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A B S T R A C T

Firms around the world need to find ways to continuously reduce their carbon footprint, preferably in ways that
are profitable or cost-effective. The opportunities available to them will change over time, as they implement
the most profitable ones first and as technology changes. When designing and adjusting their carbon policies,
policy-makers need to understand the abatement opportunities firms are facing. We explore this using data
collected by CDP (formerly the Carbon Disclosure Project) on 20,920 carbon abatement projects implemented
by more than 1400 firms worldwide over 7 years. Using fixed effects regression with energy price controls
by country, our results show that the average payback period of implemented carbon emissions reduction
projects remained relatively constant from 2010-2016, although there is tentative evidence that the projects
are becoming smaller over time. We provide a novel firm-level perspective on carbon emissions reduction
activities using data on projects implemented and reported by large, global firms, and discuss how the insights
from such firm-level analysis can help inform the design and revision of carbon emissions policies over time.

1. Introduction

Evidence continues to mount about the importance of reducing
global greenhouse gas (GHG) emissions. A range of different policy
approaches aims at reducing GHG emissions from industry, often in-
volving setting a price on emissions, whether in the form of a ‘‘carbon
tax’’ or a cap-and-trade system. In theory, firms will continue to invest
in reducing emissions as long as they find it profitable. Some opportu-
nities to reduce emissions are already profitable on their own; for many
others, the price associated with emissions should increase to encourage
firms to exploit opportunities they would otherwise not pursue.

In the past, there was extensive debate about whether the most
suitable policy to reduce GHG emissions would focus on price or on
quantity controls. Weitzman (1974) already pointed out that which
approach is preferred depends on the marginal costs and benefits as-
sociated with reducing emissions. More recently, Stavins (2019) argues
that it is not so much the choice of policy type that matters, as the
specific design of whichever policy is chosen. In a comprehensive
comparison of carbon taxes and cap-and-trade mechanisms, Stavins
(2019) concludes that in terms of key objectives such as incentives
for emissions reductions, aggregate abatement costs, and effects on
competitiveness, a carbon tax and a cap-and-trade mechanism can
be perfectly equivalent. This means that setting the correct price for
carbon emissions, whether directly in the form of a carbon tax or
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indirectly in the form of the design of a cap-and-trade mechanism,
is the key challenge for policy-makers. In theory, policy-makers need
to determine the social cost of carbon emissions, and then design the
carbon tax or cap-and-trade mechanism in such a way that the carbon
price faced by firms reflects that social cost of carbon emissions.

In practice, however, this is complicated by a number of factors.
First, firms generally do not follow the theoretical prescription of equat-
ing marginal costs and benefits, but instead use simpler investment
criteria, such as the payback period (defined as the total investment
cost divided by the annual monetary savings). Firms often require a
payback of less than two years, as documented by among others Coore-
mans (2011), Harris et al. (2000), Jackson (2010), and Fleiter et al.
(2012b). Second, the profitability of carbon abatement projects is not
static over time. As firms implement opportunities, presumably starting
with the most economically attractive ones, the costs of the remaining
opportunities are likely to be higher. Simultaneously, as new technolo-
gies emerge (partly spurred endogenously by the price on carbon),
costs may decline. Third, as Stavins (2019) points out, there is a wide
range of other factors that policy-makers need to consider, including
aggregate abatement costs, effects on competitiveness, costs to regu-
lated firms, distributional impacts, transaction costs, performance in
the presence of uncertainty, interaction with complementary policies,
and more.
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This means that policy-makers are not only faced with the chal-
lenge of determining an optimal carbon price, but with determining
a globally efficient time path for carbon prices (Aldy et al., 2010).
To assess whether policy-makers are achieving their objectives, it is
therefore imperative to observe how firms respond, as Brännlund et al.
(2014) and Bumpus (2015) also argue. By using firm-level data on
what opportunities firms choose to implement, policy-makers can get
additional insight on whether they are achieving their carbon reduction
goals, and whether their policies are having unintended consequences
for aggregate costs, competitiveness, or other dimensions that Stavins
(2019) considers. The fact that costs are likely to change over time, for
the reasons noted above, means that policy-makers also need to track
how firms’ behavior changes over time.

Payback period is not the optimal criterion for making capital allo-
cation decisions. However, examining firm-level behavior through the
perspective of payback periods is worthwhile, for several reasons. First,
it is widely used by firms (see references above). Second, policy-makers
do not observe the net marginal carbon abatement costs faced by firms.
Third, firms will primarily choose to implement opportunities that
are ‘‘profitable’’ (including a possible carbon price), and for profitable
opportunities, the traditional marginal abatement cost (MAC) curve is
problematic for reasons outlined by Taylor (2012) and Ward (2014).
For these reasons, we study the evolution of payback periods and what
this may mean for policy. Let us examine several possible patterns for
the evolution of payback periods and project size over time and discuss
potential policy implications of each.

If payback periods of implemented projects become shorter over
time, what does that mean for policy-makers? Several phenomena could
be occurring. If this is accompanied by a reduction in the overall size of
emissions reductions, it is possible that firms are applying even stricter
payback period thresholds, for instance in response to a perceived
increase in risk associated with carbon abatement. Fankhauser and
Hepburn (2010) review several ways in which intertemporal dynamics
in carbon markets could lead to increased variance in carbon price, and
hence an increase in risk. This perception also could occur if firms do
not believe regulators’ stated intentions regarding future carbon prices
or allowances.

