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ABSTRACT

Continuously time variable sources are often characterized by their power spectral density and flux distribution.
These quantities can undergo dramatic changes over time if the underlying physical processes change. However,
some changes can be subtle and not distinguishable using standard statistical approaches. Here, we report a
methodology that aims to identify distinct but similar states of time variability. We apply this method to the Galactic
supermassive black hole, where 2.2 μm flux is observed from a source associated with Sgr A* and where two
distinct states have recently been suggested. Our approach is taken from mathematical finance and works with
conditional flux density distributions that depend on the previous flux value. The discrete, unobserved (hidden)
state variable is modeled as a stochastic process and the transition probabilities are inferred from the flux density
time series. Using the most comprehensive data set to date, in which all Keck and a majority of the publicly
available Very Large Telescope data have been merged, we show that Sgr A* is sufficiently described by a single
intrinsic state. However, the observed flux densities exhibit two states: noise dominated and source dominated. Our
methodology reported here will prove extremely useful to assess the effects of the putative gas cloud G2 that is on
its way toward the black hole and might create a new state of variability.
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1. INTRODUCTION

Many different mechanisms can cause an astronomical source
to be variable. Accreting black holes, for example, are variable
electromagnetic sources for reasons such as oscillations in an
accretion disk, changes in the accretion rate, or turbulent plasma
processes like magnetic reconnection leading to an acceleration
of electrons. Most often the observed variability in the flux
can be well described by a single stochastic process such as a
random walk (e.g., Kelly et al. 2009; MacLeod et al. 2010; Zu
et al. 2013). If, however, the accretion rate suddenly jumps
(e.g., due to the tidal disruption of a star or asteroid), the
observed variability can change drastically and in a way that
is not well described by a random walk. Such a state change
in the variability could be obvious if the effects are large like
an increase of the mean flux by orders of magnitude. However,
there could be changes that are subtle and not trivial to detect. In
this paper, we present a formal method to do just that. We apply
the method to the massive black hole in the center of the Milky
Way. This source is of particular interest since two distinct states
have been claimed to be present in the past (Dodds-Eden et al.
2011), and the upcoming encounter with the gaseous object G2
(Gillessen et al. 2012, 2013a, 2013b; Phifer et al. 2013; Meyer
et al. 2013) might or might not lead to a variability state change.

The emission associated with the accretion flow around
the Galactic black hole, Sgr A*, has been detected in a few
wavelength regimes (for recent reviews see Genzel et al. 2010;
Morris et al. 2012; Falcke & Markoff 2013). While it was first
detected at radio wavelengths a few decades ago (Balick &
Brown 1974), its discovery in the X-rays (Baganoff et al. 2001)
and near-infrared (Genzel et al. 2003; Ghez et al. 2004; Eckart
et al. 2004) did not happen until the early 2000s when advanced
imaging systems came online (Chandra/XMM in the X-rays
and adaptive optics in the near-infrared). Sgr A* is in Eddington

terms the most under-luminous massive black hole accessible
to observations. Its unexpected faintness inspired a class of
radiative inefficient accretion flow models (e.g., Narayan et al.
1995; Blandford & Begelman 1999; Yuan et al. 2003, 2004).

While Sgr A* is variable across all observable wavelengths,
its variability is most pronounced in the near-infrared (NIR) and
X-rays with flux excursions that lie a factor of ∼10 (for the NIR)
and ∼100 (for the X-ray), respectively, above the low flux levels.
Early studies of Sgr A*’s NIR and X-ray variability reported the
existence of a quasi-periodic oscillation (QPO) of ∼17 min in
the flux (Genzel et al. 2003; Aschenbach et al. 2004). However,
this finding was not confirmed by later statistical analyses (Do
et al. 2009). The potential existence of a QPO was met with
great interest since it potentially offers a way to measure the
spin of the black hole and to test the curvature of the space-time
close to it (e.g., Broderick & Loeb 2005; Meyer et al. 2006;
Johannsen & Psaltis 2011).

One advantage of the NIR over the X-ray regime for studying
the variability of Sgr A* is that it is visible at NIR wavelengths
much more of the time. While Sgr A*’s X-ray emission
peaks above the steady background created by the extended,
larger-scale thermal accretion flow around 4% of the time
(Neilsen et al. 2013), Sgr A*’s NIR emission is almost always
(�90%) detected at the highest angular resolution possible today
with Keck Observatory (as we will show here and in Witzel
et al., in preparation). Recent NIR studies have shown that
Sgr A* is sufficiently modeled as a purely random process.
The power spectral density (PSD) of Sgr A*’s time variability
is a featureless power law for relatively high frequencies, a
characteristic that can be modeled with a random walk and is
more generally called red noise (Do et al. 2009; Meyer et al.
2008). At lower frequencies, the power law breaks to a shallower
slope at a timescale of 150–600 minutes (Meyer et al. 2009;
Witzel et al. 2012).
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In addition to the PSD, another key quantity to describe
Sgr A*’s variability is its flux density distribution. Recently,
Dodds-Eden et al. (2011) and Witzel et al. (2012) looked at
the total flux density distribution in the NIR by constructing a
histogram of all observed flux density values. Interestingly, their
interpretations are quite different: Dodds-Eden et al. (2011) use
a lognormal distribution + a power-law tail—convolved with a
Gaussian to account for measurement errors—to describe the
distribution and argue that Sgr A* has two distinct states, one
described by the lognormal part and the other by the power-law
tail. In contrast, Witzel et al. (2012) find that only a power law
(convolved with a Gaussian) is needed to accurately describe
the flux density histogram of Sgr A*. It is important to note
that both studies do not use timing information to argue for one
or two states. The question whether or not multiple states can
be inferred from the data was identified as a key question in
understanding Sgr A* by Genzel et al. (2010).

In this work, we derive a formal method to answer the question
of how many states can be inferred from Sgr A*’s light curve. In
Section 2, we will present our methodology in detail. While it
has been developed with the specific case of Sgr A* in mind, its
application should be more general. It is useful whenever one
wants to investigate if a time variable source exhibits distinct
states of variability. This method is known in economics as
“regime switching model” (see, e.g., Hamilton 1994). We then
apply this approach to Sgr A* using the most extensive NIR
data set constructed to date (Witzel et al., in preparation). We
end by discussing how to assess the upcoming impact of the
gaseous object G2 on the accretion flow around the black hole.
Our methodology along with the unprecedented data set, which
represents the best base line of Sgr A*’s behavior before G2
swings around in early 2014, is the ideal tool set to quantify
Sgr A*’s response to any mass accreted from G2.

