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Abstract. We model illiquidity as a restriction on the stopping rules investors can follow
in selling assets, and apply this framework to the valuation of thinly traded investments.
We find that discounts for illiquidity can be surprisingly large, approaching 30%–50%
in some cases. Immediacy plays a unique role and is valued much more than ongoing
liquidity. We show that investors in illiquid enterprises have strong incentives to increase
dividends and other cash payouts, thereby introducing potential agency conflicts. We also
find that illiquidity and volatility are fundamentally entangled in their effects on asset
prices. This aspect may help explain why some assets are viewed as inherentlymore liquid
than others and why liquidity concerns are heightened during financial crises.
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1. Introduction
Thinly traded assets are often defined as invest-
ments for which there is no liquid market available.
Thus, investors holding illiquid or thinly traded assets
may not be able to sell their positions for extended
periods—if ever. At best, investors may only be able to
sell in infrequent privately negotiated transactions. The
economics of these private transactions, however, are
complicated since prospective buyers realize that they
will inherit the same problem when they later want to
resell the assets. Not surprisingly, sales of thinly traded
assets typically occur at prices far lower than would be
the case if there were a liquid public market.
The valuation of thinly traded assets is one of the

most important unresolved issues in asset pricing and
has many fundamental implications for individuals,
firms, markets, and policymakers. One reason for this
is that thinly traded assets collectively represent a large
fraction of the aggregate wealth in the economy. Key
examples where investors may face long delays before
being able to liquidate holdings include the following:

• Sole proprietorships.
• Partnerships, limited partnerships.
• Private equity and venture capital.
• Life insurance and annuities.
• Pensions and retirement assets.
• Residential and commercial real estate.
• Private placements of debt and equity.
• Distressed assets and fire sales.
• Compensation in the form of restricted options

and shares.
• Investments in education and human capital.
Other examples include transactions that take pub-

lic firms private such as leveraged buyouts (LBOs) that

result in residual equity holders having much less liq-
uid positions. Many hedge funds have lockup provi-
sions that prohibit investors from withdrawing their
capital for months or even years. Investors in initial
public offerings (IPOs) are often allocated shares with
restrictions on reselling or “flipping” the shares.

Many insightful approaches have been used in the
asset pricing literature to study the effects of illiquidity
on security prices, and these are briefly described in the
literature review section below. This paper approaches
the challenge of valuing illiquid assets from a new per-
spective. We view illiquidity as a restriction on the set
of stopping rules that an investor is allowed to fol-
low in selling the asset. This approach allows us to
use an option-theoretic framework to place realistic
bounds on the values of securities that cannot be traded
continuously.

To illustrate the intuition behind our approach, let
Ω denote the set of all stopping rules available to an
investor when the asset is fully liquid. Let A ⊂Ω denote
the restricted subset of stopping rules available because
of the illiquidity of the asset. Finally, let B ⊂A be a sub-
set of A that contains only one element—theworst-case
stopping rule in A. Our approach consists of finding
an upper bound on the amount that would be required
to fully compensate an investor for the welfare loss
from restricting his stopping rules to subset B. Using
a simple dominance argument, however, it is clear that
this amount also represents an upper bound on what
would be required to fully compensate an investor who
was limited to the less-restricted subset A. Thus, by
finding a bound for the worst-case scenario, our results
also apply for less-severe forms of illiquidity encoun-
tered in actual markets.
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This paper contributes to an extensive literature that
uses dominance arguments to provide asset pricing
bounds. Key examples include the no-arbitrage option-
pricing bounds derived by Merton (1973) and the
bounds on the moments of the stochastic discount fac-
tor obtained by Hansen and Jagannathan (1991). There
are many reasons why having a lower bound on the
value of an illiquid asset could be useful. The lower
bound could serve as a reservation price in negotia-
tions between sellers and prospective buyers and pro-
vide a benchmark in litigation and dispute resolution.
The lower bound could also provide guidance to reg-
ulators and policymakers in making regulatory capital
decisions or establishing limits on the collateral value
of illiquid assets used to secure debt financing or in
margin accounts.1

The results provide a number of important insights
into the potential effects of illiquidity on asset values.
First, we show that the value of immediacy in financial
markets is much higher than the value of future liquid-
ity. For example, the discount for illiquidity for the first
day of illiquidity is 2.4 times that for the second day,
4.2 times that for the fifth day, 6.2 times that for the
tenth day, and 20.0 times that for the 100th day. These
results suggest that immediacy is viewed as fundamen-
tally different in its nature. This dramatic time asym-
metry in the value of liquidity may also help explain
the rapidly growing trend toward electronic execution
and high-frequency trading in many financial markets.

Second, our results confirm that the values of illiq-
uid assets can be heavily discounted in the market. We
show that investors could discount the value of illiq-
uid assets by as much as 10%, 20%, or 30% for illiq-
uidity horizons of one, two, or five years, respectively.
Although our results only provide lower bounds on the
values of illiquid assets, the evidence in the empirical
literature suggests that these bounds may be realistic
approximations of the prices at which various types
of thinly traded securities are sold in privately nego-
tiated transactions. For example, Silber (1991) docu-
ments that restricted stocks—stocks that investors can-
not trade for two years after they are acquired—are
placed privately at an average discount of 34% rel-
ative to fully liquid shares, and many are placed at
discounts in excess of 50%. Berkman and Eleswarapu
(1998) find that when an exchange rule allowing for-
ward trading was abolished, the decreased liquidity
of the affected shares resulted in prices declining by
15%. Fleckenstein et al. (2014) show that portfolios of
Treasury inflation protected securities have traded at
discounts of more than 23% relative to portfolios of
more-liquid Treasury bonds with identical cash flows.
Aragon (2007) finds that hedge funds with lockups
have annual returns that average 4%–7% more than
hedge funds without lockups. Brenner et al. (2001) find

that thinly traded currency options with three- to six-
monthmaturities are placed privately at roughly a 20%
discount to fully liquid options. Chen and Xiong (2001)
show that restricted institutional shares in China trade
at average discounts of 78%–86% relative to otherwise
identical common shares. There are many other similar
examples in the empirical literature (for example, see
the review article by Amihud et al. 2005).