Alternatively, if the overall magnitude of the projects firms im-
plement is constant over time or even increasing, then a shortening
payback period could reflect that the price of carbon is higher than
needed to spur investment in carbon abatement, and that firms simply
do not have the internal capacity to implement all projects that meet
their payback period threshold. They would still prioritize the most
profitable ones, but the shorter observed payback period would not
mean that they are not willing to invest in projects with longer pay-
backs. If that is the case, policy-makers should focus on finding ways
to increase the rate at which firms can implement projects. This could
mean decreasing transaction costs, setting up support mechanisms, or
providing training and education. Programs focusing on information
dissemination such as the Industrial Assessment Centers program in the
US (Anderson and Newell, 2004) or the Commonwealth Government’s
Enterprise Energy Audit Program in Australia (Harris et al., 2000) are
examples of such approaches.

If payback periods become longer over time, what does that mean
for policy-makers? As before, lengthening payback periods can sig-
nify several underlying phenomena. Firms would be accepting looser
payback period thresholds, which could be an indication that they
perceive the risk associated with carbon abatement to be lower than
before. This could be a sign that firms expect future carbon prices
to increase, or that regulators have gained more credibility when
announcing increasing carbon prices (Helm et al., 2003). If the overall
magnitude of emissions reductions is constant or even increasing, then
the lengthening of payback periods would signal generally greater
willingness by firms to make such investments. Policy-makers could
infer that their approach is working reasonably well overall; an area
of focus for policy-makers would then be to verify whether unintended

Table 1
Policy responses depending on the evolution of payback periods and the size of carbon
emissions reduction.

Observation Shortening payback period Lengthening payback
period

Increasing or constant
carbon emissions
reduction size

Policies should aim at
increasing rate of adoption;
information dissemination
are good examples

Policies in place are
successful; focus on
competitive imbalance or
distributional inequity

Decreasing carbon
emissions reduction size

Focus on decreasing
perceived risks of carbon
emissions reduction
policies

Increase carbon tax or
tighten emissions
allowance

consequences are occurring, for instance competitive imbalance or
distributional inequity.

Conversely, if lengthening payback periods are accompanied by
a reduction in the emissions reductions achieved, this would likely
reflect that the remaining abatement opportunities are becoming less
profitable over time. In other words, the low-hanging fruit would be
diminishing. Firms would then apparently still be willing to make some
investments in carbon abatement, even with less attractive payback
periods than before, but the shrinking size of emissions reductions
would indicate that firms do so reluctantly and are not willing to
make large investments. In this situation, policy-makers would need
to consider whether to increase the price of carbon, by increasing the
carbon tax and/or reducing the number of allowances, in order to make
the remaining abatement opportunities more profitable for firms.

We summarize the policy responses based on different outcomes
of the evolution of payback periods and the size of carbon abatement
opportunities in Table 1.

How do we identify which of these scenarios is actually occurring?
In this paper, we examine the payback period of 20,920 carbon reduc-
tion projects implemented and reported by over 1400 firms worldwide
over a 7-year period. Using a fixed-effects panel regression analysis,
we find that the average payback period exhibits no significant deteri-
oration over our horizon, suggesting that firms are not running out of
profitable opportunities in the short term and not making substantial
adjustments in their capital allocation criteria for carbon abatement
projects. We find that the average payback period of carbon abate-
ment activities implemented from 2010–2016 is 2.20 years. If payback
periods are short (i.e., an average of two years), that indicates that
many profitable opportunities are not being exploited (Jackson, 2010).
Jackson (2010) claims that firms typically have a strict payback period
requirement for carbon abatement projects because they perceive them
to be more risky. For policy-makers, this highlights that they need
to reduce the risk and uncertainty associated with carbon abatement
opportunities, in order to encourage firms to adopt looser payback
period thresholds. In an attempt to provide further nuance, we also
examine how the number of projects and size of emissions reduction
per project evolve, but we find mixed evidence on this front.

The contribution of this paper is to provide an initial firm-level
perspective on firms’ decisions related to investing in carbon abatement
over time. As firm-level carbon disclosure continues to become more
widespread and more comprehensive, whether to CDP or through other
mechanisms, it will be increasingly important for policy-makers to
take such firm-level data into account when considering which carbon
policies are appropriate for given sectors or geographic regions.

In what follows, we first discuss the CDP data and energy data that
we used. We then describe the regression methods and results, and the
various tests we performed to assess the robustness of our findings.
We highlight some limitations of our work. We then conclude with the
policy implications of our findings.

2. Data

We first describe our main source of data, from CDP, and then the
data we used to correct for the cost of energy.
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2.1. Data from CDP

CDP was founded as the Carbon Disclosure Project in 2000, aimed
at encouraging firms to disclose more information about their climate-
change-related risks and opportunities. CDP conducted its first survey
in 2002, and by 2015 more than 5500 firms worldwide responded to
their survey requests (CDP, 2018). This includes many of the world’s
largest firms, such as Walmart, Boeing, Cisco, Pfizer, Hewlett-Packard,
J. Sainsbury, SABMiller, Unilever, Nissan, Sony, Hyundai, Samsung,
and many others. A sample of 1089 global companies that CDP iden-
tified as having the highest impact (by market capitalization and GHG
emissions) disclosed total (Scope 1 and 2) emissions of 6361 million
metric tons of CO2-equivalent in 2016. For comparison, the total US
energy-related CO2e emissions in 2016 were 5172 million metric tons
(EIA, 2019).

