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Abstract

How fully and quickly do supply chains transmit commodity price movements into infla-
tion? In a production network with sticky prices, we show that the network delays full prop-
agation of commodity price shocks to downstream firms. This delay from downstreamness
occurs even when firms are forward-looking, and myopia amplifies it. We confirm the theory
using shift-share designs exploiting firms’ differential exposures to commodities through their
networks. We find forward-looking responses to oil price movements but myopic responses
for other commodities. Applying our model, we show that delayed network propagation of
oil price movements forecasts the future path of core inflation.

1 Introduction

How much and how quickly do supply chains transmit commodity price movements into infla-

tion? This question lies at the heart of many debates about the causes of inflation, both now and

in the 1970s/80s, because commodity price increases may have lasting effects on aggregate infla-

tion if they take time to propagate through supply chains. Oil prices, for example, are thought

to have contributed to many historical inflationary episodes. Beyond oil’s central role in energy,

everything from fabric in clothing to foam cushions in furniture to the plastic in every consumer

electronic can be made indirectly from oil. If oil price movements only gradually filter through
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supply chains to final products, they could generate delayed inflation that – without a dynamic

model of supply chain propagation – might be misattributed to other causes. We build a theo-

retical and empirical framework to assess how quickly and fully commodity price movements

propagate through supply chains, demonstrating their delayed and predictable effects on aggre-

gate inflation.

In our model and empirical analysis, we obtain five key results. First, we find that network

pass-through is full in the long run but occurs much more gradually than one might expect. In

the case of oil, the average industry has only passed through 60% of a persistent oil price increase

after one year, rising to 80% after two years. Second, we show that this delay is a consequence of

price rigidity interacting with the network. Formally, in a network where all industries have the

same frequency of price adjustment, industries more downstream from the shock pass it through

more gradually, even if they are forward-looking. Third, deviations from rational expectations

can amplify the delay due to downstreamness substantially. While our empirical results find net-

work propagation of oil price movements in line with rational expectations, propagation of other

commodities’ price movements is even more gradual, suggesting substantial inattention. Fourth,

relative price movements throughout the network generated from oil largely pass through to ag-

gregate inflation. Fifth, this pass-through explains the predictability of core inflation from oil price

movements. We now summarize our results in greater detail.

We begin by studying supply chain propagation theoretically, using a dynamic supply-side

pricing model with Calvo pricing and a production network. Our setup is quite standard, follow-

ing the supply side of Rubbo (2023) and augmented to allow for myopic expectations, following

Gabaix (2020). It is now well-understood theoretically that how much a price movement in sec-

tor j affects prices in sector i depends on the overall share of cost in sector i that lies in sector

j, inclusive of supply chain connections. Our theoretical contribution is to show that the speed

of pass-through depends on sector i’s “downstreamness” from sector j, a notion that captures

how many links in the supply chain separate sector i from sector j (on average, as many supply

chain links between sectors may exist). Notably, downstreamness in our setting can be due to

both loops in the network, as in Basu (1995), and in-line production, as in Blanchard (1983). Fi-

nally, we show that forward-lookingness interacts strongly with downstreamness. With rational

expectations (and full attention), downstream sectors adjust their prices to account for anticipated

future price changes by their suppliers – that is, before the actual cost changes have worked their

way down the supply chain to reach the downstream sectors. If firms are myopic, they wait until

the cost shocks have filtered down to them step-by-step before adjusting their prices, leading to a

much higher degree of effective price rigidity.

We then test our propositions empirically, using shift-share designs analyzing benchmark

input-output data from the BEA and producer price index (PPI) data from the BLS. We find ev-

idence that pass-through of commodity price movements to industry prices throughout the pro-

duction network is limited in the short run but full in the long run. In the case of oil, we replicate
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these results using the Kanzig (2021) series of exogenous oil price shocks obtained through high-

frequency identification of the surprise effects of OPEC announcements. As an additional robust-

ness check, we study a few specific cases of large, plausibly-exogenous movements in the oil price

– including the 1979 oil price spike driven by the Iranian Revolution, the 2014-15 oil price crash

driven by the U.S. oil shale boom, and the 2020 COVID shock to oil prices – finding analogous

results.

Performing heterogeneity analysis, we confirm our central proposition that industries fur-

ther downstream from the commodity price movement experience significantly less rapid pass-

through. This result holds while controlling for industries’ heterogeneous frequencies of price

adjustment, another key source of variation that affects speed of pass-through. Controlling for

other plausible mediators – such as market concentration, firm size, inventories, and capital share

– does not diminish the magnitude or significance of the downstreamness result.

We then turn to a structural estimation of our dynamic pricing model, primarily to determine

the degree of firms’ forward-lookingness about gradual network propagation of commodity price

movements. Specifically, we compare the pace of network pass-through in the data to models

calibrated with different degrees of forward-lookingness. We implement a generalized method

of moments (GMM) procedure identified using a dynamic shift-share design that follows directly

from the model. Because the approach exploits the cross section, it removes the need to estimate

pass-through industry-by-industry.

We find that context-dependent forward-lookingness is required to fit the pass-through pat-

terns observed in the data. In particular, industries tend to behave in line with rational expec-

tations during oil price shocks while behaving myopically during shocks to other commodities.

We connect this result to shock salience by showing that there are more news articles and Google

searches about oil than other commodities.

We also augment the model to accommodate information about shock persistence contained

in commodity futures markets. We verify our result of forward-lookingness for oil, finding that

firms’ pricing behaviors respond to “forward guidance” about future oil prices as provided by oil

futures data. We also verify our result of myopia outside of oil by performing a second study using

corn futures, another fairly liquid futures market. In this context, we find no response of industry

prices to forward guidance. Put differently, we cannot reject that firms pass through corn spot

price changes the same way, regardless of the contemporaneous shift in the futures curve.

