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a b s t r a c t 

In this paper, we study the problem of managing limited retail shelf or storage space for basic products 

by considering two inventory management strategies: space dedication and space sharing. When space is 

dedicated to each product, there is more flexibility in planning as different products can be replenished 

independently. In contrast, when space is shared across different products, there is potential for saving 

space; however, replenishment has to be coordinated across products and this leads to additional costs 

due to the lack of flexibility in replenishing each product individually. We model this problem as a non- 

linear mixed integer program and develop an effective heuristic and an upper bound for each strategy. 

We introduce three different but consistent criteria to compare each strategy. Through an extensive com- 

putational study, we identify the most relevant factors that impact the relative benefit of space sharing 

over space dedication. In addition, we show that space sharing with an optimal replenishment scheduling 

program can on average reduce space consumption by 31%. 

© 2017 Elsevier B.V. All rights reserved. 
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1. Introduction 

Retailers usually carry a large assortment of products, and they

face a even greater set of potential choices for their assortments.

According to the Food Marketing Institute, the average number of

items carried in a supermarket in 2015 is 39,500. 1 On the other

hand, retailers are usually constrained by limited shelf or storage

space. For retailers that carry basic, long life-cycle products, limited

space can lead to either a restricted assortment or a large enough

assortment with low inventory levels and frequent replenishment.

Both these situations can limit revenues. Hence, retailers need to

manage their space by carefully making two types of decisions. The

first is determining the optimal assortment, given that a limited

number of products can be carried. The second relates to managing

inventory levels and replenishment schedules in order to utilize

the space effectively. The assortment and inventory management

problems are closely related because they generate inputs of de-

cision making for each other. Assortment management determines

the optimal product offerings and the demand rate for each prod-

uct; with the demand information, inventory management chooses
∗ Corresponding author. 

E-mail addresses: zhangw.03@gmail.com , wzhang15@hku.hk (W. Zhang), 

kumar.rajaram@anderson.ucla.edu (K. Rajaram). 
1 Source: https://www.fmi.org/our-research/supermarket-facts , accessed in May, 

2017. 
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he economic ordering quantities and the optimal replenishment

chedule, determining the economic cost of offering each product,

hich in turn is used to choose the product assortment. Therefore,

t is necessary to consider these two sets of decisions simultane-

usly in making the best space management decisions. 

The retail space management problem is faced by several ur-

an and suburban retailers such as Walgreens, CVS, City Target,

tc, by food chains such as Whole Foods, Safeway, Ralphs, etc, and

y other retail chains such as Office Depot, Staples, Guitar Center,

tc. Due to the product strategies adopted by these retailers, they

ostly sell large assortments of basic, long life-cycle products with

table, predictable demand (20) . Their locations often have high

roperty rent and thus limited shelf and storage space. Moreover,

hese retailers have stores at different locations and they may have

ifferent assortments that vary over time, thus making the retail

pace management problem a recurring and complicated task. 

Retailers adopt two different strategies in allocating limited

pace to different products. The first of these is to dedicate space

o each product, and the second is to allow products to share the

pace (4) . For example, retailers may allocate one or multiple fixed

olumns of the shelf to each shampoo and hand soap (as shown

n the left side of Fig. 1 ). 2 We may also observe that different
2 Examples of space sharing abound in practice. For example, in grocery stores 

ike Ralphs, the locations of price tags for many products are adjusted based on 

where products are placed and inventory level. Target stores sell basic garments 
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Fig. 1. Examples of space dedication (left) and sharing (right). 

Fig. 2. Space consumption and replenishment scheduling for two products. 
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uices share the shelf space with location-flexible price tags and

hus, the space allocated to a product depends on the inventory

evel (as shown on the right side of Fig. 1 ). Although space dedi-

ation may be required in practice due to several reasons (for ex-

mple, shelves are sometimes designed to hold bottles of particu-

ar shapes and suppliers may contract with retailers for dedicated

helf space), in many other situations it is not apparent which

trategy should be adopted given the following trade-off exists be-

ween these two strategies. When space is dedicated to each prod-

ct, inventory management is easier because different products can

e replenished independently. However, a larger amount of shelf

pace may be required. In contrast, when space is shared across

ifferent products, space requirement can be potentially reduced.

ut, replenishment has to be coordinated at the cost of flexibil-

ty and optimality for individual products. It is important to note

hat if a schedule is not coordinated, there may not be sufficient

pace when the replenishment arrives. To illustrate, consider two

roducts, X and Y , for which each unit consumes one unit of space

nd the demand rates are 1 unit per day for both products. For

implicity, assume that the buffer space required for both products

re zero. A total space of size 10 can sustain a replenishment cy-

le of 6 days for both products: The first product is replenished at

ay 1 and the second is at day 4, as shown on the right side of

ig. 2 . However, a space of size 10 cannot sustain a 6-day cycle for

roduct X and a 5-day cycle for product Y , because the replenish-

ent dates will coincide and space constraint of 10 units will be

iolated (as shown on the left side of Fig. 2 ). This simple exam-

le shows that space sharing can increase space utilization and al-
uch as T-shirts, shirts, socks, etc., with different brands sharing the same rack. 

n addition, the storage space in the retail backroom is normally shared across 

roducts. 

p

R

b

(

ow the same space to accommodate larger assortments with prop-

rly scheduled replenishment. In addition, space sharing can also

educe space requirements and their associated retail rents (per

roduct). 

This paper compares space dedication with space sharing and

dentifies under what conditions, which strategy would be more

referable to retailers. To do this, we develop an optimization

odel to jointly determine the optimal assortment of products,

heir inventory levels and replenishment schedules. Here, we em-

ed an assortment planning problem and a replenishment schedul-

ng problem into a multi-product EOQ model. 3 The resulting joint

ptimization problem is a non-linear mixed integer program, and

e develop effective methods to solve this problem. We use these

ethods to conduct an extensive computational study that com-

ares space sharing with space dedication and draw managerial

nsights. 

This paper is organized as follows. We provide a brief literature

eview in Section 2 . In Section 3 , we develop models for the re-

ail space management problem under different conditions spec-

fying the shelf space constraint and type of replenishment. We

nalyze and solve these formulations with solution methods that

orrespond to a space sharing and a space dedication strategies

sed by retailers in practice. Specifically, we solve the space shar-

ng strategy in Section 4 and similarly solve the space dedication

trategy in Section 5 . We present results from our numerical study
3 While stochastic approaches such as the Newsboy model are used for fashion 

roducts that have high demand uncertainties and relatively short life-cycles (e.g., 

ajaram [21] and 2 ), deterministic approaches such as the EOQ model are used for 

asic products that have low demand uncertainties and relatively long life-cycles 

14) . 
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in Section 6 and summarize our work in Section 7 . All proofs are

provided in the Appendix. 

2. Literature review 

The problem studied in this paper is related to several streams

of literature: the classic joint replenishment problem, the assort-

ment planning problem, the space-constrained inventory manage-

ment problem, and the joint problem of assortment and inventory

management under space constraints. 

The joint replenishment problem (JRP) studies a retailer’s prob-

lem of when to place orders and how to combine orders of differ-

ent products. Given that we only consider managing basic products

in this paper, we focus on deterministic demand. There is a large

body of literature on the JRP with deterministic demand: e.g., Jack-

son, Maxwell, and Muckstadt [16] , Anily and Federgruen [1] , Fed-

ergruen and Zheng [11] , and Viswanathan and Mathur [25] . Simi-

lar to the traditional JRP literature, these studies do not consider

the shelf-space cost or constraint (7) . Cachon [7] studies the man-

agement of transportation, shelf space, and inventory costs for a

retailer that sells multiple products with stochastic demand. But

this paper does not consider the assortment problem as well as

demand substitution among different products. Khouja and Goyal

[17] conduct a review of the JRP literature from 1989 to 2005 and

they find that recent research on the JRP has focused on finding

faster algorithms to the classic JRP rather than on improving the

solution quality. Our work focuses on improving the solution qual-

ity by incorporating the assortment decision because the JRP and

assortment management are interrelated with space constraints

and demand substitution. 

The assortment planning problem has been extensively studied.

Kök, Fisher, and Vaidyanathan [19] provides a comprehensive re-

view. A large body of this literature studies the assorment plan-

ning for fashion products. Papers in this stream either employ con-

sumer choice models (e.g., 22; 12; 15 ), or used exogenous demand

models (e.g., 23 ; Rajaram [21] ; 8 ; Bernstein et al. [2] ). There has

also been considerable research on assortment planning for ba-

sic products (e.g., 5 and 6 ; see a brief review in Rajaram [21] ).

However, all these papers, on both fashion and basic products, do

not consider joint optimization of assortment planning and inven-

tory management under storage space constraints . The literature for

space-constrained inventory models for multi-items is based on

Hadley and Whitin [14] . However, work in this area (e.g., 13; 26 )

does not consider replenishment scheduling and assortment plan-

ning. In contrast, this paper develops a model that jointly opti-

mizes the selection of products, their inventory levels, and replen-

ishment schedules to increase the effective utilization of limited

storage or shelf space that is shared among products. 

