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1. Introduction

Researchers have discovered hundreds of cross-sectional stock return pre-

dictors (Green, Hand, and Zhang (2013); Chen and Zimmermann (2022)). This

abundance of discoveries has led to concerns about multiple testing, p-hacking,

and a debate about the veracity of this literature (e.g. Harvey, Liu, and Zhu (2016);

Chen and Zimmermann (2020)).

This paper provides simple arguments for why most statistical findings in this

literature are true. The arguments build on Benjamini and Hochberg’s (1995) in-

sight that the false discovery rate (FDR) can be bounded using worst-case scenar-

ios. Worst-case scenarios for publication bias can be formed from data-mining

experiments (Yan and Zheng (2017)) or conservative extrapolations of published

results. Plugging these scenarios into a simplified version of the Storey (2002) es-

timator leads to FDR bounds that are tractable yet valid under publication bias.

These bounds are so tractable that they can be evaluated by just plugging in

summary statistics from data mining and predictor zoo studies. Using numbers

reported in eight studies, performed by seven independent teams, I find that at

least 75% of claimed statistical findings are true.1

I provide two derivations of these bounds. The first is a slight modification of

Bayes rule and requires just a few lines of math. The second is a visual argument

that does not require any equations at all—though it can be formally justified as a

variant of Storey (2002). Applied to Chen, Lopez-Lira, and Zimmermann’s (2024)

(CLZ’s) 29,000 data-mined long-short strategies, the visual argument leads to a

much tighter bound on the FDR, and finds at least 91% of claimed findings are

true.

The 75% and 91% bounds focus on equal-weighted predictability tests,

matching the modal and primary tests in the cross-sectional literature (Green,

Hand, and Zhang (2013); Chen and Zimmermann (2022)). However, value-

weighted tests also imply that most findings are true. For example, applying the

visual bound to the CLZ data implies that at least 82% of claimed findings regard-

ing value-weighted CAPM alphas are true.

My FDR bounds are much simpler than the formulas that appear in the fi-

1I use the terms “discovery,” “significant predictor,” and “finding” interchangeably. I also use
the terms “false predictor” and “null predictor” interchangeably. This terminology follows Sorić
(1989) and Benjamini and Hochberg (1995). Predictors that are not false are “true.”
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nance literature (e.g. Harvey, Liu, and Zhu (2016)). Despite their simplicity,

they are equivalent to the more complicated formulas under weak dependence

(Storey and Tibshirani (2001)). To verify this equivalence, I run estimations on

simulated data that cluster bootstrap from CLZ’s data-mined returns. In these

simulations closely mimic cross-predictor correlations, and show that my meth-

ods reliably bound the FDR.

My results appear to conflict with Harvey, Liu, and Zhu (2016) (HLZ), who “ar-

gue that most claimed research findings in financial economics are likely false.”

I show my FDR estimates are quantitatively consistent with HLZ’s. HLZ’s main

figure implies an FDR of at most 35% and their SMM estimates imply an FDR of

9%. Thus, the conflict is entirely about interpretation. I explain how HLZ’s inter-

pretation equates “insignificant factors” with “false factors,” deviating from the

traditional separation of significance and truth (Wasserstein and Lazar (2016)). I

illustrate how following HLZ’s interpretation leads to absurd economic conclu-

sions and extreme concentration of power among senior scholars.

This paper adds to the literature on multiple testing problems in cross-

sectional predictability. Papers that find major problems include Harvey, Liu,

and Zhu (2016), Harvey (2017), Linnainmaa and Roberts (2018), and Chordia,

Goyal, and Saretto (2020). Papers that find the opposite include McLean and

Pontiff (2016), Jacobs and Müller (2020), Chen and Zimmermann (2020), Jensen,

Kelly, and Pedersen (2023), and Chen (Forthcoming). Among these papers, mine

is unique in developing simple formulas that bound the FDR.2 Simple formu-

las allow me to explore a more diverse range of data, demonstrating broader ro-

bustness compared to previous studies. They also provide a new level of trans-

parency.

Transparency is important given the lack of consensus and complicated

methods in the literature. Harvey, Liu, and Zhu’s (2016) methods require so much

exposition that their estimates that account for publication bias are not found

until the 30th page of the article. Chordia, Goyal, and Saretto’s (2020) analogous

estimates are not found until page 21. Jensen, Kelly, and Pedersen’s (2023) are

not found until page 37. These complications are understandable. Publication

bias is a slippery topic and accounting for it requires novel methods and thus

convincing justifications. These complications, however, make the debate diffi-

cult to resolve. Debating any of these estimates requires, in principle, addressing

2Chen (2021) uses simple formulas but they cannot bound the FDR.
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dozens of pages of motivation and methodology.

My formulas simplify the debate. My “easy bound” for the FDR is on page 4.

FDR estimates that are valid under publication bias begin on page 5.

An important caveat is that I only examine predictability findings in the cross-

sectional literature. I do not examine non-tradable factors, which are typically

not shown to predict returns (Chen and Zimmermann (2022)). I also do not

assess whether the claims made in the texts are true. Re-evaluating the claims

in the texts typically requires structural modeling (Kozak, Nagel, and Santosh

(2018)), though Chen, Lopez-Lira, and Zimmermann (2024) propose a test of

textual claims using out-of-sample returns. I also do not examine whether pre-

dictability is stable over time. Chen and Velikov (2023) find that published strate-

gies are not profitable in recent years after accounting for bid-ask spreads.

2. Why Most Claimed Statistical Findings Are True

Research generates predictors i = 1,2, .., N . Predictor i has t-stat td and may

be false (Fd ) (a.k.a. null). If i is false, its t-stat satisfies:

Pr(|td | > 2|Fd ) ≈ 5% (1)

(i.e. standard errors are approximately correct). Define a “discovery” as a predic-

tor with |td | > 2. Then the Benjamini and Hochberg (1995) FDR satisfies

FDR|t |>2 ≈ Pr(Fi ||ti | > 2) , (2)

if |t1|, |t2|, ..., |tN | are well-behaved (Storey (2002)). I explain Storey’s approxima-

tion in Section 4.1. Nevertheless, Equation (2) is so natural that one might as well

define the FDR this way, as in Efron (2008).

Applying Bayes rule and noting Pr(Fi ) ≤ 1, leads to an “easy bound” on

FDR|t |>2:

FDR|t |>2 ≈ Pr(|ti | > 2|Fi )Pr(Fi )

Pr(|ti | > 2)
(3)

≤ Pr(|ti | > 2|Fi )

Pr(|ti | > 2)
(4)

≈ 5%

Pr(|ti | > 2)
, (5)
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where the third line plugs in Equation (1).

Equation (5) provides a neat interpretation of FDR methods. FDR methods

just compare the tail area under the null (numerator) to the actual tail (denomi-

nator). If the tail under the null is much smaller, then the null distribution cannot

explain the actual tail, and the FDR must be small.

The natural way to estimate the actual tail is to plug in the empirical tail. In

other words, one might estimate Pr(|ti | > 2) by just counting the share of |ti | that

exceeds 2. However, since predictors with |ti | > 2 are more likely to be published

(publication bias), this estimate would overstate Pr(|ti | > 2). This problem can

be addressed, however, by considering worst-case scenarios.

2.1. Bounding the FDR with Atheoretical Data Mining.

One worst-case scenario comes from atheoretical data mining. Yan and

Zheng (2017); Chordia, Goyal, and Saretto (2020); and Chen, Lopez-Lira, and

Zimmermann (2024) systematically mine accounting data, with minimal use of

theory, generating tens of thousands or even millions of long-short strategies.

All of these papers find that at least 20% of data-mined strategies have absolute

t-stats exceeding 2.

Assuming that research finds t-stats exceeding 2 at least as frequently as data

mining, Equation (5) implies

FDR|t |>2 ≤ 5%

0.20
= 25%. (6)

Thus, at least 75% of published cross-sectional predictors are true.

The robustness of this bound is notable, given that each paper uses a differ-

ent approach for data mining, as seen in Table 1. Furthermore, each study is

conducted by an independent research team. Further details on these papers

and their implied FDRs are in Appendix A.1.

The 25% bound can be considered both too aggressive and too conserva-

tive. Aggressiveness comes from focusing on equal-weighted returns, following

the modal test in the cross-sectional literature (Green, Hand, and Zhang (2013)).