We argue that our empirically-validated model has a variety of applications. Amongst them,

it allows computing revised measures of inflation that fully strip out the influence of specific in-

dustries. For example, official measures of core inflation, which simply remove the food and

energy sectors from computations of inflation, do not fully purge the influence of energy from

the resulting measure of inflation; it is still heavily intertwined through the production network.

Our approach makes it possible to fully strip the influence of oil throughout the production net-

work from inflation, resulting in a new, network-corrected measure of inflation purged of oil’s
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influence.

Using our GMM-calibrated model, we show that the supply chain effects of oil price move-

ments cause about twice as much inflation as the direct effects of oil on the gasoline prices con-

sumers pay, but these supply chain effects take years to manifest fully in inflation. To arrive at

this conclusion, we first present evidence on the effect of oil price movements on industries with

zero network exposure to oil. We find no evidence of price responses in such industries, suggest-

ing an absence of price declines associated with any contractionary responses by the monetary

authority or other general equilibrium effects. Put differently, we find that all of the relative price

movements predicted by the model pass through to aggregate inflation.

Purging all of oil’s effects from aggregate PCE inflation modifies the time pattern of the cur-

rent inflationary episode. Underlying inflation is lower than the headline figure for all of 2021 and

much of 2022; in the latter half of 2022, underlying inflation continues to increase despite headline

inflation declining. More generally, inclusive of supply chain effects, oil price movements explain

33% of the monthly variation in personal consumption expenditures (PCE) inflation and 16% of

the variation in Core PCE inflation. We produce a historical inflation series beginning in 1960 that

removes the direct and indirect network effects of oil price movements.

The remainder of this paper is organized as follows. Section 2 reviews the relevant liter-

ature on production networks. Section 3 outlines the setup and results of our dynamic pricing

model. In Section 4, we discuss data used in our estimation. In Section 5, we present the results

of our reduced-form empirical analysis demonstrating significant but delayed commodity price

pass-through, including a variety of robustness checks and heterogeneity analysis. In Section 6,

we empirically characterize pass-through speed and structurally estimate the degree of forward-

lookingness, further validating our results by performing heterogeneity analyses exploiting com-

modity futures data. In Section 7, we focus on our application: stripping the full network effects of

oil price movements from core inflation. In Section 8, we conclude by summarizing our findings

and discussing some of their implications.

2 Literature Review

Our paper contributes to four strands of existing literature. First, we contribute to the literature

finding that sectoral shocks can generate meaningful aggregate fluctuations. We show this in the

context of oil price movements, which generate indirect inflationary effects (through the supply

chain) twice as large as their direct effect. Second, we add to the recent but growing literature per-

forming empirical tests of production network models. We do so by studying the extent and pace

of price pass-through along supply chains in response to exogenous shocks. Third, we provide

direct evidence of nominal rigidity amplification in supply chains, a conjecture which dates back

to Gordon (1981) and underlies a growing recent literature. Finally, we contribute to the literature

on forward-looking expectations, as we develop a way to estimate firm forward-lookingness from
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observational macroeconomic data.

We build on a large literature finding that sectoral shocks can generate meaningful aggregate

fluctuations. Horvath (1998) presents a model in which positive shocks to certain sectors are not

equally offset by negative shocks in other sectors; interactions amongst producing sectors stymie

the Law of Large Numbers from producing this result. Consequently, Horvath argued that sector-

specific shocks can explain a substantial fraction of aggregate disturbances; as much as 80% of the

volatility in GDP growth is due to sector-specific shocks in Horvath’s findings. Horvath (2000),

Gabaix (2011), Acemoglu et al. (2012), and Baqaee and Farhi (2019a,b,c) present additional model-

ing evidence of the importance of accounting explicitly for the network structure of the economy.

Furthermore, in calibration exercises, Foerster, Sarte, and Watson (2011), Carvalho and Gabaix

(2013), and Atalay (2017) attribute half or more of aggregate volatility to sector-specific shocks.

Bartelme and Gorodnichenko (2015) and Caliendo, Parro, and Tsyvinski (2017) extend this logic

internationally, finding that sector- and country-specific distortions have meaningful implications

for global macroeconomic output. Pasten, Schoenle, and Weber (2017) find that industry hetero-

geneity in price rigidity amplifies aggregate fluctuations. Baqaee (2018) finds that industry-level

market structure can be responsible for amplification. Acemoglu, Ozdaglar, and Tahbaz-Salehi

(2017) further document the importance of industry heterogeneity.

We also build on the recent but growing literature performing empirical tests of production

network models. Unlike most existing empirical work on the topic, we are interested in studying

the propagation of price changes through production networks. Studying prices over other out-

comes provides substantial empirical power because good measures of highly disaggregated in-

dustry price indices are available at a monthly frequency from the Bureau of Labor Statistics’ Pro-

ducer Price Index database. Furthermore, we aim to use identification techniques and approaches

necessary to conduct causal tests of production network models with techniques standard in the

modern applied-econometrics literature.

Barrot and Sauvagnat (2016) study the propagation of firm-specific shocks from natural dis-

asters in the United States, focusing on propagation to immediate suppliers and consumers and

finding statistically-significant transmission of shocks. Boehm, Flaeen, and Pandalai-Nayar (2019)

and Carvalho et al. (2021) focus on the 2011 Tohoku Earthquake, studying how its effects on

output propagate upward and downward through supply chains, with the result being that a

non-trivial part of the drag on Japanese real GDP growth from the disaster was due to network

propagation effects. Acemoglu, Akcigit, and Kerr (2016) study the effects on industry-level output

of a variety of supply and demand shocks (Chinese import shocks, government spending changes,

TFP growth, and foreign-industry patenting) propagating through the production network. The

authors find important network effects – dwarfing the own-sector effects – of all four types of

shocks.