The joint assortment and inventory management under space

constraints has also been studied. Early work is represented by

Corstjens and Doyle [9] , Borin, Farris, and Freeland [3] , and Urban

[24] . Recently, Kök and Fisher [18] study the problem with shelf-

space constraints, one level substitution and a multi-nomial logit

model. They develop a procedure for estimating parameters of sub-

stitution behavior and demand for products. They solve the prob-

lem using an iterative optimization heuristic. Application of their

methods to a large super market chain suggests a 50% increase in

profits. However, all these papers implicitly assume space dedica-

tion and thus do not consider the replenishment scheduling prob-

lem. In our work, we explicitly consider replenishment scheduling,

thus enabling us to compare space dedication and space sharing,

and provide insights on how to make the choice between these

two inventory strategies. 

To summarize, our paper makes the following contributions.

First, we complement the research stream of the joint assortment

and inventory management problem for basic products by con-
idering replenishment scheduling and space sharing. Second, we

ropose an efficient upper bound as well as effective heuristics to

olve this complicated problem. Third, we compare two commonly

sed inventory management strategies: space sharing and space

edication, and show which choice would be better under which

ircumstance. 

. Model formulation 

We formulate the retail space management problem as a non-

inear mixed integer program. Let i ∈ P = { 1 , 2 , . . . , M} index the

et of potential products and n ∈ G = { 1 , 2 , . . . , N} index the set of

roduct groups. A product group can be defined as the set of prod-

cts of the same brand or alternatively specified as the set of prod-

cts offered by the same distributor. Hence, a product can only be

rom one group. We make the following assumptions. 

First, we assume that a fixed level of safety stock can be used to

over the low levels of demand uncertainty that may occur for ba-

ic products during the replenishment cycle time. Given the cycle

ime and the demand variability, the safety stock for that period

an be calculated for a certain service level. We consider a service

evel that is close to 100%. Since we want to control the replenish-

ent cycle time T i for each product, the required safety stock level

or product i is φi = θi · T i · s i , where θ i := z SL · CV i with z SL be-

ng the z -value corresponding to the service level, and CV i is the

time-invariant) coefficient of variation for the demand of prod-

ct i . Further, as explained below, s i is the effective demand rate

f product i . 

Second, considering that inventory level is normally high and

tock-outs are rare for basic products, we focus on assortment-

ased product substitution and assume that stock-out-based sub-

titution can be ignored. 

Third, we use an exogenous demand model, which is the most

ommonly used demand model in the literature on inventory man-

gement for substitutable products (Kök, Fisher, and Vaidyanathan

19] ). In particular, each product in the set P has an original de-

and; if a product is not offered, a fraction of the original de-

and for this product will be transferred to other products that

re included in the assortment. For the sake of tractability, we as-

ume that the fraction of demand that would be substituted by

ny other particular product is fixed and independent of the as-

ortment. Despite of this limitation, exogenous demand models

ave their unique strength compared with other demand models

uch as the Multinomial Logit Model. For example, exogenous de-

and models can use a substitution matrix to capture many differ-

nt substitution patterns. The interested reader is referred to Kök,

isher, and Vaidyanathan [19] for a detailed discussion. 

Next, we define the following parameters and variables. 

Parameters: 

d i : the original (or default) demand rate of product i . 

w i j : the fraction of the demand for product j that will be trans-

erred to product i given that product j � = i is not offered; w ii = 1 . 

v i : the profit margin of product i . 

h i : the unit holding cost rate of product i . 

K n : the replenishment setup cost each order for product group

 , which is independent of the number of products included in the

rder. 

κ i : the replenishment setup cost of product i . 

θ i : the safety stock coefficient of product i . 

Decision variables: 

y i : 0–1 variable that equals 1 if product i is included in the as-

ortment, and 0 otherwise. 

Q i : the batch order quantity of product i . 

Auxiliary variables: 

x ij : demand diverted from product j to product i . 
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s i : the total effective demand rate of product i ; s i =
 i 

[
d i + 

∑ 

j � = i w i j d j 
(
1 − y j 

)]
. 

We assume that the profit margins are high enough so that

 i Q i > κi if y i = 1 ; otherwise, product i will never be included in

he assortment. The total effective demand rate for product i can

e rewritten as s i = 

∑ 

j w i j d j x i j , where x i j = y i 
(
1 − y j 

)
for j � = i and

 i j = y i for j = i . This form will be used in the models described

elow. Note that we can let x ij be a continuous variable to simplify

he specification of the model, but it will still be integral once the

onstraints are imposed. Let y := (y 1 , . . . , y M 

) ′ , Q := (Q 1 , . . . , Q M 

) ′ ,
nd s := (s 1 , . . . , s M 

) ′ be the vectors of assortment decisions, order

uantities, and effective demand, respectively; let x := { x ij } be a

atrix. 

We consider two types of replenishment mechanisms that oc-

ur in practice. The first is independent replenishments in which

here are no group-specific replenishment setup costs for ordering

 product from a group. This occurs when the retailers use differ-

nt distributors for their products and the associated transaction

osts are subsumed in the product replenishment setup costs κ i 

or ∀ i . In the second type, which we refer to as combined replen-

shments, there is an additional fixed replenishment setup cost K n 

ncurred by the retailer when any product in group n is ordered.

his could include the fixed cost of a truck used for delivery for

 distributor who supplies a particular product group. Thus, the

etailer can benefit by combining multiple products of the same

roup in an order. However, incorporating the decision on which

ubset of products to combine in an order significantly compli-

ates the analysis. Therefore, in the following, we investigate this

roblem in three steps. First, we discuss the uncapacitated prob-

em, which has no storage space constraints, with independent re-

lenishments. Next, we study the capacitated problem with stor-

ge space constraints and independent replenishments. Finally, we

ackle the full version: the capacitated problem with combined re-

lenishments. 

.1. Uncapacitated problem with independent replenishments 

The objective of the uncapacitated problem is to maximize the

otal profit averaged over time without storage space constraints.

ith independent replenishments (i.e., K n = 0 for ∀ n ∈ G), this can

e formulated as: 

(UP ) max 
y,Q,s,x 

∑ 

i ∈P 

[ 
v i s i − h i 

(
Q i 

2 

+ θi · Q i 

)
− κi s i 

Q i 

] 
(1) 

s.t. s i = 

∑ 

j 

w i j d j x i j ∀ i, (2) 

x i j ≤ y i ∀ i, j, (3) 

x i j ≤ 1 − y j ∀ i � = j, (4) 

y i ∈ { 0 , 1 } ∀ i, (5) 

x i j ≥ 0 ∀ i, j, (6) 

Q i ≥ 0 , ∀ i. (7) 

Objective (1) equals the sum of the average gross profit net of

he average holding cost and the average replenishment setup cost

or each product. To simplify further, we write H i := h i ·
(

1 
2 + θi 

)
so

hat the second term in the objective becomes H i Q i . Constraint (2)

efines the effective demand rate of a product as the sum of sub-

tituted demand streams from all products. Constraints (3) and (4)

nforce the condition that demand is diverted from j to i only if

roduct i is stocked and j is not stocked. Note that (3) and (4) are

erived by first representing x i j = y i for j = i and x i j = y i 
(
1 − y j 

)

or j � = i by two inequality constraints for each and then dropping

onstraints, x ij ≥ y i for j = i and x i j ≥ y i ·
(
1 − y j 

)
for j � = i . Given UP

s a maximization problem and (by assumption) the profit margin

s high enough so that v i > 

κi 
Q i 

, it is always optimal to increase s i if

e ignore the constraints; thus, given that w i j d j > 0 , it is always

ptimal to increase x ij without constraints. Hence, x i j ≤ y i ·
(
1 − y j 

)
or j � = i and x ij ≤ y i for j = i will be binding and be equivalent

o the equality constraints, so that x i j ≥ y i ·
(
1 − y j 

)
for j � = i and

 ij ≥ y i for j = i can be dropped. Finally, we write x ij ≤ y i and

 i j ≤ 1 − y j for j � = i to jointly represent x i j ≤ y i ·
(
1 − y j 

)
for j � = i .

onstraint (5)-(7) enforce the range of the variables. Observe that

P is a mixed-integer, non-linear optimization problem. For any as-

ortment choice and consequently s ∈ R 

M + , it is easy to solve for

 ∈ R 

M + , since it reduces to the EOQ problem with Q 

∗
i 

= 

√ 

κi s i 
H i 

. The

ollowing lemma establishes the convexity of the objective func-

ion given Q 

∗
i 

= 

√ 

κi s i 
H i 

and simplifies the optimization over s . 

emma 1. The objective function (1) is convex in s given Q i = 

√ 

κi s i 
H i 

or ∀ i. 

We use Lemma 1 to establish proposition 1, which simplifies

he computation of UP . 

roposition 1. The integrality constraints in the uncapacitated prob-

em can be dropped without affecting the optimal solution. 

In light of Proposition 1 , we replace (5) with 

 i ∈ [0 , 1] ∀ i. (8)

hus, the UP is a simpler non-linear optimization problem which is

menable to solution using standard methods. This is useful for the

euristics used to solve the capacitated problem described next.

urthermore, Lemma 1 and Proposition 1 will be used to simplify

he solution methods for the space sharing and space dedication

trategies in Sections 4 and 5 , respectively. 

.2. Capacitated problem with independent replenishments 

In this section, we add in the constraint of limited storage or

helf space for inventory. If space is not dedicated but shared by

ll the products in the assortment, replenishment schedules of dif-

erent products should be coordinated to ensure that there is suf-

cient space when the replenishment arrives. We will analyze all

he formulations considered in this section under the space sharing

nd space dedication strategies in Sections 4 and 5 , respectively. 