Equal-weighted test focus on small, illiquid stocks, where predictability is known

to be stronger, and thus the FDR is likely to be lower. Conservatism comes from

plugging Pr(Fi ) ≤ 1.0 into Equation (3). This amounts to assuming that all predic-
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Table 1: FDR Bounds using Summary Stats from Data-Mining Studies

Pr(|ti | > 2) is the share of predictors with |ti | > 2, generated from the “Data Min-
ing Method.” Equal-weighted results are selected for comparability with the
cross-sectional literature (Green, Hand, and Zhang (2013)). Chordia, Goyal, and
Saretto’s (2020) ti largely use value-weighted returns, though they also exam-
ine FM regressions with many controls. Data mining studies consistently find
Pr(|ti | > 2) ≥ 0.20, implying FDR|t |>2 ≤ 5%/0.20 = 25%.

Paper Data Mining Method Exhibit Pr(|ti | > 2)

Yan and Zheng Begin with 240 accounting variables Table 1 at least 20%
(2017) apply 76 simple transformations, Equal-

yielding 18,000 signals. Weighted

Begin with 242 accounting Table 4
Chen, Lopez-Lira, variables, apply all possible ratios Panel (a) at least 20%

Zimmermann (2023) and ∆x1/lag(x2), Equal-
yielding 29,000 signals. Weighted

Begin with 185 accounting variables,
Chordia, Goyal, apply growth rates, ratios, and all Table A2 at least 20%
Saretto (2020) combinations of (x1 −x2)/x3, in 12 out of 13

yielding 2.4 million signals. estimates

tors are false, while a more temperate approach would use data to bound Pr(Fi )

(Benjamini and Hochberg (2000); Storey (2002)). Section 3 shows that these two

effects largely cancel out.

2.2. Bounding the FDR with Conservative Extrapolation

A second worst-case scenario can be constructed by conservative extrapola-

tion. Figure 1 illustrates. It plots the distribution of t-stats from Chen and Zim-

mermann’s (2022) open-source replications of 200 published predictors (bars)

and overlays an exponential density with a mean of 2.0 (line). The plot shows

that this exponential fits the observed region of the plot well.

In the unobserved region, the exponential extrapolates conservatively. A

more moderate extrapolation might assume that the density peaks somewhere

between 2 and zero, as it does with most distributions used in finance (e.g. log-

normal). Instead, this extrapolation keeps increasing—it assumes there are ex-

ponentially more file drawer t-stats compared to published t-stats. Conservatism

is also seen by comparing the exponential (solid line) with the data-mined distri-
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Figure 1: Bounding the FDR using Conservative Extrapolation as a Worst Case

ti tests the null that the mean long-short return is zero in a replication of a pub-
lished predictor from Chen and Zimmermann (2022). Solid line extrapolates
using an exponential distribution with a mean of 2.0. Dashed line overlays the
distribution of t-stats from Chen, Lopez-Lira, and Zimmermann’s (2024) equal-
weighted data-mined strategies. The exponential is conservative: it assumes
there are exponentially more file drawer t-stats than published t-stats and has
a similar shape as the data-mined distribution. Plugging the exponential CDF
into Equation (5) implies at least 86% of findings are true.
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bution from Chen, Lopez-Lira, and Zimmermann (2024) (dashed line). To the left

of 2.0, the two distributions are broadly similar, implying that the extrapolation

is similar to the worst case of atheoretical data-mining.

Plugging an exponential CDF with E(|ti |) = 2.0 into Equation (5) then bounds

the FDR:

FDR|t |>2 ≤ 5%

exp(−2/E (|ti |))
= 5%exp(1) = 13.6%. (7)

Thus, a very different estimate also finds that at least 85% of claimed findings are

true.

A beautiful part of this FDR bound is that it can be calculated by hand, using

summary statistics reported in published papers. The memoryless property of

the exponential distribution implies

E (|ti |) = E (|ti | ||ti | > 2)−2, (8)

that is, the mean t-stat can be estimated by just subtracting 2 from the mean
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Table 2: FDR Bounds using Summary Stats from Predictor Zoo Studies

Table reports the mean published t-stat from various papers and the resulting
FDR|t |>2 bound (Equations (7)-(8)). t-stats use equal-weighting with the excep-
tion of Harvey, Liu, and Zhu (2016), which does not specify the weighting. These
easy to use bounds consistently imply that most claimed findings are true.

Paper Exhibit Method Mean Pub FDR|t |>2

t-stat bound (%)

Green, Hand, Tables 3 Hand 5.1 10
Zhang (2013) and 4 Collected

Chen, Zimm- Table 2 Hand 4.6 11
ermann (2020) Collected

Harvey, Liu, Figure A.1 Hand 4.2 12
Zhu (2016) Panel B Collected

McLean, Page 16 , Replicated 3.6 18
Pontiff (2016) Par 1 In-Sample

Jacobs, Online App Replicated 3.1 32
Muller (2020) Table 2 Full-Sample

published t-stat, which is close to E (|ti | ||ti | > 2). Thus, one can bound the FDR

in the presence of publication bias, by just plugging in summary statistics.

Table 2 uses Equation (8) to bound FDR|t |>2 in a variety of “predictor zoo”

studies. For example, Chen and Zimmermann’s (2020) Table 2 reports that the

mean hand-collected t-stat across 77 published predictors is 4.6. Equation (8)

then implies that E (|ti |) ≈ 4.6− 2 = 2.6, and so Equation (7) implies FDR|t |>2 ≤
5%exp(2/2.6) = 11%. Replications and post-publication data tend to result in

lower t-statistics, leading to higher FDR bounds from McLean and Pontiff (2016)

and Jacobs and Müller (2020).3 Nevertheless, the results across five independent

teams using various data collection methods are consistent. All imply that most

claimed findings are true.

The entry for Harvey, Liu, and Zhu (2016) (HLZ) is notable because HLZ ar-

gue “that most claimed research findings in financial economics are likely false.”

Table 2 shows that the difference in conclusions does not arise from a difference

in the underlying data. The mean published t-stat in HLZ is 4.2, not far from the

mean of 4.0 in CZ. Based on Equation (7), a mean published t-stat of 4.2 implies

FDR|t |>2 ≤ 12%.

3Chen and Zimmermann (2022) show that replicated t-statistics are as large as hand-collected
ones, if the replications carefully follow the original methods.
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In fact, even the methods are similar. HLZ’s Figure A.1 also uses an exponen-

tial extrapolation. While this figure is buried in the appendix of HLZ, the same

extrapolation is featured in Figure 1 of Harvey (2017). We will see that HLZ’s own

FDR estimates are consistent with the FDR|t |>2 ≤ 12% (Section 5.1) and that the

difference in conclusions comes from different interpretations of “false discov-

ery” (Section 5.2).

For further details on the papers and exhibits in Table 2, see Appendix A.2.

In summary, the FDR is small because the research process readily generates

large t-stats, much more readily than compared to a standard normal distribu-

tion. This property can be seen in the frequency of large t-stats in atheoreti-

cal data-mining studies or in conservative extrapolations of the large t-stats of

published strategies. Similar results have been reported in previous studies, but

these often involve structural estimation (e.g. Chen and Zimmermann (2020)).

In contrast, my FDR bounds so simple they can be estimated by just plugging in

numbers from summary statistic tables.

3. More Refined Estimates

One can argue that the easy FDR bounds are too conservative. Rather than

make inference about Pr(Fi ), they focus on the worst case of Pr(Fi ) = 1.0. But

one can also argue that the previous bounds are too aggressive. They focus on

raw equal-weighted returns, rather than value-weighted returns.

This section addresses both issues. Section 3.1 provides a visual approach

to bounding Pr(Fi ), following Storey (2002). Section 3.2 applies this method to

value-weighted returns adjusted for various factor exposures.

Making inference on Pr(Fi ) requires data on insignificant predictors (Chen

(Forthcoming)). Thus, this section focuses on the CLZ data-mined predictors,

and uses data-mining as a worst-case for the publication process, following Sec-

tion 2.1.

3.1. A Tighter, Visual Bound

In essence, FDR methods decompose the empirical distribution into a false

(null) component and a true (non-null) component. FDR methods are also con-

servative, so they generally consider cases in which the false component as large
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as possible. These facts motivate the following algorithm:

Algorithm 1 Visual FDR Bound

1. Plot the histogram of absolute t-stats for some data-mined strategies.

2. Draw the largest null distribution that still fits inside the data distribution.

3. Draw a vertical line at 2.0. To the right of this line, the ratio of the null area

to total area is the “Visual Bound” on FDR|t |>2.

The central limit theorem (CLT) implies that Normal(0,1) is a good null (Chen

(2021)). Figure 2 verifies this in my setting. It uses a cluster bootstrap (Fama and

French (2010)) to simulate the null in a manner that captures both the fat tails

in monthly returns and the potentially important cross-predictor correlations in

the CLZ returns. The fat tails and correlations have almost no impact. The boot-

strapped null (circles) is visually identical to Normal(0,1) (crosses).