Third, we find that the effects of illiquidity and
volatility on asset prices are fundamentally entangled.
Specifically, asset return variances and the degree of
asset illiquidity are indistinguishable in their effects
on discounts for illiquidity. This makes intuitive sense
since investors are more likely to want to sell assets
when prices have diverged significantly from their
original purchase prices. This divergence, however, can
arise both through the passage of time as well as
through the volatility of asset prices. Because of this,
assets with stable prices such as cash or short-term
Treasury bills can be viewed as inherently more liq-
uid than assets such as stocks even when all are read-
ily tradable. This may also help explain why concerns
about market liquidity becomemuchmore central dur-
ing financial crises and periods of market stress.

Finally, the results indicate that the effect of illiq-
uidity on asset prices is smaller for investments with
higher dividends or cash payouts. An important impli-
cation of this is that investors in illiquid assets such
as private equity, venture capital, leveraged buyouts,
etc. have strong economic incentives to increase pay-
outs. Thus, illiquidity may have the potential to be a
fundamental driver of both dividend policy and cap-
ital structure decisions for privately held ventures or
thinly traded firms.

2. Literature Review
The literature on the effects of illiquidity on asset valu-
ation is far too extensive for us to be able to review in
detail. Instead, we will simply summarize some of the
key themes that have been discussed in this literature.
For an in-depth survey of this literature, see the excel-
lent review by Amihud et al. (2005) on liquidity and
asset prices.

Many important papers in this literature focus on
the role played by transaction costs and other finan-
cial frictions in determining security prices. Amihud
and Mendelson (1986) present a model in which risk-
neutral investors consider the effect of future trans-
action costs in determining current valuations for
assets. Constantinides (1986) shows that while trans-
action costs can have a large effect on trading volume,
investors optimally trade in a way that mitigates the
effect of transaction costs on prices. Vayanos (1998) and
Vayanos and Vila (1999) show that transaction costs
can increase the value of liquid assets, but can have an
ambiguous effect on the value of illiquid assets.
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A number of recent papers recognize that liquid-
ity is time varying and develop models in which
liquidity risk is priced into asset valuations. Pastor
and Stambaugh (2003) consider a model in which
marketwide systemic liquidity risk is priced. Acharya
and Pedersen (2005) show how time-varying liquidity
risk affects current security prices and future expected
returns. Gromb and Vayanos (2002) and Brunnermeier
and Pedersen (2009) develop models in which changes
in the abilities of dealers to fund their inventories trans-
lates into variation in the liquidity they can provide,
which in turn results in a liquidity risk premium being
embedded into asset values.

Another recent theme in the literature addresses the
effects of search costs or the cost of being present in
the market on liquidity and asset prices. Duffie et al.
(2005, 2007), Vayanos and Wang (2007), Vayanos and
Weill (2008), Duffie et al. (2009), and others consider
models in which agents incur costs as they search for
other investors willing to trade with them, and show
how these costs affect security prices. Huang andWang
(2009, 2010) study asset pricing in a market where it
is costly for dealers to be continuously present in the
market and provide liquidity.

A number of papers in the literature view illiquidity
from the perspective of a limitation on the ability of
an agent to trade continuously. Lippman and McCall
(1986) define liquidity in terms of the expected time to
execute trading strategies. Longstaff (1995, 2001), Kahl
et al. (2003), and Finnerty (2012) study the implica-
tions of trading restrictions on assets. Longstaff (2009)
presents a general equilibrium asset pricing model in
which agents must hold asset positions for a fixed hori-
zon rather than being able to trade continuously.

Finally, several papers approach the valuation of
liquidity from an option-theoretic perspective. In
Copeland and Galai (1983), dealers take inventory risk
by providing bid and ask quotes over some horizon in
markets where investors may have private information.
They show that the bid-ask spread compensating the
dealers for bearing this risk can be modeled as a option
straddle. Similarly, Chacko et al. (2008) value imme-
diacy by modeling limit orders as American options.
Ang and Bollen (2010) model the option to withdraw
funds from a hedge fund as a real option. Ghaidarov
(2014) models the option to sell equity securities as a
forward-starting put option.

3. Modeling Illiquidity
In this section, we present a new approach to mod-
eling thin trading or illiquidity in financial markets.
This approach provides a simple framework that can
be used to place lower bounds on the values of illiquid
assets. Note that placing a lower bound on the value
of the illiquid asset is equivalent to placing an upper
bound on the size of the discount for illiquidity. For

clarity, we will generally couch the discussion in terms
of the discount for illiquidity.

The concept of a stopping rule plays a central role in
how we model illiquidity. Intuitively, a stopping rule
can be viewed as a decision rule that determines the
(potentially random) stopping time τ when the asset
is to be sold, where τ depends only on information
available in the market up to and including time τ. For
example, a decision rule to sell the asset at a prespec-
ified date T is a stopping rule. A decision rule to sell
the asset via a limit order that is executed the first time
the asset price reaches a value of, say, 50 is a stopping
rule. In contrast, a decision rule to sell the asset when
its price reaches its maximum value between time zero
and time T is not a stopping rule since the time at
which the maximum is attained is not known for cer-
tain prior to time T.2

The key insight underlying thismodeling framework
is that illiquidity can be viewed as a restriction on the
set of stopping rules that an investor can follow in sell-
ing the asset. In particular, an investor that purchases a
liquid asset can follow any stopping rule he chooses in
selling the asset. In contrast, an investor that purchases
an illiquid asset is restricted to a subset of stopping
rules. If the investor’s preferred stopping rule is not
included in the subset, then the investor must choose a
stopping rule that is suboptimal from his perspective.
In this case, the investor suffers a welfare loss and may
only be willing to purchase the illiquid asset at a dis-
count relative to what he would be willing to pay for
the fully liquid asset.

