits include language and religion but also a broader set of norms, values and attitudes that are transmitted intergenerationally and therefore display persistence over long stretches of time. In turn, these traits introduce barriers to interactions and communication between societies, in proportion to how far they have drifted from each other.

While the rate at which languages, religions and values diverged from each other over time varies across specific traits, we hypothesize and document a significant positive relationship between long-term relatedness between populations, measured by genetic distance, and a wide array of measures of cultural differences. In doing so, we provide support for the argument that the effect of genealogical relatedness on economic and political outcomes captures at least in part the effects of cultural distance. In sum, genetic relatedness is a summary statistic for a wide array of cultural traits transmitted vertically across generations. These differences in vertically transmitted traits introduce horizontal barriers to human interactions.

We begin our paper with a general discussion of measures of ancestral distance. We focus on genetic distance, a measure that has been used in a recent emerging literature on the deep roots of economic development. This measure captures how distant human societies are in terms of the frequency of neutral genes among them. It constitutes a molecular clock that allows us to characterize the degree of relatedness between human populations in terms of the number of generations that separate them from a common ancestor population. We next turn to measures of cultural differences. We consider three classes of such measures. The first is linguistic distance. Since these measures are described in great detail elsewhere in this volume, we keep our discussion brief. ${ }^{2}$ The second class of measures is religious distance. We adopt an approach based on religious

[^1]trees to characterize the distance between major world religions, and use these distances to calculate the religious distance between countries. Third, in the newest part of this paper, we define and compute a series of measures of differences in values, norms and attitudes between countries, based on the World Values Survey. We show that these classes of measures are positively correlated between each other, yet that the correlations among them are not large. This motivates the quest for a summary measure of cultural differences.

We next argue that genetic distance is such a summary measure. We start with a simple model linking genetic distance to cultural distance, providing a conceptual foundation for studying the relationship between relatedness and cultural distance. The model shows that if cultural traits are transmitted from parents to children with variation, then a greater ancestral distance between populations should on average be related with greater cultural distance. This relationship holds in expectations and not necessarily in each specific case (it is possible for two genealogically distant populations to end up with similar cultural traits), but our framework predicts a positive relationship between genetic distance and cultural distance. We next investigate empirically the links between genetic distance and the aforementioned metrics of cultural distance, shedding some light on their complex interrelationships. We find that genetic distance is positively correlated with linguistic and religious distance as well as with values / attitudes differences across countries, and is therefore a plausible measure of the average distance between countries along these various dimensions jointly.

This paper contributes to a growing empirical literature on the relationships between ancestry, language, and culture over time and space. This literature has expanded in recent years to include not only work by anthropologists, linguists, and population geneticists (such as, for instance, the classic contribution by Cavalli-Sforza, Menozzi and Piazza, 1994), but also those of economists and other social scientists interested in the effects of such long-term variables on current economic, political and social outcomes (for general discussions, see for example Spolaore and Wacziarg, 2013, and chapters 3 and 4 in Ginsburgh and Weber, 2011). Economic studies using measures of genetic and cultural distances between populations to shed light on economic and political outcomes include our own work on the diffusion of development and innovations (Spolaore and Wacziarg, 2009, 2012, 2013), international wars (Spolaore and Wacziarg, 2014a) and the fertility transition (Spolaore and Wacziarg, 2014b). Other studies using related approaches include Guiso, Sapienza and Zingales's (2009) investigation of cultural barriers to trade between European countries, Bai and Kung's
(2011) study of Chinese relatedness, cross-strait relations and income differences, Gorodnichenko and Roland's (2011) investigation of the relation between culture and institutions, and Desmet, Le Breton, Ortuño-Ortín and Weber's (2011) analysis of the relations between genetic and cultural distances and the stability of political borders in Europe.

Our paper is especially close to a section in the article by Desmet et al. (2011), where these authors provide an empirical analysis of the relationship between genetic distance and measures of cultural distance, using the Wolrd Values Surveys. In particular, Desmet et al. (2011) find that European populations that are genetically closer give more similar answers to a broad set of 430 questions about norms, values and cultural characteristics included in the 2005 World Values Suvey (WVS) sections on perceptions of life, family, religion and morals. They also find that the correlation between genetic distance and differences in cultural values remains positive and significant after controlling for linguistic and geographic distances. Our results here are consistent with their findings, but we use different empirical methods, a broader set of questions from all waves of the WVS, additional distances in linguistic and religious space, and a worldwide rather than European sample.

More broadly, this paper is also connected to the evolutionary literature on cultural transmission of traits and preferences and the co-evolution of genes and culture (e.g., Cavalli-Sforza and Feldman, 1981; Boyd and Richerson, 1985; Richerson and Boyd, 2004; Bell, Richerson and McElreath, 2009; and in economics Bisin and Verdier, 2000, 2001, 2010; Seabright, 2010; and Bowles and Gintis, 2011), and to the growing empirical literature on the effects of specific genetic traits, measured at the molecular level, on economic, cultural and social outcomes. ${ }^{3}$ However, as already mentioned, in our analysis we do not focus on the direct effects of intergenerationally transmitted traits subject to selection, but on general measures of ancestry based on neutral genes, which tend to change randomly over time, and capture long-term relatedness across populations. Finally, our work is connected to a different but related set of contributions focusing on the economic and political effects of genetic and cultural diversity not between populations, but within populations and societies (Ashraf and Galor, 2013a, 2013b; Arbatli, Ashraf and Galor, 2013, Desmet, Ortuño-Ortín and Wacziarg, 2014a).

This paper is organized as follows. Section 2 addresses the measurement of genealogical distance using genetic distance. Section 3 discussses the constructions of each of our three classes of distances:

[^2]linguistic, religious and values / norms / attitudes distances. Section 4 presents a simple theoretical framework linking genetic distance and distance in cultural traits. Section 5 reports patterns of correlations, both simple and partial, between genetic distance and cultural distance. Section 6 concludes.

2 Ancestry

2.1 Ancestry, Relatedness, and Genetic Markers

Who is related to whom? The biological foundation of relatedness is ancestry: two individuals are biologically related when one is the ancestor of the other, or both have common ancestors. Siblings are more closely related than first cousins because they have more recent common ancestors: their parents, rather than their grandparents. It is well known that genetic information can shed light on relatedness and common ancestry at the individual level. People inherit their DNA from their parents, and contemporary DNA testing can assess paternity and maternity with great accuracy. By the same token, genetic information can help reconstruct the relations between individuals and groups who share common ancestors much farther in the past.

From a long-term perpective, all humans are relatively close cousins, as we all descend from a small number of members of the species Homo sapiens sapiens, originating in Africa roughly 100,000 years ago. As humans moved to different regions and continents, they separated into different populations. Genetic information about current populations allows us to infer the relations among them and the overall history of humankind. Typically, people all over the world tend to share the same set of gene variants (alleles), but with different frequencies across different populations. Historically, this was first noticed with respect to blood groups. The four main blood groups are A, B, AB and O , and are the same across different populations. These observable groups (phenotypes) are the outcome of genetic transmission, involving three different variants (alleles) of the same gene: A, B, and O. Each individual receives one allele from each parent. For instance, A-group people may be so because they have received two copies of allele A (homozygotes) or because they have received a copy of allele A and one of allele O (heterozygotes). In contrast, O-group people can only be homozygotes (two O alleles), and AB -group can only have an A from a parent and a B from the other parent. By observing ABO blood groups, it is possible to infer the distribution of different alleles (A, B and O) in a given population. The frequencies of such alleles vary across populations. For example, one of the earliest studies of blood group differences across ethnic groups,
conducted at the beginning of the $20^{\text {th }}$ century and cited in Cavalli-Sforza, Menozzi and Piazza (1994, p. 18) found that the proportions of A and B alleles among the English were 46.4% and 10.2% respectively, were 45.6% and 14.2% among the French, while these proportions were 44.6% and 25.2%, among the Turks and 30.7% and 28.2% among the Malagasy. It is reasonably to assume that these gene frequencies have varied mostly randomly over time, as an effect of genetic drift, the random changes in allele frequence from one generation to the next due to the finite sampling of which specific individuals and alleles end up contributing to the next generation. Under random drift, it is unlikely that the French and the English have ended up with similar distributions of those alleles just out of chance, and more likely that their distributions are similar because they share recent common ancestors. That is, they used to be part of the same population in relatively recent times. In contrast, the English and the Turks are likely to share common ancestors farther in the past, and the English and the Malagasys even farther down the generations.

Genetic information about ABO blood groups alone would be insufficient to determine the relationships among different populations. More information can be obtained by considering a larger range of genetic markers, that is, genes that change across individuals, and are therefore useful to study their ancestry and relatedness. Blood groups belong to a larger set of classic genetic markers, which also include other blood-group systems (such as the RH and MN blood groups), variants of immoglubins (GM, KM, AM, etc.), variants of human lymphocyte antigens (HLA) and so on.

By considering a large number of classic genetic markers, pioneers in this area of human genetics, such as L. Luca Cavalli Sforza and his collaborators (e.g., see Cavalli Sforza and Edwards, 1964; Cavalli-Sforza, Menozzi and Piazza, 1994) were able to measure global genetic differences across populations, and to use such measures to infer how different populations have separated from each other over time and space. More recently, the great advances in DNA sequencing have allowed the direct study of polymorphisms (that is, genetic information that differs across individuals) at the molecular level. In particular, human genetic differences can now be studied directly by looking at instances of Single Nucleotide Polymorphism or SNP (pronounced snip), a sequence variation in which a single DNA nucleotide - A, T, C or G-in the genome differs across individuals (for example, Rosenberg et al., 2002; Seldin et. al, 2006; Tian et al., 2009; Ralph and Coop, 2013). ${ }^{4}$

[^3]
2.2 Genetic Distance between Human Populations

2.2.1 Definition of $F_{S T}$

In order to capture global differences in gene frequencies between populations, population geneticists have devised summary measures, called genetic distances. One of the most widely used measures of genetic distance, first suggested by Sewall Wright (1951), is called $F_{S T}$. In general, it can be defined as:

$$
\begin{equation*}
F_{S T}=\frac{V_{p}}{\bar{p}(1-\bar{p})} \tag{1}
\end{equation*}
$$

where V_{p} is the variance between gene frequencies across populations, and \bar{p} their average gene frequencies.

For example, consider two populations (a and b) of equal size, and one biallelic gene - i.e., a gene that can take only two forms: allele 1 and allele 2 . Let p_{a} and $q_{a}=1-p_{a}$ be the gene frequency of allele 1 and allele 2, respectively, in population $a .^{5}$ By the same token, p_{b} and $q_{b}=1-p_{b}$ are the gene frequency of allele 1 and allele 2, respectively, in population b. Without loss of generality, assume $p_{a} \geq p_{b}$ and define:

$$
\begin{align*}
p_{a} & \equiv \bar{p}+\sigma \tag{2}\\
p_{b} & \equiv \bar{p}-\sigma \tag{3}
\end{align*}
$$

where $\sigma \geq 0$. Then, we have:

$$
\begin{equation*}
F_{S T}=\frac{V_{p}}{\bar{p}(1-\bar{p})}=\frac{\left(p_{a}-\bar{p}\right)^{2}+\left(p_{b}-\bar{p}\right)^{2}}{2 \bar{p}(1-\bar{p})}=\frac{\sigma^{2}}{\bar{p}(1-\bar{p})} \tag{4}
\end{equation*}
$$

In general, $0 \leq F_{S T} \leq 1$. In particular, $F_{S T}=0$ when the frequencies of the alleles are identical across populations $(\sigma=0)$, and $F_{S T}=1$ when one population has only one allele and the other population has only the other allele - that is, when $\sigma=\bar{p}$. In that case, we say that the gene has reached fixation in each of the two populations - that is, there is no heterozygosity within each population.
matrilineal line in the mitochondrial DNA (mtDNA) and those passed only in the patrilineal line in the Y-chromosome. While the analysis of the distribution of these specific haplogroups across populations is extremely informative to study the history of human evolution and human migrations, measures of overall genetic distance and relatedness between populations require the study of the whole genome. The measures of genetic distance that we discuss and use in the rest of this chapter capture this more comprehensive notion of relatedness between populations.
${ }^{5}$ Note that since $p_{a}+q_{a}=1$ we also have $\left(p_{a}+q_{a}\right)^{2}=p_{a}^{2}+q_{a}^{2}+2 p_{a} q_{a}=1$.