Figure 2: Cluster Bootstrap vs Standard Normal Null

Bootstrap demeans CLZ equal-weighted returns, resamples months, calculates
t-stats, and repeats 1,000 times (following Fama and French (2010)). The CLT
holds and the standard normal is a good null.
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Using Normal(0,1) as the null, Panel (a) of Figure 3 applies Algorithm 1 to

CLZ’s equal-weighted raw returns (total bars). The false component (red) is cho-

sen to be as large as possible, so it completely fills the first histogram bar. Nev-

ertheless, the standard normal decays so much faster than the data, that to the
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right of 2.0, the red area is just 9% of the total area. Assuming that the research

generates true predictability at at least the same rate as data mining, this visual

bound implies at least 91% of claimed findings are true.

Figure 3: Bounding the FDR Visually, Following Storey (2002)

Panels decompose the CLZ equal-weighted raw t-stats (gray) into a false (red)
and true (gray minus red) components. The false component is a scaled
Normal(0,1). Panel (a) uses Algorithm 1. Panel (b) uses the easy bound (Equation
(5)). The easy bound is unreasonably conservative. A more reasonable decom-
position implies FDR|t |>2 ≤ 9%.

Discoveries ->

FDR £
5 % 

0.33
 (0.56) = 9%

0

2000

4000

6000

8000

10000

12000

0 2 4 6 8

Absolute t-statistic

N
u

m
b

er
 o

f 
S

tr
at

eg
ie

s

Data

False Upper Bound

(a) Visual Bound

Discoveries ->

FDR £
5 % 

0.33
 (1.00) = 15%

0

2000

4000

6000

8000

10000

12000

0 2 4 6 8

Absolute t-statistic

N
u

m
b

er
 o

f 
S

tr
at

eg
ie

s

Data

False Upper Bound

(b) Easy Bound

11



3.1.1. Visual Justification for Algorithm 1

To describe Algorithm 1 more precisely, let b be a histogram bin. The law of

total probability implies

Pr(|td | ∈ b)︸ ︷︷ ︸
Empirical Data (Total)

= Pr(|td | ∈ b|Fd )Pr(Fd )︸ ︷︷ ︸
False Component (Red)

+ Pr(|td | ∈ b|Td )Pr(Td )︸ ︷︷ ︸
True Component (Remainder)

, (9)

where d is a data-mined predictor, td its t-stat, Fd is the event that d is false, and

Td is the event d is true (not false). This section uses the index d instead of i

(which represents predictors from research) to emphasize that research should

produce larger t-stats, and a smaller FDR, than data mining.

Equation (9) shows how FDR methods decompose the empirical histogram

into false and true components. Moreover, Bayes rule provides the FDR for each

bin:

Pr(Fd ||td | ∈ b) = Pr(|td | ∈ b|Fd )Pr(Fd )

Pr(|td | ∈ b)
. (10)

In other words, the probability that a predictor in bin b is false is the ratio of the

false component to the total. Then, averaging this ratio over bins to the right of

|td | = 2 leads to FDR|t |>2.

The key question is: how should one choose Pr(Fd )? Equation (9) shows that

Pr(Fd ) is not only the proportion of false predictors overall, it is also the scaling

of the false component. The visual bound chooses this scaling to be as conserva-

tive as is reasonable (Panel (a)). Any more conservative and the decomposition

would imply that the number of false strategies could be greater than the number

of total strategies in the first bin (|td | ≤ 0.5).

This approach does not you what Pr(Fd ) is—it only says Pr(Fd ) is less than

some number. As a result, the proper interpretation of the red bars is that they are

an upper bound on the number of false predictors. Intuitively, some of the pre-

dictors with |td | ≤ 0.5 could be true predictors that suffered from bad in-sample

draws.

Instead of using the data to bound Pr(Fd ), the easy bound simply chooses

Pr(Fd ) ≤ 1.0. The benefit of this choice is that it is easy to calculate and com-

municate. The downside is that it implies an unreasonably conservative decom-

position, as seen in Panel (b). Plugging Pr(Fd ) ≤ 1.0 into Equation (9) implies

that the number of false strategies in the first bin (|td | ≤ 0.5) could be as large as
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11,000, far larger than the 6,000 or so strategies in the data. Equivalently, it im-

plies that the number of true strategies could be as little as negative 5,000, which

is nonsensical.

3.1.2. Algebraic Justification and Equivalence to Storey (2002)

Step 2 of Algorithm 1 can be formalized by solving Equation (9) for Pr(Fd ) and

noting that Pr(|td | ∈ b|Td )Pr(Td ) ≥ 0:

Pr(Fd ) = Pr(|td | ∈ b)−Pr(|td | ∈ b|Td )Pr(Td )

Pr(|td | ∈ b|Fd )
≤ Pr(|td | ∈ b)

Pr(|td | ∈ b|Fd )
. (11)

Equation (11) provides many bounds on Pr(Fd ), depending on the choice of bin

b. Each bound chooses Pr(Fd ) to be as conservative as is reasonable, given the

data in that bin. Any more conservative, and we would be ignoring the constraint

that Pr(|td | ∈ b|Td )Pr(Td ) ≥ 0. By considering the full distribution of the data,

Step 2 minimizes across all bins, leading to the visual bound in Panel (a) of Figure

3.

Minimizing Equation (11) provides a “conservative estimate” of Pr(Fd ), just

as in the Storey (2002) method. In fact, Equation (11) is in a sense equivalent

to Storey’s Equation (6). Instead of examining t-stats and bins, Storey examines

p-values pd and a minimum p-value λ. Using pd and λ, the numerator of the

right-most expression in Equation (11) can be written as Pr
(
pd >λ)

, which has

the natural estimator #
{

pd >λ}
/M , where M is the number of predictors in the

data. The denominator can be written as Pr
(
pd >λ|Fd

)= (1−λ), since p-values

are uniform under the null. Dividing #
{

pd >λ}
/M by (1−λ) leads to Storey’s

Equation (6).

In Figure 3, the bin produces the smallest Pr(Fd ) bound is |td | ≤ 0.5. The chart

shows that Pr(|td | ≤ 0.5) ≈ 6,300/29,300 = 21.5%. Pr(|td | ≤ 0.5|Fd ) is the classical

“half sigma” probability: 38.3%. Combining, we have

Pr(Fd ) ≤ Pr(|td | ≤ 0.5)

Pr(|td | ≤ 0.5|Fd )
≈ 0.215

0.383
= 0.56, (12)

showing that at most 56% of the 29,300 CLZ equal-weighted raw returns are false.

Then plugging Equation (12) into Equation (3), we have the same FDR bound
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from the visual argument

FDR|t |>2 ≤ Pr(|td | > 2|Fd )

Pr(|td | > 2)

Pr(|td | ≤ 0.5)

Pr(|td | ≤ 0.5|Fd )
≤ 5%

0.33
(0.56) = 9%, (13)

but derived algebraically.

The FDR bound of 9% is very close to the empirical Bayes shrinkage estimates

of around 10% found in Chen and Zimmermann (2020) and Jensen, Kelly, and

Pedersen (2023) (see also Chinco, Neuhierl, and Weber (2021)). It is also com-

parable to the point estimates found in Harvey, Liu, and Zhu (2016) (see Section

5.1). I provide simulation evidence supporting the validity of this bound in Sec-

tion 4.2.

3.2. Adjustments for Liquidity and Factor Exposure

The previous estimates focus on equal-weighted portfolios, following the

modal test in the cross-sectional literature. But about half of the papers also

study value-weighted portfolios (Green, Hand, and Zhang (2013)), which can be

though of as a simple liquidity adjustment. Similarly, the previous results focus

on raw long-short returns, for simplicity. The literature also examines returns

adjusted for various factor exposures.

Table 3 examines how these adjustments affect FDR bounds. The first four

columns adjust equal-weighted returns for exposure to the CAPM, Fama-French

3, and Fama-French 3 + momentum factors. These adjustments have relatively

little impact on the share of |td | > 2. Regardless of the factor adjustment, this

share is roughly 1/3, as it is in the raw returns. Thus, the FDR|t |>2 bounds are

little changed, and lie around 9 percent (or a bit below).