2. METHODOLOGY

The notion of hidden states in a time series has been applied
to many diverse fields for a few decades (e.g., Rabiner 1989).
Simply put, the idea is that observables entail information about
states that are not directly accessible to the observer. Figure 1
sketches a simple system that can be in a ground state and an
excited state, and the distribution of the observable is different
for each state. Overall, a mixture of distributions would be
observed. A two-state hidden Markov model that looks at the
time sequence of observations and assumes a general form
for the distributions is able to determine their parameters, the
probability to transition from the ground to the excited state
and vice versa, as well as the probability to be in a certain
state for every observation. Modeling the stochastic process of
the state variable as Markovian means that the process satisfies
the Markov property: one can make predictions for the future
state based solely on its present state just as well as one could
knowing the process’s full history.

The key to this approach is that we move beyond the simple
unconditional flux distribution—measured by the histogram
of all flux densities—and use the information in the time
series to identify conditional flux distributions. To illustrate the
difference between unconditional and conditional distributions,
consider the following analogy. Imagine that one wanted to
forecast the high temperature on the Santa Monica beach
tomorrow. One way to do this would be to compute the
distribution of all high temperatures over the entire year and use
the mean of this unconditional distribution as the forecast. A
much better way to proceed, however, would be to estimate the

distribution of day-ahead temperatures conditional on today’s
high temperature being, say, 50 degrees. By conditioning on
today’s temperature, the distribution for tomorrow’s temperature
would be much tighter and more informative that would be
the unconditional distribution based on the entire year. This
analogy illustrates the intuition behind our approach. We use the
current flux measurement to specify the conditional distribution
of the subsequent flux measurement and estimate a range of
conditional distributions, one for each state, rather than just
using the single unconditional distribution.

In the following, we will first describe our approach and
the construction of the likelihood function in more detail with
a simplified example (adopted from Hamilton 2008) and then
generalize this to the more complex case of Sgr A*.

2.1. Simple Example

Let us consider a hypothetical flux time series where yt is the
flux measured at time t, and the data are well described by a
stochastic model of the form

yt = c1 + φyt−1 + εt , (1)

where c1 and |φ| < 1 are constants and ε ∼ N (0, σ 2). Let us
further assume that we would like to test whether a model that
allows a change in mean flux gives a better description of the
data. For a permanent change of the mean flux, we could just
write down a different parameter c2 for some t > t1,

yt = c2 + φyt−1 + εt . (2)

We are, however, interested in a situation where we can jump
back and forth between both models. We will refer to the
different models as different states, and at a given time, the
source emitting the flux is in state st = j , where j = 1 or 2
in our example. We will assume that this state is not directly
observable (e.g., with spectroscopic observations) but has to be
inferred from the light curve itself.

The unobserved state is modeled using a Markov switching
approach. Concretely, let pij be a matrix that reflects the
transition probabilities of switching to another state or remaining
in the current state,

pij = Prob(st = j |st−1 = i), (3)

and let Πj t be the probability of being in state j at time t,

Πj t = Prob(st = j |yt ). (4)

The probability density of yt for our model is then

f (yt |st = j, yt−1) = 1√
2πσ 2

exp

(−(yt − cj − φyt−1)2

2σ 2

)

= fjt . (5)

With these notations, the conditional probability density of yt
can be written as

h(yt |yt−1; θ ) =
∑
i,j

pij Πit−1fjt , (6)

where θ means the set of parameters in the model (here, cj,
φ, and pij). Since Πj t is not directly observable, it has to be
recursively calculated by observing that

Πj t =
∑

i pij Πit−1fjt

h(yt |yt−1; θ )
. (7)
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Figure 1. Illustration of a two-state hidden Markov model. The observable quantity shows the dashed overall distribution. It can be decomposed into a ground state
(GS) and an excited state (ES), both of which are not directly observable. Given a sequence of observations, the parameters of the individual distributions as well as
the transition probabilities can be solved for. Note that this illustration is overly simplified, and in our application to time series, the overall, unconditional distribution
cannot simply be calculated as the weighted sum of the conditional ones.

Starting at t0, we can execute the iteration to solve for all Πj t .
This means that the final log-likelihood function of the whole
light curve is given by

log h(y1, y2, y3, ..., yT |y0; θ ) =
T∑

t=1

log h(yt |yt−1; θ ). (8)

The maximum of this log-likelihood function gives the preferred
values for cj, φ, and pij.

2.2. Extension to Sgr A*

While the simple model elucidates the construction of the
likelihood function, it is not well suited to be applied to light
curves from Sgr A*. The main reason is that the real data set
shows unevenly sampled measurements with big gaps repre-
senting limited telescope time, the night/day cycle, the observ-
ability of the Galactic center from the ground throughout a year,
measurements of sky background, and instrument failures. This
requires us to use a more appropriate model that is time contin-
uous and not discrete as in the above example. Furthermore, the
flux density distribution is not Gaussian, and the data contain
measurement noise. This is where the astronomical application
of the regime switching approach departs from mathematical
finance. We will deal with these points step by step in the fol-
lowing.

A popular model to describe the random variability of quasars
is a so-called damped random walk, which is the only process
that is stationary, Gaussian, and Markov. This process is also
known as an Ornstein–Uhlenbeck (OU) model, which is the
nomenclature we will use here. It is similar to red-noise models
with a broken power law as the power spectral density, which
have been used to model Sgr A* in the past (Do et al. 2009;
Meyer et al. 2009; Witzel et al. 2012). Most recently, Dexter
et al. (2014) used an OU process to successfully describe the
submillimeter variability of Sgr A*. Additionally, Kelly et al.
(2009), MacLeod et al. (2010), and Zu et al. (2013) have shown
that an OU process is an excellent description of active galactic
nucleus (AGN) flux variations. Its key advantage for our purpose
is that it is a time continuous model that makes the handling of
sampling gaps easier.