For the space sharing strategy, we use a common replenishment

ycle in which all the products are replenished exactly once in a

etermined sequence during the cycle. A common cycle approach

s often used in practice because of the ease of implementation,

specially for products of the same category (e.g., sodas, cereals,

oaps, ballpens, etc). Later, we will allow different replenishment

ycles for the space dedication strategy. The following additional

otations are introduced. 

Model parameters: 

C : total available space; 

c i : space consumption for a unit of product i . 

Decision variables: 

T : the common replenishment cycle time; 

τ i : the order arrival time of product i in a cycle; 

t ij : the time between the replenishment of product i and prod-

ct j ; define t i j = 

(
τ j − τi 

)
· I 

{
τi ≤ τ j 

}
+ 

(
T + τ j − τi 

)
· I 

{
τi > τ j 

}
if i

 j and t i j = 

(
τ j − τi 

)
· I 

{
τi < τ j 

}
+ 

(
T + τ j − τi 

)
· I 

{
τi ≥ τ j 

}
if i ≥ j ,

here I is the indicator function; define matrix t := { t ij }. This is

llustrated by Fig. 3 . 
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Fig. 3. Definition of t ij in a two-product example. 
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The replenishment schedule is then determined by τ :=
{ τi : i ∈ P } . For the capacitated problem, the space constraint must

be satisfied. Since we consider basic products that typically exhibit

low demand variability, we assume the fluctuations in demand and

consequently space consumption can be covered by a fixed buffer

space, which can be calculated using the approach outlined previ-

ously. Hence, in the following analysis, we focus on the expected

values. Let I i ( t ) denote the average inventory level of product i at

time t . Then, we need to ensure the following space constraint is

satisfied: ∑ 

i 

c i I i (t) ≤ C, ∀ t ∈ [0 , T ] . (9)

In principle, we can discretize time t and define a time unit as

a day or an hour. However, if the required time unit is small in

comparison to T , this would lead to a large number of constraints,

resulting in a complicated integer program. To simplify the anal-

ysis, note that the highest inventory level occurs at the delivery

time, i.e. at τ i for some i ∈ P . Hence, we only need to check the

space constraint at M time spots, where replenishments occur. The

following proposition uses this idea and simplifies (9) . 

Proposition 2. The space constraint (9) is equivalent to ∑ 

j 

c j s j 
(
t i j + T · θ j 

)
≤ C, ∀ i ∈ P . (10)

For the feasibility of t , we know from the definition (as illus-

trated by Fig. 3 ) that 

 i j + t ji = T , ∀ i � = j. (11)

However, t i j + t ji = T determines the relative location of τ i and τ j 

in the cycle without considering the delivery time of other prod-

ucts. In order to guarantee the uniqueness of τ i for ∀ i , we intro-

duce a “triangle” relationship: for ∀ i � = j � = k , once t ij and t ik are

fixed and τ i is known, the relative location of τ j and τ k should

be determined. If τ j < τ k , we have t i j − t ik = −t jk ; otherwise, we

have t i j − t ik = t k j . Therefore, t i j − t ik equals either −t jk or t kj , de-

pending on which product is replenished first. Note that once t is

determined in this way, the set τ can be determined given any τ i .

However, the specific value of τ is not important, as we focus on

the long-term average profit. Thus, it is enough to determine t . 

To simplify these either-or constraints that maintain the “trian-

gle” relationship, we introduce indicator binary variable z ij ∈ {0, 1}

for ∀ i , j and let matrix z := { z ij }. Then, the either-or relashionship

can be written as 

 i j − t ik = z k j t k j − z jk t jk , ∀ i � = j � = k ∈ P, (12)

z k j + z jk = 1 , ∀ j � = k ∈ P . (13)
he capacitated problem with independent replenishments can

ow be formulated as 

(CP I) max 
∑ 

i ∈P 

(
v i s i − H i Q i −

κi y i 
T 

)
s.t. (2) − (6) , (10) − (13) , 

Q i = s i T ∀ i, (14)

z i j ∈ { 0 , 1 } ∀ i, j, (15)

t i j ≥ 0 , t ii = T ∀ i, j. (16)

Constraint (14) ensures that demand in a cycle ( s i T ) equals re-

lenishment quantity ( Q i ), while (15) and (16) enforce the variable

ange. The CPI is a mixed integer program with a non-linear objec-

ive and quadratic constraints. 

heorem 1. The CPI is NP-hard. 

Theorem 1 implies that we may not be able to solve the CPI to

ptimality for large sized real problems. We verify the complexity

n the computational study. In Section 4 , we will analyze CPI first

nd the results will be useful to analyze the capacitated problem

ith combined replenishments considered next. 

.3. Capacitated problem with combined replenishments 

We consider the case when a setup cost K n ≥ 0 is incurred for a

eplenishment order of group n ∈ G, no matter how many products

f group n are included in the same order. In this case, we should

ecide which products to combine in a replenishment order. Let P n 

ndex the set of products in group n , and n ( i ) index the group that

ontains product i ; i.e., i ∈ P n (i ) . We further introduce the following

ecision variables. 

Decision variables: 

o j : 0–1 variable that equals 1 if the j th replenishment order

s placed, and 0 otherwise. Note that o j originally corresponds to

roduct j . There are M products in total, so we can place at most

 orders in a replenishment cycle. 

r ij : 0–1 variable that equals 1 if product i is included in the j th

rder, and 0 otherwise; Because it is useful to combine only prod-

cts of the same group, we require that r i j = 0 for any j / ∈ P n (i ) . 

The variables should satisfy the following constraints. First, any

roduct that is included in the assortment has to be included in

ne and at most one replenishment order. Thus, we need 

 i ≤
∑ 

j∈P n (i ) 

r i j ∀ i ∈ P . (17)

uthermore, if any products are included in an order, the order has

o be placed. Thus, we have 

 j ≥ r i j ∀ i, j ∈ P . (18)

astly, if any two products are combined for replenishment in

he same order, their replenishments are made at the same time.

ence, 

 i ′ i ′′ ≤ T ·
(
2 − r i ′ j − r i ′′ j 

) ∀ i ′ , i ′′ ∈ P n ( j) , i 
′ < i ′′ , ∀ j ∈ P . (19)

he full version of the retail space management problem can be

ormulated as 

(C P C ) max 
∑ 

i ∈P 

(
v i s i − H i s i T −

κi y i 
T 

− K n (i ) o i 

T 

)
s.t. (2) − (6) , (10) − (13) , (15) − (19) 

o i ∈ { 0 , 1 } ∀ i, (20)

r i j ∈ 

{
0 , I 

{
j ∈ P n (i ) 

}} ∀ i, j. (21)
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Given the additional binary variables and constraints, the

PC can be potentially more difficult to solve than the CPI . In

ection 4.2 , we decompose the problem and develop structural

roperties to facilitate the development of an effective solution

rocedure. 

. The space-sharing strategy 

In this section, to analyze and solve the capacitated problem

ith the space-sharing strategy, we focus on independent replen-

shments first and then consider combined replenishments. Due to

he computational difficulty of the problems, we focus on heuris-

ics that provide good feasible solutions. An upper bound will then

e developed to gauge the effectiveness of these heuristics. 

.1. Managing independent replenishments 

Let v := (v 1 , . . . , v M 

) ′ , H := (H 1 , . . . , H M 

) ′ , κ := (κ1 , . . . , κM 

) ′ ,
 := (K n (1) , . . . , K n (M) ) 

′ , o := (o 1 , . . . , o M 

) ′ , and r := { r ij }. Observe

hat there are two subproblems embedded in the CPI . One is an as-

ortment planning problem that decides { y , x , s }, and the other is

 replenishment scheduling problem, which decides { T , t , z }. Note

hat Q is defined by s and T . However, due to the quadratic term

n the objective and constraints, s and { T , t } cannot be decomposed

y traditional methods such as Lagrangian relaxation. Considering

hat the two problems optimize the same objective, we decouple

PI into a Capacitated Assortment Planning Problem ( CAPP ) given

 common replenishment cycle and a Capacitated Replenishment

cheduling Problem ( CRSP ) given an assortment. 

(CAP P ) g(T , t ) = max 
s,x,y 

v ′ s − T · H 

′ s − 1 

T 
· κ ′ y 

s.t. (2) − (6) , and (10) 

(CRSP ) f (s, y ) = max 
T, t , z 

v ′ s − T · H 

′ s − 1 

T 
· κ ′ y 

s.t. (10) − (13) , (15) , and (16) 

Observe that CAPP and CRSP have the same objective. Further,

s shown in Lemma 2 below, we do not need to obtain all the op-

imal decisions at once; instead, we just need to determine ( y ∗, s ∗)

r ( T ∗, t ∗), and then we can get the rest by solving CRSP or CAPP ,

espectively. We call this property preservation of optimality . 

emma 2. If { T ∗, t ∗, x ∗, y ∗, z ∗, s ∗} solves CPI and achieves objective

alue V 

∗, then V ∗ = g ( T ∗, t ∗) = f ( s ∗, y ∗) . 