Columns 4-6 examine value-weighted returns. This adjustment does make a

difference. The share of |td | > 2 is much smaller, at around 16%, as one might

expect from the many papers that document how predictability is concentrated

in small, illiquid stocks (e.g Chen and Velikov (2023)). Thus, the easy FDR bound

is larger, at around 0.05/0.16 = 0.30. Conversely, the share of |td | < 0.5 is much

larger than in the equal-weighted case, leading to a larger bound on Pr(Fd ) of

around 0.80. But in the end, FDR|t |>2 represents only a minority of the data. In-

deed, using the visual bound and either the CAPM or FF3 model leads to FDR|t |>2

of at most 21%.
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Table 3: FDR Bounds with Liquidity and Factor Adjustments

Data consists of 29,000 long-short decile portfolios constructed by CLZ.
Pr(|t | > 2) and Pr(|t | ≤ 1) are the share of |t | > 2 and |t | ≤ 1, respectively. “FDR|t |>2

max Easy” is 5%/Pr(|t | > 2) (Equation (5)). “Pr(F ) max” is Pr(|t | ≤ 0.5)/0.38
where 0.38 is the share implied by the null (Figure 2). “FDR|t |>2 max Storey”
multiplies “FDR|t |>2 max Easy” by “Pr(F ) max.” After adjusting for liquidity and
factor exposure, most statistical findings are still true.

Equal-Weighted Value-Weighted
Raw CAPM FF3 4-Fac Raw CAPM FF3 4-Fac

Pr(|t | > 2) 32.5 35.9 37.3 32.4 10.7 17.1 18.6 13.5
FDR|t |>2 max Easy 15.4 13.9 13.4 15.4 46.7 29.2 26.9 37.2

Pr(|t | ≤ 0.5) 21.6 19.7 18.8 20.7 33.4 28.5 27.9 31.8
Pr(F ) max 56.3 51.4 49.0 54.0 87.2 74.3 72.8 83.1
FDR|t |>2 max Visual 8.7 7.2 6.6 8.3 40.8 21.7 19.6 30.9

4. More Rigorous Justifications

The FDR formulas in Sections 2 and 3 are much simpler than those found in

the finance literature (e.g. Harvey, Liu, and Zhu (2016)). This section shows that

the simple formulas are equivalent and provides simulation evidence of their va-

lidity.

4.1. Equivalence of FDR Definitions

HLZ’s definition of the FDR looks more complicated than Equation (2). Fol-

lowing Benjamini and Hochberg (1995), HLZ define the FDR using:

FDR = E [FDP] (14)

where FDP is the false discovery proportion, which in turn is defined as

FDP =


N0|r
R if R > 0

0 if R = 0
(15)

and where N0|r and R are the number of false discoveries and the number of

discoveries, respectively. Implicit in Equations (14)-(15) is some definition of a
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discovery (e.g. predictor d is a discovery if |td | > 2).4

As shown by Storey and Tibshirani (2001) and Storey (2003), Equations (14)

and (15) are equivalent to the simpler Equation (2) under weak dependence.

To see the equivalence, assume that the following weak law of large numbers

(WLLN) holds: as the number of predictors −→∞,

number of false discoveries

number of discoveries

p−→ Pr
(
Fd |d is a discovery

)
. (16)

Then, assuming a positive number of discoveries, I can plug everything in and

simplify:5

FDR = E

[
number of false discoveries

number of discoveries

]
(17)

p−→ Pr
(
Fd |d is a discovery

)
, (18)

as the number of predictors −→∞. Both of these expressions are intuitive. Equa-

tion (17) says the FDR is the expected share of discoveries that are false. Equa-

tion (18) says the FDR is the probability that a discovery is false. Finally, defining

a discovery as predictors with |td | > 2 leads to Equation (2). This derivation is a

simplified version of Storey and Tibshirani’s (2001) Theorem 2 or Storey’s (2003)

Theorem 4.

The key assumption is the WLLN, Equation (16). It amounts to assuming that

the method of moments works for probabilities. It is analogous to assuming that

if you keep counting the share of economists who study finance, you will even-

tually recover the probability a randomly chosen economist studies finance.

This WLLN can formalized by placing weak cross-predictor dependence con-

ditions on the underlying long-short returns (a la Wooldridge (1994)). The data

on long-short returns suggest weak dependence: cross-predictor correlations

cluster close to zero (Chen and Zimmermann (2022)). Section 4.2 examines this

assumption using bootstrapped simulations.

The statistics literature features many other notions for the FDR. In addition

to the Benjamini and Hochberg (1995) FDR, there is the “positive false discov-

ery rate” (pFDR) and the “marginal false discovery rate,” (mFDR) (Storey (2011)).

There is also the “local fdr” (a.k.a. fdr(z)) and the tail probability counterpart

4Though I use the subscript d , the formulas in this section apply to both data-mined and
research-produced predictors unless explicitly stated.

5The limit of the expectation in Equation (17) can be handled using the Portmanteau theorem.
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(a.k.a. Fdr(z)) (Efron (2008)). All of these notions of the FDR are equivalent un-

der the weak dependence in large sample settings (Benjamini (2008)).

4.2. Estimations on Data Mining Simulations

The FDR bounds in Section 2 and 3 can also be justified using simulations.

This section examines simulations of data-mined returns. For simulations of

published returns see Appendix B.2.

I simulate the long short return for predictor d in month τ using

rd ,τ =µd +εd ,k(τ) (19)

where µd is the expected return, k (τ) is a random integer that depends on τ, and

εd ,k is the de-meaned long-short return for predictor d in month k from the CLZ

dataset. In other words, εd ,k is cluster-bootstrapped from the CLZ data in a way

that ensures returns from the same month are drawn together. As a result, the

simulated returns closely match the cross-predictor correlation structure (Ap-

pendix Figure A.4). For further details on the bootstrap, see Appendix B.

Expected returns follow

µd =
0 if Fd

γ if Td

, (20)

where γ is a constant. Equation (20) is the simplest structure that can underlie

the FDR framework (Equations (14) and (15)). Each simulation has 29,000 pre-

dictors and 500 months. For each predictor I calculate t-stats the standard way

(dividing the mean by the volatility and multiplying by
p

500). For comparison,

the median number of monthly returns across the CLZ strategies is 594.

For each simulation, I compute the easy FDR bound (Equation (5)) and the

visual bound (Algorithm 1). I compare these bounds with the actual FDR|t |>2,

which is computed by averaging the FDP (the ratio of false discoveries to discov-

eries) across simulations.

Figure 4 shows simulated estimation results for various choices for γ and

Pr(Fd ). Panel (a) shows γ = 25 bps per month, near the 10th percentile of in-

sample returns in the CZ data. Panel (b) uses γ =75 bps, which is near the 70th

percentile. These two choices for γ span what might be considered a reasonable
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range of values for the expected returns of true predictors. The figure examines

values of Pr(Fd ) ranging from 1% to 99%.

Figure 4: FDR Estimates in Cross-Sectional Predictability Simulations

I simulate long-short returns (Equation (19)-(20)) by cluster-bootstrapping from
the CLZ strategies, computing FDR bounds, and comparing with the actual FDR.
γ is the expected return of true predictors. “Easy Upper Bound” plugs in Pr(Fd ) =
1 into Bayes rule (Equation (5)). “Visual Bound” uses Algorithm 1. Both methods
reliably bound the FDR.
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Both methods reliably bound FDR|t |>2. The visual bound comes closer to the

actual FDR, and so provides a more accurate assessment of the veracity of the

cross-sectional literature. Overall, these simulations show that the data mined

FDR bounds in Sections 2 and 3 are valid for cross-sectional predictability.
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4.3. Relationship with the Benjamini and Hochberg (1995) and

Benjamini and Yekutieli (2001) algorithms

My estimates first define discoveries and then estimate an FDR bound. This

method is known as the direct approach to FDRs (Storey (2002)). The finance

literature focuses on FDR control instead, using the Benjamini and Hochberg

(1995) (BH95) algorithm and Benjamini and Yekutieli’s (2001) (BY’s) Theorem

1.3.6 These algorithms are the inverse of the direct approach: they first define

an FDR bound and then estimate discoveries.

The two approaches are equivalent under weak dependence (Storey, Tay-

lor, and Siegmund (2004); Farcomeni (2007)). The see the equivalence, note the

BH95 algorithm can be written as

h∗ = min
h>0

{
h : �FDRmax,BH (|td | > h) ≤ q∗}

. (21)

where h∗ is the estimated t-stat hurdle, q∗ is the FDR bound selected by the re-

searcher, and

�FDRmax,BH (|td | > h) ≡ Pr(|td | > h|Fd )

Share of |td | > h
. (22)

Equation (22) generalizes the easy FDR bound (Equation (4)) to define discov-

eries as |td | > h instead of |td | > 2. Thus, the BH95 algorithm is equivalent to

choosing a t-stat hurdle that ensures the easy FDR bound is less than some pre-

specified value. For further details see Appendix C.