In fact, $F_{S T}$ is part of a broader class of measures called fixation indices, and can be reinterpreted in terms of a comparison between heterozygosity within each population and heterozygosity in the sum of the two populations. ${ }^{6}$ The probability that two randomly selected alleles at the given locus are identical within the population (homozygosity) is $p_{a}^{2}+q_{a}^{2}$, and the probability that they are different (heterozygosity) is:

$$
\begin{equation*}
h_{a}=1-\left(p_{a}^{2}+q_{a}^{2}\right)=2 p_{a} q_{a} \tag{5}
\end{equation*}
$$

By the same token, heterozygosity in population b is:

$$
\begin{equation*}
h_{b}=1-\left(p_{b}^{2}+q_{b}^{2}\right)=2 p_{b} q_{b} \tag{6}
\end{equation*}
$$

The average gene frequencies of allele 1 and 2 in the two populations are, respectively:

$$
\begin{equation*}
\bar{p}=\frac{p_{a}+p_{b}}{2} \tag{7}
\end{equation*}
$$

and:

$$
\begin{equation*}
\bar{q}=\frac{q_{a}+q_{b}}{2}=1-\bar{p} \tag{8}
\end{equation*}
$$

Heterozygosity in the sum of the two populations is:

$$
\begin{equation*}
h=1-\left(\bar{p}^{2}+\bar{q}^{2}\right)=2 \overline{p q} \tag{9}
\end{equation*}
$$

Average heterozygosity is measured by:

$$
\begin{equation*}
h_{m}=\frac{h_{a}+h_{b}}{2} \tag{10}
\end{equation*}
$$

$F_{S T}$ measures the variation in the gene frequencies of populations by comparing h and h_{m} :

$$
\begin{equation*}
F_{S T}=1-\frac{h_{m}}{h}=1-\frac{p_{a} q_{a}+p_{b} q_{b}}{2 \overline{p q}}=(1 / 4) \frac{\left(p_{a}-p_{b}\right)^{2}}{\bar{p}(1-\overline{\bar{p}})}=\frac{\sigma^{2}}{\bar{p}(1-\bar{p})} \tag{11}
\end{equation*}
$$

In sum, if the two populations have identical allele frequencies $\left(p_{a}=p_{b}\right), F_{S T}$ is zero. On the other hand, if the two populations are completely different at the given locus ($p_{a}=1$ and $p_{b}=0$, or $p_{a}=0$ and $\left.p_{b}=1\right), F_{S T}$ takes value 1. In general, the higher the variation in the allele frequencies across the two populations, the higher is their $F_{S T}$ distance. The formula can be extended to account for L alleles, S populations, different population sizes, and to adjust for sampling bias. The details of these generalizations are provided in Cavalli-Sforza, Menozzi and Piazza (1994, pp. 26-27).

[^4]
2.2.2 Genetic Distance and Separation Time

$F_{S T}$ genetic distance has a very useful interpretation in terms of separation time, defined as the time since two populations shared their last common ancestors - that is, since they were the same population. Consider two populations whose ancestors were part of the same population t generations ago: t is the separation time between the two populations. Assume, for simplicity, that both populations have the same effective population size $N .{ }^{7}$. Assume also that allele frequencies change over time only as the result of random genetic drift. Then it can be shown that: ${ }^{8}$

$$
\begin{equation*}
F_{S T}=1-e^{-\frac{t}{2 N}} \tag{12}
\end{equation*}
$$

For a small $F_{S T}$, we can approximate it with $-\ln \left(1-F_{S T}\right)$, which implies that:

$$
\begin{equation*}
F_{S T} \simeq \frac{t}{2 N} \tag{13}
\end{equation*}
$$

This means that the genetic distance between two cousin populations is roughly proportional to the time since the ancestors of the two populations split and formed separate populations. In this respect, we can therefore interpret genetic distance as a measure of the time since two populations shared a common ancestry.

2.2.3 Empirical Estimates of Genetic Distance

In their landmark study "The History and Geography of Human Genes," Cavalli-Sforza, Menozzi and Piazza (1994) provide some of the most detailed and comprehensive estimates of genetic distances between human populations, within and across continents. Their initial database contains 76, 676 gene frequencies, corresponding to 6,633 samples in different locations. By culling and pooling such samples, they restrict their analysis to 491 populations. They focus on "aborigenal populations that were at their present location at the end of the fifteenth century when the great European migrations began" (Cavalli-Sforza et al., 1994, p. 24). When studying genetic difference at the world level, the number is reduced to 42 representative populations, aggregating subpopu-

[^5]lations caracterized by a high level of genetic similarity. For these 42 populations, Cavalli-Sforza and coauthors report bilateral distances computed from 120 alleles.

Among this set of 42 world populations, the greatest genetic distance observed is between Mbuti Pygmies and Papua New-Guineans, where the $F_{S T}$ distance is 0.4573 , while the smallest genetic distance (0.0021) is between the Danish and the English. When considering more disaggregated data for 26 European populations, the smallest genetic distance (0.0009) is between the Dutch and the Danish, and the largest (0.0667) is between the Lapps and the Sardinians. The mean genetic distance among the 861 available pairs in the world population is 0.1338 . Figure 1, reproduced from Cavalli-Sforza et al. (1994, Figure 2.3.2B, p. 78), is a phylogenetic tree, constructed from genetic distance data, that visually shows how different human populations have split apart over time. The phylogenetic tree is constructed to maximize the correlation between Euclidian distances to common nodes (measured along the branches) and $F_{S T}$ genetic distance computed from allele frequencies. Hence, the tree is a simplified summary of (but not a substitute for) the matrix of $F_{S T}$ genetic distances between populations. Cavalli-Sforza et al. (1994) also calculated estimates of Nei's distance, which is a different measure of genetic distance between populations. While $F_{S T}$ and Nei's distance have different analytical definitions and theoretical properties, they capture the same basic relationships, and their correlation is 93.9%. Therefore, in the rest of this chapter we only use $F_{S T}$ measures.

Cavalli-Sforza et al. (1994) provide genetic distance data at the population level, not at the country level. Therefore, economists and other social scientists interested in studying country-level data need to match populations to countries. In Spolaore and Wacziarg (2009), we did so using ethnic composition data by country from Alesina et al. (2003), who list 1,120 country-ethnic group categories. We matched ethnic group labels with population labels in Appendices 2 and 3 from Cavalli-Sforza et al. (1994). For instance, according to Alesina et al. (2003), India is composed of 72% of "Indo-Aryans" and 25% "Dravidians." These groups were matched, respectively, to "Indians" and "Dravidhans" (S.E. Indians) from Cavalli-Sforza et al. (1994). Another example is Italy, where the ethnic groups labelled "Italians" and "Rhaetians" (95.4% of Italy's population) in Alesina et al. (2003) were matched to the genetic category "Italian" in Cavalli-Sforza et al. (1994), and the "Sardinians" ethnic group (2.7% of Italy's population) was matched to the "Sardinian" genetic group.

Using these matching rules, we constructed two measures of $F_{S T}$ genetic distance between
countries. ${ }^{9}$ The first was the distance between the plurality ethnic groups of each country in a pair, i.e. the groups with the largest shares of each country's population. For instance, the plurality genetic distance between India and Italy is the genetic distance between the Indian genetic group and the Italian genetic group $\left(F_{S T}=0.026\right)$. This resulted in a dataset of 21,321 pairs of countries (207 underlying countries and dependencies) with available genetic distance data. ${ }^{10}$ The second was a measure of weighted genetic distance. Many countries, such as the United States or Australia, are made up of sub-populations that are genetically distant, and for which both genetic distance data and data on the shares of each genetic group are available. Assume that country 1 contains populations $i=1, \ldots, I$ and country 2 contains populations $j=1, \ldots, J$, denote by $s_{1 i}$ the share of population i in country 1 (similarly for country 2) and $d_{i j}$ the genetic distance between populations i and j. The weighted $F_{S T}$ genetic distance between countries 1 and 2 is then:

$$
\begin{equation*}
F_{S T}^{W}=\sum_{i=1}^{I} \sum_{j=1}^{J}\left(s_{1 i} \times s_{2 j} \times d_{i j}\right) \tag{14}
\end{equation*}
$$

The interpretation of this measure is straightforward: it represents the expected genetic distance between two randomly selected individuals, one from each country. ${ }^{11}$ Weighted genetic distance is very highly correlated with genetic distance based on dominant groups: the correlation is 93%. In the rest of this chapter we will mostly use weighted $F_{S T}$ distance, which is a more precise measure of expected genetic distance between countries. Table 1 presents summary statistics for $F_{S T}$ and

[^6]$F_{S T}^{W}$.

3 Culture

To capture cultural distance we adopt a three-pronged approach. We first focus on a salient dimension of culture, language, likely to be strongly related with genetic distance because language, like genes, is transmitted from parents to children within populations, and because linguistic differentiation, like genetic differentiation, results over time from horizontal separation between populations. Religion is another salient characteristic of human societies, also transmitted intergenerationally with variations. Finally, in the most novel part of this paper we use answers to the World Values Survey to construct broader metrics of distance in values, norms and attitudes. We describe in turn the methods by which each of these measures were constructed, and provide descriptions of these variables, before turning to their interrelationships.

3.1 Linguistic Distance

To capture linguistic distance, we employ two methods, one based on language trees, and the other based on lexicostatistics.

The classification of languages into trees is based on a methodology borrowed from cladistics. Linguists group languages into families based on perceived similarities between them. ${ }^{12}$ For instance, in one commonly used classification of languages, from Ethnologue, French is classified as "Indo-European - Italic - Romance - Italo-Western - Western - Gallo-Iberian - Gallo-Romance -Gallo-Rhaetian - Oil - Français." Similarly, Italian is classified as "Indo-European - Italic - Romance - Italo-Western - Italo-Dalmatian." This can serve as the basis for characterizing the linguistic distance between French and Italian, because Italian shares 4 nodes with French. Variation in the number of common nodes corresponds to variation in linguistic distance. French and Italian, for instance, share no common nodes with non-Indo-European languages, and are therefore at a higher linguistic distance from them than they are with each other.

We use data from Fearon (2003), who assembled data on the prevalent of different languages for a large set of countries in the world from a variety of sources, and used the linguistic trees provided in Ethnologue to capture the distance between these languages. As we did with genetic distance, we

[^7]compute two different measures: the number of common nodes between the two plurality languages of each countries, $C N$, and the expected or weighted number of common nodes, $C N^{W}$. The latter exploits the fact that countries can be linguistically heterogeneous, and consists of computing the expected number of common linguistic nodes between two randomly chosen individuals, one from each country. More formally, for each country in a pair:
\[

$$
\begin{equation*}
C N^{W}=\sum_{i=1}^{I} \sum_{j=1}^{J}\left(s_{1 i} \times s_{2 j} \times c_{i j}\right) \tag{15}
\end{equation*}
$$

\]

where $s_{k i}$ is the share of linguistic group i in country k and $c_{i j}$ is the number of common nodes between languages i and j. Both $C N$ and $C N^{W}$ range from 0 to 15 . From the two measures of linguistic proximity, following Fearon (2003) we use the following transformation to obtain corresponding measures of linguistic distance ranging from 0 to 1 :

$$
\begin{equation*}
T L D=\sqrt{\frac{15-C N}{15}} \tag{16}
\end{equation*}
$$

Here $T L D$ refers to tree-based linguistic distance and we similarly define the weighted measures $T L D^{W}$ by replacing $C N$ with $C N^{W}$ in equation (16). The main advantage of this approach is that distances can be computed for a wide range of countries: we have 12,246 observations for $T L D$ and $T L D W$, from 157 underlying countries (Table 1 provides summary statistics). The drawback of tree based measures is that linguistic distance is based on discrete number of common nodes, which could be an imperfect measure of separation times between languages. A single split between two languages that occurred a long time ago would result in the same measure of distance than a more recent single split, but the languages in the first case may in fact be more distant than in the second. Similarly, numerous recent splits may result in two languages sharing few nodes, while a smaller number of very distant linguistic subdivisions could make distant languages seem close. This drawback justifies loooking at an alternative measure.

This second measure of linguistic distance is based on lexicostatistics, the branch of quantitative linguistics classifying language groups based on whether words used to convey some common meanings, such as "mother" or "table" are cognate, i.e. stem from the same ancestor word. Two languages with many cognate words are linguistically closer than those with non-cognate words. For instance, the word "tavola" in Italian and "table" in French both stem from the common latin root "tabula". They are therefore cognate. Replicating this over a large number of meanings, the percentage of cognate words is a measure of linguistic proximity. We rely on data from Dyen et al. (1992), who use 200 underlying meanings. In the same way as before, we compute two measures of
the percentage of cognate words: the percentage of cognate words between the plurality languages spoken in each country in a pair, $C L D$, and the weighted percentage, $C L D^{W}$, which represents the expected percentage of cognate words between two individuals randomly chosen from each country in a pair. Once again, Table 1 provides summary statistics, showing that $C L D$ and $C L D^{W}$ vary between 0 and 0.92 , with the sample mean equal to roughly 0.6 .