Observe that the objective of CAPP given T is a linear function,

nd constraint (10) given ( T , t ) is a set of linear constraints. We use

agrangian multipliers to move (10) into the objective. Note that

or a given value of the multipliers, the Lagrangian-relaxed CAPP

as a linear (and thus convex) objective. Then, from Proposition 1,

he binary constraints (5) can be replaced by (8) and the problem

ecomes an LP. In the FI algorithm introduced later, we use a bi-

ection (binary search) method to find the Lagrangian multipliers

o that constraint (10) holds and the space consumption is feasible

n each round of iteration. 

The CRSP is more complicated and it is not amenable to a stan-

ard solution method. However, after examining the structure of

RSP , we find that it can be simplified as follows. We first formu-

ate a Maximum Space Minimization Scheduling Problem ( MSMSP ),

here B is the amount of space that can accommodate a given as-

ortment and replenishment schedule. 

(M SM SP ) B (s, T ) = min 

t , z ,B 
B 
s.t. 
∑ 

j 

c j s j 
(
t i j + T · θ j 

)
≤ B ∀ i, (22) 

(11) − (13) , (15) , and (16) . 

SMSP minimizes the required maximum space given assortment

 and cycle time T . Note that MSMSP incorporates all of CRSP ’s con-

traints except (10), the aggregate space constraint. However, (10)

an be incorporated if we add in B ≤ C . Hence, when s is given,

 is feasible for CRSP if and only if B ( s , T ) ≤ C . This is because if

 ( s , T ) ≤ C , then there exists a set of { T , t , z } that satisfies (10) –

13), (15), and (16), and vice versa. Therefore, if ( s , T ) is the solution

f MSMSP , then CRSP is reduced to min T ≥0 T · H 

′ s + 

1 
T · κ ′ y subject

o B ( s , T ) ≤ C . In the following, we show that MSMSP is equivalent

o a simpler problem, which we call the Normalized Scheduling

roblem ( NSP ). In preparation, let β = B/T represent the minimum

arginal space required as the cycle time increases. 

emma 3. MSMSP is equivalent to the NSP 

(NSP ) B (s, T ) = min 

t , z ,β
T · β

s.t. 
∑ 

j 

c j s j 
(
t i j + θ j 

)
≤ β ∀ i, (23) 

t + t ′ = 1 n ×n + I n , (24) 

z + z ′ = 1 n ×n − I n , (25) 

t i j − t ik + t jk = z k j , ∀ i � = j � = k, (26) 

t ≥ 0 , z : binary . (27) 

Note that T is not contained in any constraints of NSP . Conse-

uently, the optimal β for NSP only depends on s . Let β( s ) be the

ptimal solution. We thus have B (s, T ) = β(s ) · T , and constraint B

 s , T ) ≤ C is equivalent to 

(s ) · T ≤ C. (28) 

herefore, if we can solve NSP to obtain t and β( s ), then CRSP can

e solved, as shown next in Proposition 3. 

roposition 3. The optimal cycle time for the CRSP given s is T ∗(s ) =
in 

{√ 

κ ′ y 
H ′ s , 

C 
β(s ) 

}
. 

Since the NSP is a mixed integer linear program, it could still

e NP-hard. However, we find that, by exploiting the property de-

cribed in Theorem 2 below, we can show that it can be further

educed to an LP. To proceed, let SC i 
(
τ j 

)
= c i s i 

(
t ji + θi 

)
denote the

ormalized expected Space Consumption of product i at replenish-

ent time τ j , and SC(t) = 

∑ 

i SC i (t) the total space consumption. 

heorem 2. The optimal solution to NSP is τ ∗( s ) such that SC ( τi ) =
(s ) for all i ∈ { j : s j > 0}, and is invariant of the order of products,

.e., τ ∗( s ) is not unique. 

Here we give a sketch of the proof. Define A s := { j : s j > 0}.

or any i ∈ A s , define SC −i (t) := 

∑ 

k ∈ A s \ { i } SC k (t) as the expected

otal space consumption of products except i . For any t � = τ k ,

here k ∈ A s �{ i }, we have d SC −i (t) /d t = 

∑ 

k ∈ A s \ { i } c k s k . Thus, if we

ncrease τ i by δi , i.e., τ ′ 
i 

= τi + δi , then we get SC ( τi ) − SC 
(
τ ′ 

i 

)
=

i ·
∑ 

k ∈ A s \ { i } c k s k ; in other words, the spike generated by the re-

lenishment of i will be reduced by δi ·
∑ 

k ∈ A s \ { i } c k s k . However, at

he same time, other spikes will all be increased by δi c i s i . There-

ore, we can solve NSP in the following way. 
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4 Note that auxiliary variable A ij can take two possible integer values: 1 and 2. 

Orders for products i and j can (cannot) be combined if A i j = 2 ( A i j = 1 ). 
Let τ > 0 be the starting set. Let τi = 0 for i �∈ A s . Let

i 0 := arg min { τi : i ∈ A s } and set τi 0 
= 0 . Let A l = { i 0 } . Let i 1 :=

arg min { τi : i ∈ A s \ A l } and adjust τi 1 
so that SC 

(
τi 0 

)
= SC 

(
τi 1 

)
.

Then let A l = A l ∪ { i 1 } and continue until A l = A s . At last, we will

have τi 0 
< τi 1 

< · · · and SC 
(
τi 0 

)
= SC 

(
τi 1 

)
= · · · = SC 

(
τi k 

)
= · · · = β

for all i k ∈ A s . Now if we adjust any τ i , we get max t SC ( t ) > β .

It can be verified ex post that replenishment follows a cycle in

which τi k 
− τi k −1 

= c i k s i k / 
∑ 

s i c i := l i k , and this is independent of

the location of τi k 
; if we switch the order for i k −1 and i k and

set τi k 
= τi k −2 

+ l i k and τi k −1 
= τi k 

+ l i k −1 
, we obtain the same total

space consumption β . We can apply this result to switching order

between any two products and get the same total space consump-

tion. A detailed proof is provided in the appendix. 

Since the order in which products are replenished is not con-

sequential, the binary variables used to enforce the order can be

discarded. Therefore, we can use any fixed order, and NSP is equiv-

alent to the following Linear Scheduling Problem ( LSP ). 

(LSP ) B (s, T ) = min 

τ,β
T · β

s.t. 
∑ 

i 

SC i 
(
τ j 

)
≤ β ∀ j, (29)

SC i 
(
τ j 

)
= c i s i ( 1 + θi ) ∀ i = j, (30)

SC i 
(
τ j 

)
= c i s i 

(
τi − τ j + θi 

) ∀ i > j, (31)

SC i 
(
τ j 

)
= c i s i 

(
τi − τ j + 1 + θi 

) ∀ i < j, (32)

0 ≤ τi ≤ τ j ≤ 1 ∀ i < j. (33)

The minimum, normalized total space consumption is given by

the following Corollary. Note that s contains all the information in

( s , y ) because y i = I ( s i > 0 ) . Thus, we use s to replace ( s , y ) here-

after. 

Corollary 1. Given assortment s , the minimum, normalized total

space consumption is 

β(s ) = 

M ∑ 

i =1 

( 

s i c i ·
i ∑ 

j=1 

s j c j 

) 

/ 

M ∑ 

i =1 

s i c i . (34)

To summarize, we have transformed the CPI into two interre-

lated problems that are more amenable to computation: The first

is a space-relaxed CAPP , which is an LP; the second is the CRSP ,

which has a pseudo-closed-form solution that is based on a linear

program ( LSP ). In addition, the output solution of one will serve

as the input of the other, and they are all feasible. Hence, we can

design a Feedback-Iteration ( FI ) algorithm to approach the optimal

solution. Due to the optimality-preservation porperty of our decou-

pled problems, the iteration will converge and stop at optimality.

The following decribes the steps in the FI algorithm. 

4.1.0.1. Feedback-iteration algorithm. [0] Initialize k = 0 , s k = d, t k =
0 , and T k = 0 . Set stopping criteria δ and S . Let LOW ER = L be the

lower bound, and ˜ s = d be the current best assortment. 

[1] Let k = k + 1 and solve f (s k −1 ) to get an improved cycle

time T k and replenishment schedule t k . 

[2] Solve g ( T k , t k ) to get an improved assortment s k . 

[3] If LOW ER < f 
(
s k 

)
− δ (i.e., a significant improvement exists),

then let ˜ s = s k , update the lower bound by setting LOW ER = f 
(
s k 

)
,

and go to step [4]; otherwise, stop. 

[4] If k > S (i.e., we have sufficient number of iterations), stop;

otherwise, go to step [1]. 
.2. Managing combined replenishments 

The CPC consists of three subproblems: an assortment problem,

 consolidating problem, and a scheduling problem. Note that the

ssortment problem and scheduling problem are related by the

pace constraint (10) , the assortment problem and consolidating

roblem are related by constraint (17) , and the scheduling problem

nd consolidating problem are related by constraint (19) . The as-

ortment and consolidating problems are more closely related be-

ause products that are consolidated in one order can be viewed

s a single product and thus the consolidating problem essentially

enerates a new assortment. 