BY’s Theorem 1.3 is equivalent to replacing �FDRmax,BH (|td | > h) in Equation

(21) with

�FDRmax,BY1.3 (|td | > h) ≡ Pr(|td | > h|Fd )

Share of |td | > h
×

M∑
j=1

1

j
,

where M is the total number of predictors. This expression amounts to plugging

Pr(Fd ) ≤ ∑M
j=1

1
j ≈ log M ≫ 1.0 into Bayes rule (Equation (3)). My methods omit

this penalty, as Section 3.1 argues Pr(Fd ) ≤ 1.0 is already unreasonably conserva-

tive and Section 4.2 shows the tighter visual bound is reliable for cross-sectional

predictability settings. Indeed, the original paper Benjamini and Yekutieli (2001)

6I specify the theorem number 1.3 from Benjamini and Yekutieli (2001) because the thrust of
that paper regards Theorem 1.2.
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describes Theorem 1.3 as “very often unneeded, and yields too conservative of a

procedure.”

5. Reconciliation and Interpretation

My results appear to conflict with HLZ, who “argue that most claimed re-

search findings in financial economics are likely false.” This section shows that,

despite the apparent conflict, our FDR estimates are actually quite similar. It also

argues in favor of my interpretation of these estimates.7

5.1. FDR Estimates in Harvey, Liu, and Zhu (2016)

HLZ shows empirical FDR estimates in two exhibits: Figure 3 (page 25) and

Table 5 (page 34). These exhibits use different methods but arrive at similar num-

bers.

Figure 3 uses Benjamini and Yekuteli’s (2001) Theorem 1.3 to estimate t-stat

hurdles that imply FDR ≤ 1% using hand-collected data on published t-stats. It

shows that a hurdle of 3.39 is required. This estimate implies that findings with

|ti | > 3.39 are almost certainly true, but says little about findings that fall below

this cutoff. A more complete picture can be found in the text describing Figure 3,

which states that the same method implies a hurdle of 2.81 if the FDR bound is

raised to 5% (page 26, top paragraph).

The natural question, then, is how many t-stats in asset pricing papers meet

the 2.81 hurdle? Perhaps surprisingly, this answer is not directly found in HLZ.

But a closely related number is reported Chen (2021)’s Table 1, which simulates

HLZ’s SMM estimates to approximate their dataset. Chen finds that, of the |ti |
that exceed 2.0, 69% also exceed 3.0. Thus, the FDR among |ti | > 2.0 in HLZ’s

data is at most 0.69×0.05+ (1−0.69) = 34%. This number is higher than the FDR

bounds in Section 2, but it is qualitatively similar. In the end, both HLZ’s Figure

3 and my analyses find that a minority of published findings are false, at most.

HLZ’s Table 5 uses an SMM estimation based on a structural model that

includes both published and unpublished t-stats (see Appendix D). This table

shows a variety of estimates but the authors argue in favor of the “ρ = 0.2” esti-

7Some of the material in this section appears in the review article Chen and Zimmermann
(2023), which was circulated after the first draft of this paper.
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mate (page 35, last paragraph). This estimate says that choosing an FDR of 5%

implies a hurdle of 2.27. Given that this threshold is close to 2.0, this estimate

suggests that the FDR for published findings is also close to 5%. Indeed, of t-stats

in the Chen and Zimmermann (2022) open-source dataset that exceed 2.0, 91%

also exceed 2.27. This implies an FDR of at most 0.91(0.05)+0.09 = 14%, exactly

in line with Equation (7).

Figure 5 takes a closer look at HLZ’s Table 5. Panel (a) shows a scatterplot of

expected returns against absolute t-statistics from simulating HLZ’s estimated

model, with each marker representing one factor. HLZ’s model features two

kinds of factors: (1) factors with expected returns of zero (empty markers) and

(2) factors with positive expected returns (filled markers). A complete descrip-

tion of HLZ’s model can be found in Appendix D.

Following the traditional notion of a false discovery (Sorić (1989)), I label the

markers with expected returns of zero as false. This labeling leads to a neat visu-

alization of HLZ’s Table 5. If we define discoveries as predictors with |ti | > 2.95

(dot-dash line), we have about 210 discoveries. Only two of these factors are false,

leading to an FDR of 2/210 ≈ 1%, consistent with HLZ’s famous 3.0 hurdle and

the “FDR(1%)” column of their Table 5. If instead, we define discoveries using

|ti | > 2.27 (long-dash line), we have 305 discoveries, 13 false discoveries, and an

FDR of 13/305 ≈ 5%, consistent with the “FDR(5%)” column of their Table 5.

What is the FDR if we just define discoveries as |ti | > 2? The figure shows that,

in this case, the FDR is just 9%. In other words, about 91% of claimed findings in

HLZ’s dataset are true. This estimate is closely in line with the FDR|t |>2 bound of

9% I derive following Storey (2002) (Section 3.1).

5.2. Two Interpretations of “False Factor”

If HLZ’s estimates imply FDR|t |>2 ≈ 9%, why do they “argue that most claimed

research findings in financial economics are likely false?” The answer can be

found in their conclusion (page 37, paragraph 5):

In medical research, the recognition of the multiple testing prob-

lem has led to the disturbing conclusion that “most claimed research

findings are false” (Ioannidis (2005)). Our analysis of factor discover-

ies leads to the same conclusion–many of the factors discovered in the

field of finance are likely false discoveries: of the 296 published signif-
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Figure 5: Two Interpretations of Harvey, Liu, and Zhu’s (2016) SMM Estimates

I simulate HLZ’s SMM estimates (HLZ’s Table 5, ρ = 0.2). Each marker repre-
sents one factor. “FDR = 5%” and “FDR = 1%” show t-hurdles from HLZ’s Table 5.
“Bonferroni 5%” uses the calculation implied by HLZ’s conclusion (HLZ page 37
paragraph 5). Panel (a) defines false factors following the traditional interpreta-
tion (Sorić (1989)). Panel (b) uses an interpretation from HLZ’s conclusion. HLZ’s
argument that “most claimed research findings in financial economics are likely
false” comes from equating significance with truth. This interpretation leads to
factors with expected returns of 75 bps or more being defined as false.
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icant factors, 158 would be considered false discoveries under Bonfer-

onni [sic], 142 under Holm, 132 under [BY’s Theorem 1.3] (1%), and

80 under [BY’s Theorem 1.3] (5%).

Traditionally, the Bonferroni correction provides a bound on the family wise er-

ror rate, which in turn is equal to the probability that the FDR is positive. It does

not provide the number of false discoveries. The same is true of the Holm (1979)

test, which is a variant of Bonferroni. In fact, BY’s Theorem 1.3 does not provide

the number of false discoveries either. It can provide an upper bound—but this

bound may be far from the actual number (Section 4.3).

These issues make this paragraph difficult to understand. But the paragraph

is straightforward if one interprets a “false factor” as an “insignificant factor un-

der a chosen hypothesis test.” With Bonferroni at the 5% level as the chosen test,

the 158 insignificant factors are also false factors. 158/296 = 53%, which can be

described as most, so most claimed research findings are false.

HLZ’s conclusion paragraph also equates “most” and “many.” Of the five

FDRs described in this paragraph, only 158/296 could be described as most, us-

ing the traditional interpretation of most. Notably, 80/296 = 27% is rarely de-

scribed as most.

The equating of “null” and “insignificant” is also found in HLZ. In describ-

ing their multiple testing framework, HLZ state “[i]n a factor testing exercise, the

typical null hypothesis is that a factor is not significant. Therefore, a factor be-

ing insignificant means the null hypothesis is ‘true’” (page 13, 2nd paragraph). A

similar language is found further down on page 13: “under the null that all factors

are insignificant” (3rd paragraph) and “the type I error in multiple testing is also

related to false discoveries, by which we conclude a factor is ‘significant’ when it

is not” (4th paragraph). The equating of false and insignificant is also found in

Harvey and Liu (2020) (see Appendix E).

In contrast, the statistics literature defines a false discovery as a significant

finding that is, in truth, null (Sorić (1989); Benjamini and Hochberg (1995)). This

definition displays an important separation between significance and truth. No

matter how well-designed a significance test is, it can still miss the truth, declar-

ing nulls as significant, or non-nulls as insignificant. This separation is essen-

tially “Principal 2” of the American Statistical Association’s “Statement on Statis-

tical Significance and P-Values” (Wasserstein and Lazar (2016)). This separation

also has a long tradition, going back to Fisher (1935).
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5.3. The Problems with Equating Significance and Truth

One might argue for HLZ’s interpretation by pointing to multiple testing

problems. These problems imply that the classical tests used throughout the

literature are invalid. Thus, it is natural to describe published factors that fail

multiple testing controls as “false discoveries.”