Although the CDP data are far from perfect, Kolk et al. (2008)
already observed that they are becoming increasingly reliable. Turner
and Kent (2017) report that investors consider CDP data when making
investment choices, further illustrating their relevance. The data are
also frequently used in scholarly studies. Okereke (2007) uses the CDP
responses to examine the motivation, drivers, and barriers to carbon
management. Using the CDP data with the KLD Research & Analytics
SOCRATES database, Reid and Toffel (2009) provide regression-based
evidence of the drivers of why firms disclose their climate change
strategies. Blanco et al. (2016) find that the total carbon emissions
disclosed to CDP expanded over time. Matsumura et al. (2013) use
CDP carbon emissions data to test how the market responds to climate
change disclosures. Gasbarro et al. (2017) use CDP data to identify
physical, regulatory and market-based risks associated with climate
change. Using CDP responses on firm incentives related to climate
change, Dahlmann et al. (2017) find that offering incentives to a
large, broad set of recipients can be effective in reducing carbon
emissions. Gallego-Álvarez et al. (2014) find evidence that financial
performance has a stronger relationship with environmental perfor-
mance, measured using CDP data, in times of an economic crisis.
These studies suggest that CDP data are considered useful for scholarly
research.

The main fields in the data that we use are those related to payback
period of implemented projects, the number of projects for which
firms provide details, and the emissions reductions achieved with those
projects. The CDP surveys include these items since 2010. Our sample
covers all global firms that reported at least twice during the period
2010–2016. This includes 1417 firms in the 33 countries for which
we have energy price data (see below), who jointly report details on
20,920 projects. This panel is not balanced over time, as not all firms
report in each year. Therefore, we also conduct our analysis with a
balanced subsample, consisting of the 102 firms that report complete
data for at least one implemented project in every year between 2010–
2016; this yields 3051 projects. The unbalanced panel has the benefit
of being substantially larger, while the balanced panel allows us to rule
out potential effects of year-to-year variations in the composition of the
sample.

2.2. Data on energy cost

Energy prices may influence the adoption and profitability of carbon
abatement opportunities, so it is important to control for them. Sato
et al. (2019) is one of the most comprehensive and rigorous compila-
tions of energy prices weighted by fuel source across 48 countries from
1995 to 2015. Although our study covers 2010–2016, this data is still
applicable because the projects reported to CDP are from the previous
year. For example, the 2016 CDP reports typically cover financial and
environmental performance for 2015.

Sato et al. (2019) calculate energy prices based on weighted av-
erages of fuel prices by fuel consumption. The energy prices include
electricity, gas, coal and oil. They compute energy prices for various

Table 2
Summary statistics of the unbalanced and balanced panel.

Year Unbalanced
sample

Balanced sample

Firms Total
projects

Mean
payback
perioda

Firms Total
projects

Mean
payback
perioda

2010 298 879 1.97 102 318 1.72
2011 457 1503 2.09 102 385 2.18
2012 733 2580 2.20 102 397 2.27
2013 941 3333 2.20 102 452 2.35
2014 1066 3917 2.25 102 472 2.23
2015 1150 4474 2.21 102 525 2.01
2016 1069 4234 2.24 102 502 2.11

Overall 1417b 20,920 2.20 102b 3051 2.12

aPayback period is measured in years as the ratio of total cost divided by the annual
monetary savings.
bThis number represents the total number of unique firms, not the total number of
firm-year observations.

sectors, such as chemicals, food, paper, textile and transport equipment
and take the average prices across these sectors to create a single energy
price by country. They compute energy prices in real terms with the
purpose of using them in cross-country comparisons and regression
analysis. We take the natural log of the energy prices in our analysis as
they recommend.

2.3. Descriptive statistics

Table 2 shows the descriptive statistics for the unbalanced and
balanced panel. The average payback period varied from 1.97 years
in 2010 to 2.24 years in 2016 in the unbalanced sample. Examining
the smaller set of 102 firms that reported in every year, we see that
the average payback period shows a similar pattern, ranging from
1.72 years in 2010 to 2.11 years in 2016 (though reaching higher
values in between). Overall, this suggests that the average payback
period for implemented projects is slightly above two years, and does
not deteriorate substantially during our horizon. We will test this more
formally using regression analysis in the next section.

These average payback periods hide a substantial variation. Fig. 1
shows the histogram of payback period for the entire unbalanced panel
(left top chart), and then for each year separately. Fig. 2 shows the
same for the balanced panel. The charts are consistent with the view
that there are many (highly) profitable projects, but they also show that
firms implement some projects with much longer payback periods. In
the unbalanced panel in 2010, 63% of projects had a payback period of
2 years or less (the area under the two leftmost vertical bars); in 2016,
that percentage was 57%. Each year also includes a few projects with
payback periods of 8 years or more. Although there is some variation
between years, the overall shape of the histogram looks fairly similar;
there is no clear shift towards longer-payback projects over time. The
balanced panel in Fig. 2 shows similar trends, though with higher
variation due to the smaller sample size.