The big advantage of the lexicostatistical approach is that it approximates linguistic differences in a more continuous way than the cladistic approach. Under the assumption that linguistic drift is constant across languages, i.e. that the rate if linguistic innovation is steady, lexicostatistical distance can be argued to be correlated with separation times between languages (this insight gave rise to the field of glottochonology). However an important limitation of these data is that they are only available for Indo-European languages, and therefore metrics of linguistic distance are only available for country pairs where these languages are spoken. ${ }^{13}$

The tree-based and cognate-based measures of linguistic distance, in the limited sample of Indo-European speaking countries for which the two sets of measures are available, are relatively highly correlated. The correlation between the two weighted measures is 82%, while the correlation between the plurality measures is 78%.

3.2 Religious Distance

To capture religious distance between countries, we adopt an approach analogous to the tree-based linguistic distance. We consider trees that describe the relationship between world religions. One such tree is from Mecham, Fearon and Laitin (2006), displayed in Figure 2, and another is from the World Christian Database (2007, henceforth WCD), displayed in Figure 3. We make use of both in the empirical work that follows.

The trees consist of grouping religions into broad categories. For instance, "Near-Eastern Monotheistic Religions" is one broad category common to both trees we use. These broad categories are further divided into finer classifications. For instance near Eastern monotheistic religions are subdivided into Christianity, Islam and Judaism. These are further refined into yet greater levels of disaggregation. The number of common nodes between religions is a metric of religious

[^8]proximity. For instance Lutherans are closer in religious space to Baptists than they are to the Greek Orthodox.

In the Mecham, Fearon and Laitin dataset there can be up to 5 common nodes between religions, while the WCD data is less finely disaggregated, so there can be up to 3 common nodes only. ${ }^{14}$ Each source provides data on the frequency of each religion in each country, so distances between religions can be mapped to religious distance between countries. As before, we calculate the number of common nodes between the plurality religions of each country in a pair, as well as the expected number of common nodes (following a formula analogous to equation 15). Finally, to obtain measures of religious distance, we implement a transformation analogous to that in equation (16). Summary statistics for the 4 resulting metrics are displayed in Table 1.

3.3 Cultural Distance Based on the World Values Survey

Answers to questions from social surveys can be used as indicators of a respondent's cultural norms, values and attitudes. By analogy with genetics, questions correspond to gene loci while the specific answers given are the alleles. Differences across populations in the answer shares to a specific question can be used to calculate the cultural distance between countries on that specific question. Finally, aggregating over questions allows the computation of indices of cultural distance in values, norms and attitudes space.

There are three major challenges when computing these indices. The first challenge is the choice of questions. Rather than chosing questions arbitrarily, which would be open to criticism, we consider the set of all values-related questions appearing in the World Values Survey 19812010 Integrated Questionnaire, i.e. those listed by the WVS as categories A through G. ${ }^{15}$ All 740 of these questions can be considered when computing distances question by question. When calculating summary indices of cultural distance that aggregate across questions, however, it is important to have a sample that is balanced across country pairs, i.e. to have the same number of questions for each pair. Some of the questions were only asked in a subset of countries, sometimes

[^9]a small subset. There is a tradeoff between maintaining a large set of questions, in which case the number of country pairs shrinks, or maintaining as broad sample of pairs, in which case the set of questions is reduced. In what follows we chose to do the latter, to maximize the representativeness of the sample of countries. This led to keeping 98 questions out of the original set. Data availability is the only concern that governs which questions remain. Yet since the remaining questions are those that were asked in the broadest set of countries, they constitute the core questions of the WVS. ${ }^{16}$ Focusing on these questions, that were asked in some wave of the WVS in 74 countries, we are left with distances computed for 2,701 pairs.

The second challenge is the choice of a functional form for computing distances for each question. There are many choices, but we focus on the simplest one, which is to compute the Euclidian distance. ${ }^{17}$ Consider countries 1 and 2 and question i from the WVS, which admits answers $j=1 \ldots J$. Some questions are binary $(J=2)$ and others admit more than two answers $(J>2) .{ }^{18}$ Denote $s_{i j}^{c}$ as the share of respondents in country $c \in\{1,2\}$ giving answer j to question i.

For binary questions, cultural distance $C D_{i}^{12}$ between countries 1 and 2 is simply:

$$
\begin{equation*}
C D_{i}^{12}=\left|s_{i 1}^{1}-s_{i 1}^{2}\right| \tag{17}
\end{equation*}
$$

while for non-binary questions:

$$
\begin{equation*}
C D_{i}^{12}=\sqrt{\sum_{j=1}^{J}\left(s_{i j}^{1}-s_{i j}^{2}\right)^{2}} \tag{18}
\end{equation*}
$$

The third challenge is to aggregate question-specific distances in order to obtain summary measures of cultural distance. To create summary indices we first standardize the question-specific distances to have a mean of zero and a standard error equal to one. This ensures equal weighing of questions in every summary index. We next simply sum the question specific indices, to compute several

[^10]indices of cultural distance. We first sum across all 98 questions, to obtain an overall index. Next, we sum question-specific distances for each of 6 question category, as specified by the WVS. ${ }^{19}$ Finally, we created an index for each of binary and non-binary questions.

Summary statistics for these 9 indices appear at the bottom of Table 1. By construction each index has mean zero, and is available for all 2,701 pairs.

4 Ancestry and Culture: A Simple Conceptual Framework

As we discussed in Section 2, genetic distance measures relatedness between populations and is roughly proportional to time since two populations shared the same ancestors, that is, since they were the same population. Over time, ancestors transmit a large number of traits to their descendants, not only biologically (through DNA transmission), but also culturally. This transmission takes place with variation and change over time. Therefore, on average, populations that are more closely related will have had less time to diverge from each other on a large set of culturally transmitted traits, such as language, religion, traditions, habits, and values. This process establishes a close connection between ancestry, measured by genetic distance, and culturally transmitted traits. A stylized formal model, adapted from Spolaore and Wacziarg (2012), can illustrate the relationship in a simplified and concise way. ${ }^{20}$

For simplicity, we assume that all culturally transmitted traits of a population are represented as a point on the real line. At time 0 (the present) population i has cultural traits $c_{i}(0)$, where $c_{i}(0)$ is a real number. In general, populations inherit their cultural traits from their ancestor populations with variation. Hence, population i living at time 0 , and descending from ancestral population a_{i} living at time $-T$, has the following cultural traits:

$$
\begin{equation*}
c_{i}(0)=c_{a(i)}(-T)+\varepsilon_{i}(-T, 0) \tag{19}
\end{equation*}
$$

where $c_{a(i)}(-T)$ are ancestral population $a(i)$'s cultural traits at time $-T$, and $\varepsilon_{i}(-T, 0)$ measures random variation between time $-T$ and time 0 .

[^11]Now, we model the simplest possible mechanism for variation: cultural change as a random walk: $\varepsilon_{i}(-T, 0)=\varepsilon>0$ with probability $1 / 2$ and $\varepsilon_{i}(-T, 0)=-\varepsilon<0$ with probability $1 / 2$. In addition, also for simplicity, we assume that such shocks are independent across different populations: shock $\varepsilon_{i}(-T, 0)$ is independent of shock $\varepsilon_{j}(-T, 0)$ for $j \neq i$. Analogously, at time $-T$ population $a(i)$'s culturally transmitted traits are inherited from its ancestor population $a(a(i))$, living at time $-T \prime<$ $-T$:

$$
\begin{equation*}
c_{a(i)}(-T)=c_{a(a(i))}\left(-T^{\prime}\right)+\varepsilon_{a(i)}\left(-T^{\prime},-T\right) \tag{20}
\end{equation*}
$$

where $\varepsilon_{a(i)}\left(-T^{\prime},-T\right)=\varepsilon^{\prime}>0$ with probability $1 / 2$ and $\varepsilon_{a(i)}\left(-T^{\prime},-T\right)=-\varepsilon^{\prime}<0$ with probability $1 / 2$, and shocks are independent across populations.

We consider three populations: $i=1,2,3$. Population 1 and population 2 descend from the same last common ancestor population $a(1)=a(2) \equiv a(1 \& 2)$ living at time $-T$. In contrast, population 3 only shares common ancestors with populations 1 and 2 going back to time $-T 1$: $a(3) \neq a(1 \& 2)$, and $a(a(3))=a(a(1 \& 2)) \equiv a(1 \& 2 \& 3)$ - that is, population 3 is less closely related with populations 1 and 2 than each is with the other. Using the analogy discussed in Section 2, we can say that populations 1 and 2 are like siblings, while population 3 is a more distant cousin. The phylogenetic tree of the three populations is illustrated in Figure 4.

Building on the results described in Section 2.2.2, we can approximate the genetic distance $d_{g}(i, j)$ between population i and population j as the number of generations since they were one population. Therefore, genetic distance $d_{g}(1,2)$ between population 1 and population 2 is smaller than genetic distance between population 1 and population 3, and also smaller than genetic distance between population 2 and population 3:

$$
\begin{equation*}
d_{g}(1,2)=F<d_{g}(1,3)=d_{g}(2,3)=F^{\prime} \tag{21}
\end{equation*}
$$

Culturally transmitted traits in each population are given by the following equations:

$$
\begin{gather*}
c_{1}(0)=c_{a(1 \& 2)}(-T)+\varepsilon_{1}(-T, 0) \tag{22}\\
c_{2}(0)=c_{a(1 \& 2)}(-T)+\varepsilon_{2}(-T, 0) \tag{23}\\
c_{3}(0)=c_{a(3)}(-T)+\varepsilon_{3}(-T, 0) \tag{24}\\
c_{a(1 \& 2)}(-T)=c_{a(1 \& 2 \& 3)}\left(-T^{\prime}\right)+\varepsilon_{a(1 \& 2)}\left(-T^{\prime},-T\right) \tag{25}\\
c_{a(3)}(-T)=c_{a(1 \& 2 \& 3)}\left(-T^{\prime}\right)+\varepsilon_{a(3)}\left(-T^{\prime},-T\right) \tag{26}
\end{gather*}
$$

Let $d_{c}(i, j) \equiv\left|c_{j}-c_{i}\right|$ denote the distance in cultural traits between population i and population j. The expected cultural distance between population 1 and population 2 , which share their last common ancestors at time $-T$, is: ${ }^{21}$

$$
\begin{equation*}
E\left[d_{c}(1,2)\right]=\varepsilon \tag{27}
\end{equation*}
$$

All variation between populations 1 and 2 is given by cultural change that took place between time $-T$ and 0 . In contrast, expected cultural distance between population 1 and population 3, and between population 2 and population 3, comes from shocks that took place both between time $-T^{\prime}$ and $-T$ and between time $-T$ and time 0 . On average, such shocks are associated with a larger distance in culturally transmitted traits: ${ }^{22}$

$$
\begin{equation*}
E\left[d_{c}(1,3)\right]=E\left[d_{c}(2,3)\right]=\max \left\{\frac{\varepsilon^{\prime}}{2}+\varepsilon, \varepsilon^{\prime}+\frac{\varepsilon}{2}\right\}>\varepsilon=E\left[d_{c}(1,2)\right] \tag{28}
\end{equation*}
$$

Therefore, on average, a larger genetic distance is associated with greater distance in cultural traits. This relation is not deterministic. Some pairs of populations that are more distant cousins may end up with more similar cultural traits than two more closely related populations, but that outcome is less likely to be observed than the opposite. On average, genetic distance and distance in culturally transmitted traits, such as language, religion, and values, tend to go hand in hand.

[^12]
5 Ancestry and Culture: Empirical Evidence

In this section we conduct an empirical exploration of the relationship between ancestral distance and our various measures of cultural distance, to test the hypothesis that longer separation times are in fact positively related with differences in language, religion and norms, values and attitudes.