The problems with this interpretation are illustrated in Panel (b) of Figure 5.

This panel shows the same simulation as in Panel (a), but instead of using the tra-

ditional interpretation, it interprets false discoveries as factors that are insignif-

icant under HLZ’s chosen Bonferroni test (circles). HLZ choose a significance

level of 5%, implying a hurdle of |ti | > 3.8.

Factors with expected returns of 75 or even 150 bps per month fail to meet

this hurdle. As a result, they are labeled false, despite their impressive expected

returns. These are not sample mean returns, which may be due to luck, but the

fundamental expected returns, cured of sampling error (see Equations (27) and

(28) in Appendix D). Thus, HLZ’s interpretation leads to absurd economic con-

clusions. The idea that a factor with a fundamental expected return of 150 bps

per month (18% per year) is false is nonsensical.

Panel (b) illustrates an additional problem. The figure shows many signifi-

cance hurdles. Which hurdle should be the one that defines a false discovery?

The FDR = 5% hurdle (dashed line) would lead to many more factors being de-

clared true compared to the Bonferroni 5% hurdle (dotted line). FDR 5% is also

perhaps the natural hurdle, since FDR ≤ 5% is commonly used in fields like ge-

netics and functional imaging (Benjamini (2020)). But this is not the hurdle that

HLZ’s conclusion emphasizes. Instead, it emphasizes the extremely stringent

Bonferroni 5% hurdle, resulting in the headline statement that most claimed

findings are false.

Thus, equating significance and truth could lead to a kind of “post-truth fi-

nance,” where senior scholars decide which hurdles define the truth. Instead of

seeking the truth, junior researchers would seek agreement with the truth de-

fined by senior scholars. Since multiple testing controls can be arbitrarily strict

(why not a Bonferroni 2% correction?), senior scholars can in principle declare

any factor as false. While journal editors and chaired professors wield significant

power in the current paradigm, equating significance with truth would bring this

power to a new level. If significance is equated with truth, then senior scholars

will not only decide which factors are interesting or economically meaningful.
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They will literally decide which factors are true.

Panel (b) of Figure 5 also illustrates the problem with equating “most” and

“many.” Of the many hurdles in Panel (b), only a single hurdle finds that most

claimed findings are false, using HLZ’s interpretation. In fact, the more com-

monly used FDR = 5% control (dashed line) would lead a rather small share of

false discoveries, as seen in the relatively small number of factors lying between

the solid and dashed lines. Equating most with many, as is done in HLZ’s conclu-

sion, implies ignoring this important evidence.

5.4. Economic Significance

Statistical significance does not imply economic significance. Similarly, esti-

mates of a small FDR do not imply that most claimed findings are economically

meaningful. Could it be that HLZ’s argument is really saying that most claimed

findings are economically meaningless?

Panel (a) of Figure 5 shows that the answer is no. In HLZ’s own estimates,

most factors that have t-stats greater than 2.0 have noteworthy expected returns.

Among these factors, the mean expected return is 89 bps per month and 91% of

factors have mean returns in excess of 25 bps.

Estimates throughout the literature support this economic significance. Us-

ing empirical Bayes, several papers find that the typical sample mean return is

at least 80% due to expected returns, even after accounting for multiple test-

ing (Chen and Zimmermann (2020); Jensen, Kelly, and Pedersen (2023); Chinco,

Neuhierl, and Weber (2021); Chen (Forthcoming)). Out-of-sample tests find that

75% of mean returns persist in the first few years after the original samples end

(McLean and Pontiff (2016); Jacobs and Müller (2020); Chen and Zimmermann

(2020)). Notable out-of-sample returns are even found in data-mined strategies.

By simply sorting on their past returns, Yan and Zheng (2017) and Chen, Lopez-

Lira, and Zimmermann (2024) identify thousands of data-mined strategies with

out-of-sample returns of 50 bps per month or more.

These results focus on equal-weighted portfolios, which arguably overstate

economic significance due to trading costs (Chen and Velikov (2023)). How-

ever, these results also focus on simple-minded portfolio sorts, which ignore

the economic significance that comes from combining predictors (DeMiguel et

al. (2020)). Indeed, Jensen et al. (2022) and Simon, Weibels, and Zimmermann
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(2022) find that combining predictors with machine learning leads to notable re-

turns net of trading costs, even in recent years.

6. Conclusion

This paper provides simple arguments that bound the FDR under publication

bias. They handle publication bias by using data mining experiments or con-

servative extrapolations as worst case scenarios. The arguments are so simple

that they can be explained in just a few equations or a couple of diagrams. Yet

simulations show that they are valid in settings that mimic the cross-predictor

correlations found in empirical asset pricing.

These methods suggest a way forward for the literature on multiple test-

ing problems. This literature features complicated methods that take dozens of

pages to exposit, which likely contribute to the lack of consensus in the litera-

ture. My estimates provide a transparent language for understanding and debat-

ing these issues.

Applying these methods to numbers reported in many previous papers, I find

that at least 75% of claimed findings in cross-sectional predictability are true.

More refined estimates using Chen, Lopez-Lira, and Zimmermann’s (2024) data-

mined predictors find that at least 91% of claimed findings are true.

Since peer review should outperform data mining, some may wonder if the

share of true research findings is much higher than 91%. Unfortunately, other

results in Chen, Lopez-Lira, and Zimmermann (2024) suggest that this bound

is tight. Chen et al. compare the returns of published and data-mined predic-

tors, and find that their post-sample performance differs by just 1-2 basis points

per month. Thus, even if most claimed statistical findings (e.g., estimates doc-

umenting predictability) are true, the veracity of most textual claims (e.g., inter-

pretations and conclusions) may be questionable.
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A. Bounding the FDR by plugging in numbers from

previous papers

A.1. FDR bounds from plugging in data mining numbers

This section describes the data mining procedures and t-statistics for the pa-

pers listed in Table 1.

A.1.1. FDR Bounds using Yan and Zheng (2017)’s (YZ’s) Table 1

YZ choose 240 Compustat accounting variables based on data availability re-

quirements (e.g. non-missing values in at least 20 years). They also choose 15

intuitive base variables (e.g. total assets, sales). They then form all combinations

of X /Y , ∆ (X /Y ), %∆ (X /Y ), %∆X , %∆X −%∆Y , and ∆X /lag(Y ), where X is one

of the 240 variables and Y is one of 15 base variables, leading to 18,000 signals.

These functional forms are selected based on a survey of accounting textbooks

and academic papers. For each variable, YZ form long-short decile portfolios.
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Figure A.1: Yan and Zheng’s Table 1

YZ’s Table 1 (shown in Figure A.1) shows order statistics for t-statistics mea-

sured using various methods. For EW 1-factor α’s, the 90th and 10th percentile

t-statistics are +2.41 and -3.48, respectively (highlighted). This means that at least

20 percent of absolute t-stats exceed 2. Applying to Equation (3):

FDR|t |>2 ≤ 5%

Pr(|ti | > 2)
≤ 5%

0.20
= 25%.

EW 3- and 4-factor α’s lead to the same result.

Of course, this bound may be much tighter if one had more detailed order

statistics. -3.48 is quite far from -2.0, implying that one can form a much tighter

bound. Section 2.1 fills this gap using the CLZ data, and finds FDR|t |>2 ≤ 15%.

For VW α’s, one needs to use a slightly more general form of this bound. The

1-factor α’s 90th and 10th percentile t-statistics are 1.93 and -1.87, respectively,

so one needs to use the more general form

FDR(|ti | > 1.87) ≤ Pr(|ti | > 1.87|Fi )

Pr(|ti | > 1.87)
= 6%

0.20
= 30%.
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Since the FDR decreases in the t-stat hurdle, FDR|t |>2 ≤ FDR(|ti | > 1.87) ≤ 30%.

So even using VW portfolios, one still finds that most data-mined findings with

|ti | > 2 are true.

The picture changes slightly with VW 4-factor α’s. Here the table shows that

Pr(|ti | > 2) ≈ 10%, implying FDR|t |>2 ≤ 50%. Nevertheless, for most of the VW

results, the Equation (3) implies that most claimed statistical findings are true.

Moreover, these bounds come from an atheoretical data mining exercise, and

researchers should be able to obtain a smaller FDR. Indeed, Section 3.2 shows

that the Chen and Zimmermann (2023) and Chen, Lopez-Lira, and Zimmermann

(2024) data mining procedure leads to an FDR of at most 34% when using 4-

factor value-weighted mean returns.