Specifically, let T denote the horizon over which an
investor faces illiquidity constraints on his holdings of
an asset.3 Let XT denote the value of the investor’s posi-
tion at time T if the investor were able to follow his
preferred stopping rule in selling the asset and then
reinvesting the proceeds in the riskless asset. Similarly,
let YT denote the value of the investor’s position at
time T by following the best stopping rule allowed him
by the illiquidity of the asset and then reinvesting the
proceeds in the riskless asset. Clearly, if an investor
has preferences over stopping rules, then these two
outcomes are not equivalent and the investor may be
unwilling to pay as much for the illiquid asset.

Viewing illiquidity from this perspective suggests a
very intuitive framework for placing bounds on the
discount for illiquidity. Recall that ex ante, the investor
would prefer to receive XT at time T, but will only
receive YT because of the illiquidity of the asset. How-
ever, if the investor were to be given an option that
allowed him to exchange XT for YT at time T (known as
an exchange option), then the investor would be made
completely whole on an ex post basis. In particular, an
investor with a portfolio consisting of the illiquid asset
and an exchange option with cash flow max(0,XT −YT)
at time T would end up with YT + max(0,XT − YT) �
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max(XT ,YT). This cash flow, however, is greater than
or equal to the cash flow XT that the investor would
have received had he purchased the liquid asset instead
of the illiquid asset. A simple dominance argument
implies that the investor would prefer the portfolio
of the illiquid asset and the exchange option to own-
ing the liquid asset. In turn, this implies that the sum of
the values of the illiquid asset and the exchange option
should be greater than or equal to that of the liquid
asset, or alternatively, that the value of the exchange
option represents an upper bound on the discount for
illiquidity.
Recall that we designated YT as the value of the

investor’s position by following the best stopping rule
from the subset A of stopping rules permitted by the
illiquidity of the asset. It is important to observe, how-
ever, that the above analysis holds even when the stop-
ping rule is chosen from a more restricted subset of A,
whichwe designate as B. This follows since the investor
still prefers max(XT ,YT) to XT , where YT is now the
value of the investor’s portfolio following the best stop-
ping rule in B. Thus, the value of the exchange option
with payoff max(0,XT − YT) also represents an upper
bound on the discount for illiquidity. Furthermore, this
is true for any subset B ⊂ A. We will use this result in
the next section since by limiting B to the worst-case
stopping rule (buy and hold), we can easily identify YT
and solve for the value of the exchange option. Intu-
itively, this simply means that by compensating the
investor for the worst-case illiquidity scenario, we are
also fully compensating the investor for the actual illiq-
uidity scenario he faces. Thus, the upper bound we
derive is applicable even when the illiquidity of the
asset does not limit the investor to following a buy-
and-hold strategy.4

4. The Discount for Illiquidity
As discussed above, the task of finding the upper
bound on the discount for illiquidity can be reduced
to solving for the value of the exchange option. To do
this, we first need to specify a valuation framework for
the exchange option.
As the valuation framework for the exchange option,

we adopt the familiar Black and Scholes (1973) option-
pricing setting. Let St be the price per share of an asset,
where the share is fully liquid and can be traded con-
tinuously in the financial markets without frictions.We
assume that the dynamics of St are given by the fol-
lowing geometric Brownian motion process under the
risk-neutral pricing measure,

dS � rS dt + σS dZ, (1)

where r is the constant riskless rate, σ is the volatility
of continuously compounded returns, and dZ is the

increment of a standard Brownian motion. For simplic-
ity, we assume for the present that the asset does not
pay any dividends or cash flows before time T. This
assumption, however, will be relaxed later.

As described above, we will solve for value of the
exchange option under the worst-case illiquidity sce-
nario. The resulting value of the exchange option
will clearly provide an upper bound for the amount
required to compensate investors who acquire assets
with less-severe liquidity restrictions. Specifically, the
worst-case scenario is that once the illiquid asset is pur-
chased at time zero, it cannot be sold again until time T.
Thus, the illiquid asset is completely nonmarketable
from time zero to time T. In this worst-case scenario,
an investor who buys the illiquid asset at time zero has
only one stopping rule available—selling the asset at
time T. As a result, the cash flow received at time T
from following this stopping rule is simply YT � ST .
Next, we need to identify XT . To do so, we need sev-

eral preliminary results. First, let τ, 0 ≤ τ ≤ T, denote
the time at which the stopping rule chosen by the
investor results in the liquid asset being sold. The cash
flow received by the investor from selling the liquid
asset at time τ and reinvesting the proceeds in the risk-
less asset is XT � Sτe r(T−τ).

Second, substituting these expressions for XT and YT
into the expression for the payoff from an exchange
option implies that the cash flow at time T from the
exchange option is given by

max(0, Sτe r(T−τ) − ST). (2)

As shown, this cash flow depends on the asset price
at both the stopping time τ and the final date T. An
important implication of this is that once the stopping
time τ is reached, the value of Sτ is known and is no
longer stochastic. This means that as of time τ, the
exchange option can be viewed as a simple put option
on the asset value with a fixed strike price of Sτe r(T−τ).
Thus, as shown in the appendix (which provides the
derivation for this and all other results in the paper),
the value of the option at time τ is given by substitut-
ing in the current stock price Sτ and the strike price
Sτe r(T−τ) into the Black and Scholes (1973) formula for
puts,

Sτ[N(
√
σ2(T − τ)/2) −N(−

√
σ2(T − τ)/2)], (3)

where N( · ) is the standard cumulative normal distri-
bution function. This expression for the value of the
option as of the stopping time τ is true for any stopping
rule.