The OU model is determined by three parameters, the mean
μ, the speed of mean reversion k, and the volatility σ , and

the dynamics can be described by the following stochastic
differential equation:

dy = k(μ − y)dt + σdZt , (9)

where dZt is the increment of a Brownian motion with Zt ∼
N (0, t). A solution to this equation is the conditional distribution

f (yt+Δt |yt ) = 1√
2πσ̃ 2

exp

(−(yt+Δt − μ̃)2

2σ̃ 2

)
, (10)

μ̃ = yte
−kΔt + μ(1 − e−kΔt ), (11)

σ̃ 2 = σ 2(1 − e−2kΔt )

2k
. (12)

Our goal is to identify whether more than one state is
present in the light curves from Sgr A*. Past studies of this
source have already revealed a great deal of information, and
in particular imply that any additional state will be subtle:
as reported by Witzel et al. (2012) and Dodds-Eden et al.
(2011), a unimodal, heavy-tailed, power-law-like distribution
convolved with a Gaussian describes the flux density distribution
accurately. In our case, it is therefore important that the
baseline model is already a good description of this overall flux
distribution and power spectral density; otherwise, a model with
two or more states might be wrongly preferred over the baseline
model of one state if the one state is modeled incorrectly. An OU
process matches the observed characteristics of Sgr A*’s power
spectrum: a broken power law that is otherwise featureless.
The observed flux distribution, however, is not Gaussian. In
order to match the power-law-like distribution convolved with
a Gaussian, we will also use the exponential and double-
exponential of an OU process to model Sgr A*. Since this
translates into the equivalent of a lognormal (and loglognormal)
distribution, we will use the notation of a log- and log log-OU
process in the following. Please note that taking the logarithm
twice is purely empirically motivated and not rooted in physical
considerations. Ideally, we would like to use a power-law
distribution, but a stochastic model similar to Equation (9) which
results in a power-law density is not known.
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The conditional distributions for the log- and log log-OU
processes are given as follows3: (1) for the log of a OU process,

f (yt+Δt |yt ) = 1√
2πσ̃ 2yt+Δt

exp

(−(ln (yt+Δt ) − μ̃)2

2σ̃ 2

)
, (13)

μ̃ = ln (yt )e
−kΔt + μ(1 − e−kΔt ), (14)

σ̃ 2 = σ 2(1 − e−2kΔt )

2k
, (15)

and (2) for the log log of a OU process,

f (yt+Δt |yt ) = 1√
2πσ̃ 2yt+Δt ln(yt+Δt )

× exp

(−(ln(ln(yt+Δt )) − μ̃)2

2σ̃ 2

)
, (16)

μ̃ = ln(ln(yt ))e
−kΔt + μ(1 − e−kΔt ), (17)

σ̃ 2 = σ 2(1 − e−2kΔt )

2k
. (18)

The choice of a time continuous model leads to the parameter
Δt in the equations above and therefore offers a direct way to
deal with the gaps in Sgr A*’s light curve for the conditional
distribution. However, the transition matrix P = pij is calcu-
lated for a specific time difference τ and must also be modified
when gaps are present.4 A straightforward way to do this is to
multiply the transition matrix with itself N times for a gap that
is τ · N :

A = P N, with N = max(1, round(Δt/τ )). (19)

For Sgr A*’s data set, which has an average sampling of one
measurement per 1.2 minutes (not counting the large nightly/
yearly gaps), we chose a final value of τ = 1 minute. We
have explored much shorter values but found it to make no
significant difference. For values of Δt > 1000 minutes, we set
Δt = 1000 minutes since these gaps are safely greater than the
mean-reversion timescale of Sgr A* (Meyer et al. 2009; Witzel
et al. 2012), and the flux density points after these gaps are
therefore a new, independent realization.

The stochastic model in Equation (9) aims to describe the
intrinsic properties of the source under consideration. In a real-
istic setting, however, an additional noise component is present
that reflects the measurement process. This measurement noise
is typically white noise, i.e., it does not depend on the previous
observation, and it is well described by a Gaussian and therefore
fully specified by one parameter σmeas. Often, there exists an es-
timate of σmeas. For the case of Sgr A*, for example, nearby stars
of similar magnitude visible in the same image offer a straight-
forward way to estimate the measurement noise since these stars
have constant flux intrinsically. In case an independent estimate
of σmeas is present, it can be advantageous to include it in the

3 Please note that for ease of notation we will use the same symbols for the
mean and variance as above. They are related through a change of variables.
4 We use a discrete time transition matrix since the images are recorded at
essentially the same cadence or at integral multiples thereof. We note that this
approach could be extended to a continuous time formulation by allowing
transitions to be triggered by the realizations of continuous time Poisson
processes with constant intensities.

stochastic model of the source. In order to do this, the condi-
tional distribution from the OU process has to be convolved with
a Normal distribution N (0, σmeas),

f̃ (yt+Δt |yt ; σmeas) =
∫

f (x|yt ) · 1√
2πσ 2

meas

× exp

(−(yt+Δt − x)2

2σ 2
meas

)
dx. (20)

For the important cases of a log- or log log-OU process
(Equations (13) and (16)), this integral has to be calculated
numerically in every term of the sum in the likelihood func-
tion of Equation (8). Note that this dramatically increases the
computing time. For us, the duration of computing the posterior
with the numerical integration increased to the order of days
from just a few hours without it. Please also note that this ap-
proach of incorporating the measurement noise assumes that it
is constant. While photon noise leads to an increase of noise
with flux, the data properties are well modeled with the assump-
tion of constancy and may reflect the dominance of point-spread
function measurement noise (Witzel et al. 2012; G. Witzel et al.,
in preparation).

2.3. Is an Additional State Justified?

An important question is how to decide whether more than
one state is needed at all, and if so, how many different states
can be inferred from the data. Here lies an important distinction
between astrophysical and economic analyses: while the latter
are mainly interested in a precise model of a time series to make
accurate forecasts, the former are insight driven. The necessity
of different states could point to different physical mechanisms
and elucidate the astrophysics of the source under consideration.
Whether or not an additional state is necessary in the model of an
astronomical time series should be assessed by several metrics.
Bayesian methods such as comparing the Bayesian evidences
for different models belong to the standard methods well suited
to comparing models but have the (dis)advantage of forcing
one to write down specific priors for the parameters, which
are often ambiguous. Note that Hamilton (2008) warns that
methods relying on likelihood ratio tests fail to satisfy necessary
regularity conditions.