A.1.2. FDR Bounds using Chen, Lopez-Lira, and Zimmermann (2024)’s Table

4

CLZ study 29,000 accounting signals. Table 4 forms long-short portfolios on

these signals, calculates t-statistics for each portfolio using the past 30 years of

returns, sorts portfolios into 5 bins based on the past 30 year return, and then

averages t-statistics within each bin and across bin-formation years.

The equal-weighted panel shows that the mean t-stat for in-sample bin 2 is

-2.46. Assuming volatility is relatively stable across portfolios, this implies that

the maximum t-stat for bin 1 is at most -2.46, so at least 20% of signals produce

|ti | > 2. Plugging this result into Equation (5) implies FDR|t |>2 ≤ 5%/0.20 = 25%.

The table also shows value-weighted results, but the statistics shown are not

refined enough to estimate the share of |ti | > 2. Section 3.2 examines this issue

using the full CLZ dataset, and finds that the FDR|t |>2 for value-weighted returns

is typically less than 30%.

A.1.3. FDR Bounds using Chordia, Goyal, and Saretto (2020)’s Tables

CGS begin with 185 accounting variables and then apply the following trans-

formations: (1) annual growth rates of a single variable, (2) ratios of two vari-

ables, and (3) difference ratios involving three variables as in (x1 − x2)/x3. They

examine a wide variety of predictability t-stats, leading to numerous reports of

the |ti | > 1.96 in Tables 3, 7, 8, and A2, among other locations.
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Figure A.2: Chordia, Goyal, and Saretto’s (2020) Table A2

In most exhibits, the share of |ti | > 1.96 ranges from 20 to 30 percent. Table A2

(shown in Figure A.2) is representative and is helpful since it shows 13 estimates

in a single table (red box). Here, the shares range from 20% to 35%, with one

exception. The one exception is the value-weighted long short mean return test,

which leads to a share of 10.6%, which is consistent with the finding in Section

3.2 that value-weighted long-short raw return tests have unusually small t-stats

in the CLZ data. All of CGS’s alpha estimates use value-weighted returns.

If one can exclude this outlier, then 20% is a lower bound on Pr(|ti | > 2), lead-

ing to FDR|t |>2 ≤ 5%
0.20 = 25%.

A.2. FDR Bounds from plugging in predictor zoo numbers

This section describes the t-statistics collection for the predictor zoo papers

listed in Table 2.
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A.2.1. FDR Bounds using hand-collected Green, Hand, and Zhang (2013)

GHZ hand-collect numbers for 330 predictors from cross-sectional pre-

dictability studies. Table 3 reports the mean number of months used is 291. Table

4 reports the mean equal-weighted annual Sharpe ratio is 1.04. Thus, the mean

published t-statistic is approximately 1.04×p
291/12 = 5.1. Plugging into Equa-

tion (7) and (8) implies FDR|t |>2 ≤ 5%exp(2/(5.1−2)) = 10%.

Table 5 reports the mean value-weighted Sharpe ratio is 0.70, implying a

mean published t-statistic is approximately 0.70×p
291/12 = 3.44. Plugging into

Equation (7) and (8) implies FDR|t |>2 ≤ 5%exp(2/(3.44−2)) = 20%.

A.2.2. FDR bounds using hand-collected t-stats in Chen and Zimmermann

(2020)

The focus of CZ 2020 is on replications of published cross-sectional predic-

tors. But as a robustness check on regarding their replicated t-stats, Chen and

Zimmermann (2020) report results using 77 hand-collected t-stats from cross-

sectional predictability studies. Given that CZ’s replications use equal-weighting,

it is sensible to assume that most all of these hand-collected t-stats also use

equal-weighting.

Table 2 reports that the mean hand-collected t-statistic is 4.57. Plugging into

Equation (7) and (8) implies FDR|t |>2 ≤ 5%exp(2/(4.57−2)) = 11%.

Of course, one can also use the replicated t-stats in CZ 2020. Since CZ 2020

find the replicated and hand-collected t-stats are very similar, the FDR|t |>2 bound

is also similar.

A.2.3. FDR bounds using hand-collected t-stats in Harvey, Liu, and Zhu

(2016)

HLZ describe their data collection as follows: “Our goal is not to catalog every

asset pricing paper ever published. We narrow the focus to papers that propose

and test new factors.” They arrive at 313 articles and “catalogue 316 different

factors.”

HLZ do not report the mean published t-statistic. However, one can back

out the mean published t-statistic using Appendix A.1, which uses exponential

distributions to extrapolate unpublished t-stats. Table A.1 illustrates the extrap-
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olations (see Figure A.3).

Figure A.3: Harvey, Liu, and Zhu’s (2016) Table A.1

Using a variety of specifications, HLZ find that the mean t-stat overall is

around 2.0. Applying Equation (8), then, implies a mean published t-stat of about

4.0.

In Table 2, I focus on the estimate in Panel B, because it is more directly com-

parable to the other estimates. Indeed, HLZ’s footnote 50 implies that one can

back out the mean published t-stat by applying Equation (8) to the estimate in

Panel B. A caveat here, however, is that there seems to be a typo in footnote 50

(λ̂= 1/
(
t̄ − c

)
should say λ̂= t̄ − c to match the numbers in HLZ’s Table A.1).
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Regardless, all of the estimates in HLZ’s Table A.1 imply that FDR|t |>2 is

quite small. Using the estimate of the mean overall t-stat implies FDR|t |>2 =
5%exp(2/1.96) = 13.9%.

A.2.4. FDR bounds using replicated t-stats in McLean and Pontiff (2016)

MP replicate 97 long-short quintile strategies based on from published stud-

ies. Page 16 (paragraph 1) reports that the average t-statistic in their replications

is 3.55. Plugging into Equation (7) and (8) implies FDR|t |>2 ≤ 5%exp(2/(3.55−
2)) = 18%.

A.2.5. FDR bounds using replicated t-stats in Jacobs and Müller (2020)

This paper replicates 241 long-short quintile strategies based on published

studies. The online appendix Table 2 reports a mean return of 55 bps per month

and a t-statistic of 3.08 for US stocks over the full sample. Plugging into Equation

(7) and (8) implies FDR|t |>2 ≤ 5%exp(2/(3.08−2)) = 32%.

The FDR over the full sample is likely higher than the FDR in the original

samples, however. Table 2 reports pooled long-short returns in US and in-sample

data have a mean return of 74.2 bps per month, much higher than the 55 bps

per month over the full sample. Scaling the full sample t-stat by the mean return

differential leads to rough estimate of the mean in-sample t-stat: 3.08×74.2/55 =
4.2, and FDR|t |>2 ≤ 5%exp(2/(4.2−2)) = 8%.

B. Simulation Appendix

B.1. Details on simulations of data-mined strategies

To deal with missing values, I keep only strategies with at least 200 months

of return observations and keep only months with at least 100 observations of

return signals. I then construct residuals by subtracting the sample mean at the

signal level from returns.

From this empirical panel, the cluster bootstrap selects 500 months with re-

placement (κ(τ), for τ = 1,2, ..,500), and then constructs a bootstrapped panel

of residuals εd ,κ(τ). The cluster bootstrap ensures that the simulated correlation
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Figure A.4: Data-Mining Simulation vs Empirical Correlations

I simulate monthly long-short return residuals by cluster-bootstrapping from
CLZ’s data-mined strategies and compare with the correlations in the original
CLZ data. Return residuals subtract the sample mean at the signal level from
returns. Both distributions use a random sample of 1,000 signals for tractability.
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structure closely matches the empirical structure, as seen in Figure A.4.

B.2. Estimations of simulations of published data

The simulation model is a slight modification of the data mining simulations

(Section 4.2).

The key modification is that N returns are bootstrapped from the Chen and

Zimmermann (2022) (CZ) replications as follows:

ri ,τ =µi +εi ,τ

where εi ,τ is defined as

εi ,τ = 0.65ε̂k(i ),υ(τ) +0.35δi ,τ (23)

where ε̂k,υ is the de-meaned long-short return for signal k in month υ in the CZ

data, k(i ) and υ(τ) are random integers, and δi ,t ∼ Normal(0,3.32) i.i.d. In other

words, I cluster-bootstrap residuals from empirical data, where the clustering
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preserves cross-sectional correlations, but I mix in 35% random noise, where the

noise has a volatility similar to the empirical data. 3.32% is the mean volatility of

returns in the CZ dataset.

Purely bootstrapping from the CZ data would lead to many redundant strate-

gies and excessively high correlations for N ≫ 200, since there are only 200

strategies in the CZ data. 35% random noise is selected to fit the empirical distri-

bution of correlations, as seen in Figure A.5.