Third, to solve for the initial or time-zero value of the
exchange option, we take the present value of receiving
a cash flow at time τ equal to the value of the put given
in Equation (3),

E[e−rτSτ[N(
√
σ2(T − τ)/2) −N(−

√
σ2(T − τ)/2)]], (4)
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where the expectation is taken with respect to the joint
distribution of Sτ and the stopping time τ.
For any choice of τ, the value of the exchange option

in Equation (4) provides an upper bound on the dis-
count for illiquidity. Rather than attempting to solve for
the value of the exchange option for a specific stopping
rule, our approach will simply be to solve for the max-
imum value of the exchange option over all possible
stopping rules. Clearly, this approach will result in a
value for the exchange option that dominates the value
of the exchange option resulting from any other stop-
ping rule that might be chosen by the investor. Intu-
itively, themaximized value of the exchange option can
be viewed as an “upper bound on an upper bound.”
Given this structure, we can now determine the

maximized value of the exchange option. This can be
obtained by solving for the stopping rule that maxi-
mizes the expression given above,

max
τ

E[e−rτSτ[N(
√
σ2(T − τ)/2) −N(−

√
σ2(T − τ)/2)]].

(5)
As shown in the appendix, the stopping rule that

maximizes the value of the exchange option has a sur-
prisingly simple form—the maximizing stopping rule
is simply to sell the liquid asset immediately at time
zero. Thus, τ � 0. The intuition for this result is easily
understood. By compensating an investor for illiquid-
ity in a way that allows them to attain the maximum of
XT and YT , the investor has a strong incentive to ensure
that XT and YT are as different as possible. By stopping
at time zero, the exchange option allows the investor to
choose between payoffs linked to the most temporally
divergent values of the asset price possible: S0 and ST .
Finally, to obtain the maximized value of the

exchange option, we substitute the maximizing stop-
ping rule τ � 0 into Equation (4). It is easily shown that
the resulting value for the exchange option and upper
bound on the discount for illiquidity is given by

S0[N(
√
σ2T/2) −N(−

√
σ2T/2)]. (6)

This closed-form solution for the value of the exchange
option has a very simple structure. In particular, the
value of the exchange option is an explicit function of
both the length of the illiquidity horizon T and the
volatility of the liquid asset as measured by σ.
The discount for illiquidity is easily shown to be an

increasing function of both the illiquidity horizon T
and the volatility parameter σ. These comparative stat-
ics results are intuitive since an increase in T restricts
the stopping rules available to the investor further,
while an increase in σ increases the opportunity cost of
not being able to trade. The dependence of the discount
on volatility and the horizon T parallels the results in
Copeland and Galai (1983) and others who use option-
theoretic frameworks to model illiquidity.

Given the closed-form solution for the exchange
option, the lower bound on the value of the illiquid
asset is given by subtracting the value of the exchange
option from the value of an equivalent liquid asset.

5. Discussion
These results for the lower bound on the value of
illiquid or thinly traded securities have many interest-
ing implications. To illustrate,Table 1 reports the lower
bounds for illiquidity horizons ranging fromone day to
30 years, and for volatilities ranging from 10% to 50%.

Table 1 shows that illiquidity can have a dramatic
effect on asset values. In particular, the price of an
investment could be discounted by as much as 20%–
40% for illiquidity horizons ranging from two to five
years. Furthermore, asset prices could be discounted
by more than 50% for illiquidity horizons of 10 years
or longer. Although our results provide only lower
bounds on the values of illiquid or thinly traded assets,
these lower bounds are actually consistent with empir-
ical evidence about discounts for illiquidity.

The effects of illiquidity can also be substantial even
for relatively short horizons. Table 1 shows that a
one-day illiquidity horizon implies a lower bound on
the value of an illiquid asset ranging from 99.75%
to 98.74% of the value of the liquid asset. Similarly,
for a one-week horizon, the lower bound ranges from
99.45% to 97.23% of the value of the liquid asset.

These results imply that the discounts for illiquidity
horizons measured in days are surprisingly large. For
example, an investor who bought an illiquid asset at a
discount of 1%, but was then able to sell a day later at
the fully liquid price would realize a huge annualized
rate of return on the transaction. This suggests that the
value of immediacy (the ability to sell immediately)
could represent one of the largest types of risk premia
in financial markets.

To explore this, we compute the annualized dis-
counts for illiquidity by dividing the discounts implied

Table 1. Percentage Lower Bounds for Illiquid Asset Values

Volatility
Illiquidity
horizon 10% 20% 30% 40% 50%

1 Day 99.748 99.495 99.243 98.991 98.739
1 Week 99.447 98.894 98.340 97.787 97.234
1 Month 98.848 97.697 96.546 95.396 94.247
1 Year 96.012 92.034 88.076 84.148 80.259
2 Years 94.363 88.754 83.200 77.730 72.367
5 Years 91.098 82.306 73.732 65.472 57.615
10 Years 87.437 75.183 63.526 52.709 42.920
20 Years 82.306 65.472 50.233 37.109 26.355
30 Years 78.419 58.388 41.131 27.332 17.090

Notes. This table reports the lower bound on the value of an illiquid
asset expressed as a percentage of the price of an equivalent liquid
asset. Volatility denotes the volatility of returns for an equivalent
liquid asset.
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Table 2. Annualized Percentage Discounts for Illiquidity

Volatility
Illiquidity
horizon 10% 20% 30% 40% 50%

1 Day 63.075 126.150 189.225 252.300 315.375
1 Week 28.766 57.533 86.299 115.060 143.811
1 Month 13.819 27.636 41.447 55.248 69.038
1 Year 3.988 7.966 11.924 15.852 19.741
2 Years 2.819 5.623 8.399 11.135 13.816
5 Years 1.780 3.539 5.254 6.906 8.477
10 Years 1.256 2.482 3.647 4.729 5.708
20 Years 0.885 1.726 2.488 3.145 3.682
30 Years 0.719 1.387 1.962 2.422 2.764