Table 3 shows energy prices in USD per tonne of oil equivalent
for six illustrative countries as calculated by Sato et al. (2019). The
average energy prices vary from country to country and from year to
year. For example, the energy price in the USA is the lowest across the
six countries shown and is highest in Brazil. We see that the average
energy price is slightly increasing for Japan from $906 per tonne of oil
equivalent in 2009 to $1196 in 2015. In contrast, the energy price in
the United Kingdom has been relatively stable at $840 per tonne of oil
equivalent in 2009 to $869 in 2015. We include energy prices in our
analysis of the trends of average payback periods.
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Fig. 1. The distribution of payback period for the entire sample (unbalanced panel) and for each year from 2010–2016.

Table 3
The average annual energy prices in USD per tonne of oil equivalent from 2009 to
2015 for 6 countries.

Year Australia Brazil Denmark Japan United Kingdom USA

2009 666.51 1131.15 904.01 906.62 840.69 421.31
2010 713.72 982.57 945.02 946.44 801.42 425.87
2011 788.46 937.96 966.65 1042.39 848.61 440.82
2012 866.64 1007.29 1040.89 1116.39 871.01 397.17
2013 904.82 972.78 1053.57 1220.85 899.07 410.71
2014 719.04 965.29 936.43 1296.15 891.42 417.41
2015 651.44 1286.14 871.26 1195.97 868.72 346.80

The data is described in Sato et al. (2019, pp. 16–17).

3. Methods

The descriptive statistics presented above already suggest that the
average payback period of implemented carbon abatement projects
does not change much over the time horizon in our sample. Given
that firms’ decisions related to investment in carbon abatement over
time is an important input for policy-makers when designing and
adjusting their carbon policies, it is worthwhile estimating the trend
more carefully, recognizing that the period 2010–2016 is too short for
definitive conclusions. We will draw a brief comparison to a different
firm-level energy efficiency dataset with well over 30 years of data, but
we also encourage regulators to redo our analysis below as more data
over longer horizons become available.

Our objective is to determine whether the average payback period
of carbon abatement projects changes over time. We test this by con-
ducting a regression analysis, with the average payback period across
all projects for each firm as the dependent variable and a time trend
as the main independent variable. We need to control for firm-level
factors and other effects, as the nature of abatement opportunities will

vary widely from one firm to the next. We also need to account for the
possible effect of changes in the cost of energy over time. To do so, we
use a fixed effects panel regression analysis:

𝑃𝑎𝑦𝑏𝑎𝑐𝑘 𝑝𝑒𝑟𝑖𝑜𝑑𝑖𝑡 = 𝛾𝑖 + 𝛽1 × 𝑌 𝑒𝑎𝑟𝑡 + 𝛽2 × log(𝐸𝑛𝑒𝑟𝑔𝑦 𝑝𝑟𝑖𝑐𝑒𝑖(𝑡−1)) + 𝜖𝑖𝑡, (1)

where index 𝑖 refers to firms and 𝑡 to year (between 2010–2016).
𝑃𝑎𝑦𝑏𝑎𝑐𝑘 𝑝𝑒𝑟𝑖𝑜𝑑𝑖𝑡 is the average payback period of all projects reported
in year 𝑡 by firm 𝑖; 𝑌 𝑒𝑎𝑟𝑡 increases from 𝑌 𝑒𝑎𝑟2010 = 1 to 𝑌 𝑒𝑎𝑟2016 = 7;
and 𝜖𝑖𝑡 is a random error term. The firm fixed effects 𝛾𝑖 in Eq. (1) control
for firm-specific variation. Greene (2012) and Cameron and Trivedi
(2005) provide a thorough discussion of the fixed-effects panel model.

4. Results and discussion

We present our results on the trends of average payback period in
this section, followed by several robustness tests.

4.1. Main results

Table 4 summarizes the regression results where the dependent
variable is the average payback period. We begin with the results from
the unbalanced sample. The average payback period is increasing by
0.03 years (or 2 weeks) per year at a significance level of 𝑝 = 0.17. The
economic impact of this increase is almost negligible compared to the
average payback period across all implemented projects of 2.2 years.
This increase is about 1.4% of the overall average payback period
across all years. The 95% confidence interval is from −0.01 to 0.06 year.
The sample size is large enough that it can detect changes of 0.001 year
with at least 80% power at a 0.10 significance level. Overall, the point
estimates and the range of the interval of the regression models suggest
that payback periods remain relatively stable over time.

The results for model (1) in Table 4 show that a 10% increase
in the average energy price is associated with a 0.043 years (or 2
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Fig. 2. The distribution of payback period for the entire sample (balanced panel) and for each year from 2010–2016.

weeks) shorter average payback period with a 𝑝− value of 0.01. The
average change in the dependent variable as the independent variable
changes (holding all else constant) is given by 𝑃𝑎𝑦𝑏𝑎𝑐𝑘(𝑒𝑛𝑒𝑟𝑔𝑦 𝑝𝑟𝑖𝑐𝑒2)−
𝑃𝑎𝑦𝑏𝑎𝑐𝑘(𝑒𝑛𝑒𝑟𝑔𝑦 𝑝𝑟𝑖𝑐𝑒1) = 𝛽2 × (log(𝑒𝑛𝑒𝑟𝑔𝑦 𝑝𝑟𝑖𝑐𝑒2) − log(𝑒𝑛𝑒𝑟𝑔𝑦 𝑝𝑟𝑖𝑐𝑒1)) =
𝛽2 × (log(𝑒𝑛𝑒𝑟𝑔𝑦 𝑝𝑟𝑖𝑐𝑒2∕𝑒𝑛𝑒𝑟𝑔𝑦𝑝𝑟𝑖𝑐𝑒1)). A 10% increase in the energy
prices is roughly equivalent to 𝑙𝑜𝑔(1.1) ≈ 0.10 (for base e). Therefore,
a 10% increase in the average prices is equal to 𝛽2 × 0.10 = −0.43 ×
0.10 = −0.043 years decrease in the average payback period. This
result suggests that higher energy prices lead to slightly shorter payback
period, but this effect largely disappears in the balanced sample.