5.1 Genetic Distance and Linguistic Distance

Measures of linguistic and genetic distances should be positively correlated. Cavalli Sforza et al. (1994, pp. 98-105) observed that there is usually little genetic admixture between linguistic groups, and languages like genes are transmitted intergenerationally. Thus, phylogenetic trees and linguistic trees tend to resemble each other. At the same time, we should not expect a perfect relationship, for several reasons. Firstly, as already mentioned, linguistic data based on trees features a discrete number of nodes, whereas genetic distance based on a large number of alleles, as we use, is a continuous measure of separation times. Second, the functional forms for measures of genetic distance $\left(F_{S T}\right)$ and linguistic distance (a nonlinear transformation of the number of different nodes, or the percentage of non-cognate words, depending on the measure) are different. Third, successful groups conquering the territories of distinct linguistic groups can impose their language without necessarily imposing their genes. Such was the case, for instance, with the Magyar conquest of Hungary: the resulting language was of the Uralic family, but the Magyar genetic admixture was so limited that the Hungarians are genetically very close to other Slavic populations, such as the Poles. An even more stark example comes from the population movements that followed the discovery of the New World, in particular the slave trade: the current descendants of former slaves do not speak the original West African languages of their ancestors. Similarly, current inhabitants of the United States predominantly speak English, whereas their ancestors came from a diverse set of linguistic groups. Thus, modern migrations served to break the link between genetic and linguistic distance.

Table 2, Panel A explores the basic correlations. We find that our various measures of linguistic distance are highly correlated among themselves. For instance, the correlation between weighted $T L D$ and weighted $C L D$ is 0.82 . Weighted $T L D$ is also positively correlated with weighted genetic distance, with a correlation equal to 0.22 . However, $C L D$ is not strongly correlated with genetic distance, in all likelihood because the sample is limited to Indo-European speaking countries, which tend to also be genetically close: there is not enough variation in the data to detect a significant correlation.

Table 3 presents regressions of our various measures of linguistic distance on genetic distance, with or without controls for a wide range of measures of geographic separation - including geodesic distance, the absolute difference in longitudes and latitudes, etc. Indeed one concern is that genetic distance merely reflects geographic proximity, and that genetic and linguistic distance are positively correlated simply because the relationship goes through geographic distance. We find that this is not the case, and that genetic distance is significantly related to tree-based measures of linguistic distance $(T L D)$. In fact, the standardized beta coefficient on $F_{S T}$ genetic distance, reported in the last line of Table 2, suggests that a one standard deviation increase in genetic distance is associated with a $0.15-0.22$ standard deviation increase in linguistic distance, depending on the measure and specification. ${ }^{23}$ For the cognate-based measures ($C L D$), the relationship is negative, but not robustly significant statistically.

As mentioned already, the population movements that followed the discovery of the New World were important factors breaking the link between genetic and linguistic distance. To investigate this issue, Table 4 isolates the sample consisting of Old World countries. This excludes any country pair containing a country from the Americas or Oceania. We find much larger correlations than in Table 3. For instance, the standardized betas on weighted $T L D$ now range between 0.29 and 0.41. Moreover, the correlations between genetic distance and $C L D$ turn positive, and significant in the univariate cases. These correlations show there exists a strong correlation between genetic and linguistic distance for country pairs least likely to have experienced language replacement over the course of the last 500 years.

5.2 Genetic Distance and Religious Distance

There is also a strong intergenerational component to religion, leading us to expect a positive correlation between religious distance and genetic distance. However, it may be easier to change one's religion than one's language. Over the long run, conversions and the emergence and horizontal diffusion of new religions is likely to break the link to a greater extent than for linguistic distance. Moreover, the aforementioned functional form differences between metrics of linguistic and genetic distance apply with the same force to measures of religious distance.

[^13]Despite these caveats we do find that religious distance is positively correlated with genetic distance. The first piece of evidence in presented in Panel B of Table 2. There we see, for instance, that weighted religious distance based on the Mecham, Fearon and Laitin religious tree ($F-R D$) bears a 0.18 correlation with weighted genetic distance. Correlations are smaller using measures based on the World Christian Database tree $(W C D-R D)$, which are less finely disaggregated. We also find substantial positive correlations among our various measures of religious distance, but these correlations are not sufficiently high to justify looking at only one measure.

Tables 5 and 6 present regression evidence, again with or without controls for geographic distance for each of the 4 measures of religious distance. In all but one of the specifications, genetic distance comes out with a positive statistically significant coefficient. The standardized magnitude of the effect of genetic distance is generally smaller than for linguistic distance, in line with the observation above. Yet, in particular for $F-R D$, we find standardized effects comprised between 8.3% and 18.1%, again consistent with our model of cultural drift. Moreover, unlike for language, we do not find a particular tendency for the effect to be more pronounced among Old World countries (Table 6).

5.3 Genetic Distance and Cultural Distance

Our final exploration concerns the relationship between genetic distance and distance in norms, values and attitudes. We start with an analysis of the relationship between genetic distance and question-specific distances, for all available questions from the WVS. Under the null hypothesis of no relationship between genetic and cultural distances we would expect 5% of the correlations to be significant (2.5% positive and significant), and the distribution of correlations to be centered around zero. Figure 5 presents a histogram of sample correlations between bilateral distance for each question, and weighted genetic distance, for the full set of 740 questions. ${ }^{24}$ The mode of the distribution is well to the right of zero, with a mean of about 10%. 71.6% of the correlations were positive. In 53.1% of the cases the correlation with genetic distance is both positive and significant, far in excess of what we would expect under the null. A substantial subset of the questions feature correlations that are quite large - for 22.4% of the questions, the correlations are in excess of 0.20

[^14]and statistically significant at the 5% level. ${ }^{25}$
These simple correlations could confound the effects of geographic distance with those of genetic distance. To address this issue, we ran regressions, for each question, of WVS distance on genetic and geodesic distance. Figure 6 presents a histogram of the standardized beta coefficient on genetic distance, representing the effect of a one standard deviation change in genetic distance as a share of a standard deviation in the dependent variable. 66.9% of the standardized betas are positive, and 47.2% are both positive and significant at the 5% level. We also find a number of large effects, with 20% of the standardized betas greater than $0.20 .{ }^{26}$ Controlling for geodesic distance does not modify the conclusion reached earlier.

While these results are informative, they conflate questions on very different subjects, and of different types (binary versus non-binary). So we now turn to the relationship between our 9 indices of cultural distance, and genetic distance. The analysis is now limited to the 98 questions available for 74 countries. Table 7 presents simple correlations. Genetic distance bears a correlation of 0.27 with our summary measure of cultural distance. The last line of the table shows that genetic distance is positively and significantly correlated with 8 of our 9 measures of cultural distance based on the WVS. The only category for which this is not the case is category D, pertaining to questions about family. Among the other categories, the correlation with genetic distance varies between 7.4% (questions on work) and 29.9% (questions on politics and society).

In Tables 8 and 9 we turn to regression analysis, following the same format as earlier: for each index we present a univariate regression and one that controls for geographic barriers. Table 8 focuses on the aggregate index covering all 98 questions, and then the indices for binary and non-binary questions. We find a large, statistically significant positive relationship between genetic distance and cultural distance. In the specification with controls (column 2), the standardized effect of genetic distance is 25.5%. While the effect remains positive and significant for both binary and non-binary questions, it is largest for the latter - with a standardized effect of 30.2%. Interestingly, the inclusion of geographic distance controls serves to weaken the effect of genetic distance only a little bit.

[^15]Table 9, finally, breaks things down by question category. In the bottom panel, with geographic controls, we see positive and significant effects of genetic distance on cultural distance for all but category D (Family). The largest effects, quantitatively, are for categories A (Perceptions of Life), E (Politics and Society) and F (Religion and Morale). Future work should seek to delve more deeply into the characteristics of questions most closely associated with ancestral distance.

6 Conclusion

What does genetic distance measure? In this paper we argued that genetic distance is a summary statistic for differences in a wide range of intergenerationally transmitted human traits. We focused on language, religion and values, finding empirical evidence of a positive correlation between genetic distance and linguistic, religious and cultural distances. It is important to note that genetic distance is not strongly correlated with only a small and specific subset of differences in cultural traits. On the contrary, genetic distance tends to be broadly and significantly correlated with a vast range of differences in cultural traits. Thus, while specific correlations with individual sets of traits are typically moderate in magnitude, there is a general overall relation between ancestry and culture, which is consistent with a conceptual framework in which a broad range of cultural traits are transmitted with variation across generations over time. Therefore, genetic distance is a useful summary statistic capturing differences in a wide range of cultural traits.

Future research should seek to improve on this evidence. The first improvement involves functional form. In this paper we have used simple metrics of distance. For instance, for cultural distance we used simple Euclidian distances. In contrast, genetic distance is captured by $F_{S T}$. In principle, it should be possible to construct cultural $F_{S T}$ distances across countries, leading perhaps to a quantitatively larger relationship between cultural and genetic distance. Second, improvements in the gathering of genetic data should lead to improvements in our ability to detect effects of ancestral distance on cultural distance and in turn on political economy outcomes. As more genetic data on more finely defined populations become available, more granular analyses of the relationship between genetic and cultural distance will become possible. Third, alternative datasets on values, norms and attitudes also exist, either regionally or worldwide, and could be used to complement our analysis.

Research seeking to quantify human barriers to socioeconomic interactions across populations is in its infancy. With this paper we have sought to clarify what observable traits ancestral distance
captures, but much remains to be done.

References

Ashraf, Quamrul and Oded Galor (2013a), "The 'Out of Africa' Hypothesis, Human Genetic Diversity, and Comparative Economic Development," American Economic Review, vol. 103 no. 1, pp. 1-46.

Ashraf, Quamrul, and Oded Galor (2013b), "Genetic Diversity and the Origins of Cultural Fragmentation," American Economic Review Papers and Proceedings, vol. 103, no. 3, pp. 528-33.

Alesina, Alberto, Arnaud Devleeschauwer, William Easterly, Sergio Kurlat, and Romain Wacziarg (2003), "Fractionalization," Journal of Economic Growth, vol. 8, pp. 55-194.

Arbatli, Eren, Quamrul Ashraf and Oded Galor (2013), "The Nature of Civil Conflict," working paper, Brown University.

Bai, Ying Bai and James Kai-sing Kung. 2011. "Genetic Distance and Income Difference: Evidence from Changes in China's Cross-Strait Relations." Economics Letters, vol. 110, no. 3, pp. 255-258. Beauchamp, Jonathan P., David Cesarini, Magnus Johannesson, Matthijs J. H. M. van der Loos, Philipp D. Koellinger, Patrick J. F. Groenen, James H. Fowler, J. Niels Rosenquist, A. Roy Thurik, and Nicholas A. Christakis (2011), "Molecular Genetics and Economics," Journal of Economic Perspectives, vol. 25, no. 4, pp. 57-82.

Bell, Adrian V., Peter J. Richerson, and Richard McElreath (2009), "Culture rather than genes provides greater scope for the evolution of large-scale human prosociality," Proceedings of the National Academy of Sciences (PNAS), October, vol. 106, no. 42, pp. 17671-17674.

Benjamin, Daniel J., David Cesarini, Matthijs J. H. M. van der Loos, Christopher T. Dawes, Philipp D. Koellinger, Patrik K. E. Magnusson, Christopher F. Chabris, Dalton Conley, David Laibson, Magnus Johannesson and Peter M. Vissche (2012), "The Genetic Architecture of Economic and Political Preferences," Proceedings of National Academy of Sciences of the United States, May 7. Bisin, Alberto and Thierry Verdier. 2000. "Beyond The Melting Pot: Cultural Transmission, Marriage, and the Evolution of Ethnic And Religious Traits." Quarterly Journal of Economics, vol. 115, pp. 955-988.

Bisin, Alberto and Thierry Verdier (2001), "The Economics of Cultural Transmission and the Evolution of Preferences." Journal of Economic Theory, vol. 97, no. 2, pp. 298-319.

Bisin, Alberto and Thierry Verdier (2010), "The Economics of Cultural Transmission and Socialization." NBER Working Paper \#16512.

Bowles, Samuel and Herbert Gintis (2011), A Cooperative Species: Human Reciprocity and Its Evolution, Princeton: Princeton University Press.

Boyd, Robert and Peter J. Richerson (1985), Culture and the Evolutionary Process, Chicago: University of Chicago Press.

Cavalli-Sforza, Luigi L. and A. W. F. Edwards (1964), Analysis of Human Evolution, Proc. 11th International Congress Genetics vol. 2, pp. 923-933.

Cavalli-Sforza, Luigi Luca and Marcus W. Feldman. 1981. Cultural Transmission and Evolution: A Quantitative Approach. Princeton: Princeton University Press.