Three papers with findings related to some of our empirical results are Auer, Levchenko, and

Saure (2019), Smets, Tielens, and Van Hove (2018), and Luo and Villar (2023). Auer et al. study
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international input-output linkages, presenting evidence that global input-output linkages con-

tribute to the synchronization of PPI inflation across countries. Smets et al. empirically analyze

the network price pass-through patterns of estimated micro-level shocks in a structural Bayesian

framework, finding in a horse-race that the data prefer a model with network propagation to a

model without such propagation. Akin to Acemoglu, Akcigit, and Kerr (2016) but assessing price

outcomes, Luo and Villar (2023) study whether shocks propagate upstream and downstream.

Most of our arguments are distinct from these papers: while we do also verify that network prop-

agation through prices occurs – in our setting, in response to commodity price movements – we

are primarily focused on whether the extent and duration of this pass-through is consistent with

our model, especially the channel by which a sector’s downstreamness from the shock and lack of

forward-lookingness delay pass-through.

Additionally, we draw on a large literature pertaining to models of price-setting. Broadly

speaking, these models fall into two categories. The first category is that of time-dependent mod-

els. In these models, in each period, firms have the opportunity to adjust their prices with some

exogenous probability. Seminal examples of time-dependent models are those of Taylor (1979),

Calvo (1983), and Yun (1996), amongst which Calvo pricing has been the most commonly-used.

As detailed micro data on prices became more available in succeeding decades, some deficiencies

of time-dependent models became apparent (documented in Bils and Klenow 2004 and Nakamura

and Steinsson 2008), and so a second category of price-setting models emerged to address these

issues. In these state-dependent models, price changes are endogenous, depending on the state of

the firm and the broader economy. For example, firms may have menu costs, whereby changing

prices in response to changed costs is only advantageous if the expected gains from shifting to the

new optimal price exceed the fixed cost of changing prices. Examples of state-dependent models

can be found in Golosov and Lucas (2007), Klenow and Kryvtsov (2008), Nakamura and Steinsson

(2010), and Midrigan (2011). More recently, Auclert et al. (2022) has proven an equivalence result

between state-dependent and time-dependent models: the Phillips curve of the canonical menu

cost model is the same as a mixture of two time-dependent models.

We also contribute to the literature on the compounding of nominal rigidities through the

supply chain. This idea extends back at least to Gordon (1981), who called attention to “the role

of the input-output table in translating prompt price adjustment at the individual level to grad-

ual price adjustment at the aggregate level.” Deep supply chains with a long sequence of links

could translate short lags at the firm- or industry-level into lengthy lags between monetary or

commodity cost shocks and their incorporation into the aggregate price level. Blanchard (1983)

formalized these ideas in a model featuring a linear production network. Building on this work,

Basu (1995) develops a roundabout production model arguing that this compounding of nominal

rigidities magnifies productivity fluctuations and thereby contributes to the intensity of business

cycles. Theoretical results in parallel work from Afrouzi and Bhattarai (2023) provide sufficient

statistics for shock pass-through in production networks, with a broader focus on GDP in ad-
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dition to inflation. Their Proposition 2 is closely related to the component of our Proposition 2

associated with rational expectations. Our work is distinct in characterizing how pass-through

speed in networks depends on forward-lookingness (also in Proposition 2 and further in Propo-

sition 3), linking pass-through speed of a shock explicitly to an industry’s downstreamness from

the shock (in Proposition 3), and empirically confirming that downstreamness amplifies inflation

predictability from past commodity price movements.

It is important to verify whether nominal rigidities compound in supply chains because this

conjecture increasingly underlies policy advice. Rubbo (2023) and La’O and Tahbaz-Salehi (2022),

for instance, find that optimal monetary policy in the context of production networks targets an

alternative price index that more greatly weights certain sectors with greater influence in the pro-

duction network (such as those that are more upstream, larger, or stickier, in the case of La’O and

Tahbaz-Salehi). Other papers discuss the importance of price rigidity compounding in supply

chains, including Carvalho (2006) and Nakamura and Steinsson (2010). Our contribution is to

show that the network compounding of nominal rigidities actually does occur in the data.

Finally, we contribute to the literature on how deviations from rational expectations can af-

fect macroeconomic outcomes. As illustrated by Carlstom, Fuerst, and Paustian (2012) and dis-

cussed in detail by Del Negro, Giannoni, and Patterson (2012), in a workhorse New Keynesian

model (such as Smets and Wouters 2007), central bank promises with regard to policies that will

be undertaken in the (sometimes-distant) future can have unreasonably large effects on present-

day inflation and output. This is referred to as the “forward guidance puzzle.” Gabaix (2020)

discusses myopia, the notion that agents are not perfectly forward-looking in all contexts, as a so-

lution to the forward guidance puzzle. We show a way of estimating myopia from observational

data on the macroeconomy (as opposed to microeconomic experiments) and, in so doing, provide

empirical evidence of how deviations from rational expectations are present in the data.

Other deviations from a fully rational, attentive, and informed benchmark model have also

been studied in the literature. Sims (2003), Woodford (2003), Mankiw and Reis (2002), and Gabaix

(2019) discuss inattention and information rigidities. Bordalo, Gennaioli, and Shleifer (2018, 2022)

explore an alternative model of expectations, “diagnostic expectations.” Angeletos and Huo (2021)

develop an equivalence between informational frictions and backward-looking, myopic expecta-

tions. We refer the interested reader to these papers for a more in-depth review of this extensive

literature.