Notes. This table reports the annualized percentage discount for illiq-
uidity where this value is computed as the ratio of the percentage
discount for illiquidity divided by the length of the illiquidity hori-
zon measured in years. Discounts for illiquidity are expressed as a
fraction of the value of an equivalent liquid asset. Volatility denotes
the annualized volatility of returns for an equivalent liquid asset.

by the results in Table 1 by the illiquidity horizons.
These annualized discounts are reported in Table 2.
As shown, the annualized discounts for short horizons
such as a day or a week can be orders of magnitude
greater than those for longer horizons. For example,
the annualized discount for illiquidity for a one-day
horizon is approximately 16 times as large as that for a
one-year horizon.
As an alternative way of viewing these results,

Table 3 reports the marginal discount of illiquidity as
the illiquidity horizon ranges from one to 20 days.
Specifically, we report the discount for a one-day hori-
zon, the marginal or incremental increase in the dis-
count as the horizon is increased to two days from one
day, the marginal or incremental increase in the dis-
count as the horizon is increased to three days from
two days, and so forth.

As illustrated in Table 3, the discount for illiquidity
for the first day is much larger than for the second,
third, etc. days. In particular, the discount for the first
day of illiquidity is 2.41 times that for the second day,
3.15 times that for the third day, 8.83 times that for the
20th day, and 32.33 times the discount for the day one
year later. Clearly, liquidity today is worth much more
than liquidity tomorrow.

These results are consistent with the literature on
the value of immediacy. For example, Demsetz (1968)
defines immediacy as the price concession that would
be needed to transact immediately. Our results indi-
cate that this price concession could be relatively large,
particularly for assets with higher return volatilities
such as stocks. Other authors who focus on the valua-
tion of immediacy include Stoll (2000), who develops a
regression-based model of the price of immediacy, and
Grossman and Miller (1988), who model market liq-
uidity as being determined by the supply and demand
for immediacy.

Table 3. Marginal Percentage Discounts for Illiquidity

Volatility

Day 10% 20% 30% 40% 50%

1 0.252 0.505 0.757 1.009 1.262
2 0.105 0.209 0.314 0.418 0.522
3 0.080 0.160 0.241 0.321 0.401
4 0.068 0.135 0.203 0.270 0.338
5 0.060 0.119 0.179 0.238 0.298
6 0.054 0.108 0.162 0.215 0.269
7 0.050 0.099 0.149 0.198 0.247
8 0.046 0.092 0.138 0.184 0.230
9 0.043 0.087 0.130 0.173 0.216
10 0.041 0.082 0.123 0.164 0.204
11 0.039 0.078 0.117 0.156 0.194
12 0.037 0.074 0.112 0.149 0.186
13 0.036 0.071 0.107 0.143 0.178
14 0.034 0.069 0.103 0.137 0.171
15 0.033 0.066 0.099 0.132 0.165
16 0.032 0.064 0.096 0.128 0.160
17 0.031 0.062 0.093 0.124 0.155
18 0.030 0.060 0.090 0.120 0.150
19 0.029 0.059 0.088 0.117 0.146
20 0.029 0.057 0.086 0.114 0.143

Notes. This table reports the marginal or incremental change in the
discount for illiquidity for horizons ranging from 1 to 20 days.
Volatility denotes the annualized volatility of returns for an equiva-
lent liquid asset.

The lower bounds in Table 1 also illustrate an inter-
esting symmetry between the length of the illiquidity
horizon and the volatility of the asset. In particular,
doubling the volatility has essentially the same effect
on the lower bound as quadrupling the length of the
illiquidity horizon. The reason for this symmetry is
easily seen from the expression for the lower bound
in Equation (6). As shown, the lower bound depends
on volatility and length of the illiquidity horizon only
through the product σ2T.

From an intuitive perspective, this means that nei-
ther volatility nor the length of the illiquidity hori-
zon are fundamental in determining the lower bound.
Rather, it is the total realized variance σ2T before the
asset can be traded again that matters. This implies
that volatility and the timing of illiquidity are funda-
mentally entangled in the sense that their effects are
indistinguishable from each other.

This notion of entanglement may also help explain
why some assets such as Treasury bills are viewed as
inherently more liquid than stocks even when orders
for either can be executed within seconds. Since stocks
have higher volatility, their lower bounds will always
be smaller than is the case for Treasury bills even
when both are tradable at the same frequency. Liq-
uidity is not simply a function of market microstruc-
ture. Rather, it depends also on the inherent riski-
ness of the underlying asset. These considerations may
help explain why concerns about liquidity become
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particularly acute during volatile high-stress periods in
the financial markets.

6. Extension to Dividends
In this section, we extend the analysis to the situation
in which the asset pays dividends, coupons, or other
cash payouts over time. This situation differs from the
earlier case in that when an investor sells the liquid
asset, the investor no longer receives the stream of div-
idends. In contrast, the holder of an illiquid asset con-
tinues to receive dividends until the illiquidity horizon
is reached. For symmetry, we will assume that divi-
dends are reinvested in the riskless asset as they are
received.
Given this structure, the value XT of the investor’s

position at time T from following the optimal stopping
rule is Sτe r(T−τ)+

∫ τ

0 ρs e r(T−s) ds where ρs is the dividend
(assumed continuous). The value YT of the investor’s
position at time T from following the restricted stop-
ping rule is ST +

∫ T

0 ρs e r(T−s) ds. As before, the upper
bound on the discount for illiquidity is given by the
value of the exchange option with cash flow at time T
of max(0,XT −YT).