Cavalli-Sforza, Luigi L., Paolo Menozzi and Alberto Piazza (1994), The History and Geography of Human Genes, Princeton: Princeton University Press.

Desmet, Klaus, Ignacio Ortuño-Ortín and Romain Wacziarg (2014a), "Culture, Ethnicity and Diversity," Working Paper, UCLA, May.

Desmet, Klaus, Ignacio Ortuño-Ortín and Romain Wacziarg (2014b), "Linguistic Cleavages and Economic Development," Working Paper, UCLA, November.

Desmet, Klaus, Michel Le Breton, Ignacio Ortuño-Ortín and Shlomo Weber (2011), "The Stability and Breakup of Nations: A Quantitative Analysis" Journal of Economic Growth, vol. 16, no. 3, pp. 183-213

Dyen, Isidore, Joseph B. Kruskal, and Paul Black (1992), "An Indoeuropean Classification: A Lexicostatistical Experiment," Transactions of the American Philosophical Society, 82, pp. 1-132.

Falconer, Douglas S. and Trudy F.C. Mackay (1995), Introduction to Quantitative Genetics, fourth edition, Pearson.

Fearon, James (2003), "Ethnic and Cultural Diversity by Country", Journal of Economic Growth, vol. 8, no. 2, pp. 195-222.

Ginsburgh, Victor and Shlomo Weber (2011), How Many Languages Do We Need? The Economics of Linguistic Diversity. Princeton: Princeton University Press

Ginsburgh, Victor and Shlomo Weber (2015), "Linguistic Distances and their Use in Economics", working paper.

Gorodnichenko, Yuriy and Gérard Roland. 2011. "Culture, Institutions and the Wealth of Nations." Working Paper, UC Berkeley.

Guiso Sapienza and Zingales (2009), "Cultural Biases in Economic Exchange" Quarterly Journal of Economics, vol. 124 no. 3, pp. 1095-1131.

Hamilton, Matthew B. (2009), Population Genetics, Chichester: Wiley-Blackwell.
Mecham, R. Quinn, James Fearon, and David Laitin (2006), "Religious Classification and Data on Shares of Major World Religions", unpublished, Stanford University.

Melitz, Jacques and Farid Toubal (2012), "Native Language, Spoken Language, Translation and Trade," CEPR Discussion Paper No. DP8994.

Melitz, Jacques (2008), "Language and Foreign Trade", European Economic Review, vol. 52, no. 4, pp. 667-699.

Richerson, Peter J., and Robert Boyd (2004), Not By Genes Alone: How Culture Transformed Human Evolution. Chicago: University of Chicago Press.

Rogers, E. M. (1995), Diffusion of Innovations (4th ed.). New York: Free Press.
Rosenberg, N. A., Pritchard J. K., Weber J. L., Cann H. M., Kidd K. K., Zhivotovsky L. A., Feldman M. W. (2002), "Genetic Structure of Human Populations," Science, December 20; 298 (5602), pp. 2381-5.

Seabright, Paul (2010), The Company of Strangers: A Natural History of Economic Life, Revised Edition [First edition: 2004]. Princeton: Princeton University Press.

Seldin, Michael F., Russell Shigeta, Pablo Villoslada, Carlo Selmi, Jaakko Tuomilehto, Gabriel Silva, John W. Belmont, Lars Klareskog, and Peter K. Gregersen (2006), "European Population Substructure: Clustering of Northern and Southern Populations," PLoS Genet. September, vol. 2, no. 9 .

Spolaore Enrico and Romain Wacziarg (2009), "The Diffusion of Development," Quarterly Journal of Economics, vol. 124, no. 2, pp. 469-529.

Spolaore, Enrico and Romain Wacziarg (2012), "Long-Term Barriers to the International Diffusion of Innovations," in Jeffrey Frankel and Christopher Pissarides, eds., NBER International Seminar on Macroeconomics 2011, Chapter 1, pp. 11-46. Chicago: University of Chicago Press.

Spolaore, Enrico and Romain Wacziarg (2013), "How Deep Are the Roots of Economic Development?" Journal of Economic Literature, vol. 51, no. 2, pp. 325-369.

Spolaore, Enrico and Romain Wacziarg (2014a), "War and Relatedness", working paper, UCLA and Tufts University.

Spolaore, Enrico and Romain Wacziarg (2014b), "Fertility and Modernity", working paper, UCLA and Tufts University.

Ralph, Peter and Graham Coop (2013), "The Geography of Recent Genetic Ancestry Across Europe," PLOS Biology, May 7 , vol. 11, no. 5.

Tian, Chao, Roman Kosoy, Rami Nassir, Annette Lee, Pablo Villoslada, Lars Klareskog, Lennart Hammarström, Henri-Jean Garchon, Ann E. Pulver, Michael Ransom, Peter K. Gregersen, and Michael F. Seldin (2009), "European Population Genetic Substructure: Further Definition of Ancestry Informative Markers for Distinguishing among Diverse European Ethnic Groups," Molecular Medicine, Novrmber, vol. 15, no. 11-12, pp. 371-383.

World Christian Database (2007), http://www.worldchristiandatabase.org/wcd/
Wright, Sewall (1951), "The Genetical Structure of Populations," Annals of Eugenics, vol. 15, pp. 323-354.
Table 1. Simple Summary Statistics for Measures of Ancestral, Linguistics and Cultural Distances

Variable	\# pairs	\# countries	Mean	Std. Dev.	Min	Max
	Genetic Distance					
FsT distance, weighted	16,110	180	0.115	0.070	0.000	0.355
$\mathrm{F}_{\text {ST }}$ distance, plurality	21,321	207	0.117	0.081	0.000	0.338
	Linguistic Distance					
Tree-based linguistic distance, weighted	12,246	157	0.970	0.100	0.000	1.000
Tree-based linguistic distance, plurality	12,246	157	0.965	0.137	0.000	1.000
Cognate-based linguistic distance, weighted	1,953	63	0.599	0.268	0.000	0.918
Cognate-based linguistic distance, plurality	3,570	85	0.636	0.284	0.000	0.920
	Religious Distance					
Religious distance, weighted, Fearon	12,246	157	0.853	0.144	0.089	1.000
Religious distance, plurality, Fearon	12,246	157	0.786	0.313	0.000	1.000
Religious distance, weighted, WCD	19,306	197	0.747	0.163	0.127	0.997
Religious distance, plurality, WCD	19,306	197	0.628	0.358	0.000	1.000
	Cultural Distance based on the World Values Survey					
Overall cultural distance measure	2,701	74	0.000	33.015	-89.818	118.294
Category A - Perceptions of Life	2,701	74	0.000	12.110	-35.146	46.542
Category C - Work	2,701	74	0.000	7.460	-14.102	37.550
Category D - Family	2,701	74	0.000	3.436	-7.749	18.479
Category E - Politics and Society	2,701	74	0.000	11.872	-28.001	45.561
Category F - Religion and Morale	2,701	74	0.000	6.962	-13.140	26.975
Category G - National Identity	2,701	74	0.000	1.967	-4.544	7.345
All binary questions	2,701	74	0.000	14.049	-36.103	57.345
All non-binary questions	2,701	74	0.000	21.911	-58.630	62.481

Table 2 - Simple Correlations between Linguistic, Religious and Genetic Distances
Panel A-Linguistic Distance

	Weighted TLD	Plurality TLD	Weighted CLD	Plurality CLD	Weighted FST
Plurality TLD	0.926^{*}	$(12,246)$	$(12,246)$		
Weighted CLD	0.817^{*}	0.798^{*}			
	$(1,035)$	$(1,035)$	$(1,953)$		
Plurality CLD	0.740^{*}	0.776^{*}	0.979^{*}		1
	$(2,145)$	$(2,145)$	$(1,953)$	(3570)	
Weighted FST	0.220^{*}	0.195^{*}	-0.034	-0.058^{*}	$(2,701)$
	$(11,476)$	$(11,476)$	$(1,378)$	$(16,110)$	
Plurality FST	0.232^{*}	0.210^{*}	0.011	-0.031	0.939^{*}
	$(12,246)$	$(12,246)$	$(1,953)$	$(3,570)$	$(16,110)$

Panel B - Religious Distance

	Weighted F-RD	$\begin{gathered} \text { Plurality } \\ \text { F-RD } \end{gathered}$	$\begin{aligned} & \hline \text { Weighted } \\ & \text { WCD-RD } \end{aligned}$	Plurality WCD-RD	Weighted Fst $_{\text {St }}$
Plurality F-RD	$\begin{gathered} 0.839^{*} \\ (12,246) \end{gathered}$	$\begin{array}{r} 1 \\ (12,246) \end{array}$			
Weighted WCD-RD	$\begin{gathered} 0.784^{*} \\ (11,325) \end{gathered}$	$\begin{gathered} 0.622^{*} \\ (11,325) \end{gathered}$	$\begin{array}{r} 1 \\ (19,306) \end{array}$		
Plurality WCD-RD	$\begin{gathered} 0.698^{*} \\ (11,325) \end{gathered}$	$\begin{array}{r} 0.640^{*} \\ (11,325) \end{array}$	$\begin{array}{r} 0.819^{*} \\ (19,306) \\ \hline \end{array}$	$\begin{array}{r} 1 \\ (19,306) \\ \hline \end{array}$	
Weighted $\mathrm{FST}^{\text {S }}$	$\begin{array}{r} 0.181^{*} \\ (11,476) \end{array}$	$\begin{gathered} 0.121^{*} \\ (11,476) \\ \hline \end{gathered}$	$\begin{gathered} 0.091^{*} \\ (15,400) \end{gathered}$	$\begin{array}{r} 0.064^{*} \\ (15,400) \end{array}$	$\begin{array}{r} 1 \\ (16,110) \end{array}$
Plurality $\mathrm{F}_{\text {ST }}$	$\begin{gathered} 0.168^{*} \\ (12,246) \\ \hline \end{gathered}$	$\begin{array}{r} 0.114^{*} \\ (12,246) \\ \hline \end{array}$	$\begin{array}{r} 0.056^{*} \\ (19,306) \\ \hline \end{array}$	$\begin{array}{r} 0.034^{*} \\ (19,306) \\ \hline \end{array}$	$\begin{gathered} 0.939^{*} \\ (16,110) \end{gathered}$

Table 3 - Linguistic Distance and Contemporary Genetic Distance, Full Sample (OLS Regressions, dependent variable displayed in the second row)