A quite robust way of assessing the necessity of an additional
state is to look at the global likelihood/posterior distribution
in another way: too many assumed distinct states will lead to
a highly multi-modal, very irregular looking posterior distribu-
tion. If only the maximum of the distribution is determined, the
optimizer might often fail to converge at all in that case. Most
importantly, the individual states should show persistence, if
they are real. In any solution with a superfluous additional state,
the probability of remaining in that state p22 will be �0.1,
while a significant additional state should show persistence with
p22 � 0.8. If the additional state has a very low probability of
remaining in that state, two things might occur. (1) The prob-
ability of remaining in the first state is also very low, meaning
that the states fluctuate from point to point. It seems extremely
unnatural that state changes in the observed source occur exactly
at the sampling rate of the measurements. (2) The probability of
remaining in the first state is very high. In this case, the source
will be in the additional, second state hardly at all. Only very
few flux points will be assigned to that state, and a natural ex-
planation is that these are outliers for the assumed first state
conditional distribution. This can easily happen if any assump-
tion of the stochastic model is not quite accurate, e.g., if the flux
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Figure 2. Longest, most comprehensive NIR light curve of Sgr A* that is available today (13,800 data points, displayed here without gaps longer than 30 minutes);
see G. Witzel et al. (in preparation). These data have been taken in the K band from 2003 to 2013 with both the VLT (black) and the Keck observatory (red) and show
a typical cadence of about 1 minute for the individual night.

(A color version of this figure is available in the online journal.)

density distribution is not quite lognormal or the measurement
noise is not strictly constant.

3. RESULTS FOR SGR A* DATA

In this section, we will show the results of the regime-
switching approach applied to Sgr A*. We will use two data
sets, both taken with adaptive optics in the near-IR K band: all
publicly available (up to 2010) Very Large Telescope (VLT)
data as published in Witzel et al. (2012) and all AO Keck data
taken from Sgr A* (up to and including 2013; see Witzel et al.,
in preparation). The photometry has been extracted in the same
way in both data sets. We refer the reader to Witzel et al. (2012)
and G. Witzel et al. (in preparation) for details. Key features of
each data set are as follows.

1. The VLT data were taken with NaCo in Ks band (2.18 μm;
68 mas resolution), the Keck data with NIRC2 in K ′ band
(2.12 μm; 53 mas resolution).

2. The VLT data contain 10,639 quality-selected data points,
taken between 2003 June 13 and 2010 June 16, and the
Keck data contain 3157 quality-selected points between
2004 July 16 and 2013 July 19.

3. The average sampling of the covered time periods is 1.2
minutes (VLT) and 1.1 minutes (Keck).

4. The integration time is 28 s for Keck and ranges between
30 and 40 s for VLT.

5. Both data sets use consistent flux density calibration using
13 non-variable stars throughout all epochs.

6. Both data sets are corrected for extinction with mext = 2.46
and for confusion levels (epoch by epoch).

7. The (Gaussian) measurement noise is determined to be 0.32
mJy (VLT) and 0.16 mJy (Keck).

8. Typical background fluxes are 0.6 mJy (VLT) and 0.3 mJy
(Keck).

9. The data cover a de-reddened flux density range of 0–29
(VLT)/23 (Keck) mJy, which is consistent with a power-law
distribution of intrinsic fluxes in both cases.

Figure 2 shows the complete data set. Since the two data sets
come from different telescopes and instruments and show sub-
stantial differences in noise characteristics, we mainly analyze
them separately.

In the following, we will first model SgrA* using a single
state only. This will serve as our baseline model. We will then
go on modeling the data with two states and see whether a
substantial improvement has been achieved. We will first present

the analysis without accounting for the measurement (white)
noise component. We think that any first pass of a new data set
should be done without the very time-consuming convolution in
Equation (20). The treatment including the measurement noise
follows after that.

3.1. Baseline Model

Up to now, the timing behavior of Sgr A* has always been
modeled using only a single state in the literature. An advantage
of this approach is that it allows for any choice of the overall
flux distribution, e.g., a power law convolved with a Gaussian as
in Witzel et al. (2012). In our methodology, however, where we
explicitly model conditional distributions, we do not have the
freedom to choose a power-law behavior since a dynamic model
similar to Equation (9) that results in power-law distributions is
not known. Therefore, we have to show first that a log- or log log-
OU process can accurately model the overall, unconditional flux
distribution as well. If this was not the case, any additional state
would likely be preferred just because a single state does not
appropriately reflect the distribution of fluxes.5 The key feature
we are looking for is a different timing behavior since this is
expected from a significantly distinct state that reflects a distinct
physical process in the accretion flow.

Most importantly, the total flux distribution of Sgr A* is
peaked and highly skewed. Exploring the distribution visually,
it is noticeable that the histogram of log(flux) and log(log(flux))
resembles a Gaussian, although it is still skewed in the latter
case. This skew is minimized when a constant is added to the
entire light curve, i.e., yt = yt + c for all t, where yt denotes the
flux density at time t. For the loglog of the flux, this constant is
evaluated at c = 1.25 mJy for the VLT data and c = 1.35 mJy
for the Keck data, and in the case of log(flux), it is 0 mJy for
both data sets. Note that a constant of c > 1 would be required
anyway in order for the loglog to be defined since the light
curves are normalized such that min(yt ) = 0. Table 1 shows
the Bayesian evidences and the best-fit parameter values for
both models and data sets. The preferred model in both cases
is the loglog one, although the difference from the log model
is marginal for the VLT data. We adopt the loglog-OU process

5 We would like to point out that, in general, a single-state model must not
accurately describe the flux distribution, e.g., in sources where the flux
distribution is multi-modal. However, since for Sgr A* it has been shown that a
single-state model can accurately model the flux distribution, we require this
for our single-state baseline model as well. Note that this does not imply that a
second state is not present.
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Table 1
Multi-state Modeling of Sgr A* (without Measurement Noise Component)