Despite the introduction of dividends into the frame-
work, the appendix shows that the stopping strategy
that maximizes the value of this exchange option is
identical. Specifically, the maximizing stopping rule is
to sell the liquid asset immediately at time zero, τ � 0.
The intuition for this result is the same as before; the
value of the exchange option is maximized when the
value of XT and YT are as temporally divergent as
possible.
The specific functional form of the exchange option

will clearly depend on the nature of the dividend
stream ρt . To provide some examples of the effect of
dividends on the discount for illiquidity, we will make
the standard assumption that the underlying asset has
a constant dividend yield. Specifically, we assume that
the dividend is ρSt , where ρ is a constant. Given this
assumption, the asset price dynamics in Equation (1)
imply that dividends are random and conditionally log
normally distributed. Sums of log normals, however,
are not log normal, which implies that the exchange
option does not have a simple closed-form solution.
Accordingly, wewill solve for the value of the exchange
option via straightforward simulation. Table 4 presents
lower bounds for the value of the illiquid asset for divi-
dend yields ranging from 0 to 8%, and where volatility
is held fixed at 30%.
As shown, dividends can have a major effect on

the discount for illiquidity, particularly for longer
horizons. Furthermore, the discount for illiquidity
decreases as the dividend yield increases. This result
is intuitive since by receiving dividends, an investor in
an illiquid asset is able to convert some of his position

Table 4. Percentage Lower Bounds for Illiquid Asset Values
When the Asset Pays a Continuous Proportional Dividend

Dividend yield
Illiquidity
horizon 0% 2% 4% 6% 8%

1 Day 99.243 99.243 99.243 99.243 99.243
1 Week 98.340 98.340 98.340 98.341 98.341
1 Month 96.546 96.549 96.552 96.555 96.558
1 Year 88.076 88.195 88.311 88.426 88.538
2 Years 83.200 83.527 83.844 84.151 84.446
5 Years 73.732 74.976 76.119 77.170 78.139
10 Years 63.526 66.875 69.696 72.080 74.108
20 Years 50.233 58.523 64.351 68.584 71.764
30 Years 41.131 54.567 62.659 67.927 71.604
100 Years 13.361 49.384 61.161 67.393 71.380
1,000 Years 0.001 49.222 61.075 67.375 71.331

Notes. This table reports the percentage lower bounds on the value
of an illiquid asset where the asset pays a continuous dividend at
the indicated dividend yield. The lower bound is expressed as a
percentage of the price of an equivalent liquid asset. Asset return
volatility is fixed at 30%.

into cash sooner than if the asset did not pay divi-
dends. In essence, by paying dividends or other cash
flows, an illiquid asset partially liquidates itself. Thus,
the illiquidity constraint is relaxed to some extent by
the payment of dividends.

These results have many important implications
for illiquid investments such as partnerships, private
equity, venture capital, closely held firms, etc. Specifi-
cally, these results suggest that investors in these types
of assets have strong incentives to accelerate the pay-
ment of distributions, dividends, and other cash flows
to reduce the impact of illiquidity on their holdings.

7. Robustness
For simplicity, we have focused on the case where
an investor faces illiquidity constraints until a fixed
time T. For many situations, this characterization of
illiquidity is very realistic. For example, most of the
examples given in the introduction such as retirement
and pension assets, life insurance and annuities, pri-
vate equity and venture capital, restricted options and
shares, fixed income investments, etc. clearly have finite
horizons. On the other hand, however, there are clearly
other forms of illiquidity that may not have a fixed
horizon. Thus, it is important to consider how robust
the results are to this simplifying assumption.

As one way of addressing this issue, we examine
how the results change when the length of the illiquid-
ity horizon increases unboundedly. This can be seen
in Table 4, which reports the lower bounds for illiquid
asset values for values of T as large as 1,000 years. As
shown, with the exception of the zero-dividend-yield
case, the lower bounds for 100- and 1,000-year hori-
zons are very similar to those for much shorter hori-
zons. For example, when the dividend yield is 4%, the
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lower bound is 62.659% for T � 30, 61.161% for T � 100,
and 61.075% for T � 1,000. These results suggest that
ourmodeling approach can still provide useful bounds
even in cases where the assets may be illiquid for arbi-
trarily long horizons—that the results are robust to
large changes in the value of T.
As an alternative way of modeling illiquidity, we

extend the basic framework to the situation where the
asset is illiquid until time T, but then can only be sold
at a discount (reflecting ongoing illiquidity beyond
time T). Let γST denote the price at which the asset can
be sold at time T, where 0 < γ ≤ 1. Following the same
approach as earlier, it is easily shown that the value of
the exchange option compensating the investor for the
illiquidity of the asset is now given by

S0[N(−a2) − γN(−a1)], (7)

where

a1 � lnγ/
√
σ2T +

√
σ2T/2, (8)

a2 � a1 −
√
σ2T . (9)

These results raise an intriguing question: Is there a
recursive or “fixed point” value of γ such that if the
asset could only be sold at a discounted price of γST at
time T, then the lower bound at time zero would have
a similarly discounted value of γS0? Strictly speaking,
the answer is no since it is easily shown that γS0 rep-
resents an upper bound. On the other hand, it turns
out that γ can be chosen so that the lower bound at
time zero is arbitrarily close to γS0. This is illustrated in
Table 5, which shows the values of γ such that the dis-
count at time zero equals the discount at time T, within
an accuracy of 0.10%. Thus, for all practical purposes,
a recursive solution of this nature is feasible.5 These
results illustrate that the basic modeling framework
can easily be extended to allow for less than perfect
liquidity at time T.

Table 5. Recursive Lower Bounds for Illiquid Asset Values

Volatility
Illiquidity
horizon 10% 20% 30% 40% 50%

1 Day 0.9959 0.9871 0.9770 0.9662 0.9549
1 Week 0.9852 0.9619 0.9367 0.9106 0.8844
1 Month 0.9599 0.9064 0.8518 0.7984 0.7470
1 Year 0.8268 0.6550 0.5146 0.4033 0.3164
2 Years 0.7521 0.5365 0.3802 0.2700 0.1930
5 Years 0.6190 0.3596 0.2102 0.1252 0.0765
10 Years 0.4946 0.2302 0.1108 0.0561 0.0301
20 Years 0.3596 0.1252 0.0480 0.0206 0.0100
30 Years 0.2820 0.0803 0.0268 0.0107 0.0051

Notes. This table reports the value of γ such that if the asset can be
sold at γ times the fully liquid value at the end of the illiquidity
horizon, then the lower bound at time zero is γ times the current
fully liquid value (within an accuracy of 0.10%). Volatility denotes
the volatility of returns for an equivalent liquid asset.