To solve the CPC , we adopt a heuristic-based, feedback-iteration

pproach similar to what we use for the CPI . This approach con-

ists of three steps. In the first step, we solve the scheduling prob-

em given the full assortment without consolidations. In the sec-

nd step, we solve the joint assortment and consolidating problem

iven the schedule and cycle time obtained from the previous step.

hen solving the joint assortment and consolidating problem, we

elaxed the integrality constraints on y and o . The optimal values

f y and o will be achieved on the boundaries, given that r ’s are

ntegers. In this manner, we greatly reduce the number of integer

ariables in our problem. In the third step, with a new assortment

nd the consolidation solution, we go back and solve the schedul-

ng problem with the combined products taken as a single prod-

ct. We repeat this procedure until the optimal profit converges.

his approach is formalized by the following Sequenced-Feedback-

teration ( SFI ) algorithm. 

.2.0.2. Sequenced-feedback-iteration algorithm. [0] Set auxiliary

ariable A i j = 1 for all i and j . 4 Set stopping criteria S > N. Let

˜  = d, ˜ y = 1 , ˜ o = 1 , and 

˜ r = I . Re-index the groups according to K n

n a descending order. Let pointer pn = 1 and the set of product

airs � = ∅ . 
[1] If |P pn | < 2 or ( i , j ) ∈ � for ∀ i, j ∈ P pn and i � = j , then set

pn = pn + 1 and go to step [1]. If pn ≤ N , find i ∗, j ∗ ∈ P pn such that

(i ∗, j ∗) = arg min (k 1 ,k 2) / ∈ � { s k 1 · c k 1 · s k 2 · c k 2 } and set A i ∗ j ∗ = A j ∗i ∗ =
 . 

[2] Solve LSP using the effective assortment ˜ s ′ ˜ r to get β( ̃ s ′ ˜ r ) .
olve L = max T v ′ s − T · H 

′ ˜ s − 1 
T · κ ′ ˜ y − 1 

T · K 

′ ˜ o subject to 0 ≤ T ≤
/β( ̃ s ′ ˜ r ) , where K 

′ = 

(
K n (1) , . . . , K n (M) 

)
. Obtain an improved cycle

ime ˜ T . 

[3] Solve U = max s,y,x,o, r v ′ s − ˜ T · H 

′ s − 1 ˜ T 
· κ ′ y − 1 ˜ T 

· K 

′ o subject to

2)–(4), (6), (8), (10), (21), o i ∈ [0, 1] for ∀ i ∈ P, r im 

+ r jm 

≤ A i j for

 m ∈ P and ∀ i � = j , and r i j = ̃  r i j for ∀ i, j / ∈ P pn . Obtain s ∗, y ∗, o ∗, and

 

∗. 

[4] If U ≤ L , set pn = pn + 1 . Otherwise, set ˜ s = s ∗, ˜ y = y ∗, ˜ o =
 

∗, and 

˜ r = r ∗. 

[5] If pn ≤ N , let � = � ∪ { ( i ∗, j ∗) } . If pn > S, stop; otherwise,

o to step [1]. 

Notice that in the second step of this algorithm, we do not

olve the consolidating problem for the entire product set. Instead,

e solve the consolidating problem group by group, in a descend-

ng order of group setup cost. Further, in solving the consolidating

roblem within a group, we gradually expand the set of products

hat can be consolidated until the profit is no longer improved.

n particular, we each time choose the consolidation of two more

roducts so that this causes the least impact on the required space.

he following corollary describes the impact on required space if

e combine the replenishment orders of product i and j of the

ame group. Basically, we treat the combination of product i and j
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5 By checking the first order conditions of the objective function with respect to 

all the decision variables, we can find that there can be at most one solution for 

every variable within the feasible range. In addition, the objective function is not 

strictly convex for any decision variable. Therefore, the objective function can have 

only one maximum point in the feasible region. The detailed proof is omitted. 
s a single product that frees up the space at the rate of s i c i + s j c j 
nd we denote ˜ s as the “new” assortment. 

orollary 2. The change in the minimum, normalized total space con-

umption after combining the replenishment of product i and j is 

( ̃  s ) − β(s ) = s i · c i · s j · c j / 

M ∑ 

k =1 

s k c k . (35)

.3. An upper bound 

To assess the effectiveness of our heuristics, we develop an up-

er bound on the optimal solution. Here we focus on the CPC , be-

ause the analysis of the CPI is similar. An upper bound for the CPC

an be obtained by solving the following linear program, which we

all the Relaxed CPC ( RCPC ). Let T L and T U denote a lower and an

pper bound on T , respectively. Note that θ j · T L ≤ t i j + T · θ j . Thus,

e relax the space constraint (10) by replacing it with 

 

j 

c j s j θ j T L ≤ C. (36) 

y dropping t ij , we drop the scheduling problem entirely. Notice

hat the costs of scheduling are mainly driven by the group setup

osts. If the group setup costs are high, retailers should consolidate

he orders and compromise on the scheduling optimality; if the

roup setup costs are low, dropping the scheduling problem will

ot significantly affect the total profit. The RCPC can be formulated

s 

(RC P C ) max 
s,x,y,r,o 

∑ 

i ∈P 

[
v i s i − H i s i T L −

κi y i 
T U 

− K n (i ) o i 

T U 

]
s.t. (2) − (4) , (6) , (8) , (17) , (18) , (36) , 

o i ∈ [0 , 1] , r i j ∈ 

[
0 , I 

{
j ∈ P n (i ) 

}] ∀ i, j. 

roposition 4. The optimal value for RCPC is an upper bound on the

PC. 

Note that for a given T U and T L , the RCPC is an LP, and thus

an be solved efficiently. To find T U and T L , we first set T U = T L = T 

nd then conduct a linear search for the optimal T ∗ by utilizing a

mall step size δ. Once we find the ˆ T ∗ that gives the highest profit,

hen set T U and T L plus and minus a step from 

ˆ T ∗, respectively.

ote that T ∗ and 

ˆ T ∗ may not be the same, but we should have

 

∗ ∈ 

[
ˆ T ∗ − δ, ˆ T ∗ + δ

]
. Because the optimal value of the RCPC given

 U = T L = T ∗ is an upper bound for CPC , the relaxation of T U and

 L also generates an upper bound. As shown later in Section 6 ,

his upper bound and the profit generated by our heuristic al-

orithms are quite close for a wide range of parameter settings,

hich validates the effectiveness of our heuristics as well as the

pper bound. 

. The space-dedication strategy 

When space is dedicated to each product, replenishment is

ore flexible and easier to implement as there is no need to coor-

inate the replenishment schedules and adopt a common replen-

shment cycle for all the products. Thus, each product can have a

ifferent replenishment cycle time. This flexibility may enable the

pace-dedication strategy to outperform the space-sharing strategy.

owever, we still need to solve the consolidating problem in order

o reduce setup cost to the extent possible. In this context, if two

roducts are combined for replenishment, we need to ensure that

hey have the same replenishment schedule. 

Here, instead of using a common cycle time T , each product i

as its own cycle time T . Given the fixed space allocation, we can
i 
eplace the space constraints in (10) with a single space constraint

 

i ∈P 
( 1 + θi ) c i s i T i ≤ C. (37) 

n addition, we need to enforce that products that are combined

or replenishment must have the same cycle time. Let T i denote

he cycle time of the i th order and replace (19) with 

 i = 

∑ 

j 

r i j · T j ∀ i. (38)

ote that (17) will always be binding in order to maximize profit.

n other words, 
∑ 

j r i j = 0 if y i = 0 and 

∑ 

j r i j = 1 if y i = 1 . Given

uch conditions, (38) requires that T i should equal at most one of

he T j ’s. Equivalently, 1/ T i should equal at most one of the 1 / T j ’s.

herefore, (38) can be written as 1 /T i = 

∑ 

j r i j / T j if T i � = 0 and

 i � = 0 for all i . This form allows the r ij ’s to appear in the numer-

tor and makes it easier to solve the problem. Lastly, all the con-

traints related to t and z can be dropped. As a result, the problem

f dedicated-space strategy can be formulated as follows. 

(DSS) max 
∑ 

i ∈P 
v i s i −

∑ 

i ∈P 
H i s i 

∑ 

j∈P 
r i j · T j −

∑ 

i ∈P 
κi y i 

∑ 

j∈P 
r i j / T j 

−
∑ 

j∈P 
K n ( j) o j / T j 

s.t. (2) − (6) , (17) , (18) , (20) , (21) , (37) , and (38) . 

Because we do not have the scheduling problem, the DSS con-

ists of an assortment subproblem, which determines s and T , and

 consolidating subproblem, which determines r . Note that y is de-

ermined by s , and o is determined by r . Observing that T is only

ontained in constraints (37) and (38), we first use a Lagrangian

ultiplier λ ≥ 0 to move (37) to the objective to get 

 

∗
j (s, r , λ) = 

√ ∑ 

i κi y i r i j + K n ( j) o j ∑ 

i s i r i j [ ( 1 + θi ) c i λ + H i ] 
. (39)

e then use (39) in the following Dedicated-Space Iteration ( DSI )

lgorithm to solve this problem. 

edicated-Space Iteration Algorithm. [0] Let k = 0 , set s k = d, y k =
 , o k = 1 , and r k = I . 

[1] Let k = k + 1 . Use (39) to compute T 

k 
(
s k −1 , r k −1 , λ

)
for a

iven λ. 

[2] Use the bisection method to search for the smallest λ∗ ≥ 0

hat satisfies (37). 

[3] Solve DSS given T 

k , r k −1 and o k −1 to get s k and y k . If s con-

erges, go to [4]; Else, let r k = r k −1 , o k = o k −1 , and go to [1]. 