3 Model

Our modeling seeks to guide all the empirical analysis we perform in our study of price propa-

gation. We first develop a proposition characterizing the long-run pass-through of sectoral price

changes to all industry prices. These long-run pass-through measures capture the fact that, even if

industries do not directly purchase inputs from a sector for use in production – if, that is, they are
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instead exposed to the sector’s price movements only indirectly through their suppliers’ use (or

their suppliers’ suppliers’ use, etc.) – they should still change prices in response to the input price

change. We further develop propositions about how price rigidity compounds in the production

network if firms in each sector can only change their prices with some probability, following the

long tradition in macroeconomics of using Calvo pricing to study price rigidity. Our model most

closely follows the supply-side setup of Rubbo (2023). We extend this model by allowing firms to

be myopic about the pass-through of upstream shocks to suppliers’ prices, following the setup of

Gabaix (2020) and nesting the case of rational expectations.

Finally, we use a simple, linear network to develop intuition about the role of myopia and

compounding price rigidities in supply chain propagation of shocks. A linear network consists

of a single supply chain in which each firm uses only labor and inputs from the previous link in

the supply chain – with the final link in the supply chain ultimately selling to consumers. Our

simple calibration of the linear network model allows for convenient graphical illustrations of

propositions for the general network.

3.1 Model Setup

The setup is standard Dixit-Stiglitz at the industry level. There is a continuum of firms j ∈ [0, 1]

in each industry i ∈ {1, ..., I}. Each firm produces output denoted Yi,j,t, and these varieties are

transformed1 into an industry aggregate according to

Yi,t =

(∫ 1

0
Y

σi−1

σi
i,j,t dj

) σi
σi−1

.

The industry’s price index is then

Pi,t ≡
(∫ 1

0
P 1−σi
i,j,t

) 1
1−σi

.

Total factor productivityAi,t (hereafter, TFP) is exogenous and common to all firms in an industry.

The production process Fi is also common to all firms within an industry and is constant returns to

scale. Each firm j in industry i may produce using bundled varieties from all modeled industries,

denoted Xi,j,t = (X1
i,j,t, ..., X

I
i,j,t) and labor Li,j,t.2 They also may use a commodity from an un-

modeled, commodity-producing industry Zi,j,t sold at price PZ,t. We can think about Z for now as

oil, supplied on a global market. Formally, then, Yi,j,t = Ai,tFi(Li,j,t,Xi,j,t, Zi,j,t). We do not allow

the wage to vary by firm within sector, which can be microfounded with perfect substitutability

in labor supply across firms within sector.

Firms minimize input costs subject to producing a given level of output, yielding the cost

1They can be transformed by a competitive industry dedicated to this task, or by each firm separately whenever it
produces using the industry bundle.

2Labor can be thought of as a value-added commodity that jointly includes labor and capital.
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function Ci(Wi,t,Pt, PZ,t, Yi,j,t/Ai,t). Therefore, marginal cost is

MCi,t =
1

Ai,t
Ci(Wi,t,Pt, PZ,t, 1). (1)

Marginal cost does not vary across firms within industry and depends on the industry-specific

wage, Wi,t, the vector of modeled industry prices Pt = (P1,t, ..., PI,t), the commodity price PZ,t,

and the level of TFP, Ai,t.

Knowing marginal cost, we can consider the firm’s optimal pricing problem. The setup is

standard, following the textbook treatment in Galı́ (2015) at the industry level, but allows for

deviations from rational expectations as in Gabaix (2020). Each firm j in industry i is permitted

to change prices with some probability (1 − θi) in each period. The optimal reset price, P ∗
i,j,t,

that the firm sets when it gets the opportunity to change its output price maximizes expected

discounted profits for as long as that price is expected to remain the firm’s market price. The

elasticity of substitution between varieties in each industry, σi, is constrained to be greater than 1

for a well-defined monopoly profit maximization problem. Denote the stochastic discount factor,

the relevant discount rate for firms, between periods t and t + k by SDFt,t+k.3 The optimal reset

price will not vary across firms within an industry, and it solves

max
P ∗
i,j,t

∞∑
k=0

θki Ẽt
[
SDFt,t+kYi,j,t+k

(
P ∗
i,j,t −MCi,t+k

)]
(2)

s.t. Yi,j,t+k = Yi,t+k

(
Pi,t+k
P ∗
i,j,t

)σi
. (3)

Now, Ẽt is the potentially myopic expectations operator given the period t information set and

will be defined shortly in terms of log-linearized variables. It follows from random selection of

which firms get the opportunity to change prices within industries and the definition of our earlier

price index that

Pi,t =
(
θiP

1−σi
i,t−1 + (1− θi)

(
P ∗
i,t

)1−σi) 1
1−σi . (4)

Our supply-side equilibrium model can be summarized in three equations:

Definition 1 (Industry Equilibrium). The law of motion for industry prices follows (4), firms with the
opportunity to change prices solve the maximization problem (2) subject to (3), and marginal cost is defined
by (1).4

Note that, at this point, we have not specified the stochastic discount factor, the labor supply

3One example SDF is SDFt,t+k = δk
U′(Ct+k)

U′(Ct)
, where C is aggregate consumption, U is the utility function, and δ is

the consumer’s discount factor.
4The law of motion is required in the definition of industry equilibrium because, even though all firms are opti-

mizing in every period, only some share of firms has the opportunity to change prices in each period. The industry
price index evolves according to the optimal reset price, weighted by the share of firms that can change prices, and the
previous period’s price, weighted by the share of firms that cannot change prices.
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conditions that determine industry wages in equilibrium, the monetary rule, etc. Our results that

follow must hold regardless of these specifications. We note that, in Appendix A.4, we provide

details for a fully specified model.

3.2 Log-linearized Model

We log-linearize our industry equilibrium system around a zero-growth and zero-inflation steady

state. We will denote the log deviation of a variable from its log steady state value by a hat above a

lower-case variant of a variable. For example, the deviation of an industry’s log price from steady

state will be denoted p̂i,t.