	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
	Weighed TLD	Weighed TLD	Plurality TLD	Plurality TLD	$\begin{gathered} \text { Weighted } \\ \text { CLD } \\ \hline \end{gathered}$	$\begin{gathered} \text { Weighted } \\ \text { CLD } \\ \hline \end{gathered}$	Plurality CLD	Plurality CLD
Weighted Fst Genetic Distance	$\begin{array}{r} 0.320 \\ (24.12) * * * \end{array}$	$\begin{array}{r} 0.242 \\ (16.54)^{* * *} \end{array}$	$\begin{array}{r} 0.385 \\ (21.24)^{*} * * \end{array}$	$\begin{array}{r} 0.284 \\ (14.14)^{* * *} \\ \hline \end{array}$	$\begin{gathered} -0.173 \\ (1.27) \\ \hline \end{gathered}$	$\begin{gathered} -0.260 \\ (1.65)^{*} \end{gathered}$	$\begin{array}{r} -0.325 \\ (3.03)^{*} * * \end{array}$	$\begin{array}{r} -0.643 \\ (5.73) * * * \end{array}$
Geodesic Distance (1000s of km)		$\begin{array}{r} -0.001 \\ (2.03)^{* *} \end{array}$		$\begin{gathered} -0.002 \\ (1.73)^{*} \end{gathered}$		$\begin{array}{r} -0.018 \\ (2.56)^{* *} \end{array}$		$\begin{array}{r} -0.010 \\ (2.72)^{* * *} \end{array}$
Absolute difference in longitudes		$\begin{array}{r} 0.030 \\ (5.09)^{* * *} \end{array}$		$\begin{array}{r} 0.037 \\ (4.59)^{* * *} \end{array}$		$\begin{array}{r} 0.214 \\ (3.87)^{* * *} \\ \hline \end{array}$		$\begin{array}{r} 0.197 \\ (6.70)^{* * *} \end{array}$
Absolute difference in latitudes		$\begin{aligned} & 0.001 \\ & (0.23) \\ & \hline \end{aligned}$		$\begin{gathered} 0.000 \\ (0.03) \\ \hline \end{gathered}$		$\begin{array}{r} -0.012 \\ (0.19) \\ \hline \end{array}$		$\begin{gathered} -0.059 \\ (1.68)^{*} \end{gathered}$
1 for contiguity		$\begin{array}{r} -0.087 \\ (14.15)^{* * *} \end{array}$		$\begin{array}{r} -0.122 \\ (14.44)^{* * *} \end{array}$		$\begin{array}{r} -0.131 \\ (3.14)^{* * *} \end{array}$		$\begin{array}{r} -0.215 \\ (7.10)^{* * *} \end{array}$
$=1$ if either country is landlocked		$\begin{array}{r} 0.011 \\ (5.60)^{* * *} \end{array}$		$\begin{array}{r} 0.013 \\ (4.88)^{* * *} \end{array}$		$\begin{array}{r} 0.047 \\ (2.54)^{* *} \end{array}$		$\begin{array}{r} 0.046 \\ (3.94)^{* * *} \end{array}$
$=1$ if either country is an island		$\begin{array}{r} 0.010 \\ (4.12)^{* * *} \end{array}$		$\begin{array}{r} 0.010 \\ (3.06)^{* * *} \end{array}$		$\begin{array}{r} 0.052 \\ (3.08)^{* * *} \end{array}$		$\begin{array}{r} 0.071 \\ (6.04)^{* * *} \end{array}$
$=1$ if pair shares at least one sea or ocean		$\begin{array}{r} -0.059 \\ (18.07)^{* * *} \\ \hline \end{array}$		$\begin{array}{r} -0.071 \\ (15.85)^{* * *} \end{array}$		$\begin{array}{r} -0.176 \\ (9.61)^{* * *} \end{array}$		$\begin{array}{r} -0.160 \\ (10.59)^{* * *} \end{array}$
Constant	$\begin{array}{r} 0.935 \\ (536.89)^{* * *} \\ \hline \end{array}$	$\begin{array}{r} 0.937 \\ (371.07)^{* * *} \end{array}$	$\begin{array}{r} 0.922 \\ (388.29)^{* * *} \end{array}$	$\begin{array}{r} 0.925 \\ (267.22)^{* * *} \\ \hline \end{array}$	$\begin{array}{r} 0.624 \\ (48.97)^{* * *} \end{array}$	$\begin{array}{r} 0.646 \\ (34.36)^{* * *} \end{array}$	$\begin{array}{r} 0.672 \\ (68.14)^{* * *} \end{array}$	$\begin{array}{r} 0.648 \\ (45.15)^{* * *} \end{array}$
Adjusted R ${ }^{2}$	0.05	0.12	0.04	0.10	0.00	0.14	0.00	0.17
N	11,476	11,476	11,476	11,476	1,378	1,378	2,701	2,701
Standardized beta	0.220	0.166	0.195	0.143	-0.034	-0.051	-0.058	-0.115

t-statistics in parentheses; * significant at 10\%; ** significant at 5\%; ** significant at 1%)
Key: TLD $=$ Tree-based linguistic distance. $C L D=\%$ Cognate-based linguistic distance (Indo-European languages only).
Table 4 - Linguistic Distance and Contemporary Genetic Distance, Old World (OLS Regressions, dependent variable displayed in the second row)

	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
	Weighed TLD	Weighed TLD	Plurality TLD	Plurality TLD	Weighted CLD	Weighted CLD	Plurality CLD	Plurality CLD
Weighted Fst Genetic Distance	$\begin{array}{r} 0.293 \\ (39.25) * * * \end{array}$	$\begin{array}{r} 0.255 \\ (24.25)^{* * *} \end{array}$	$\begin{array}{r} 0.344 \\ (30.44) * * * \end{array}$	$\begin{array}{r} 0.300 \\ (18.51)^{* * *} \end{array}$	$\begin{array}{r} 0.771 \\ (2.59) * * \\ \hline \end{array}$	$\begin{array}{r} \hline 0.399 \\ (1.05) \\ \hline \end{array}$	$\begin{array}{r} 1.334 \\ (5.39) * * * \end{array}$	$\begin{array}{r} 0.423 \\ \mathbf{(1 . 4 8)} \\ \hline \end{array}$
Geodesic Distance (1000s of km)		$\begin{array}{r} -0.004 \\ (7.23)^{* * *} \end{array}$		$\begin{array}{r} -0.006 \\ (6.41)^{* * *} \end{array}$		$\begin{array}{r} -0.011 \\ (0.45) \\ \hline \end{array}$		$\begin{array}{r} 0.036 \\ (5.09)^{* * *} \end{array}$
Absolute difference in longitudes		$\begin{array}{r} 0.037 \\ (9.26)^{* * *} \end{array}$		$\begin{array}{r} 0.050 \\ (8.12)^{* * *} \end{array}$		$\begin{aligned} & 0.232 \\ & (1.40) \\ & \hline \end{aligned}$		$\begin{array}{r} -0.031 \\ (0.73) \\ \hline \end{array}$
Absolute difference in latitudes		$\begin{array}{r} 0.038 \\ (7.73)^{* * *} \end{array}$		$\begin{array}{r} 0.049 \\ (6.56)^{* * *} \end{array}$		$\begin{aligned} & 0.241 \\ & (1.02) \\ & \hline \end{aligned}$		$\begin{array}{r} -0.278 \\ (3.27)^{* * *} \end{array}$
1 for contiguity		$\begin{array}{r} -0.073 \\ (22.77)^{* * *} \end{array}$		$\begin{array}{r} -0.097 \\ (19.77)^{* * *} \end{array}$		$\begin{array}{r} -0.173 \\ (4.74)^{* * *} \end{array}$		$\begin{array}{r} -0.203 \\ (7.27)^{* * *} \end{array}$
$=1$ if either country is landlocked		$\begin{array}{r} -0.005 \\ (4.77)^{* * *} \end{array}$		$\begin{gathered} -0.003 \\ (1.85)^{*} \end{gathered}$		$\begin{array}{r} 0.006 \\ (0.30) \\ \hline \end{array}$		$\begin{array}{r} -0.012 \\ (0.87) \\ \hline \end{array}$
$=1$ if either country is an island		$\begin{array}{r} 0.004 \\ (2.68)^{* * *} \end{array}$		$\begin{gathered} 0.004 \\ (1.78)^{*} \end{gathered}$		$\begin{array}{r} -0.116 \\ (3.24)^{* * *} \end{array}$		$\begin{array}{r} -0.009 \\ (0.44) \\ \hline \end{array}$
$=1$ if pair shares at least one sea or ocean		$\begin{array}{r} -0.021 \\ (9.95)^{* * *} \end{array}$		$\begin{array}{r} -0.020 \\ (6.14)^{* * *} \end{array}$		$\begin{array}{r} -0.035 \\ (1.21) \\ \hline \end{array}$		$\begin{array}{r} -0.051 \\ (2.15)^{* *} \end{array}$
Constant	$\begin{array}{r} 0.948 \\ (957.57)^{* * *} \\ \hline \end{array}$	$\begin{array}{r} 0.955 \\ (650.87)^{* * *} \\ \hline \end{array}$	$\begin{array}{r} 0.941 \\ (628.54)^{* * *} \end{array}$	$\begin{array}{r} 0.948 \\ (419.09)^{* * *} \\ \hline \end{array}$	$\begin{array}{r} 0.681 \\ (52.95)^{* * *} \\ \hline \end{array}$	$\begin{array}{r} 0.667 \\ (32.85)^{* * *} \end{array}$	$\begin{array}{r} 0.694 \\ (65.49)^{* * *} \end{array}$	$\begin{array}{r} 0.687 \\ (45.66)^{* * *} \\ \hline \end{array}$
Adjusted R ${ }^{2}$	0.17	0.26	0.11	0.18	0.02	0.16	0.03	0.20
N	7,626	7,626	7,626	7,626	351	351	780	780
Standardized beta	0.410	0.357	0.329	0.288	0.137	0.071	0.190	0.060

(t-statistics in parentheses; * significant at 10%; ** significant at 5%; ** significant at 1%)
Key: TLD $=$ Tree-based linguistic distance. $C L D=\%$ Cognate-based linguistic distance (Indo-European languages only).
Table 5 - Religious Distance and Genetic Distance, Full Sample (OLS Regressions, dependent variable displayed in the second row)

	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
	Weighed FRD	Weighed FRD	Plurality FRD	Plurality FRD	Weighted WCD-RD	Weighted WCD-RD	Plurality WCD-RD	Plurality WCD-RD
Weighted Fst Genetic Distance	$\begin{array}{r} 0.376 \\ (19.70) * * * \end{array}$	$\begin{array}{r} 0.307 \\ (14.38)^{* * *} \end{array}$	$\begin{array}{r} 0.542 \\ (13.10) * * * \end{array}$	$\begin{array}{r} 0.373 \\ (\mathbf{8 . 0 1})^{*} * * \end{array}$	$\begin{array}{r} 0.208 \\ (11.29)^{*} * * \end{array}$	$\begin{array}{r} 0.085 \\ (4.14) * * * \end{array}$	$\begin{array}{r} 0.329 \\ (7.95) * * * \end{array}$	$\begin{gathered} \hline 0.010 \\ (0.21) \\ \hline \end{gathered}$
Geodesic Distance (1000s of km)		$\begin{gathered} -0.002 \\ (1.85)^{*} \end{gathered}$		$\begin{aligned} & \hline-0.003 \\ & (1.24) \end{aligned}$		$\begin{array}{r} -0.002 \\ (2.43)^{* *} \end{array}$		$\begin{array}{r} 0.008 \\ (3.48)^{* * *} \end{array}$
Absolute difference in longitudes		$\begin{array}{r} 0.042 \\ (4.85)^{* * *} \\ \hline \end{array}$		$\begin{array}{r} 0.072 \\ (3.85)^{* * *} \end{array}$		$\begin{array}{r} 0.077 \\ (9.33)^{* * *} \end{array}$		$\begin{array}{r} 0.033 \\ (1.76)^{*} \\ \hline \end{array}$
Absolute difference in latitudes		$\begin{gathered} -0.024 \\ (2.54)^{* *} \end{gathered}$		$\begin{aligned} & \hline 0.009 \\ & (0.44) \\ & \hline \end{aligned}$		$\begin{array}{r} -0.023 \\ (2.75) * * * \end{array}$		$\begin{array}{r} -0.100 \\ (5.19)^{* * *} \end{array}$
1 for contiguity		$\begin{array}{r} -0.081 \\ (8.87)^{* * *} \end{array}$		$\begin{array}{r} -0.208 \\ (10.41)^{* * *} \end{array}$		$\begin{array}{r} -0.095 \\ (9.60) * * * \end{array}$		$\begin{array}{r} -0.203 \\ (9.03)^{* * *} \end{array}$
$=1$ if either country is landlocked		$\begin{aligned} & 0.002 \\ & (0.83) \\ & \hline \end{aligned}$		$\begin{array}{r} -0.025 \\ (3.96)^{* * *} \end{array}$		$\begin{array}{r} 0.014 \\ (5.00)^{* * *} \end{array}$		$\begin{array}{r} -0.017 \\ (2.67)^{* * *} \end{array}$
$=1$ if either country is an island		$\begin{array}{r} 0.038 \\ (10.56)^{* * *} \end{array}$		$\begin{array}{r} 0.075 \\ (9.52)^{* * *} \end{array}$		$\begin{array}{r} -0.016 \\ (5.43) * * * \end{array}$		$\begin{array}{r} 0.016 \\ (2.42)^{* *} \end{array}$
$=1$ if pair shares at least one sea or ocean		$\begin{array}{r} -0.069 \\ (14.37)^{* * *} \end{array}$		$\begin{array}{r} -0.120 \\ (11.53)^{* * *} \end{array}$		$\begin{array}{r} -0.052 \\ (11.93)^{* * *} \end{array}$		$\begin{array}{r} -0.102 \\ (10.44)^{* * *} \end{array}$
Constant	0.809	0.813	0.725	0.732	0.735	0.730	0.604	0.601
	$(318.81)^{* * *}$	$(217.33)^{* * *}$	(131.71)***	(89.83)***	$(294.46)^{* * *}$	(195.12)***	$(107.71)^{* * *}$	$(70.93)^{* * *}$
Adjusted R ${ }^{2}$	0.03	0.09	0.01	0.06	0.01	0.07	0.00	0.04
Number of pairs	11,476	11,476	11,476	11,476	15,400	15,225	15,400	15,225
Standardized effect	0.181	0.148	0.121	0.083	0.091	0.037	0.064	0.002
(t-statistics in parentheses; * significant at $10 \% ; * *$ significant at $5 \% ; * *$ significant at 1%) Key: FRD $=$ Fearon, Meecham and Laitin religious distance. WCD-RD $=$ World Christian Database religious distance.								