[4] Solve DSS given T 

k , s k and y k to get r k and o k . If r converges,

top; Else, go to [1]. 

Note that in steps [3] and [4], respectively, the integrality con-

traints on y , r , and o can be relaxed and replaced by interval

onstraints. The argument is similar to the proof of Proposition 1.

urther, note that this algorithm preserves optimality because the

ame objective function and the same set of constraints are used

n each step. The objective value will only be improved in each it-

ration. Hence, the effectiveness of this algorithm depends on how

any local maxima there are in the feasible region. Fortunately,

he objective function of DSS does not have multiple local max-

ma. 5 Lastly, finding the largest λ∗ that dissatisfies (37) in step [2]

nd relaxing (37) with λ∗ in steps [3] and [4] can generate an up-

er bound, denoted by DSU . 
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Table 1 

An Instance of CPI. 

i d i v i κ i c i θ i h i C w i j #1 #2 #3 

#1 194 6 50 0.02 2 0.02 80 #1 1 0 0 

#2 182 19 100 0.07 2 0.07 80 #2 0.4 1 0 

#3 190 18 50 0.03 2 0.03 80 #3 0.4 0.4 1 

Table 2 

Summary of parameters used in computational study. 

Distribution/Formula Parameters Distribution/Formula 

M 5 + round(10 U) N roundup ( M /5) 

C (5 + 30 U) · M κ i κ̄ + (U − 0 . 5)
κ

CV i U · CV B κ̄ 30 + 70 U

CV B 1 + 9 U 
κ 50 U 

θ i 1.65 · CV i c i c̄ + (U − 0 . 5)
c 

d i d̄ + (U − 0 . 5)
d c̄ 0 . 05 + 0 . 1 U

d̄ 50 + 100 U 
c 0.09 U 


d 80 U H i c i ·
(

1 
2 

+ θi 

)
v i v̄ + (U − 0 . 5)
v K n K̄ + (U − 0 . 5)
K 

v̄ 5 + 10 U K̄ 10 + 40 U


v 8 U 
K 20 U 

Note: U represents a uniformly random number on (0,1). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 3 

Performances of algorithms. 

Mean Median Std. Dev. Range 

V RCPC 9177 8318 5016 28,234 

V SFI 8904 7936 4895 27,395 

V DSU 9002 8081 4989 31,333 

V DSI 8999 8071 4946 28,057 

μSFI 3.30% 2.03% 3.69% 24.97% 

μDSI 0.40% 0.24% 0.95% 11.47% 
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6. Computational study 

In this section, we verify the computational difficulty of CPI

using numerical examples, then evaluate how the heuristics per-

form against the upper bounds on the CPC and DSS under various

parameter settings, and finally explore when space sharing out-

performs space dedication by comparing the performance of the

heuristics and upper bounds. 

6.1. Computational difficulty 

Given the CPI can be derived as a special instance of the CPC ,

computing the CPC will be at least as hard as the CPI . Thus, it suf-

fices to focus on the computational difficulty of the CPI . We tried

solving the CPI using GAMS via NEOS Server. 6 Within NEOS, we

employed two powerful, commercially available solvers: the DI-

COPT solver, 7 which is used for mixed integer nonlinear optimiza-

tion problems, and the LINDOGlobal solver, 8 which uses branch-

and-cut methods to solve non-linearly constrained optimization

problems. 

We found that the DICOPT solver could not solve the CPI , while

LINDOGlobal could solve this problem only up to three products.

An instance of size 3 is shown in Table 1 . Any problem instance

with more than 3 products was not solved by the LINDOGlobal

solver even after 1,0 0 0,0 0 0 seconds. Hence, this justifies the need

for heuristics to address the CPI and the CPC . 

6.2. Performance of heuristics 

In this section, we evaluate the performance of the heuristics

used to compute the solutions under the space sharing and the

space dedication strategies. Recollect that the Sequenced Feedback

Iteration ( SFI ) algorithm was used for the space sharing strategy,

while the Dedicated Space Iteration ( DSI ) algorithm was employed

for the space dedication algorithm. To evaluate the heuristics, we

consider a broad range of parameters (summarized in Table 2 ) and

generated 500 random problems instances (27) , each comprising

between 5 to 15 candidate product. 9 We then computed the solu-
6 http://www.neos-server.org/neos/ 
7 https://www.gams.com/help/topic/gams.doc/solvers/dicopt/index.html 
8 https://www.gams.com/help/topic/gams.doc/solvers/lindo/index.html 
9 5˜15 is a reasonable size for a product category such as orange juice, tooth 

paste, basic undergarments, socks, etc. at a retail store. 

e  

c  

t

 

t  

a  
ions provided by the appropriate algorithms and compared these

olutions with the appropriate upper bound solution for each strat-

gy. To solve the optimization problems associated with the up-

er bounds and heuristics, we use the CVX in Matlab with the

osek solver (version 7.1.0.12) on a computer with an Intel Core

5-3210M 2.50 gigahertz processor and 4 gigabytes of RAM mem-

ry. The performance of the heuristics ( V i , i ∈ { SFI , DSI }) is evalu-

ted based on the % gap from their respective upper bounds ( V j , j

 { RCPC , DSU }). The % gaps are defined as: μSF I := 

V RCPC −V SF I 
V SF I 

× 100%

nd μDSI := 

V DSU −V DSI 
V DSI 

× 100% . 

Table 3 summarizes the mean, median, standard deviation, and

ange of the values of the upper bounds, heuristics, and the ap-

ropriate gaps. The following observations can be made. First, for

he space-sharing strategy, the performance of the SFI algorithm is

easonably good, with a mean gap of 3.3% from the upper bound.

econd, for the space-dedication strategy, the performance of the

SI algorithm is extremely good, with a mean gap of 0.4% from the

pper bound. This suggests that both heuristics can achieve profits

hat are very close to the optimal. 

.3. Space sharing vs. space dedication 

In this section, we use the performance of the heuristics and

he upper bound to better understand the performance of the

pace sharing and the space dedication strategies. We then use

his analysis to develop insight on which strategy is better un-

er which circumstance and why. Although the heuristics are near-

ptimal, we still cannot compare the performance of space sharing

ersus space dedication solely based on the gaps between the up-

er bounds and the heuristics. This is because the gaps could be

aused by the inefficiency of the heuristic algorithms or the ineffi-

iency of the upper bound algorithms. Therefore, we need to sup-

lement gaps with other criteria for making these comparisons. 

First, we know that space sharing is certainly better (worse)

han space dedication if V SFI > V DSU ( V RCPC < V DSI ). Otherwise, we

onsider the two strategies to have similar performance. We call

his the Absolute Criterion . However, this criterion is not always sat-

sfied in the numerical experiments. Hence, we need a weaker cri-

erion. The second criterion we use is called the Bounds Criterion .

e decide that space sharing outperforms space dedication if both

 RCPC > V DSU and V SFI > V DSI . Similarly, space dedication outper-

orms space sharing if both V RCPC < V DSU and V SFI < V DSI . Else, as

efore, we define the performance of the two strategies to be sim-

lar. We also use an even weaker third criterion, which we call the

iddle Criterion . Under this criterion, space sharing outperforms

pace dedication if 
V RCPC + V SF I 

2 > 

V DSU + V DSI 
2 , underperforms space ded-

cation if 
V RCPC + V SF I 

2 < 

V DSU + V DSI 
2 , and similar if 

V RCPC + V SF I 
2 = 

V DSU + V DSI 
2 .

s we can see from the following analysis, the results with differ-

nt criteria are very consistent, which suggests that these criteria

an be reliably used to compare space sharing with space dedica-

ion. 

Given these criteria, we next compare the performance of the

wo strategies. An important aspect in this paper is the space avail-

bility per product represented by C / M . We divide the value of C / M

http://www.neos-server.org/neos/
https://www.gams.com/help/topic/gams.doc/solvers/dicopt/index.html
https://www.gams.com/help/topic/gams.doc/solvers/lindo/index.html
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Fig. 4. The Impact ofspace availability on the result of comparison Note : SS = space 

sharing is better; SP = similar performances; SD = space dedication is better. 
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Table 4 

Regressions results for selected factors. 

Absolute criterion Bounds criterion Middle criterion 

M −0.051 −0.0700 −0.0538 

(0.0155) (0.0208) (0.0320) 

CV B −0.0256 ∗∗∗ −0.0157 ∗ −0.0255 ∗

(0.0069) (0.0093) (0.0143) 

C / M −0.0296 ∗∗∗ −0.0439 ∗∗∗ −0.0537 ∗∗∗

(0.0073) (0.0098) (0.0151) 

d̄ 0.0025 ∗∗∗ 0.0023 ∗∗∗ 0.0035 ∗∗∗

(0.0 0 06) (0.0 0 08) (0.0012) 

κ̄ 0.0038 ∗∗∗ 0.0067 ∗∗∗ 0.0091 ∗∗∗

(0.0 0 09) (0.0012) (0.0019) 

c̄ 2.8526 ∗∗∗ 2.4862 ∗∗∗ 3.7486 ∗∗∗

(0.6253) (0.8401) (1.2901) 

K̄ −0.0026 ∗ −0.0055 ∗∗∗ −0.0099 ∗∗∗

(0.0016) (0.0021) (0.0032) 

Note: Standard errors are in brackets. ∗p < 0.1; ∗∗ p < 0.05; ∗∗∗p < 0.01. 
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nto several segments (levels). Given a level of space availability

er product, we compute the percentage of numerical instances in

hich space sharing outperforms space dedication, underperforms

pace dedication, and they have similar performance. The results

or the three different criteria are shown in Fig. 4 . We can see that

pace sharing is likely to outperform (underperform) space dedi-

ation across all criteria when the level of space availability is low

high). This is intuitive because as the space availability increases,

he benefit of space sharing decreases while the benefit of space

edication increases. 