The results for the balanced sample, model (2) in Table 4, are simi-
lar. The average payback period is increasing by 0.03 years (or 2 weeks)
per year at a significance level of 𝑝 = 0.38. In other words, we find no
evidence to suggest that the payback period is increasing. The results
for the balanced sample show that energy prices are not significantly
associated with shorter payback periods (𝑝 = 0.90). Although this lack
of a clear effect may seem surprising, it is consistent with other work.
Some of the reasons for this weak association is that energy costs are
a small share of the total cost of energy efficiency opportunities, that
longer-term energy prices are unpredictable, and that there is often a
delay in realized savings from implementing these projects (Abeelen
et al., 2013, p. 415). Antonietti and Fontini (2019) find support that
long term oil prices do affect energy intensity, but the effects are less
clear in the shorter term and mixed across countries.

4.2. Robustness tests

We present three robustness tests in this subsection. First, we
present an extension of the regression model of Eq. (1) that includes
firm-level financial controls. Second, we perform a test where we inter-
act the country-level energy prices by sector to allow more flexibility
in the model. Third, we conduct additional tests with 31 years of data

Table 4
Fixed-effects regression results of payback period for the unbalanced panel from
2010–2016.

Dependent variable: Payback period

(1) (2)
Unbalanced sample Balanced sample

Coefficient 95% confidence
interval

Coefficient 95% confidence
interval

(S.E.) (𝑝-value) (S.E.) (𝑝-value)

Year 0.03 [−0.01,0.06] 0.03 [−0.04,0.09]
(0.02) (0.17) (0.03) (0.38)

Log(Energy price)a −0.43 [−0.77,−0.09] −0.06 [−0.95,0.84]
(0.17) (0.01) (0.45) (0.90)

Other controls
Firm fixed effects Included – Included –

Total firm-year
observations

5714 714

Total unique firms 1417 102

S.E. stands for standard error.
aThese are weighted average energy prices by fuel consumption across 12 sectors
computed by Sato et al. (2019). ‘‘Included’’ means that those set of control variables
are included in the regression model.

from the Industrial Assessment Center’s dataset on energy efficiency
projects.

4.2.1. Controlling for firm-level financial performance
So far, we have included firm fixed effects, but we have not

controlled for firm-level financial performance. DeCanio and Watkins
(1998) show that firm-level characteristics may matter in the adoption
of energy efficiency, so the same may be true for carbon abatement
activities. We perform the tests again but include the total assets, cost of
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Table 5
Fixed-effects regression results of payback period with additional firm-level financial
controls.

Dependent variable: Payback period

(1) (2)
Unbalanced Balanced

Coefficient 95% confidence
interval

Coefficient 95% confidence
interval

(S.E.) (𝑝-value) (S.E.) (𝑝-value)

Year 0.01 [−0.04,0.06] −0.02 [−0.12,0.08]
(0.02) (0.44) (0.05) (0.66)

Log(Energy price)a −0.58 [−1.03,−0.13] −0.19 [−1.26,0.88]
(0.23) (0.01) (0.54) (0.72)

Other controls
Log(Assets) Included – Included –
Log(COGS) Included – Included –
Log(Liability) Included – Included –
Log(PPEG) Included – Included –
Log(Sales) Included – Included –
Firm fixed effects Included – Included –

Total firm-year
observations

4169 596

Total unique firms 1098 89

S.E. stands for standard error.
aThese are weighted average energy prices by fuel consumption across 12 sectors
computed by Sato et al. (2019). ‘‘Included’’ means that those set of control variables
are included in the regression model.

goods sold (COGS), liabilities and property, plant and equipment values
(PPEG), and annual sales. We include these because they capture the
size of the firms, their costs and how efficient they are in managing
their physical assets. For example, for a fixed amount of assets, an
increase in COGS may force firms to find more profitable ways to
reduce their energy use and carbon emissions. The regression equation
for this robustness test is as follows:

𝑃𝑎𝑦𝑏𝑎𝑐𝑘 𝑝𝑒𝑟𝑖𝑜𝑑𝑖𝑡 = 𝛾𝑖 + 𝛽1 × 𝑌 𝑒𝑎𝑟𝑡 + 𝛽2 × log(𝐸𝑛𝑒𝑟𝑔𝑦 𝑝𝑟𝑖𝑐𝑒𝑖(𝑡−1)) +

𝛽3 × log(𝐴𝑠𝑠𝑒𝑡𝑠𝑖𝑡) + 𝛽4 × log(𝐶𝑂𝐺𝑆 𝑖𝑡) + 𝛽5 × log(𝐿𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑖𝑒𝑠𝑖𝑡) +

𝛽6 × log(𝑃𝑃𝐸𝐺𝑖𝑡) + 𝛽7 × log(𝑆𝑎𝑙𝑒𝑠𝑖𝑡) + 𝜖𝑖𝑡. (2)

The results from the unbalanced and balanced panel are again
consistent with each other and with our earlier results. The results for
the unbalanced panel in Table 5 model (1) confirm that the average
payback period remains roughly constant over time with an average
increase of 0.01 per year and with 𝑝 = 0.44. The estimates for the
balanced sample in model (2) lead to the same conclusion.