Table 6 - Religious Distance and Genetic Distance, Old World
(OLS Regressions, dependent variable displayed in the second row)

	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
	Weighed FRD	Weighed FRD	Plurality FRD	Plurality FRD	Weighted WCD-RD	Weighted WCD-RD	$\begin{aligned} & \text { Plurality } \\ & \text { WCD-RD } \end{aligned}$	Plurality WCD-RD
Weighted Fst Genetic Distance	$\begin{array}{r} 0.363 \\ (19.29)^{* * *} \end{array}$	$\begin{array}{r} 0.058 \\ (2.13)^{* *} \end{array}$	$\begin{array}{r} 0.525 \\ (11.93) * * * \end{array}$	$\begin{aligned} & \hline 0.005 \\ & (0.08) \\ & \hline \end{aligned}$	$\begin{array}{r} 0.360 \\ (16.44) * * * \\ \hline \end{array}$	$\begin{array}{r} \hline \mathbf{- 0 . 0 1 8} \\ \mathbf{(0 . 5 9)} \\ \hline \end{array}$	$\begin{array}{r} 0.494 \\ (9.76)^{* * *} \end{array}$	$\begin{array}{r} -0.293 \\ (4.02)^{* * *} \end{array}$
Geodesic Distance (1000s of km)		$\begin{array}{r} -0.003 \\ (2.14)^{* *} \end{array}$		$\begin{array}{r} -0.008 \\ (2.41)^{* *} \end{array}$		$\begin{gathered} -0.003 \\ (1.71)^{*} \end{gathered}$		$\begin{aligned} & 0.006 \\ & (1.59) \end{aligned}$
Absolute difference in longitudes		$\begin{array}{r} 0.112 \\ (10.81)^{* * *} \end{array}$		$\begin{array}{r} 0.180 \\ (7.34)^{* * *} \end{array}$		$\begin{array}{r} 0.197 \\ (16.63)^{* * *} \end{array}$		$\begin{array}{r} 0.219 \\ (7.75)^{* * *} \end{array}$
Absolute difference in latitudes		$\begin{array}{r} 0.135 \\ (10.96)^{* * *} \end{array}$		$\begin{array}{r} 0.289 \\ (9.90)^{* * *} \end{array}$		$\begin{array}{r} 0.104 \\ (7.52)^{* * *} \end{array}$		$\begin{array}{r} 0.190 \\ (5.78)^{* * *} \end{array}$
1 for contiguity		$\begin{array}{r} -0.052 \\ (6.25)^{* * *} \end{array}$		$\begin{array}{r} -0.184 \\ (9.24)^{* * *} \end{array}$		$\begin{array}{r} -0.066 \\ (6.46)^{* * *} \end{array}$		$\begin{array}{r} -0.171 \\ (7.05)^{* * *} \end{array}$
$=1$ if either country is landlocked		$\begin{array}{r} 0.000 \\ (0.04) \\ \hline \end{array}$		$\begin{array}{r} -0.031 \\ (4.37)^{* * *} \\ \hline \end{array}$		$\begin{array}{r} 0.022 \\ (6.39)^{* * *} \end{array}$		$\begin{aligned} & 0.001 \\ & (0.12) \\ & \hline \end{aligned}$
$=1$ if either country is an island		$\begin{array}{r} 0.020 \\ (4.92)^{* * *} \end{array}$		$\begin{array}{r} 0.058 \\ (5.98)^{* * *} \end{array}$		$\begin{aligned} & 0.002 \\ & (0.62) \\ & \hline \end{aligned}$		$\begin{array}{r} 0.060 \\ (6.18)^{* * *} \end{array}$
$=1$ if pair shares at least one sea or ocean		$\begin{array}{r} -0.031 \\ (5.50)^{* * *} \end{array}$		$\begin{array}{r} -0.044 \\ (3.37)^{* * *} \end{array}$		$\begin{array}{r} 0.008 \\ (1.21) \\ \hline \end{array}$		$\begin{array}{r} 0.015 \\ (0.98) \\ \hline \end{array}$
Constant	0.830	0.800	0.758	0.726	0.743	0.681	0.620	0.522
	(326.57)***	$(210.25)^{* * *}$	(127.48)***	$(80.43) * * *$	$(251.17)^{* * *}$	$(155.53)^{* * *}$	$(90.64)^{* * *}$	(49.88)***
Adjusted R2	0.05	0.13	0.02	0.08	0.03	0.16	0.01	0.08
Number of pairs	7,626	7,626	7,626	7,626	8,778	8,646	8,778	8,646
Standardized beta	0.216	0.034	0.135	0.001	0.173	-0.009	0.104	-0.061

Key: FRD = Fearon, Meecham and Laitin religious distance. WCD-RD = World Christian Database religious distance.
Table 7 - Correlations between Genetic Distance and Cultural Distance measures

	CD, all questions	$\begin{gathered} \text { CD, } \\ \text { cat. } \mathbf{A} \end{gathered}$	$\begin{gathered} \text { CD, } \\ \text { cat. } \end{gathered}$	$\begin{gathered} \text { CD, } \\ \text { cat. D } \end{gathered}$	$\begin{gathered} \text { CD, } \\ \text { cat. } \mathrm{E} \end{gathered}$	$\begin{gathered} \text { CD, } \\ \text { cat. } \mathrm{F} \end{gathered}$	$\begin{aligned} & \text { CD, } \\ & \text { cat. } \mathrm{G} \end{aligned}$	CD, binary questions	CD, non- binary questions
CD, category A	0.879*	1							
CD, category C	0.644*	0.481*	1						
CD, category D	0.619*	0.528*	0.373*	1					
$C D$, category E	0.802*	0.598*	0.284*	0.392*	1				
CD, category F	0.728*	0.544*	0.394*	0.398*	0.476*	1			
CD, category G	0.431*	0.315*	0.306*	0.203*	0.298*	0.275*	1		
CD, binary questions	0.870*	0.837*	0.816*	0.584*	0.515*	0.544*	0.305*	1	
CD , non-binary questions	0.949*	0.787*	0.448*	0.559*	0.878*	0.749*	0.453*	0.670*	1
Weighted $\mathrm{F}_{\text {ST }}$ gen. dist.	0.269*	0.245*	0.074*	0.028	0.299*	0.216*	0.130*	0.147*	0.312*
(Correlations based on 2,628 Key for WVS question cate Category F: Religion and M	observation ories: Categ rale. Categ	denotes A: Percep G: Nation	significan ns of Life dentity.	ategory C:	ork. Categ	D: Fam	Category	Politics	Society.

Table 8 - Cultural Distance and Genetic Distance

	(1)	(2)	(3)	(4)	(5)	(6)
	Total	Total	Binary	Binary	Non-binary	Non-binary
Fst genetic distance, weighted	$\begin{array}{r} 143.891 \\ (10.039)^{* *} \end{array}$	$\begin{array}{r} 138.547 \\ (11.316)^{* *} \\ \hline \end{array}$	$\begin{array}{r} 33.291 \\ (4.382)^{* *} \\ \hline \end{array}$	$\begin{array}{r} 29.873 \\ (4.959)^{* *} \\ \hline \end{array}$	$\begin{array}{r} 110.600 \\ (6.576)^{* *} \\ \hline \end{array}$	$\begin{array}{r} 108.675 \\ (7.420)^{* *} \\ \hline \end{array}$
Geodesic Distance, 1000s of km		$\begin{array}{r} -1.088 \\ (0.500) * * \end{array}$		$\begin{array}{r} -0.334 \\ (0.219) \\ \hline \end{array}$		$\begin{array}{r} -0.754 \\ (0.328)^{* *} \\ \hline \end{array}$
Absolute difference in longitudes		$\begin{array}{r} 0.072 \\ (0.036)^{* *} \end{array}$		$\begin{array}{r} 0.019 \\ (0.016) \\ \hline \end{array}$		$\begin{array}{r} 0.053 \\ (0.024)^{* *} \end{array}$
Absolute difference in latitudes		$\begin{array}{r} 0.108 \\ (0.050)^{* *} \end{array}$		$\begin{array}{r} 0.037 \\ (0.022)^{*} \\ \hline \end{array}$		$\begin{array}{r} 0.071 \\ (0.033)^{* *} \end{array}$
1 for contiguity		$\begin{array}{r} -34.347 \\ (3.463)^{* *} \end{array}$		$\begin{array}{r} -13.900 \\ (1.518)^{* *} \end{array}$		$\begin{array}{r} -20.447 \\ (2.271)^{* *} \\ \hline \end{array}$
Number of landlocked countries in the pair		$\begin{array}{r} -8.833 \\ (1.202)^{* *} \end{array}$		$\begin{array}{r} -4.027 \\ (0.527)^{* *} \\ \hline \end{array}$		$\begin{array}{r} -4.806 \\ (0.788)^{* *} \end{array}$
Number of island countries in the pair		$\begin{array}{r} -3.325 \\ (1.569)^{* *} \end{array}$		$\begin{array}{r} -2.704 \\ (0.688)^{* *} \\ \hline \end{array}$		$\begin{array}{r} -0.622 \\ (1.029) \\ \hline \end{array}$
1 if pair shares at least one sea or ocean		$\begin{array}{r} -12.034 \\ (2.301)^{* *} \end{array}$		$\begin{array}{r} -2.999 \\ (1.008)^{* *} \end{array}$		$\begin{array}{r} -9.034 \\ (1.508)^{* *} \end{array}$
Constant	$\begin{array}{r} -10.570 \\ (0.972)^{* *} \end{array}$	$\begin{array}{r} -3.688 \\ (1.474)^{* *} \end{array}$	$\begin{array}{r} -2.368 \\ (0.424)^{* *} \\ \hline \end{array}$	$\begin{array}{r} 0.702 \\ (0.646) \\ \hline \end{array}$	$\begin{array}{r} -8.202 \\ (0.637)^{* *} \end{array}$	$\begin{array}{r} -4.390 \\ (0.966)^{* *} \end{array}$
Observations	2,628	2,513	2,628	2,513	2,628	2,513
Adjusted R-squared	0.07	0.14	0.02	0.08	0.10	0.16
Standardized beta	0.269	0.255	0.147	0.130	0.312	0.302

* significant at 10%; ** significant at 5%; ** significant at 1%
Table 9-Cultural Distance and Genetic Distance, by question category

	(1)	(2)	(3)	(4)	(5)	(6)
	Category A	Category C	Category D	Category E	Category F	Category G
	Univariate Specification					
Fst genetic distance, weighted	$\begin{array}{r} 47.613 \\ (3.685)^{* *} \\ \hline \end{array}$	$\begin{array}{r} 8.947 \\ (2.345)^{* *} \\ \hline \end{array}$	$\begin{array}{r} 1.555 \\ (1.083) \\ \hline \end{array}$	$\begin{array}{r} 57.536 \\ (3.582)^{* *} \\ \hline \end{array}$	$\begin{array}{r} 24.133 \\ (2.133)^{* *} \\ \hline \end{array}$	$\begin{array}{r} 4.106 \\ (0.612)^{* *} \\ \hline \end{array}$
R-squared	0.06	0.01	0.00	0.09	0.05	0.02
Standardized beta	0.244	0.074	0.028	0.299	0.216	0.130
	Multivariate specification ${ }^{\text {a }}$					
Fst genetic distance, Weighted	$\begin{array}{r} 47.591 \\ (4.120)^{* *} \\ \hline \end{array}$	$\begin{array}{r} 7.010 \\ (2.673)^{* *} \\ \hline \end{array}$	$\begin{array}{r} 1.468 \\ (1.223) \\ \hline \end{array}$	$\begin{array}{r} 55.279 \\ (4.066)^{* *} \\ \hline \end{array}$	$\begin{array}{r} 24.836 \\ (2.460)^{* *} \\ \hline \end{array}$	$\begin{array}{r} 2.363 \\ (0.697)^{* *} \\ \hline \end{array}$
Adjusted R-squared	0.14	0.05	0.08	0.14	0.08	0.04
Standardized beta	0.241	0.058	0.026	0.284	0.218	0.075
The univariate specification is based on 2,628 observations (country pairs). The multivariate specification is based on 2,513 observations. All specifications include an intercept.						
Category F: Religion a ${ }^{\text {a }}$: The multivariate spec difference in latitudes, shares at least one sea or	Morale. Categor ation includes my for contigu cean.	National Identit ollowing geograp number of landlo	controls: Geodes d countries in the	distance, absolu ir, number of is	difference in 1 d countries in	des, absolute air, dummy=1 i

Figure 1 - Genetic distance among 42 populations.
Source: Cavalli-Sforza et al., 1994.