Figure A.5: Publication Simulation vs Empirical Correlations

I simulate monthly long-short return residuals by mixing a cluster-bootstrap of
de-meaned returns from the Chen and Zimmermann (2022) data with noise
(εi ,t in Equation (23)). Empirical return residuals subtract the sample mean at
the predictor level (using in-sample data only) from returns. I compare simu-
lated correlations with correlations in the original Chen and Zimmermann (2022)
data. The simulated distribution uses a random sample of 1,000 predictors for
tractability.
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As in Section 4.2, expected returns follow

µi =
0 if Fi

γ if Ti

.

I fix N = 10,000 and T = 200.

The publication process is the same as in HLZ:
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Pr(Si |ti ) =


0 |ti | < 1.96

0.5s̄ |ti | ∈ (1.96,2.57]

s̄ |ti | > 2.57

, (24)

where Si indicates i is selected for publication and s̄ is the maximum probability

of selection. WLG, I set s̄ = 1.0. A lower s̄ is equivalent to a smaller N .

In each simulation, I estimate the FDR bound using the easy exponential ex-

trapolation (Equation (7) and (8)). I also calculate the FDP for published strate-

gies with |ti | > 2.0. I then average across simulations to obtain the actual FDR

and the average FDR bound. The results are shown in Figure A.6.

For most parameter values, the easy extrapolation formula bounds the actual

FDR.The exceptions occur when Pr(Fi ) is around 90% or γ= 75 bps per month.

These settings imply that the distribution of t-stats displays an extremely

sharp curvature below |ti | < 2.0. Since the data mined returns do not display

such a sharp curvature, it is unlikely that this setting is relevant, as it would mean

that researchers uncover |ti | < 2.0 at a much higher rate than pure data mining.

C. FDR Control Equivalence Details

This section provides further details on the expressions in Section 4.3.

To derive Equation (21), start with HLZ’s description of BH95 control:

• Order the p-values such that p(1) ≤ p(2) ≤ ... ≤ p(M) where M is the total

number of predictors.

• Find k∗ that solves

k∗ = max
k∈{1,2,..,M }

{
k : p(k) ≤

k

M
q∗

}
(25)

where q∗ is the FDR bound selected by the researcher.

• Reject null hypotheses corresponding to p(1), p(2), ..., p(k∗).
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Figure A.6: FDR Estimates in Simulations of Published Data

I simulate published returns, estimate the easy FDR bound using exponential
extrapolation, and compare to the actual FDR (see Section B.2)
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To see the equivalence, first note that Equation (25) can be written as

h∗ = min
h∈{|t1|,|t2|,...,|tM }}

{
h : Pr(|ti | > h|Fi ) ≤ [Number of |ti | > h]

M
q∗

}
. (26)

That is, finding the largest p-value is equivalent to finding the smallest t-stat hur-

dle that satisfies the constraint. The constraint can be written in terms of a t-stat

hurdle, p(k) = Pr(|ti | > h|Fi ) for h = |t(k)|, where t(k) ranks the absolute t-statistics

in descending order. Finally, since k is the ranking of the p-value p(k), it is also

the number of p-values smaller than p(k), or equivalently the number of |ti | > h.

BY Theorem 1.3 simply modifies Equation (25) with a correlation penalty∑M
j=1 1/ j . On page 1183, BY describe this penalty as follows: “Obviously, as the

main thrust of this paper shows, the adjustment by
∑m

i=1
1
i ≈ log(m)+ 1

2 is very

often unneeded, and yields too conservative a procedure.” The BY paper is more

often cited for Theorem 1.2, which omits this penalty.

FDR controls like BH95 are significantly more difficult to prove compared to

direct FDR estimates because controls imply that the hurdle is stochastic. In con-

trast, direct FDR estimates fix the hurdle, leading to simple manipulations like

Equations (16).

Nevertheless, FDR control under dependence has been proven in a variety

of settings. Many such settings are listed in Farcomeni (2007). Simutheoreti-

cal evidence suggests that FDR control generally obtains for t-tests like the one

in this paper (Reiner-Benaim (2007)) but a complete proof of this result has re-

mained elusive (Benjamini (2010)). The robustness of BH95 seems to be even

broader than in Reiner-Benaim, 2007. In his lecture notes on “A Tutorial on False

Discovery Control,” Christopher Genovese describes the BH95 algorithm as “In

practice, it is quite hard to ‘break’.”
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D. Harvey, Liu, and Zhu’s (2016) Parametric Model

HLZ’s model starts with a description of all factors, i = 1,2, ..., N

µi ∼
Dirac(0) with prob p0

Exponential(λ) with prob (1−p0)
(27)

ti |µi ∼ Normal
( µi

SE
,1

)
(28)

Corr
(
ti , t j

)= ρ for i ̸= j

where µi is the expected return on factor i , Dirac(0) is the distribution with a

point mass at zero, Exponential(λ) is an exponential distribution with shape pa-

rameter λ, p0 if the proportion of nulls, SE is the (constant) standard error of the

sample mean return, and ρ is the constant pairwise correlation between monthly

returns.

HLZ choose SE = (1500/
p

12)/
p

240 (page 29) and ρ = 0.20 (page 35).

Factors are selected for publication according to a staircase function

Pr(Si |ti ) =


0 |ti | < 1.96

0.5s̄ |ti | ∈ (1.96,2.57]

s̄ |ti | > 2.57

, (29)

where Si indicates i is selected and s̄ is the maximum probability of selection.

HLZ do explicitly describe this function but it is implied by their data adjust-

ment for publication bias (page 31). HLZ implicitly assume s̄ = 1.0, which allows

identification of N . It is unclear if s̄ = 1.0 is a reasonable assumption and indeed

Andrews and Kasy (2019) and Chen (Forthcoming) do not attempt to identify N

or s̄.

This model contains parameters (p0,λ, N ) which HLZ estimate by SMM. They

select as target moments the number of published and significant factors, as well

as three order statistics t-statistics: the 20th, 50th, and 90th percentiles. HLZ’s

Table 5, Panel A, ρ = 0.2 arrives at p0 = 0.444, λ = 55.5 bps per month, and N =
1,378.
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E. Equating of false, null, and insignificant in Harvey

and Liu (2020)

Harvey and Liu (2020) (HL) “show exactly what went wrong with the infer-

ence in Yan and Zheng (2017)” (page 2506, paragraph 4). In particular, HL state

that Yan and Zheng “claim that a large fraction of the 18,000 anomalies in their

data are true.” (page 2506, paragraph 2). This statement about Yan and Zheng

is repeated several times in HL (e.g. page 2519, paragraph 3) and HL devote an

entire section (II.A.5) to refuting this claim.

However, Yan and Zheng do not make this claim. Instead, they “find that

many fundamental signals are significant predictors of cross-sectional stock re-

turns even after accounting for data mining” (abstract). Similar statements are

found throughput Yan and Zheng (e.g. page 1416, paragraph 3). HL’s statement

and Section II.A.5 are thus hard to understand—unless one equates significance

(under HL’s chosen test) with truth.

HL explain their argument in more detail in section II.A.5, “Revisiting Yan and

Zheng (2017).” This section begins (page 2541) with:

Applying the preferred methods based on Table III to the 18,000

anomalies, the fraction of true strategies is found to be 0.000% ([BY

Theorem 1.3]) and 0.015% (Storey, θ = 0.8) under a 5% significance

level, and 0.006% ([BY Theorem 1.3]) and 0.091% (Storey, θ = 0.8) un-

der a 10% significance level.

There are multiple issues with this paragraph. First, the fraction of true strategies

does not traditionally depend on the significance level.

Second, BY Theorem 1.3 traditionally provides an upper bound on the FDR

(Section 4.3). It can say the fraction of true strategies is at least 0.000%. But this

theorem cannot say that the fraction of true strategies is 0.000%.

Last, it is not possible that Storey (2002) finds an FDR of less than 1% in the

Yan and Zheng (2017) strategies. This can be seen applying Equation (11) to the

numbers reported in Table 1 of Yan and Zheng. This table shows that at most

80 percent of |ti | fall between -1.62 and +1.58 (using VW 4-factor αs, which is

the only part of the Yan and Zheng data examined in HL). Thus, the law of total
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probability implies that

Pr(Fi ) = Pr(ti ∈ [−1.62,+1.58])−Pr(ti ∈ [−1.62,+1.58]|Ti )Pr(Ti )

Pr(ti ∈ [−1.62,+1.58]|Fi )

≤ Pr(ti ∈ [−1.62,+1.58])

Pr(ti ∈ [−1.62,+1.58]|Fi )

= 0.80

0.89
= 89%,

where Pr(ti ∈ [−1.62,+1.58]|Fi ) = 0.89 is calculated using the standard normal

distribution. In other words, the fraction of true strategies is at least 11%.
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