4.2.2. Controlling for energy prices and their effect by industry
We conduct tests with a similar but more flexible regression model

by interacting energy prices with the controls for industry sector. The
regression equation for this model is

𝑃𝑎𝑦𝑏𝑎𝑐𝑘 𝑝𝑒𝑟𝑖𝑜𝑑𝑖𝑡 = 𝛾𝑖 + 𝛽1 × 𝑌 𝑒𝑎𝑟𝑡 + 𝛽2 × log(𝐸𝑛𝑒𝑟𝑔𝑦 𝑝𝑟𝑖𝑐𝑒𝑖(𝑡−1)) +

𝛽3 × 𝑆𝑒𝑐𝑡𝑜𝑟𝑖 × log(𝐸𝑛𝑒𝑟𝑔𝑦 𝑝𝑟𝑖𝑐𝑒𝑖𝑡) + 𝜖𝑖𝑡. (3)

The interaction of the firm’s sector with the energy prices allows
the model to vary the impact of average energy prices by sector, but
at the expense of losing observations for which we cannot determine
the right match. The results for the unbalanced and balanced samples
in Table 6 again show that the average payback periods remain largely
constant over time.

4.2.3. Contrasting results from CDP with 31 years of the industrial assess-
ments center dataset

We repeat our tests on the trends of the payback period with 31
years of data using the US Department of Energy Industrial Assessments
Center (IAC) database. This dataset provides information on energy

Table 6
Fixed-effects regression results of payback period with energy prices interacted with
industry sector controls.

Dependent variable: Payback period

(1) (2)
Unbalanced Balanced

Coefficient 95% confidence
interval

Coefficient 95% confidence
interval

(S.E.) (𝑝-value) (S.E.) (𝑝-value)

Year 0.02 [−0.02,0.07] 0.00 [−0.09,0.09]
(0.02) (0.35) (0.05) (0.99)

Log(Energy price)a 0.08 [−0.34,0.50] 0.49 [−1.26,2.24]
(0.21) (0.72) (0.88) (0.56)

Other controls
Firm fixed effects Included – Included –
Interaction of
industry and
energy prices

Included – Included –

Total firm-year
observations

4166 596

Total unique firms 1097 89

S.E. stands for standard error.
aThese are weighted average energy prices by fuel consumption across 12 sectors
computed by Sato et al. (2019). ‘‘Included’’ means that those set of control variables
are included in the regression model.

efficiency projects implemented by small- and medium-sized US en-
terprises from 1981–2018, but we limit our analysis to 1986–2017,
which are the years with available energy data from the US Energy
International Administration (EIA). One drawback of the IAC dataset is
that it does not allow us to track the same firm over time, thus this test
is only on the variation across opportunities rather than longitudinal
changes within a firm. The trends in the IAC data nonetheless provide
insights on the average payback period over three decades.

Table 7 shows the results using the IAC dataset, with the following
regression equation:

𝑃𝑎𝑦𝑏𝑎𝑐𝑘 𝑝𝑒𝑟𝑖𝑜𝑑𝑡 = 𝛼 + 𝛽1 × 𝑌 𝑒𝑎𝑟𝑡 + 𝛽2 × log(𝐸𝑛𝑒𝑟𝑔𝑦 𝑝𝑟𝑖𝑐𝑒𝑡) + 𝜖𝑡. (4)

Model (1) in Table 7 includes years from 1986–2017. Here we see that
the trend for the average payback period is largely flat, increasing by
0.001 year per year, or 0.35 days per year (𝑝 = 0.001). Even over
a 30-year period this only corresponds to a 1-month lengthening of
average payback period. (The higher significance level relative to our
CDP-based analyses is a result of the much larger sample size.) For
a direct comparison with our results based on CDP, model (2) shows
the trend of the average payback period from 2010–2016. We see that
the average payback period is improving by about 0.04 years per year
(with 𝑝 = 0.01). Overall, this suggests that the average payback period
of carbon abatement opportunities, in the form of energy efficiency,
remained largely consistent in the US.

The robustness tests we present here all point in the same direc-
tion: payback periods remain reasonably stable over time, within and
between firms.

4.3. Number of projects and emissions reductions achieved

We have seen that profitability of carbon abatement projects, mea-
sured using payback period, remained relatively stable during 2010–
2016. In order to draw policy implications from this (or any other
observed trend in payback periods over time), we also need to consider
the number of projects implemented and the emissions reductions
achieved.

Although it is possible to estimate marginal abatement costs of the
projects implemented by the firms in our CDP sample, we conducted
our analysis so far in terms of payback period rather than marginal
abatement costs, for several reasons. The payback period data are
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Table 7
The trend of the average payback period of energy efficiency opportunities reported to
the Industrial Assessments Center in the US from 1986–2017 and 2010–2016.