Model log(Evidence) Parameter Valuesa

VLT data
log log-OU −9639 (k, μ, σ ) = (0.13, 0.16, 0.17)
log-OU −9642 (k, μ, σ ) = (0.10, 0.69, 0.30)

log log-OU/OU −5364 (k1, μ1, σ1, p11, k2, μ2, σ2, p21) = (0.016, 0.24, 0.061, 0.96, 0.52, 2.90, 0.84, 0.11)
loglog-OU/log-OU −4813 (k1, μ1, σ1, p11, k2, μ2, σ2, p21) = (0.52, 0.016, 0.32, 0.91, 0.017, 1.29, 0.079, 0.02)
log log-OU/log log-OU −5177 (k1, μ1, σ1, p11, k2, μ2, σ2, p21) = (0.019, 0.25, 0.059, 0.97, 0.42, 0.002, 0.28, 0.08)
log log-OU/log log-OUb −5334 (k1, μ, σ, p11, k2, p21) = (0.031, 0.16, 0.060, 0.97, 0.14, 0.08)
Keck data
log log-OU −733 (k, μ, σ ) = (0.04, 0.023, 0.12)
log-OU −939 (k, μ, σ ) = (0.04, 0.29, 0.26)

log log-OU/OU −158 (k1, μ1, σ1, p11, k2, μ2, σ2, p21) = (0.02, 0.03, 0.08, 0.92, 0.016, 3.86, 0.33, 0.13)
loglog-OU/log-OU −32 (k1, μ1, σ1, p11, k2, μ2, σ2, p21) = (0.17, 0.04, 0.29, 0.74, 0.015, 1.06, 0.073, 0.02)
log log-OU/log log-OU −180 (k1, μ1, σ1, p11, k2, μ2, σ2, p21) = (0.017, 0.10, 0.067, 0.96, 0.10, 0.014, 0.21, 0.16)
log log-OU/log log-OUb −175 (k1, μ, σ, p11, k2, p21) = (0.021, 0.036, 0.067, 0.96, 0.067, 0.15)

Notes. The bold entries have the largest evidence values and are therefore the preferred models.
a The unit for the k parameter is always minute−1. The units for μ and σ ∗ √

t depend on the model and are either mJy, log(mJy), or log(log(mJy)). The prior
for all parameters is a uniform distribution U(0, 10).
b This model only allows for changes in the timing behavior. Here, we set μ1 = μ2 and σ2 = k2/k1 σ1. This tests whether the additional state is mainly driven
by a different timing behavior (manifested in the mean reversion time k), or by the unconditional flux distribution (described by μ and σ ).
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Figure 3. Overall flux distribution of Sgr A* from the VLT data set presented
in Witzel et al. (2012; solid line) and our single-state baseline model (dashed
line). Concretely, the log log of the flux after a constant value of 1.25 mJy has
been added is shown. The observed distribution closely resembles a Gaussian,
which shows that our assumptions about the baseline model are accurate.

as the baseline when measurement noise is not included via
Equation (20), and the resulting model as well as the observed
flux density histograms for the VLT data are shown in Figure 3.
The comparison of baseline model and data shows that while
the agreement is very good, it is not perfect. However, since we
cannot use power-law distributions and do not explicitly model
the measurement noise here, this is not surprising.

We have used the Bayesian nested sampler MultiNest (Feroz
& Hobson 2008; Feroz et al. 2009) to explore the posterior
distribution and assumed uniform priors for the parameters
U(0, 10).

3.2. Modeling without the Measurement Noise Component

We can now turn to the question we set out to answer: does
Sgr A* have more than one state? While the choice of the
conditional distribution for the baseline model was motivated
to most closely match the observed overall flux distribution
(for a single state, the conditional flux distribution obviously
equals the overall one), the two-state case is more complex.
Fundamentally, the selection of the form of the conditional
distributions (e.g., OU, log-OU, etc.) is an assumption to make
and cannot be derived from the data. In a practical approach, we
have chosen many different combinations and looked at them
individually.

The results of the modeling with different assumptions for the
conditional distributions are summarized in Table 1. Strikingly,
all two-state scenarios are preferred over the single-state model
for both data sets as indicated by the Bayesian evidence. All
posteriors are well behaved and not more than bimodal (for
a two-state model, the posterior will often be bimodal6), and
the probability of remaining in a given state is high, indicating
persistence of these states. Taken together, this is strong evidence
for the presence of more than one variability state in the observed
flux from Sgr A*. The overall preferred two-state model is one
consisting of a log log-OU and a log-OU state. This is true for
both the VLT and Keck data sets.

In Figure 4, we show the observed VLT flux density time
series in a decomposed way: the upper panel contains all points
that are with probability >0.5 in the log-OU state, while the
lower panel shows all flux points that are with probability >0.5
in the log log-OU state. The differences are clearly visible.
In fact, in all explored two-state models, one state is always
reverting to its mean fast and has a lower mean, while the
other state is slower mean reverting with a higher mean. A
fast mean-reversion here means that this timescale is at the
order of the sampling. We have also tested that the second
state is not just preferred because of a better description of
the overall flux distribution: forcing the two states to have the

6 This is because the labels for states 1 and 2 could be switched, while the
value of the likelihood function would remain the same.
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Figure 4. Decomposition of the VLT data into the best-fit two-state model (see Table 1, row 4). Upper panel: all flux points of the time series that have a probability
of >0.5 in the log-OU state (83% of all points). Lower panel: all flux points that have a probability of >0.5 in the log log-OU state (17% of all points). This visualizes
the differences in the two states: the log log-OU state is quickly reverting to a rather low mean, while the log-OU state is more slowly mean reverting and the mean is
higher. The log log-OU state represents the state where the changes in flux are dominated by measurement noise, and the log-OU state represents the changes in flux
that are source dominated.

same form of the unconditional distribution by setting μ1 = μ2
and σ2 = k2/k1 σ1, we still see strong evidence for a second
state (see last lines in Table 1). It is the timing that drives the
significance of a second state.

The fact that one of the two states is quickly mean reverting
to a fairly low mean suggests that the interpretation of this
state predominantly describes the parts of the light curve that
are dominated by measurement noise, which is approximately
white noise. Note that even if this is the case, the above
analysis is still valuable since it offers a recipe to label each
point-to-point change of the flux series as “noise dominated”
or “source dominated.” Consistent with this interpretation is
the observation that the less noisy Keck data are only “noise
dominated” 6% of the time, while the VLT data are “noise
dominated” 17% of the time.

3.3. Modeling with Measurement Noise

Our hypothesis is that the quickly mean-reverting state
represents the measurement, white noise process. We will test
this in two ways. Since we have an estimate of σmeas, we can
make use of Equation (20). Furthermore, Witzel et al. (2012)
developed a Monte Carlo tool to simulate Sgr A* light curves
(assuming a single state only), and we can analyze these mock
data separately.

We summarize our results in Table 2 for the real data and in
Table 3 for the mock data. Regarding the real data, the evidence
for a second state vanishes when the measurement noise is
incorporated into the model. For both data sets, the second state
becomes highly non-persistent with a probability of remaining

in that state of p22 �1%. This is in stark contrast to the case of
modeling without the extra noise component, where p22 � 90%
generally. For the VLT data, there is also no improvement in
the Bayesian evidence. While there is some improvement in the
evidence for the Keck data, the structure of the solution suggests
that a few outliers drive this behavior (see also the discussion in
Section 2.3).