We now define the (potentially) myopic expectation of the deviation of a random variable

from steady state. When taking the myopic expectation of the deviation of a random variable

from steady state, e.g., p̂i,t+k, with k ≥ 0, the operator is defined as

Ẽt[p̂i,t+k] = mk
fEt[p̂i,t+k],

with mf ∈ [0, 1] (mf = 1 denoting rational expectations) and Et being the rational expectations

operator under the period t information set. When there is myopia, firms discount expected future

disturbances more relative to the rational agent. In the case of our model, this will mean that firms

may neglect drift in their marginal cost induced by gradual pass-through of shocks through the

production network. Beyond being of independent interest, the parameter mf will enable us to

test whether rational expectations is operative in the data. In our empirics, we will allow mf

to vary by the excluded commodity Z to establish whether firms act as through they are more

forward-looking about some commodity shocks than others. We suppress the dependence on Z

for notational simplicity.

Now, we develop our log-linearized three equation model. To do so, we require some addi-

tional notation. Define industry cost shares in each input (in steady state) as

sLi =
WiLi
Ci

, Φi,j =
PiX

j
i

Ci
, sZi =

PZZi
Ci

.

The matrix Φ is commonly called the input-output matrix; it captures how much each industry

spends on inputs from every other industry as a fraction of cost, conveniently summarizing the

complex input-output linkages of the economy. Now, it is a straightforward application of the

envelope theorem on the cost function that

m̂ci,t = −âi,t + sLi ŵi,t + sZi p̂Z,t +
I∑

k=1

Φi,kp̂k,t. (5)

The log-linearizations of the law of motion for industry prices and the first-order condition deter-

mining the optimal reset price are well-known in the New Keynesian theory. With the addition of
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myopia, these equations log-linearize to

p̂i,t = θip̂i,t−1 + (1− θi)p̂
∗
i,t (6)

p̂∗i,t = (1− θiδmf )
∞∑
k=0

(θiδmf )
kEtm̂ci,t+k. (7)

In the case where mf = 1, equations (6) and (7) yield the standard Phillips curve (in nominal

marginal cost), just at the industry level. The network enters through equation (5). An indus-

try’s price depends on its marginal cost, which in turn depends (potentially) on the vector of all

industries’ prices.

Note that a simplification of equation (7) is possible under complete myopia, mf = 0. In

this case, p̂∗i,t = m̂ci,t. As anticipated earlier, under complete myopia, firms will wait until their

marginal costs have adjusted to alter their optimal reset prices. With forward-lookingness, firms

will anticipate future changes in marginal cost, passing them through at least partially to their

optimal reset prices in the present.

3.3 Long-run Impact of a Commodity Price Shock

We now characterize the extent and pace of pass-through of the commodity shock to all industry

prices. We begin by characterizing the extent of pass-through. We will use the notation diag(·) to

denote the diagonal matrix with its argument ordered across industries on the diagonal.

Proposition 1 (Long-run Impact). Suppose there is a one-time, persistent, and unexpected shock to the
commodity price at time t = 0, p̂Z,0. The economy was in steady state, and there are no shocks to TFP. To
a first-order approximation, if all industries can change prices at some point, θi < 1 for all i, the long-run
equilibrium response of prices (holding wages constant) is

p̂∞ = (I −Φ)−1sZ p̂Z,0.

If wages adjust in general equilibrium,

p̂∞ = (I −Φ)−1sZ p̂Z,0 + (I −Φ)−1diag(sLi )ŵ∞.

It is of course also true that, under flexible pricing (θi = 0 for all i), the immediate partial

equilibrium response of all prices to a commodity price movement is the long-run partial equilib-

rium response. Proposition 1 is related to many existing results, particularly the forward network

propagation result in Proposition 1 of Baqaee and Rubbo (2022).

We can test Proposition 1 directly in the data. In particular, we can compute (I −Φ)−1sZ in

the data, and so we know, to a first-order, how each industry’s price will respond to a persistent

and unexpected commodity price movement in the long-run. We develop some intuition using the

geometric sum formula for matrices. We can decompose industries’ exposures to the commodity
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price movement:

(I −Φ)−1sZ = sZ +ΦsZ +Φ2sZ + ....

From this decomposition, we define the exposure of an industry to the commodity price at order

k as

NetworkExposurei,k =
[
Φk−1sZ

]
i
.

It is clear that NetworkExposurei,1 is an industry’s first-order exposure to the commodity through

its own purchases of the commodity. If 10% of an industry’s labor and intermediate input costs are

comprised of purchases of the commodity, then NetworkExposurei,1 = .1. Through simple matrix

multiplication, it also follows that NetworkExposurei,2 is an industry’s second-order exposure to

the commodity through its suppliers’ costs. Suppose only one of an industry’s suppliers buys the

commodity directly, and this supplier has a direct cost share of .8. Then if 20% of an industry’s cost

is comprised of purchases from this supplier, NetworkExposurei,2 = .2 × .8 = .16. Analogously,

NetworkExposurei,3 is an industry’s third-order exposure to the commodity through its suppliers’

suppliers’ costs, etc.

A key prediction of the model is that, to a first order in partial equilibrium, the full network

exposure is a sufficient statistic for long-run pass-through. Put differently, the composition of net-

work exposures at various orders is irrelevant for long-run pass-through, conditional on the full

network exposure. As we show now, however, the composition of network exposure is important

for the speed of adjustment.

3.4 Transitory Dynamics and Downstreamness Measures

Next, we seek to develop empirical measures of the speed of pass-through in an industry. We

derive closed-form solutions for two special cases, allowing us to formalize how pass-through

depends on the distribution of an industry’s orders of network exposure to the shock. It is helpful

to begin first with a characterization of how industry prices evolve over time in response to a

commodity price movement. We assume that the stochastic discount factor between periods t and

t+ k in steady state is δk, which follows from a large class of household setups; δ can equivalently

be given in terms of the steady state interest rate. Define the continuous time parameters ϕi =

− ln θi and ψi = ϕi − ln δ − lnmf . We call ϕi the rate of price adjustment and ψi the discount rate.