Dependent variable: Payback period

1986–2017 2010-2016
(1) (2)

Year 0.001 −0.044∗∗∗

(0.001) (0.010)

Log(Energy price) 0.114∗∗∗ −0.063
(0.017) (0.058)

Constant 1.008∗∗∗ 2.059∗∗∗

(0.043) (0.280)

Observations 113,218 23,813
R2 0.002 0.001

Notes: ∗ 𝑝 < 0.1; ∗∗ 𝑝 < 0.05; ∗∗∗ 𝑝 < 0.01.

more reliable as they require less assumptions than MACs. Due to
these assumptions (about project life and discount rate), our estimates
of the marginal abatement costs experienced by a firm could differ
substantially from any estimates the firm used internally, rendering
any analysis based on such estimates potentially misleading. Payback
periods are also more suited to dealing with profitable projects than
MACs are. Moreover, payback period is closer to how most firms actu-
ally make decisions than marginal abatement costs are, as documented
by Harris et al. (2000), Fleiter et al. (2012b), and Jackson (2010),
among others.

However, payback period does not account for the magnitude of
emissions reductions achieved. For that reason, we also looked at the
number and size of projects with emissions reduction data. For each
project that a firm discloses, the CDP survey asks firms to estimate
the annual emissions reduction achieved. Table 8 shows the count of
the number of projects disclosed with emissions data and the average
emissions reductions achieved per project, for the unbalanced and the
balanced panel. The average emissions reduction for the unbalanced
panel increased from 112,000 metric tons of CO2e in 2010 to 529,000
in 2012, but declined to 186,000 in 2016. The pattern is similar but
more pronounced for the balanced sample. We have less confidence
in this data than in our earlier estimates of payback period: estimates
of emissions reductions may be less accurate, firms may be subject to
pressures to under- or over-estimate the reductions, and firms may not
report these details on all projects they implement.

Nevertheless, subject to these caveats, we see that firms provide
detail on more projects over time, but that the average emissions
reductions attributed to each of those projects decreases over time. Due
to the ambiguities mentioned above, we are reluctant to try to quantify
the net effect; however, this perspective does provide a counterpoint to
the earlier focus on payback period, as we explain further below.

4.4. Limitations

Our work shows that reports by firms on profitability of carbon
emissions reductions projects they have actually implemented, and the
evolution of that profitability over time, can help provide policy-makers
with additional perspectives to take into account when designing and
adjusting carbon policy. Clearly, though, our findings are preliminary;
we hope that they will stimulate further research to overcome some of
the inevitable limitations of our work.

Our main analysis focused on the period 2010–2016, which is
clearly too short to be able to draw conclusions about long-term trends.
The policy literature we reviewed suggested that profitability of emis-
sions reductions projects would decline in the short term, but improve
in the long term due to structural and technological changes. We find
no statistically significant evidence of a short-term decline, but our
horizon is too short to be able to draw conclusions about the long-
term trends. CDP adds one year of data every year, but one might

also look for other historical comparisons (such as with the data from
IAC program) to gain further insight into the longer-term evolution of
firm-level abatement costs.

Further, our analysis focused primarily on profitability, as measured
by payback period. While we did briefly comment on the number
and size of projects that firms report, more comprehensive analysis is
needed of those factors and those examined in Fleiter et al. (2012b)
before being able to draw firmer conclusions about the evolution of
profitability of emissions reductions projects.

Moreover, our analysis focused on projects that were actually im-
plemented by firms. While this is a strength of our work, adding a new
perspective relative to existing studies that tend to focus on estimating
the opportunities available to industry, it also means that we do not
observe how the full set of opportunities evolves over time. If firms
were to experience tighter capital availability, they might choose to
implement fewer projects, which would presumably be the most prof-
itable ones; that could be misinterpreted as an indication that carbon
abatement is becoming more profitable. To inform policy, one needs
the estimates of available opportunities as developed using top-down
and bottom-up methods described earlier, in addition to the firm-level
perspective that we provide here.

Given the preliminary nature of our analysis, we analyzed a global
sample rather than focusing on specific countries or sectors. Yu et al.
(2016) study environmental efficiency among US firms in 2012–13,
using data from CDP and other sources on carbon emissions, invest-
ments, and monetary savings. They find substantial variation across
sectors, and conclude that carbon policy recommendations should vary
by sector.

Finally, the CDP data we use are self-reported by firms. There are
reasons to believe the data are increasingly accurate (Kolk et al., 2008),
and there is continued expansion of disclosure regulation around the
world related to climate change. However, if CDP data is increasingly
relied upon by regulators to set policy, that would introduce mixed
incentives for firms to select different emissions reductions projects, or
to potentially report inaccurate or incomplete information.

5. Conclusions and policy implications

In the introduction, we noted that, in theory, firms will implement
carbon abatement projects as long as the marginal benefit of doing so
exceeds the marginal cost. In practice, however, the marginal costs
and marginal benefits are ambiguous, and unobserved, certainly to
policy-makers. Firms are more likely to make decisions using the simple
payback period (Harris et al., 2000; Jackson, 2010; Fleiter et al.,
2012b). Policy-makers can learn something from observing the payback
periods of projects that firms choose to implement that would not be
apparent from existing marginal abatement cost curves.

In order to assess whether firms are responding to policy measures
in the manner intended, it is important to observe what firms actually
do, as Bumpus (2015) and Brännlund et al. (2014) also argue. If firms’
responses are different than expected, that could be an indication that
the price of carbon is too high or too low, which could point to
the need to adjust the tax or number of allowances. Alternatively, if
firms’ response varies substantially across sectors, that could indicate
that the carbon policy is having unintended competitive or distribu-
tional effects (Stavins, 2019). In the introduction, we outlined what
policy-makers could learn from observing lengthening or shortening of
payback periods, as summarized in Table 1.