To better understand how the performance of the two strate-

ies change with model parameters, we use regression analysis and

efine the dependent variable as follows. We set the dependent

ariable to 1 if space sharing is better than dedication, -1 if space

edication is better than sharing, and 0 if the performance is sim-

lar. The following variables are included in the regression model:

 , CV B , C , C / M , d̄ , 
d , v̄ , 
v , κ̄ , 
κ , c̄ , 
c , K̄ , and 
K . Based on

his analysis, we find that factors that significantly influence the
elative performance of the two strategies include: the number of

roducts ( M ), the demand variability ( CV B ), the availablility of stor-

ge space ( C / M ), the mean demand level ( ̄d ), the mean order setup

ost for each product ( ̄κ), the mean space consumption rate ( ̄c ),

nd the mean order setup cost for each group ( ̄K ). Details on these

ignificant factors are summarized in Table 4 . 

Our analysis shows that space sharing or space dedication can

e optimal, depending on the parameter setting. In this regard,

able 4 can be used to draw the following conclusions. First, the

enefits of space sharing increase as the number of products, de-

and variability across products and space availability per prod-

ct decrease. Among these observations, it is interesting that space

haring is more attractive when we have fewer products. This is

ecause fewer products require less replenishment coordination

nd less associated costs. As demand variability decreases, there

s more stability in space consumption across products making

pace sharing more effective and space dedication less necessary.

s space availability per product decreases, the gains from space

haring increase since the costs under space dedication increase

ue to more frequent replenishments now necessary due to lower

nventory. Second, the benefits from space sharing increase when

verage product demand, product replenishment setup cost and

verage space consumption rate increases. As demand or prod-

ct space consumption increases, there are larger inventory re-

uirements making space dedication more costly to implement. As

roduct replenishment setup costs increase, there are more bene-

ts for space sharing as it allows less frequent replenishments by

ncreasing space utilization. However, if the group replenishment

etup costs increase, the benefits of space sharing are diminished

ue to the increased cost of coordinating replenishments within a

roup. 

We next consider the potential reduction in space under space

haring when compared to space dedication. To conduct this anal-

sis, define the percentage space consumption gap as 100% × (1 -

space consumed with space sharing]/[space consumed with space

edication]). In Fig. 5 , we plot the space consumption by space

haring and space dedication, respectively, for 200 different assort-

ents. The average space consumption gap is 31% with a standard

eviation of 5.53%. Therefore, by sharing space with an optimal re-

lenishment scheduling program, we can on average reduce space

onsumption by 31% across a range of parameter values, which

s quite significant. The practical implication is that by adopting

n inventory strategy that uses space sharing rather than space

edication, we can potentially carry more products with the same

mount of space. Conversely, for the same assortment, space shar-

ng requires a smaller storage or display room, and this could po-

entially lead to lowered property rent and administration costs if
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Fig. 5. Marginal impact of space sharing on space consumption Note: The dots represent space consumed by dedication and sharing strategies, respectively, for 200 different 

assortments. The assortments are ordered and indexed according to the consumption by space sharing strategy. The horizontal axis is the index of the assortment. The graph 

shows how the gap evolves as the space consumption increases. 
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this strategy is chosen before we make the decision on how much

retail space to procure. 

To summarize, the following managerial insights can be drawn

from the computational study. First, the optimal choice of inven-

tory strategy is not clear a priori , since this depends on many dif-

ferent factors that are related to space availability, the total num-

ber of products, their demand characteristics, and the cost of in-

ventory replenishment. Second, space sharing is likely to be a bet-

ter choice for basic product categories that have small product

choice sets, lower demand variability, less available space, greater

demand rates, higher individual setup costs, higher space con-

sumption rates, and lower group setup costs. Third, the space-

sharing strategy could be used to carry more products or possibly

save space and retail rents. 

7. Conclusions 

In this paper, we formulated the retail space management prob-

lem for basic products. The main components are assortment se-

lection, replenishment scheduling, and the consolidation of prod-

uct replenishment. These components are linked by the storage or

shelf space constraints. We showed that this problem is NP-hard.

We therefore decoupled the joint optimization problem into an as-

sortment planning problem, a replenishment scheduling problem,

and a consolidation problem. We proved that the sequencing prob-

lem in the replenishment scheduling can be disregarded and this

allows for an efficient solution to this problem. We also developed

heuristic algorithms and upper bounds to solve this problem under

space sharing and space dedication strategies and defined three

criteria for the comparison. The algorithms are efficient and the

performance gaps are small relative to an upper bound on the op-

timal solution. 

Using an extensive computational study, we find that by sharing

space with the optimal replenishment scheduling program, space

consumption can be reduced by 31% on average. While space ded-

ication is easier to implement as it does not require coordination

of replenishment schedules across products, our results show that

it requires more space than space sharing does. In addition, the

relative benefit of space sharing over space dedication depends

on a number of different factors (e.g., space availability, demand

rate, space consumption rate, and order set up costs), which are
escribed and analyzed. Interestingly, we find that space sharing

s more attractive when we have fewer products. This is because

ewer products require less replenishment coordination and less

ssociated costs. Furthermore, we find that individual product and

roup order setup costs—which are not directly related to the cost

f shelf space—impact the relative performance of space sharing in

pposite ways. Particularly, space sharing is more attractive if sup-

liers charge less for each order or charge more for each product

eing ordered. This is because space sharing allows longer replen-

shment cycles (and makes replenishment less frequent for each

roduct), but it requires that fewer products be consolidated in an

rder. 

The findings of this paper can be potentially used by retailers

hat sell basic products and are not required to dedicate their re-

ail space. To do so, it is important that the appropriate data is

ollected and used to estimate the demand substitution matrix and

ll the other relevant parameters. Our heuristic algorithms are then

asy to implement as they require minimal coding. Although our

omputational study only shows the performance of our heuris-

ics for problem instances that have 5 ˜ 15 candidate products

i.e., the number of products for a typical product category), our

euristics can be jointly used to solve problems at the store level.

or instance, we can first divide the entire retail shelf or storage

pace into a number of independent segments dedicated to dif-

erent product categories. Then in each scenario, we can use the

pace-sharing and space-dedication heuristics to determine the op-

imal assortment and replenishment schedule for each product cat-

gory. By repeating this procedure many times, we can find out the

ptimal space allocation plan for the entire store. 

This model has the following limitations. First, we do not con-

ider complementary effects among products. This is because in

his paper we focus on the assortment and inventory manage-

ent for products in the same category, and it is more reasonable

o consider substitution effects. When we need to jointly manage

ultiple categories, complementary effects should be considered,

nd coordinating replenishments will become even more challeng-

ng. Second, our methods and results could be tested with other

ypes of demand models. Third, various practical situations may

ntail additional and different constraints. Extending our model to

ncorporate these constraints in a real application could be a fruit-

ul area for future research. 
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ppendix 

he Proof of Lemma 1. Given Q i = 

√ 

κi s i 
H i 

for ∀ i , objective (1) now

ecomes 
∑ 

i ∈ N 
(

v i s i − 2 
√ 

H i κi s i 

)
. Since 

√ 

s i is concave, −√ 

s i is con-

ex in s i . v i s i is linear in s i , so the objective is convex in s i . 

he Proof of Lemma 2. Suppose W 

∗ := { x ∗, y ∗, z ∗, s ∗, T ∗, t ∗} max-

mizes V , CPI ’s objective. If { x ∗, y ∗, s ∗} / ∈ arg max V ( x, y, s | z ∗, T ∗, t ∗) ,
hen ∃ { x 0 , y 0 , s 0 } such that V ( x 0 , y 0 , s 0 , z ∗, T ∗, t ∗) > V ( W 

∗), which

ontradicts the fact that W 

∗ maximizes V . A similar argument

pplies to { z ∗, T ∗, t ∗} = arg max V ( z , T , t | x ∗, y ∗, s ∗) . Then g ( T ∗) =
 ( W 

∗) = f ( s ∗, y ∗) . 

he Proof of Lemma 3. The constraint (26) can be obtained by

ubstituting (13) into (12). Then we can scale up both sides of all

he constraints by T and define t ′ 
i j 

= t i j · T as a decision variable, to

et the MSMSP . 

he Proof of Proposition 1. Note that by definition s i =
 

j w i j d j x i j , so s is linear in x . Because w i j d j ≥ 0 for ∀ i , j , so by

emma 1, we know that the objective is convex in x ij . Hence, the

ptimal x ij is either 0 or the maximal. Combining (3) and (4), we

ave for a specific i that x i j ≤ y i ≤ 1 − x ki for ∀ j and ∀ k � = i . 