Figure 2 - Mecham, Fearon and Laitin Religious Tree

1.0 Asia-born Religion
1.1 South Asian Religions
1.11 Hinduism
1.2 Far Eastern Religions
1.21 Taoism
1.22 Buddhism
1.221 Therevada
1.222 Cao Dai
1.223 Hoa Hao
2.0 Near Eastern Monotheistic Religion
2.1 Christianity
2.11 Western Catholicism
2.111 Roman Catholic
2.112 Protestant
2.1121 Anglican
2.1122 Lutheran
2.1123 Presbyterian
2.1124 Methodist
2.1125 Baptist
2.1126 Calvinist
2.1127 Kimbanguist
2.1128 Church of Ireland
2.12 Eastern Orthodox
2.121 Greek Orthodox
2.122 Russian Orthodox
2.1221 Old Believers
2.123 Ukranian Orthodox
2.1231 Russian Patriarchy
2.1232 Kiev Patriarchy
2.124 Albanian Orthodox
2.125 Armenian Orthodox
2.126 Bulgarian Orthodox
2.127 Georgian Orthodox
2.128 Macedonian Orthodox
2.129 Romanian Orthodox
2.2 Islam
2.21 Sunni Islam
2.211 Shaf'i Sunni
2.22 Shi'I Islam
2.221 Ibadi Shi' ${ }^{1}$
2.222 Alevi Shi' ${ }^{\prime}$
2.223 Zaydi Shi'i
2.23 Druze
2.3 Judaism
3.0 Traditional
4.0 Other
5.0 Assorted
6.0 None

Figure 3 - World Christian Database Religious Tree
1.0 Asia-born Religion 1.1 South Asian Religions
1.11 Jains
1.12 Hindus
1.13 Sikhs
1.14 Zoroastrians
1.2 Far Eastern Religions
1.21 Confucianists
1.22 Shintoists
1.23 Taoists
1.24 Buddhists
1.25 Chinese Universists
2.0 Near Eastern Monotheistic Religion
2.1 Christians
2.11 Anglicans
2.12 Independents
2.13 Marginals
2.14 Orthodox
2.15 Protestants
2.16 Roman Catholics
2.17 Disaffiliated/Unaffiliated Christians
2.18 Doubly-Affiliated Christians
2.2 Muslims
2.3 Jews
3.0 Ethnoreligionists
4.0 Spiritists
5.0 Bha'is
5.0 Doubly Professing
6.0 Other Religionists
7.0 Nonreligionists/Atheist
7.1 Nonreligionists
7.2 Atheist

[^0]: *Spolaore: Department of Economics, Tufts University, Medford, MA 02155-6722, enrico.spolaore@tufts.edu. Wacziarg: UCLA Anderson School of Management, 110 Westwood Plaza, Los Angeles CA 90095, wacziarg@ucla.edu. This paper was prepared for the Palgrave Handbook of Economics and Language, Victor Ginsburgh and Shlomo Weber, eds. Shekhar Mittal provided excellent research assistance. All errors are our own.

[^1]: ${ }^{1}$ For recent references on technological transmission, see Spolaore and Wacziarg (2009, 2012, 2013). On interstate wars, see Spolaore and Wacziarg (2014a). On trade and financial flows, the literature documenting links with linguistic and cultural distance is vast. Salient references include Melitz (2008), Melitz and Toubal (2012) and Guiso, Sapienza and Zingales (2009).
 ${ }^{2}$ For instance, see the chapter by Ginsburgh and Weber (2015), in this volume.

[^2]: ${ }^{3}$ For overviews and critical discussions, see for instance Beauchamp et al. (2011) and Benjamin et al. (2012).

[^3]: ${ }^{4}$ A haplogroup is a group of similar haplotypes (collection of specific alleles) that share a common ancestor having the same SNP mutation. Among the most commonly studied human haplogroups are those passed only down the

[^4]: ${ }^{6}$ More generally, the study of genetic distance between populations is part of the broader study of human genetic variation and diversity between and within populations. Interesting discussions of the economic effects of genetic diversity within populations and of the relationship between genetic and cultural diversity and fragmentation are provided in Ashraf and Galor (2013a, 2013b).

[^5]: ${ }^{7}$ Effective population size only includes active breeders, and is generally smaller than actual census size. More precisely, effective population size is the number of breeding individuals that would produce the actual sampling variance, or rate of inbreeding, if they bred in a way consistent with a series of idealized benchmark assumptions (e.g., see Falconer and Mackay, 1995, chapter 4, or Hamilton, 2009, chapter 3).
 ${ }^{8}$ See Cavalli-Sforza et al. (1994, p. 30 and references).

[^6]: ${ }^{9}$ We also constructed genetic distance for populations as they were in 1500, based again on data from Cavalli-Sforza et al. (1994). For this variable, for instance, the United States is matched to the North Amerindian population. This measure of genetic distance in 1500 can either be used as an instrument for contemporary genetic distance (Spolaore and Wacziarg, 2009), or as an independent variable in applications that seek to explain pre-Industrial economic outcomes (Spolaore and Wacziarg, 2013). However we do not make use of this variable in this chapter which focuses on the contemporary relationship between ancestry and culture.
 ${ }^{10}$ For 27 countries, the data on group shares was missing from Alesina et al.'s (2003) database, but a match to genetic groups based on plurality groups was possible through information from Encyclopedia Britannica. Thus, our weighted measure of genetic distance covers 16,110 pairs, or 180 countries, whereas for the plurality match we have data on 21,321 pairs from 207 countries.
 ${ }^{11}$ Therefore, the weighted measure is not to be interpreted as $F_{S T}$ genetic distance between the whole population of a country (say, all Australians) and the whole population of another country (say, all Americans), as if each country were formed by one randomly-mating population (a deme). Instead, to each pair of individuals in each country is assigned their respective ancestrally inherited distance - that is, the distance corresponding to their respective ancestral groups - which may vary across individuals within each country when these countries are formed of different genetic groups.

[^7]: ${ }^{12}$ For a further discussion of linguistic trees, see Desmet, Ortuño-Ortín and Wacziarg (2014b), in this volume.

[^8]: ${ }^{13}$ In cases of pairs composed of countries, like India, where Indo-European languages are spoken by a plurality, but non-Indo-European languages are spoken by a large minority, $C L D$ may be available but not $C L D^{W}$. Indeed we have 63 underlying countries (1, 953 pairs) for $C L D^{W}$ and 85 countries (3,570 pairs) for $C L D$.

[^9]: ${ }^{14}$ Due to its finer level of disaggregation the Fearon, Mecham and Laitin classification and data is preferred. However for the sake of completeness we present results pertaining to both datasets below.
 ${ }^{15}$ These categories are as follows: Category A: Perceptions of Life. Category B: Environment. Category C: Work. Category D: Family. Category E: Politics and Society. Category F: Religion and Morale. Category G: National Identity. Additional categories, S, X and Y are not considered here since they relate either to the demographic characteristics of the respondent or characteristics of the survey (wave, year, etc).

[^10]: ${ }^{16}$ For instance they include the classic WVS questions on happiness, trust, etc.
 ${ }^{17}$ Future research should consider the robustness of our results to the use of alternative functional forms, such as Manhattan distance. Desmet, Le Breton, Ortuño-Ortín and Weber (2011) applied the $F_{S T}$ functional form to answers from the World Values Survey for a sample of European countries, and explored the relationship between the resulting matrix of cultural distance and $F_{S T}$ genetic distance in Europe, finding like us a strong association between the two.
 ${ }^{18}$ We call these non-binary. Non-binary questions are further divided into those that admit an ordering on a scale (e.g. happiness on a scale from 1 to 10), and those that do not (e.g. do you prefer option 1, option 2 or option 3). This distinction is not relevant here. For an in-depth discussion of question types in the WVS, see Desmet, Ortuño-Ortín and Wacziarg (2014a).

[^11]: ${ }^{19}$ Category B, questions relating to the environment, is dropped as no question was asked in all 74 countries. Category A features 32 questions, category C features 14 questions, category D features 7 questions, category E features 30 questions, category F features 12 questions and category G features 3 questions. There were 35 binary questions, and 63 non-binary questions.
 ${ }^{20}$ A similar but slightly different formalization is also presented in Spolaore and Wacziarg (2009).

[^12]: ${ }^{21}$ The derivation is immediate. With probability $1 / 4$ both populations experience a positive shock ε, and with probability $1 / 4$ both populations experience a negative shock $-\varepsilon$. Hence, with probability $1 / 2$, their vertical distance is zero. With probability $1 / 2$ one population experiences a positive shock ε and the other a negative shock $-\varepsilon$, implying a cultural distance equal to $|\varepsilon-(-\varepsilon)|=2 \varepsilon$. On average, the expected cultural distance is $E\left[d_{c}(1,2)\right]=\frac{1}{2} 0+\frac{1}{2} 2 \varepsilon=\varepsilon$
 ${ }^{22}$ Derivation: with probability $1 / 4$ population 1's ancestor populations and population 2's ancestor populations experienced identical shocks both between time $-T^{\prime}$ and time $-T$ and between time $-T$ and time 0 . That is, with probability $1 / 4$ we have $\varepsilon_{a(1 \& 2)}\left(-T,-T^{\prime}\right)=\varepsilon_{a(3)}\left(-T,-T^{\prime}\right)$ and $\varepsilon_{1}(0,-T)=\varepsilon_{3}(0,-T)$, implying $d_{v}(1,3)=0$. By the same token, with probability $1 / 4$ the two populations experienced identical shocks between time $-T^{\prime}$ and $-T$ but different shocks between time $-T$ and time 0 , implying $d_{c}(1,3)=2 \varepsilon$, and with probability $1 / 4$ identical shocks between $-T$ and 0 but different between $-T^{\prime}$ and $-T$, implying $d_{c}(1,3)=2 \varepsilon^{\prime}$. With probability $1 / 8$, one population linaeage has experienced two positive shocks ($\varepsilon^{\prime}+\varepsilon$) while the other has experienced two negative shocks $\left(-\varepsilon^{\prime}-\varepsilon\right)$, therefore leading to a vertical distance equal to $2 \varepsilon^{\prime}+2 \varepsilon$. Finally, with probability $1 / 8$ one population lineage has experienced a positive shock ε^{\prime} and a negative shock $-\varepsilon$ while the other population lineage has experienced $-\varepsilon^{\prime}$ and ε. In this latest case, the cultural distance $d_{c}(1,3)=\left|2 \varepsilon-2 \varepsilon^{\prime}\right|$. In sum, expected cultural distance is given by:

 $$
 E\left[d_{c}(1,3)\right]=\frac{1}{4} 2 \varepsilon^{\prime}+\frac{1}{4} 2 \varepsilon+\frac{1}{8}\left(2 \varepsilon^{\prime}+2 \varepsilon\right)+\frac{1}{8}\left|2 \varepsilon-2 \varepsilon^{\prime}\right|
 $$

 which is equal to $\varepsilon+\frac{\varepsilon^{\prime}}{2}$ if $\varepsilon \geq \varepsilon^{\prime}$ and equal to $\varepsilon^{\prime}+\frac{\varepsilon}{2}$ if $\varepsilon \leq \varepsilon^{\prime}$, or, equivalently, $E\left[d_{c}(1,3)\right]=\max \left\{\frac{\varepsilon^{\prime}}{2}+\varepsilon, \varepsilon^{\prime}+\frac{\varepsilon}{2}\right\}$. The same expected cultural distance holds between populations 2 and 3 .

[^13]: ${ }^{23}$ It is well-known that the standardized beta is equal to the correlation coefficient for the univariate case. This can be verified by comparing the standardized betas in columns (1) and (3) to the corresponding ones in Table 2 Panel A.

[^14]: ${ }^{24}$ The underlying sample of country pairs varies across questions, which could introduce some bias. However, the results are no different when we focus on the set of 98 questions for which we have a balanced sample of 2,701 country pairs.

[^15]: ${ }^{25}$ For the restricted set of 98 questions covering a balanced set of countries, 63.3% of the correlations were positive and significant, and 75.5% of them were positive.
 ${ }^{26}$ For the restricted set of 98 questions, 67.3% of the standardized beta coefficients on genetic distance were positive, and 53.1% of the effects were positive and significant at the 5% level.