Regarding the mock data, Table 3 shows that the mock
data lead to a very similar solution as the real data, which is
encouraging. Since the mock data algorithm was calibrated to
the VLT data in terms of the sampling function and applied noise,
the agreement between the mock data and the real VLT data is
stronger than with the Keck data. When the measurement noise
is not incorporated into the modeling, a second state is clearly
preferred. Since the mock data follow a single-state process by
construction, this shows that the white measurement noise leads
to a discernible state in addition to the intrinsic red noise process
of Sgr A*. Again, when the noise is explicitly convolved into
the conditional distributions, the evidence for a second state
vanishes. This solution puts the probability of remaining in the
second state at p22 � 1%.

In summary, the evidence for two distinct states in the flux
from Sgr A* disappears when the measurement noise is taken
into account. Therefore, we see our hypothesis verified: the
quickly mean-reverting, lower-mean state represents the state
when the observed flux changes are dominated by instrumental
noise, and the slowly mean-reverting, higher-mean state repre-
sents the state when the flux changes are dominated by Sgr A*
itself.
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Table 2
Multi-state Modeling of Sgr A* with Measurement Noise Componenta

Model log(Evidence) Parameter valuesb

VLT data
log log-OU −7899 (k, μ, σ ) = (0.06, 0.14, 0.10)
log-OU −7436 (k, μ, σ ) = (0.04, 0.75, 0.17)

loglog-OU/log-OU −7420 (k1, μ1, σ1, p11, k2, μ2, σ2, p21) = (0.07, 0.17, 0.10, 0.99, 0.72, 1.39, 0.56, 0.98)
2nd state irrelevant and non-persistent (p22 = 2%)

Keck data
log log-OU −432 (k, μ, σ ) = (0.02, 0.04, 0.07)
log-OU −417 (k, μ, σ ) = (0.02, 0.37, 0.16)

loglog-OU/log-OU −194 (k1, μ1, σ1, p11, k2, μ2, σ2, p21) = (0.01, 0.04, 0.05, 0.97, 0.20, 1.33, 0.28, 0.99)
2nd state irrelevant and non-persistent (p22 =1%)

Notes.
a The value for σmeas is σmeas = 0.32 mJy for the VLT data (Witzel et al. 2012), and σmeas = 0.16 mJy for the Keck data (G. Witzel et al., in preparation).
b The unit for the k parameter is always minute−1. The units for μ and σ ∗ √

t depend on the model and are either log(mJy) or log(log(mJy)). The prior for the
parameters is a uniform distribution U(0, 1), only for μ2 it is U(0, 3).

Table 3
Multi-state Modeling of Mock Dataa

Model log(Evidence) Parameter valuesb

Modeling without measurement noise component
log log-OU −9157 (k, μ, σ ) = (0.10, 0.15, 0.15)
log-OU −10477 (k, μ, σ ) = (0.11, 0.87, 0.29)

loglog-OU/log-OU −7975 (k1, μ1, σ1, p11, k2, μ2, σ2, p21) = (1.25, 0.001, 0.28, 0.97, 0.04, 1.48, 0.11, 0.01)
Modeling with measurement noise componentc

log log-OU −8486 (k, μ, σ ) = (0.04, 0.25, 0.07)
log-OU −8286 (k, μ, σ ) = (0.04, 0.87, 0.14)

loglog-OU/log-OU −8248 (k1, μ1, σ1, p11, k2, μ2, σ2, p21) = (0.03, 0.04, 0.06, 0.50, 0.07, 1.75, 0.09, 0.999)
2nd state non-persistent (p22 = 0.1%)

Notes.
a The model for the mock data is taken from Witzel et al. (2012), where it has been calibrated with the VLT data and uses a single state only.
b The unit for the k parameter is always minute−1. The units for μ and σ ∗ √

t depend on the model and are either log(mJy) or log(log(mJy)). When no
measurement noise is modeled, the prior for all parameters is a uniform distribution U(0, 10). When measurement noise is modeled, the prior for the parameters
is a uniform distribution U(0, 1), only for μ2 it is U(0, 3).
c The value for σmeas is σmeas = 0.32 mJy.

It is interesting to note that the same result holds true when
the analysis is done on a combined Keck and VLT data set (see
Figure 2). While two states are again being picked up when
the measurement noise is unaccounted for, one state tends to
describe white noise and the other Sgr A* intrinsically. With the
measurement noise convolved into the conditional distributions,
the evidence for a second state vanishes.

3.4. The Parameters of the Single-state (Best-fit) Model

We have shown that Sgr A* is sufficiently described by a
single-state process once the measurement noise is accounted
for in the modeling. The accurate model for Sgr A*’s light curve
is therefore the log-OU process convolved with Gaussian noise
(see Table 2). While it is tempting to interpret these parameters
and compare them to different modeling approaches of the past,
one has to be cautious when the single-state parameter inference
is done as the limiting case of a multi-state model, as we have
done here.

The reason for caution is as follows. Our approach models
the conditional distribution from one measurement to the next,
f (yt+Δt |yt ), which is necessary in the context of a multi-state
Markov model. If only a single state is assumed, this means,
however, that only the typical sampling horizon Δt is used to

estimate the mean-reversion timescale k. If the OU process is
completely accurate and describes the true nature of the source,
this is unproblematic. If, however, there are deviations from the
OU process in the data, a different sampling horizon would lead
to a different estimate of k. Ideally, a global approach using all
time lags in the data would be used to estimate k for a single-
state process. Since we focus here on multi-state modeling, this
is beyond the scope of this work. We would like to note, however,
that the analysis of our mock data lead to consistent results with
the analysis of the real data, which means we explicitly confirm
the results of Witzel et al. (2012).

4. DISCUSSION AND CONCLUSION

Using the most extensive light curve of Sgr A* to date with
combined data from the VLT and Keck Observatory (G. Witzel
et al., in preparation), we arrive at two main results: (1) the
observed flux from Sgr A* shows two distinct states, one being
noise dominated and the other source dominated, and (2) the
intrinsic variability of Sgr A* is sufficiently described by a
single-state stochastic process. Both findings have interesting
implications, and we will discuss them in turn.