Now suppose the binary constraints in (5) is replaced by y i ∈
0, 1] and there exists i such that the optimal y ∗

i 
∈ (0 , 1) . Let J 

nd K be two sets such that for ∀ j ∈ J and ∀ k ∈ K we have x ∗
i j 

> 0

nd x ∗
ki 

> 0 . (I) If J = K = ∅ , then the value of y i is irrelevant and

he LP relaxation would not affect the optimal value. (II) If J = ∅

ut K � = ∅ , then we should have y ∗
i 

= 0 , which is a contradiction.

III) If K = ∅ but J � = ∅ , then we should have y ∗
i 

= 1 , which is

 contradiction. (IV) Suppose 0 < x ∗
i j 

= y ∗
i 

= 1 − x ∗
ki 

< 1 for ∀ j ∈ J 

nd ∀ k ∈ K. Thus, it is profitable to increase both x ij and x ki , and

he total marginal value of increasing all the x ij ’s and that of in-

reasing all x ki ’s are equal. However, since the objective is convex

n x , we can either increase y i or decrease y i to increase the objec-

ive value. If we increase y i , then the total marginal gain from x ij ’s

ill overweigh the total marginal loss from x ki ’s. The same argu-

ent applies to decreasing y i . As a result, we should have y ∗
i 

= 0

r 1, which is a contradiction. Therefore, an LP relaxation on y will

ot affect the optimal solution. 

he Proof of Proposition 2. At any time t such that τi − T ≤ t <

i , the average inventory level I i ( t ) equals the average demand dur-

ng [ t , τ i ] plus the amount of safety stock T · s i · θ i ; Similarly, At

ny time t such that τi ≤ t < τi + T , the average inventory level I i ( t )

quals the average demand during [ t, τi + T ] plus the amount of

afety stock. Note that τi − T and τi + T are the order delivery time

n the previous and next cycle, respectively. Accordingly, we have 

 i (t) = 

{
s i (τi − t) + T · s i · θi , t < τi 

s i (T + τi − t) + T · s i · θi , t ≥ τi 

= s i [ T · I { t ≥ τi } − t + τi + T · θi ] . (A 1)

or t = τ j , we can write (A1) as I i (τ j ) = s i 
(
t ji + T · θi 

)
except when

 < i and τi = τ j . (Note that t ji = 0 when j < i and τi = τ j , but

e should have I i (τ j ) = s i ( T + T · θi ) .) However, this issue will not

ffect the optimal solution, because we have two space constraints

t time τi = τ j : I i (τi ) + I j (τi ) ≤ C and I i (τ j ) + I j (τ j ) ≤ C. One of the

onstraints must be effective in the sense that it always represents

he true situation and is always tighter. This logic applies to the

ase wherein more than two products are replenished at the same

ime and the space constraint corresponding to the product with

he largest index is always effective. The rest of the constraints are

edundant. 
he Proof of Proposition 3. Note that CRSP given s can be

ritten as min 0 ≤T ≤C/β(s ) T · H 

′ s + 

1 
T · κ ′ y, which is a simple con-

trained convex optimization problem. Using the KKT conditions,

e can obtain the following. If 

√ 

κ ′ y 
H ′ s < 

C 
β(s ) 

, then T ∗(s ) = 

√ 

κ ′ y 
H ′ s ; If

 

κ ′ y 
H ′ s ≥ C 

β(s ) 
, then we have λ(s ) = 

β(s ) 2 

C 2 
κ ′ y − H 

′ s and thus T ∗(s ) =
 

κ ′ y 
H ′ s + λ(s ) 

= 

C 
β(s ) 

. 

he Proof of Proposition 4. First, since we no longer need t in the

pace constraint, we drop all constraints related to t and z . Sec-

nd, we substitute (14) into the objective function to eliminate Q i 

nd its associated domain in (7). Third, we relax (5), (20), and (21)

y replacing them with their linear relaxations. These relaxations

f (5), (20), (21) and (10) and the eliminations of (11) through

16) relax the feasible set. This leads to a non-linear optimization

roblem with objective 
∑ 

i ∈P 
[ 
v i s i − H i s i T − κi y i 

T − K n (i ) o i 
T 

] 
and linear 

onstraints. Next, it is clear that 
∑ 

i ∈P 
[ 
v i s i − H i s i T L − κi y i 

T U 
− K n (i ) o i 

T U 

]
s an upper bound on the objective of the CPC . Hence, the result

ollows. 

he Proof of Theorem 1. To simplify this problem, we eliminate

onstraint (14) by replacing Q i with s i T in the objective function.

his removes a set of quadratic equality constraints. By introduc-

ng an auxiliary variable λ, and by adding quadratic inequality con-

traint λT ≥ 1, we can transform the objective function into 

ax 
∑ 

i ∈P 
v i s i −

∑ 

i ∈P 
H i s i T −

∑ 

i ∈P 
κi y i λ, (A 2) 

hus, we transform the CPI into a Mixed Integer Quadratically Con-

trained Quadratic Program (MIQCQP), in which the objective is

ot convex. In addition, a special instance of the CPI can be ob-

ained by dropping the integrality constraints so that we get a non-

onvex QCQP, which is NP-hard (10) . Since a special instance of the

PI is NP-hard, this reduction establishes that the CPI is also NP-

ard. 

he Proof of Theorem 2. The main idea of the proof is to show

hat any change of the product replenishment order does not affect

he maximum space consumption. To prove this, it suffices to show

hat if we switch the order for any two adjacent products, this does

ot affect the maximum space consumption. To be consistent with

SP , we normalize T to 1. 

laim 1. For any given product order � = 

{
τi 1 

≤ · · · ≤ τi n 

}
,

e have SC 

(
τ ∗

i k 

)
= β� for all i k ∈ { j : s j > 0} if τ ∗ =

rg min τ | � max 0 ≤t≤1 SC(t) . 

Without loss of generality, suppose max 0 ≤t≤1 SC(t) = SC 
(
τi k 

)
>

C 
(
τi m 

)
for all m > k , then we can shift all τi m slightly earlier for

ll m > k , then max 0 ≤ t ≤ 1 SC ( t ) is reduced. 

laim 2. For τ ∗ = arg min τ | � max 0 ≤t≤1 SC(t) , if we switch the order

f any two adjacent products and get �′ = 

{
· · · ≤ τi k +1 

≤ τi k 
≤ · · ·

}
,

hen we have β�′ = β�. 

For notational simplicity, let i = i k and j = i k +1 , so j = i + 1 . The

raphical representation of inventory level with the optimal sched-

le given � is shown in Fig. A1 . In Fig. A1 , we use the solid line

o represent the aggregate inventory level for products except i ,

 , and use the dotted line to represent the aggregate inventory

evel for all products. Hence, the slope of the dotted line is �k c k s k 
nd the slope of the solid line is �k � = i , j c k s k . In addition, denote

 := τ ∗
i 

− τ ∗
i −1 

and y := τ ∗
j 

− τ ∗
i −1 

. Therefore, we have 

 = x · c i s i + y · c j s j . (A 3)
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Fig. A1. Inventory levels with optimal schedules. 
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According to Claim 1, we have β� = SC 
(
τ ∗

i −1 

)
= SC 

(
τ ∗

i 

)
= SC 

(
τ ∗

j 

)
.

First, by using SC 
(
τ ∗

i −1 

)
= SC 

(
τ ∗

i 

)
, we get 

a + x ·
∑ 

k � = i, j 

c k s k = c i Q i + (y − x ) · c j s j . (A 4) 

Second, from SC 
(
τ ∗

i −1 

)
= SC 

(
τ ∗

j 

)
, we obtain 

a + y ·
∑ 

k � = i, j 

c k s k = c j Q j + ( c i Q i − (y − x ) · c i s i ) . (A 5) 

Moreover, we have that Q i = s i T = s i for all i . By combining (A3),

(A4) and (A6), we get x = c i s i / 
∑ 

k c k s k and y = 

(
c i s i + c j s j 

)
/ 
∑ 

k c k s k .

Therefore, 

a = 

( c i s i ) 
2 + 

(
c j s j 

)2 + c i s i c j s j ∑ 

k c k s k 
. (A 6)

Now if we switch the order of i , j and go through

the same analysis, then we have y = c j s j / 
∑ 

k c k s k and x =(
c i s i + c j s j 

)
/ 
∑ 

k c k s k , which lead to a ′ = x · c i s i + y · c j s j = a . Note

that the schedule of other products are not changed, so the solid

line is unaffected. Hence, β�′ = β�. 

The Proof of Corollary 1. Without loss of any generality, suppose

the products are sequenced by their index. We know that the time

interval between product i − 1 and i is l i = c i s i / 
∑ 

s j c j . Suppose

product 1 is replenished at time l 1 and product M is replenished

at time t = 1 or 0. Hence, the total space consumption at time 0 is

β(s ) = 

∑ M 

i =1 s i c i 
∑ i 

j=1 l j , which can be rewritten as (37). 

The Proof of Corollary 2. Denote u i = s i · c i and U = 

∑ M 

i =1 s i c i . It is

easy to verify that 

β(s ) = 

( 

u 

2 
i + u i ·

∑ 

k � = i, j 

u k + u 

2 
j + u j ·

∑ 

k � = i, j 

u k + u i · u j + L 

) 

/U, (A7)

where L does not contain u i and u j . Similarly, we have 

β( ̃  s ) = 

[ (
u i + u j 

)2 + 

(
u i + u j 

)
·
∑ 

k � = i, j 

u k + L 

] 

/U. (A8)
Hence, β( ̃ s ) − β(s ) = u i · u j /U . 
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