Note that, under complete myopia, now we have ψ → ∞, while under rational expectations and

a steady state interest rate of 0, we have ψi = ϕi.

Proposition 2 (Transitory Dynamics and Speed of Adjustment). Suppose there is a one-time, persis-
tent, and unexpected shock to the commodity price at time t = 0, p̂Z,0. The economy was in steady state,
and there are no shocks to TFP. Then the response of prices (holding wages constant) is

p̂t ≈
(
I − e−Bt

)
p̂∞,
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(with equality in continuous time) where p̂∞ = (I − Φ)−1sZ p̂Z,0. Defining ϕ̄ = diag(ϕi) and ψ̄ =

diag(ψi),B satisfies (
ϕ̄−1B −

(
I − ψ̄ϕ̄−1

))
B = ψ̄(I −Φ),

and we take the roots with all positive eigenvalues.5 In the myopic case, B = ϕ̄(I − Φ). Under rational
expectations, when the interest rate r is 0, we haveB =

(
ϕ̄2(I −Φ)

)1/2.
Proposition 2 yields a general method for determining the time path of pass-through of price

movements to all industry prices, given ϕ, ψ, Φ, and sZ . In two special cases – complete myopia

and rational expectations with a steady state interest rate of 0 – we actually know the functional

form of the solution.

Now, we turn to further characterizations of the speed of pass-through in a sector. Denote by

ei the standard basis vector in RI (a column vector of 0’s with a 1 in element i). Define the fraction

of long-run pass-through in sector i at time t by bi,t, which satisfies

p̂i,t = bi,tp̂i,∞,

where p̂i,∞ =
[
(I −Φ)−1sZ

]
i
p̂Z,0. It follows from Proposition 2 that

bi,t ≈ 1− (ei)′e−Btp̂∞
(ei)′p̂∞

,

with equality in continuous time. In industry i at time t, the fraction of long-run pass-through not

yet achieved is 1 − bi,t. We can measure the average time it takes to pass-through a commodity

price increase in industry i as follows:

Definition 2 (Duration of Pass-through). The duration of pass-through in sector i is

Di =

∫ ∞

0
(1− bi,s)ds.

Clearly, if bi,t = 1 − e−ϕit, the pass-through rate without a network, then Di = 1/ϕi, which

is declining in the rate of price adjustment ϕi. In the network setting, the rate of price adjustment

is insufficient to characterize pass-through duration. We now characterize D(i) generally and

produce a specific functional form in special cases, applying Proposition 2:

Proposition 3 (Duration of Pass-through is “Downstreamness”). The duration of pass-through in

5If ϕi = ϕ for all i, then ψi = ψ for all i, B satisfies the equation

(ϕI −B)(B + ψI) = ϕψΦ,

and we take the roots with all positive eigenvalues:

B =
ψ − ϕ

2
I +

((
ψ + ϕ

2

)2

I − ϕψΦ

)1/2

.
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industry i is

Di ≈
(ei)′B−1p̂∞
(ei)′p̂∞

,

with equality in continuous time. Suppose the frequency of price adjustment does not vary across industries.
Then, under complete myopia, whereB = ϕ(I −Φ),

Di ≈
1

ϕ

(ei)′(I −Φ)−2sZ

(ei)′(I −Φ)−1sZ
=

1

ϕ

(ei)′
∑∞

n=1 nΦ
n−1sZ

(ei)′
∑∞

n=1Φ
n−1sZ

,

and, under rational expectations and a steady state interest rate of 0, whereB = ϕ(I −Φ)1/2,

Di ≈
1

ϕ

(ei)′(I −Φ)−3/2sZ

(ei)′(I −Φ)−1sZ
=

1

ϕ

(ei)′
∑∞

n=1

∣∣(−3/2
n−1

)∣∣Φn−1sZ

(ei)′
∑∞

n=1Φ
n−1sZ

.6

Both statements hold with equality in continuous time.
Under complete myopia, ϕDi is an intuitive measure of downstreamness; it is the weighted

average of an industry’s orders of exposure to the commodity. It is 1 if an industry only uses

the commodity directly, 2 if an industry only uses the commodity through its suppliers, 3 if an

industry only uses the commodity through its suppliers’ suppliers, etc. But the measure allows

for complex linkages between the industry and the commodity. Interestingly, this is the measure

of downstreamness defined in Antras and Chor (2022). Our result directly links this measure to

pass-through duration in a network when firms are completely myopic.

Under rational expectations, the delay due to downstreamness still exists but is shortened.

This manifests in orders of exposure larger than 1 being weighted by smaller terms than they are

under complete myopia. Formally, under rational expectations, Diϕ is 1 if an industry only uses

the commodity directly, 3/2 if the industry only uses the commodity through its suppliers, 15/8

if an industry only uses the commodity through its suppliers’ suppliers, etc., with coefficients

generally given by a binomial coefficient
∣∣(−3/2
n−1

)∣∣ (where n is the order of exposure). Importantly,

the network still slows pass-through, even under rational expectations.

One might ask whether our intuition for downstreamness remains meaningful if the fre-

quency of price adjustment varies across sectors. Plugging in our solution from Proposition 2

under myopia (now for a vector of price adjustment rates ϕ), duration becomes

Di ≈
(ei)′(I −Φ)−1ϕ̄−1(I −Φ)−1sZ

(ei)′(I −Φ)−1sZ
,

with equality in continuous time. In general, Di ̸= 1
ϕi

(ei)′(I−Φ)−2sZ

(ei)′(I−Φ)−1sZ
, though this was the case

under homogeneous θ. Intuitively, two sectors with the same frequency of price adjustment may

6Unfortunately, the coefficient
∣∣(−3/2

n−1

)∣∣ does not admit a clean functional form. For values n ∈ {1, 2, ..., 5}, it is
approximately 1, 1.5, 1.875, 2.188, and 2.461, respectively. For our purposes, it is noteworthy that these values are less
than n for n > 1, so that duration is lower under rational expectations and a 0 interest rate than it is under myopia.
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vary still in pass-through speed when one has more price-flexible suppliers than the other. As

a result, we view Proposition 3 as a ceteris paribus result characterizing how downstreamness

delays pass-through, holding frequency of price adjustment constant.