The presence of a noise-dominated and a source-dominated
state in Sgr A* is a manifestation of the colloquial language
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used in the Galactic center community, where a quiescent and
a flaring state of Sgr A* in the NIR is often talked about.
We have shown here that this intuitive distinction is correct
when describing observed light curves; however, Sgr A* is
intrinsically not in quiescent and flaring states but rather in one
single state only. The language is therefore somewhat imprecise,
and the word “flare” should not be used to describe Sgr A* in
the NIR. This also means that the lack of statistical evidence
for a QPO of ∼17 minutes can likely not be explained by
distinct states of which only one is accompanied by a QPO,
a possibility raised by Genzel et al. (2010). The fact that the
intrinsic behavior of Sgr A* shows no evidence for a second state
explores and falsifies the idea first suggested by Dodds-Eden
et al. (2011). Physically, this means that one stochastic process
without the addition of time-resolved, discrete events—such as
the disruption of asteroids—fully explains our data set.

It will be interesting to see whether a change of Sgr A*’s in-
trinsic variability state changes when the gaseous, red, emission-
line object G2 has passed the black hole in early 2014 (Gillessen
et al. 2012, 2013a, 2013b; Phifer et al. 2013; Meyer et al. 2013).
Since there is gas associated with this object, it could potentially
offer a unique probe to observe the response of the accretion flow
to a sudden increase of mass. However, the amount of gas is un-
certain, and it is unclear if there will be any visible effect to
the flux emission from Sgr A*. Two scenarios are likely: either
something obvious will happen to Sgr A*’s flux distribution like
a shift toward a much higher mean or—if there is any change
at all—it could be very subtle, requiring a detailed statistical
method like the one we have developed here. This statistical
methodology, in addition to the best possible data baseline by
merging the VLT and Keck data, might prove crucial in under-
standing G2’s impact on Sgr A*.

Compared to simpler methods, our Hidden Markov Model
approach presented here has the distinct advantage that it not
only answers the question whether two states are needed, but it
also solves for the times when the state changes happen. For G2,
this is important because although the time and distance of the
closest approach is fairly well known for G2’s orbit, it is unclear
when the gas has come down from ∼2400RS all the way to a
few RS where the near-infrared flux gets emitted. Given enough
observations, solving for the time of state change (if there will be
one) can directly test accretion flow dynamics around Sgr A*.

Another benefit of our approach that assigns a probability
to each flux change to be noise or source dominated is that
it offers a recipe to get an astrometric position of Sgr A*
in the infrared. The astrometry of stars orbiting around the
black hole aims to detect deviations from a purely Keplerian
orbit as the next milestone (e.g., Ghez et al. 2008; Gillessen
et al. 2009; Meyer et al. 2012). The astrometry is currently
limited by the construction of an absolute reference frame that
is used to transform all star positions into a common frame.
This frame of reference is defined by seven maser sources
visible in the radio as well as infrared (Yelda et al. 2010).
Since Sgr A* is also visible at both of these wavelengths
and sits at a position that is most important to anchor the
reference frame, it could be of tremendous help in overcoming
the current limitations. However, reliable astrometry of Sgr A*
has been elusive. Its position changes as a function of brightness,
probably because unresolved stellar sources bias its position,
and the resulting astrometric shift is dependent on the relative
contribution of Sgr A*’s intrinsic flux. Our two-state modeling
approach effectively filters out the flux point variations in the
time series that are dominated by Sgr A* itself. Getting a position

based on the images only where the apparent flux from Sgr A*
is source dominated should improve the astrometry and lead to
a consistent determination of its position.

As a final remark, we would like to note that the multi-
state methodology presented here is directly applicable to other
sources such as AGNs. The only key assumption is the validity
of the OU process (also called a damped random walk). This also
means that the method is not wavelength specific. The analysis
of optical AGN light curves, e.g., should be possible in exactly
the same way as is presented here.
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Meyer, L., Eckart, A., Schödel, R., et al. 2006b, A&A, 460, 15
Morris, M. R., Meyer, L., & Ghez, A. 2012, RAA, 12, 995
Narayan, R., Yi, I., & Mahadevan, R. 1995, Natur, 374, 623
Neilsen, J., Nowak, M. A., Gammie, C., et al. 2013, ApJ, 774, 42
Phifer, K., Do, T., Meyer, L., et al. 2013, ApJL, 773, L13
Rabiner, L. 1989, Proc. IEEE, 77, 257
Witzel, G., Eckart, A., Bremer, M., et al. 2012, ApJS, 203, 18
Yelda, S., Lu, J. R., Ghez, A., et al. 2010, ApJ, 725, 331
Yuan, F., Quataert, E., & Narayan, R. 2003, ApJ, 598, 301
Yuan, F., Quataert, E., & Narayan, R. 2004, ApJ, 606, 894
Zu, Y., Kochanek, C. S., Kozlowski, S., & Udalski, A. 2013, ApJ, 765, 106