Finally, in the next section, we show that the model
can also be generalized to the case where the horizon
T may be stochastic. This again argues that the basic
nature of the lower bound results is robust to changes
in the modeling assumptions.

8. Random Illiquidity Horizons
To allow for a random illiquidity horizon, let us assume
that the asset remains illiquid until the realization of a
random event, which we model using a Poisson pro-
cess with intensity λ. Thus, the illiquidity horizon T is
exponentially distributed with density λ exp(−λT). In
turn, this implies that the mean time that the asset is
illiquid is 1/λ.
Since the exchange option value in Equation (6) pro-

vides the upper bound given a specific horizon T, we
can solve for the upper bound in this random horizon
case by taking the expectation of the exchange option
value with respect to the exponential density of T.
As shown in the appendix, this leads to the following
remarkably simple expression for the expected value
of the exchange option,

S0√
1+ 8λ/σ2

. (10)

Table 6 illustrates the lower bounds on thinly traded
assets implied by this formula for various combina-
tions of themean illiquidity horizon (measured by 1/λ)
and asset volatility. As shown, the lower bound when
the mean illiquidity horizon is one day is higher than
the lower bound for a fixed illiquidity horizon of one
day—as shown in Table 1—and similarly for all of the
other horizons. At first glance, this result may seem

Table 6. Percentage Lower Bounds for Illiquid Asset Values
When the Illiquidity Horizon is Stochastic

Volatility
Mean
illiquidity
horizon 10% 20% 30% 40% 50%

1 Day 99.776 99.553 99.329 99.106 98.882
1 Week 99.510 99.020 98.529 98.039 97.549
1 Month 98.979 97.959 96.940 95.921 94.904
1 Year 96.467 92.947 89.453 85.997 82.592
2 Years 95.006 90.050 85.166 80.388 75.746
5 Years 92.119 84.383 76.923 69.849 63.239
10 Years 88.889 78.178 68.200 59.175 51.205
20 Years 84.383 69.849 57.143 46.548 37.983
30 Years 80.988 63.884 49.767 38.763 30.439

Notes. This table reports the lower bound on the value of an illiquid
asset expressed as a percentage of the price of an equivalent liquid
asset. In this case, the asset remains illiquid until the realization
of a Poisson process with intensity λ. The mean illiquidity horizon
represents the average time that the asset is illiquid (determined as
1/λ). Volatility denotes the volatility of returns for an equivalent
liquid asset.
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counterintuitive since it implies that the discount for
illiquidity is less when the illiquidity horizon is ran-
dom than when it is fixed—almost as if investors pre-
ferred uncertainty about the illiquidity horizon. The
rationale for this result, however, is a simple artifact
of Jensen’s inequality. Specifically, the exchange option
is a convex function of the length of the illiquidity
horizon. Thus, uncertainty over the illiquidity horizon
results in the expected value being higher than the
value of the exchange option evaluated at the expected
length of the illiquidity horizon.

9. Conclusion
We model illiquidity as a restriction on the stopping
rules that an investor can follow in selling asset hold-
ings. We use this framework to derive realistic lower
bounds on the value of illiquid and thinly traded
investments.
A number of economic insights emerge from this

analysis. For example, we show that immediacy plays
a unique role and is much more highly valued than
ongoing liquidity. In addition, we show that illiquid-
ity can reduce the value of an asset substantially. For
illiquidity horizons on the order of those common in
private equity, the discount for illiquidity can be as
much as 30%–50%. Although large inmagnitude, these
discounts are consistent with the empirical evidence
on the valuation of thinly traded assets. Thus, these
lower bounds could be useful in determining reserva-
tion prices and providing conservative valuations in
situations where other methods of valuation are not
available.

Finally, we find that the discount for illiquidity
decreases as the cash flow generated by the underlying
asset increases. Thus, investors in private ventures may
have strong incentives to increase dividends and other
cash flows to reduce the impact of illiquidity on their
holdings. This implies that the illiquid nature of invest-
ments in partnerships, private equity, venture capital,
LBOs, etc. has the potential to introduce agency con-
flicts as cash flow policy is impacted.
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Appendix
The value of the investor’s portfolio at time T if he is allowed
to follow the optimal stopping rule is XT � Sτe r(T−τ). The
value of the investor’s portfolio at time T if he is not allowed
to sell until time T is YT � ST . Substituting these expressions

into the payoff function max(0,XT − YT) for the exchange
option gives Equation (2).

The Black and Scholes (1973) formula for the time-t value
of a European put with strike price K and time until expira-
tion of T − t is given by

Ke−r(T−t)N(−d2) − St N(−d1), (A.1)

where

d1 �
ln(St/K)+ (r + σ2/2)(T − t)√

σ2(T − t)
, (A.2)

d2 � d1 −
√
σ2(T − t). (A.3)

At the stopping time τ, the value of Sτ is known and is no
longer stochastic. Thus, the value of the exchange option as
of time τ is simply the present value of a put option on with
strike price Sτe r(T−τ) and time until expiration of T − τ. Sub-
stituting these values into the Black–Scholes formula above
gives the value of the exchange option at time τ,

Sτ[N(
√
σ2(T − τ)/2) −N(−

√
σ2(T − τ)/2)], (A.4)

which is Equation (3).
Standard results now imply that the value at time zero of

the exchange option can be obtained by discounting the value
in Equation (A.4),

E[e−rτSτ[N(
√
σ2(T − τ)/2) −N(−

√
σ2(T − τ)/2)]], (A.5)

where the expectation is taken with respect to the joint distri-
bution of Sτ and the stopping time τ under the risk-neutral
measure.