Duration is defined conveniently to connect transitory dynamics to downstreamness in closed-

form. Numerically, however, we can compute the pass-through delay due to downstreamness at

any given moment in time. To define this, we must first develop a notion of how quickly a firm

would pass through an input price increase in isolation, i.e. in an economy without a network.

Intuitively, the pass-through rate should be bi,t = 1−e−ϕit, where ϕi is the rate of price adjustment

in the industry.7

Connecting to our previous result, this no-network model would have ϕiDi = 1, so that

pass-through speed is as if all industries only use the commodity directly (i.e., not through their

suppliers at all). Define the time it takes industry i to reach a fraction X of long-run pass-through

under myopia of degree mf , denoted ti(X,mf ), implicitly by

bi,ti(X,mf ) = X.

It is clear that, in the no-network economy where bi,t = 1 − e−ϕit, we have ti(X;mf ) = − ln(1 −
X)/ϕi, which does not depend on the degree of myopia.

Definition 3 (Excess Pass-through Time due to Downstreamness). The excess time required to reach
a fraction X of long-run pass-through due to the presence of the network is

Ti(X,mf ) = ti(X,mf ) + ln(1−X)/ϕi.

This measure will allow us to perform joint regression analyses in the data where we test

whether industries with the same rate of price adjustment exhibit slower pass-through if they are

more downstream. Empirically, we will usually set X = 0.5 and mf = 1, so that the interpretation

of Ti is the half-life of pass-through due to downstreamness under rational expectations.

3.5 Illustration: Linear Network

In this section, we develop intuition on how expectations influence the dynamics of commodity

shock pass-through in a linear network. A linear network of length N is comprised of industries

7This turns out to be the case in the hyper forward-looking limit of the network model. Denote by bi,t(mf ) the
fraction of long-run pass-through in industry i at time t in the model where myopia is set to mf . Recall that θiδmf was
the discount rate used by the firm, and so there is no discounting as mf → 1/(θiδ) (or as ψ → 0 in continuous time).
The rate of pass-through in the hyper forward-looking limit is

lim
mf

−→1/(θiδ)

bi,t(mf ) ≈ 1− e−ϕit,

with equality in continuous time. The intuition here is that, when a firm focuses on the long-run increase in its marginal
costs immediately upon shock impact, there is no role for gradual pass-through of the shock by suppliers, as the drift
in actual marginal cost is not relevant for the firm’s pricing decision.
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Figure 1 – A Linear Network

Oil Refineries Petrochemicals Plastics Consumers

Labor

Note: In our linear network illustration of the general model, each industry uses labor and intermediate inputs only
from the industry immediately preceding it in the supply chain. In the illustration, petroleum refineries pay for labor
and oil. The plastics sector pays for labor and inputs from the petrochemical sector but not from petroleum refineries
directly – they only use petroleum refinery output indirectly through their use of petrochemical inputs. Ultimately, the
supply chain provides plastic products to downstream consumers.

n ∈ {1, ..., N}, each populated by a continuum of firms that only use labor and an input from

industry n − 1. Industry 1 uses labor and an exogenous supplied commodity with price denoted

P0,t. Industry n’s price is denoted Pn,t. This setup is nested in our general setup from the previous

subsection. An example linear network is shown in Figure 1.

We make the assumption that industry wages and TFP do not move in response to a shock to

the commodity price P0,t, nor do firms’ expectations of their future values. Further, all industries

have the same frequency of price adjustment, (1− θ), and the same cost share in the intermediate

input, s. It follows that long-run pass-through is p̂n,∞ = sn. Therefore, if s = .5, so that 50% of

costs are in intermediate inputs, p̂1,∞ = .5, p̂2,∞ = .25, and so on. Intuitively, 25% of the second

sector’s network costs are in oil, while 75% are in labor (25% in its supplier’s labor, and 50% in its

own labor).

Now, we visualize how much longer pass-through takes to occur in each sector in the supply

chain. We set δ = .96 (a standard annual discount factor), and we set θ = .5 (half of the firms in

each industry getting the chance to change prices each period). Finally, we will consider rational

expectations, a somewhat myopic case, and the fully myopic case. For each industry, we plot the

fraction of long-run pass-through over time: bn,t such that p̂n,t = bn,tp̂n,∞.

Before discussing our results, we can apply Proposition 3 to make predictions about how the

speed of pass-through varies with n and myopia, mf :

Corollary 1. The duration of pass-through in sector n simplifies to n/ϕ under complete myopia. This is
increasing in n, meaning more downstream sectors pass through the shock more slowly. Under rational
expectations and an interest rate of 0, the duration in sector n is 1

ϕ

∣∣(−3/2
n−1

)∣∣, which is still increasing in n.
We have that the duration under complete myopia is longer than the duration under rational expectations
for all n > 1 and is equal when n = 1.