From our analysis of the CDP data, we find that payback periods
are relatively stable over time. Although the estimates of the time trend
are marginally negative, they are not significantly different from zero.
We do find that emissions reductions achieved are shrinking over time.
Based on the arguments outlined earlier, this would suggest that firms
have not changed their thresholds for investing in carbon abatement,
but that a higher price of carbon may be needed to spur them to return
to investing in larger projects.
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Table 8
Summary statistics of total firms that report emissions reduction data of projects, the total projects with available emissions reduction data,
and the mean carbon emissions reduction of those projects.

Year Unbalanced panel Balanced panel

Total firms Total projects Mean CO2e
reduction per
projecta

Total firms Total projects Mean CO2e
reduction per
projecta

2010 278 830 111.97 99 303 167.27
2011 – – – – – –
2012 694 2355 529.36 96 375 482.38
2013 928 3281 164.70 102 448 201.39
2014 1057 3867 291.09 101 467 52.31
2015 1141 4431 164.47 102 521 53.80
2016 1062 4191 185.63 102 501 67.83

Notes:
aThis is measured in thousand metric tons. The number of firms is a subset of the original sample. The number of firms in the balanced sample
is less than 102 in some years because some firms that reported cost and monetary savings data in early years did not include emissions
reduction information. CDP did not ask firms to disclose emissions reduction information in 2011.

In our analysis, the average payback period of implemented projects
is close to two years, which would indeed suggest that many profitable
opportunities are not being implemented. Moya et al. (2011) provide an
in-depth analysis of the link between payback period and profitability
for the European cement sector; they show that opportunities that are
profitable using the more appropriate net present value (NPV) criterion
have a payback period of 6 or even 9 years, which means they are
typically not implemented as common thresholds for payback period
are generally shorter than 3 years (Cooremans, 2011). Jackson (2010)
proposes that using risk-based decision tools, analogous to the Value-
at-Risk criterion used in the financial sector, would reduce this bias
against carbon abatement projects. For policy-makers, this highlights
that they need to reduce the risk and uncertainty associated with
carbon abatement opportunities, in order to encourage firms to adopt
looser payback period thresholds.

From looking at the CDP data more closely than we can report here,
it appears that the projects that firms actually implement are more
diverse than what is often studied in the literature. Although many
of the opportunities described in Pacala and Socolow (2004) such as
low-emissions vehicles, more energy efficient buildings, improved plant
efficiency, wind power, photovoltaic electricity, and biofuels|appear
as well in the CDP data, firms also pursue operational, behavioral,
and product-level innovations that are company-specific and therefore
less likely to be mentioned in such studies (although there are a few
exceptions such as the studies by Fleiter et al. (2012a) and Worrell et al.
(2009)). Examples include projects related to transportation logistics,
product materials, design, and packaging. There is a rich literature
in Operations Management on continuous improvement, and these
management practices are applicable to carbon abatement as well as
illustrated by Finnerty et al. (2018). Policy-makers should seek to
ensure that the appropriate conditions exist to foster such continuous
improvement within firms, such as ensuring a stable and predictable
business environment.

A related observation is that there is significant variation between
firms in our data. As Figs. 1 and 2 show, some saw substantial im-
provements in average payback of their carbon abatement projects over
time, while others experienced deteriorations. Some of this will no
doubt be due to random variation, perhaps exacerbated by the discrete
nature of many projects, but a deeper analysis of this variation could
have additional policy relevance. Often, the effects of policies are not
perfectly predictable, so when regulators introduce carbon taxes, cap-
and-trade measures, renewable portfolio standards, energy-efficiency
subsidies, or other instruments, they may have unexpected effects that
could also differ by sector. If a particular industrial sector appears to
show a noticeable decline in profitability of carbon abatement over our
7-year horizon, regulators should explore whether that is an unintended
consequence of past policies or of complementary policies (Stavins,
2019) and, if necessary, remedy that.

On the other hand, even within a sector that continues to show
constant or even improving profitability of carbon abatement projects,
regulators should examine those trends more deeply as more data be-
come available. It would be valuable to understand the mechanisms by
which low-hanging fruit continues to emerge in those cases. That can be
for ‘‘good’’ reasons, such as continuous emergence of new technologies,
or firms uncovering new opportunities as they map more of their own
and their supply chain’s operations. It could also be for ‘‘bad’’ reasons,
if firms introduce carbon emissions reductions projects now but do not
continue to maintain those projects going forward. Processes in firms
tend to deteriorate over time if not closely monitored and proactively
managed. If regulators observe that is the main reason why firms con-
tinue to find profitable opportunities, they should explore policies that
focus on maintaining existing improvements rather than continually
looking for and implementing new ones. Implementing policies that
require firms to document and report their carbon abatement efforts
may help increase the longevity of those projects more than would be
achieved from a focus on carbon price alone.

Our study departs from most earlier work in this field due to its
focus on the experience of specific firms over time. Clearly, several of
the implications outlined above require more detailed data over longer
horizons, but we believe that the breadth and depth of the CDP data is
such that it will provide a valuable additional tool for regulators.
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