To find the stopping rule that maximizes the value of the
exchange option at time zero, we rewrite Equation (A.5) as

max
τ

E[E[e−rτSτ][N(
√
σ2(T − τ)/2) −N(−

√
σ2(T − τ)/2)]],

(A.6)
where the inner expectation is taken with respect to the dis-
tribution of Sτ conditional on τ. From the dynamics of S
given in Equation (1), it is readily shown that

e−rτSτ � e−rτS0 exp((r − σ2/2)τ+ σZτ), (A.7)
� S0 exp(−σ2τ/2+ σZτ). (A.8)

The expression in Equation (A.8), however, is an exponential
martingale. Thus, E[e−rτSτ]�S0 for all τ because of the strong
Markov property of St .

Substituting this last result into Equation (A.6) gives

S0 max
τ

E[[N(
√
σ2(T − τ)/2) −N(−

√
σ2(T − τ)/2)]]. (A.9)

From the properties of the standard normal distribution func-
tion, however, it is easily shown that N(x) − N(−x), where
x > 0, is an increasing function of x. Thus, the expression in
Equation (A.9) is maximized when τ takes the lowest value
possible. In turn, this implies that the the stopping rule that
maximizes the value of the exchange option in Equation (A.9)
is to stop immediately, τ � 0. Substituting this result into
Equation (5) leads to the maximized value of the exchange
option given in Equation (6).

As an alternative derivation of this last result, we could
proceed recursively to show that at time T − ε, the value of
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the exchange option is maximized by stopping rather than
waiting and stopping at time T. Similarly, the value of the
exchange option is maximized by stopping at time T − 2ε
rather than at time T − ε, and so forth. This recursive argu-
ment again shows that the maximizing stopping rule is τ � 0.

Differentiating the exchange option value in Equation (6)
with respect to σ gives

S0 exp(σ2T/8)
√

T , (A.10)

which is positive. Similarly, differentiating the exchange
option value with respect to T gives

S0 exp(σ2T/8) σ

2
√

T
, (A.11)

which is positive.
Turning to the case with dividends, the asset price dynam-

ics are given by

dS � (r − ρ)S dt + σS dZ. (A.12)

The exchange option payoff function at time T is given by

max(0,XT −YT) (A.13)

�max
(
0, Sτe r(T−τ)

+

∫ τ

0
ρSt e

r(T−t) dt − ST

−
∫ T

0
ρSt e

r(T−t) dt
)
, (A.14)

�max
(
0, Sτe r(T−τ) − ST −

∫ T

τ

ρSt e
r(T−t) dt

)
, (A.15)

� Sτ max
(
0, e r(T−τ) − ST

Sτ
−

∫ T

τ

ρ
St

Sτ
e r(T−t) dt

)
. (A.16)

The present value of this payoff function as of time τ is

Sτ Eτ

[
e−r(T−τ)max

(
0, e r(T−τ) − ST

Sτ
−

∫ T

τ

ρ
St

Sτ
e r(T−t) dt

)]
, (A.17)

which becomes

Sτ Eτ

[
e−r(T−τ)max(0, e r(T−τ) − exp((r − ρ− σ2/2)(T − τ)

+ σ(ZT −Zτ) − ρ
∫ T

τ

exp((r − ρ− σ2/2)(t − τ)

+ σ(Zt −Zτ)e r(T−t) dt)
]
, (A.18)

after substituting in the solution for the asset prices. In turn,
this reduces to

Sτ Eτ

[
max(0, 1− exp((−ρ− σ2/2)(T − τ)+ σ(ZT −Zτ)

− ρ
∫ T

τ

exp((−ρ− σ2/2)(t − τ)+ σ(Zt −Zτ) dt)
]
. (A.19)

This last equation can also be expressed as

Sτ Eτ[max(0, 1−W)], (A.20)

whereW is amartingale and is independent of Sτ . It is readily
seen that the variance of W is a decreasing function of τ
because of the independence of Brownian increments. From

Theorem 8 of Merton (1973), this implies that the value of
the exchange option at time τ is a decreasing function of τ.
Following a similar line of reasoning as above, this implies
that the time-zero value of the exchange option is maximized
by setting τ � 0.

Finally, to solve for the expected value of the exchange
option when the illiquidity horizon T is exponentially dis-
tributed, we note that Equation (6) can be expressed as

S0erf
(√

σ2T
8

)
, (A.21)

where erf( · ) is the error function described in Abramowitz
and Stegun (1964, Chap. 7). Using Gradshteyn and Ryzhik
(1980, Equation 6.283.2), the expectation

S0λ

∫ ∞

0
erf

(√
σ2t
8

)
eλt dt , (A.22)

reduces to Equation (10).

Endnotes
1For example, Statement of Financial Accounting Standards (SFAS)
157 allows for the use of unverifiable inputs in the valuation of a
broad category of illiquid assets that are designated as level 3 invest-
ments. The lower bound presented in this paper provides a conser-
vative but much more objective standard for valuing these types of
illiquid assets.
2More formally, let I � [0,T], T < ∞, define the set of times where
stopping is possible in the continuous time framework of this paper.
Let (Ω, F, Ft∈I ,P) be a filtered probability space. A random variable
τ: Ω→ I defined by a stopping rule is a stopping time if the event
{τ ≤ t} belongs to the σ-field Ft for all t in I. For a discussion of
stopping times, see Karatzas and Shreve (2000).
3By focusing on investors who are willing to consider holding thinly
traded assets, we implicitly make the standard assumption that pref-
erences are defined in terms of the portfolio value at time T. Thus, we
rule out pathologies such as where the inability to sell at some time
prior to T would result in an unboundedly negative utility, since,
in that case, the investor would clearly never consider holding the
illiquid asset in the first place.
4 I am grateful to the referee for raising this issue.
5 I am grateful to the referee for suggesting this alternative specifi-
cation and raising the issue of whether a recursive solution can be
found.
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