9

http://dx.doi.org/10.1051/0004-6361:20035883
http://adsabs.harvard.edu/abs/2004A&A...417...71A
http://adsabs.harvard.edu/abs/2004A&A...417...71A
http://dx.doi.org/10.1038/35092510
http://adsabs.harvard.edu/abs/2001Natur.413...45B
http://adsabs.harvard.edu/abs/2001Natur.413...45B
http://dx.doi.org/10.1086/153242
http://adsabs.harvard.edu/abs/1974ApJ...194..265B
http://adsabs.harvard.edu/abs/1974ApJ...194..265B
http://dx.doi.org/10.1046/j.1365-8711.1999.02358.x
http://adsabs.harvard.edu/abs/1999MNRAS.303L...1B
http://adsabs.harvard.edu/abs/1999MNRAS.303L...1B
http://dx.doi.org/10.1111/j.1365-2966.2005.09458.x
http://adsabs.harvard.edu/abs/2005MNRAS.363..353B
http://adsabs.harvard.edu/abs/2005MNRAS.363..353B
http://dx.doi.org/10.1093/mnras/stu1039
http://adsabs.harvard.edu/abs/2014MNRAS.442.2797D
http://adsabs.harvard.edu/abs/2014MNRAS.442.2797D
http://dx.doi.org/10.1088/0004-637X/691/2/1021
http://adsabs.harvard.edu/abs/2009ApJ...691.1021D
http://adsabs.harvard.edu/abs/2009ApJ...691.1021D
http://dx.doi.org/10.1088/0004-637X/728/1/37
http://adsabs.harvard.edu/abs/2011ApJ...728...37D
http://adsabs.harvard.edu/abs/2011ApJ...728...37D
http://dx.doi.org/10.1051/0004-6361:20040495
http://adsabs.harvard.edu/abs/2004A&A...427....1E
http://adsabs.harvard.edu/abs/2004A&A...427....1E
http://dx.doi.org/10.1088/0264-9381/30/24/244003
http://dx.doi.org/10.1111/j.1365-2966.2007.12353.x
http://adsabs.harvard.edu/abs/2008MNRAS.384..449F
http://adsabs.harvard.edu/abs/2008MNRAS.384..449F
http://dx.doi.org/10.1111/j.1365-2966.2009.14548.x
http://adsabs.harvard.edu/abs/2009MNRAS.398.1601F
http://adsabs.harvard.edu/abs/2009MNRAS.398.1601F
http://adsabs.harvard.edu/abs/2010RvMP...82.3121G
http://adsabs.harvard.edu/abs/2010RvMP...82.3121G
http://dx.doi.org/10.1038/nature02065
http://adsabs.harvard.edu/abs/2003Natur.425..934G
http://adsabs.harvard.edu/abs/2003Natur.425..934G
http://dx.doi.org/10.1086/592738
http://adsabs.harvard.edu/abs/2008ApJ...689.1044G
http://adsabs.harvard.edu/abs/2008ApJ...689.1044G
http://dx.doi.org/10.1086/382024
http://adsabs.harvard.edu/abs/2004ApJ...601L.159G
http://adsabs.harvard.edu/abs/2004ApJ...601L.159G
http://dx.doi.org/10.1088/0004-637X/692/2/1075
http://adsabs.harvard.edu/abs/2009ApJ...692.1075G
http://adsabs.harvard.edu/abs/2009ApJ...692.1075G
http://dx.doi.org/10.1038/nature10652
http://adsabs.harvard.edu/abs/2012Natur.481...51G
http://adsabs.harvard.edu/abs/2012Natur.481...51G
http://dx.doi.org/10.1088/0004-637X/763/2/78
http://adsabs.harvard.edu/abs/2013ApJ...763...78G
http://adsabs.harvard.edu/abs/2013ApJ...763...78G
http://dx.doi.org/10.1088/0004-637X/774/1/44
http://adsabs.harvard.edu/abs/2013ApJ...774...44G
http://adsabs.harvard.edu/abs/2013ApJ...774...44G
http://dx.doi.org/10.1088/0004-637X/726/1/11
http://adsabs.harvard.edu/abs/2011ApJ...726...11J
http://adsabs.harvard.edu/abs/2011ApJ...726...11J
http://dx.doi.org/10.1088/0004-637X/698/1/895
http://adsabs.harvard.edu/abs/2009ApJ...698..895K
http://adsabs.harvard.edu/abs/2009ApJ...698..895K
http://dx.doi.org/10.1088/0004-637X/721/2/1014
http://adsabs.harvard.edu/abs/2010ApJ...721.1014M
http://adsabs.harvard.edu/abs/2010ApJ...721.1014M
http://dx.doi.org/10.1086/593147
http://adsabs.harvard.edu/abs/2008ApJ...688L..17M
http://adsabs.harvard.edu/abs/2008ApJ...688L..17M
http://dx.doi.org/10.1088/0004-637X/694/1/L87
http://adsabs.harvard.edu/abs/2009ApJ...694L..87M
http://adsabs.harvard.edu/abs/2009ApJ...694L..87M
http://dx.doi.org/10.1126/science.1225506
http://adsabs.harvard.edu/abs/2012Sci...338...84M
http://adsabs.harvard.edu/abs/2012Sci...338...84M
http://dx.doi.org/10.1017/S1743921314000714
http://adsabs.harvard.edu/abs/2014IAUS..303..264M
http://adsabs.harvard.edu/abs/2014IAUS..303..264M
http://dx.doi.org/10.1051/0004-6361:20065925
http://adsabs.harvard.edu/abs/2006A&A...460...15M
http://adsabs.harvard.edu/abs/2006A&A...460...15M
http://adsabs.harvard.edu/abs/2012RAA....12..995M
http://adsabs.harvard.edu/abs/2012RAA....12..995M
http://dx.doi.org/10.1038/374623a0
http://adsabs.harvard.edu/abs/1995Natur.374..623N
http://adsabs.harvard.edu/abs/1995Natur.374..623N
http://dx.doi.org/10.1088/0004-637X/774/1/42
http://adsabs.harvard.edu/abs/2013ApJ...774...42N
http://adsabs.harvard.edu/abs/2013ApJ...774...42N
http://dx.doi.org/10.1088/2041-8205/773/1/L13
http://adsabs.harvard.edu/abs/2013ApJ...773L..13P
http://adsabs.harvard.edu/abs/2013ApJ...773L..13P
http://dx.doi.org/10.1109/5.18626
http://dx.doi.org/10.1088/0067-0049/203/2/18
http://adsabs.harvard.edu/abs/2012ApJS..203...18W
http://adsabs.harvard.edu/abs/2012ApJS..203...18W
http://dx.doi.org/10.1088/0004-637X/725/1/331
http://adsabs.harvard.edu/abs/2010ApJ...725..331Y
http://adsabs.harvard.edu/abs/2010ApJ...725..331Y
http://dx.doi.org/10.1086/378716
http://adsabs.harvard.edu/abs/2003ApJ...598..301Y
http://adsabs.harvard.edu/abs/2003ApJ...598..301Y
http://dx.doi.org/10.1086/383117
http://adsabs.harvard.edu/abs/2004ApJ...606..894Y
http://adsabs.harvard.edu/abs/2004ApJ...606..894Y
http://dx.doi.org/10.1088/0004-637X/765/2/106
http://adsabs.harvard.edu/abs/2013ApJ...765..106Z
http://adsabs.harvard.edu/abs/2013ApJ...765..106Z

	1. INTRODUCTION
	2. METHODOLOGY
	2.1. Simple Example
	2.2. Extension to SgrA*
	2.3. Is an Additional State Justified?

	3. RESULTS FOR SGR A* DATA
	3.1. Baseline Model
	3.2. Modeling without the Measurement Noise Component
	3.3. Modeling with Measurement Noise
	3.4. The Parameters of the Single-state (Best-fit)
Model

	4. DISCUSSION AND CONCLUSION
	REFERENCES