Figure 2 shows our results. We use the continuous time model directly in this case so that
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Figure 2 – The Influence of Expectations on Pass-through Dynamics

Panel 1: Myopic Firms (mf = 0) Panel 2: Partially Myopic Firms (mf = .5)
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Panel 3: Rational Expectations Firms (mf = 1)
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Note: We display the response of each of seven sectors’ prices to an unexpected and persistent shock to the commodity
price, or the price in sector 0. Sector n uses labor and inputs from sector n−1, and the fraction of long-run pass-through
achieved in sector n by time t is denoted b(n, t). The panels show how pass-through rates vary with the degree of firm
forward-lookingness. We see that more downstream sectors take more time to pass through the shock, and the amount
of additional time is increasing in the extent of myopia. The rate of price adjustment is calibrated so that half of the
firms in each sector have the opportunity to change prices in each month; the results are plotted for the continuous-time
variant of the model, so there is no jump in prices on impact.

our propositions can be applied exactly. We see that b1,t does not vary with the degree of forward-

lookingness. The rate of pass-through for every other sector, however, does vary, and the degree to

which these rates vary is increasing in n, just as predicted under Proposition 3. This variation can

be substantial. Take the most extreme case, n = 7, in the myopic model compared to the rational

expectations model. By month four from the shock, there has been almost no pass-through under

the myopic model, while, under rational expectations, pass-through is already around 50%. We

note that, even under rational expectations, pass-through is still more gradual as n increases.

4 Data

In order to test whether full pass-through of commodity shocks deep into the production network

actually exists in practice – and whether it is gradual – we turn to the data.

Every five years, the Bureau of Economic Analysis (BEA) publishes a detailed input-output

table – approximately 400 sectors in size – which represents interdependencies between industries

in the U.S. economy. Specifically, the tables display the extent to which the output of a given sector
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Figure 3 – Network Oil Shares for a Selection of Industries

Note: This figure displays the total network share of oil - inclusive of both direct, first-order exposure and indirect,
higher-order exposure - in each industry’s revenues for a selection of industries. Panel 1 displays the twelve industries
with the highest total network oil shares. Panel 2 displays the twelve industries with the highest third-order oil cost
shares (i.e., indirect exposure to oil through suppliers’ suppliers). Exposure of the natural gas distribution sector occurs
because we are formally plotting industries’ network exposures to the “oil and gas extraction” sector, the most disag-
gregated oil extraction sector available in the input-output data. We see that many sectors primarily exposed to oil only
through suppliers have exposures as high as 10%.

is used as an input by each other sector in the economy (or consumed by final demand). We outline

our processing of the input-output tables in Appendix B.

To provide an example of the kind of information contained in these input-output tables,

Panel 1 of Figure 3 plots the twelve industries with the highest network oil share; it also decom-

poses the total network oil share into first-order (i.e. direct) exposure to crude oil, second-order

(i.e., through suppliers) exposure to crude oil, third-order (i.e., through suppliers’ suppliers) ex-

posure to crude oil, and beyond. For example, the Petroleum Refineries industry has nearly 80%

of its total costs in oil, and nearly all of these costs constitute direct purchase of crude oil. The

Asphalt Paving industry has nearly 50% of its total costs in oil, but almost none of these costs

are direct purchase of crude oil; primarily, the industry purchases refined oil from refineries, who

themselves bought crude oil (i.e., second-order exposure). Panel 2 of Figure 1 plots the twelve in-

dustries with the highest third-order oil share. Some sectors with high third-order exposure to oil

– such as Petrochemical Manufacturing – also have high first-order and second-order exposure,
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whereas others – such as Polystyrene Manufacturing – have very little first- or second-order ex-

posure. In short, there is considerable variation across sectors in both the network oil share itself

and the breakdown of the network share into different orders of exposure.

Our second major source of data is Bureau of Labor Statistics (BLS), which publishes monthly

data on prices (the Producer Price Index, or PPI) by industry at a great many different levels of

granularity. The procedure by which the data is produced is described in detail in BLS (2015). In

short, the BLS collects price micro data on an extensive variety of individual goods. The BLS then

computes industry prices in a given period by taking the average price of all transactions recorded

in that industry and period - inclusive of both transactions on the spot market and transactions

at (previously-agreed) contracted prices. This data is consequently able to provide an accurate

picture of the true pace of price pass-through.

The industries in the BEA input-output tables are identified by BEA codes, whereas the in-

dustries in the BLS PPI data are primarily identified by SIC codes prior to 1997 and by NAICS

codes after that date. The BEA released correspondences between SIC codes and BEA codes with

each input-output table through 1992, and it released correspondences between NAICS codes and

BEA codes for the 1997 table onward. By utilizing these various correspondences, it is possible to

merge the BLS industry price data with the BEA input-output tables.

Additionally, we obtain data on industry-level wages from the Quarterly Census of Employ-

ment and Wages (QCEW). These, too, can be merged with the BEA input-output tables in the

same way as the industry-level PPIs. And we obtain data compiled by Pasten, Schoenle, and We-

ber (2017) on the frequency of price adjustment.8 The authors gained access to the BLS price micro

data and computed the average frequency of price changes by industry.

5 Empirics Assessing Long-run Pass-through

Our initial empirical analysis tests our theoretical results in a reduced-form way, allowing the

data to speak with minimal added structure. Our reduced-form empirics (1) provide evidence

that pass-through is gradual, particularly so for downstream firms, and (2) motivate the structural

analysis of Section 6, which assesses how well our model can match pass-through dynamics in the

data.

We first utilize a shift-share design taken directly from Proposition 1 to determine whether

commodity price increases pass through to industry prices, regardless of whether the industry

uses the commodity directly or indirectly through its supplier network. We then assess whether

pass-through is gradual. Finally, we test whether industries more downstream from the commod-

ity price increase experience less rapid pass-through.

8We kindly thank the authors for sharing their data with us.

19



5.1 Regression Specifications

We begin by testing the implication of Proposition 1 that pass-through of a commodity price move-

ment to industry prices is governed by industries’ network cost shares in the commodity. We

regress the price change in an industry on the network-implied cost change due to movements

in the price of a commodity or commodities of interest, the network-implied cost change due to

movements in wages, and a time fixed effect. Formally, we take first-differences of Proposition 1

and add a time fixed effect to enable a shift-share interpretation:9

∆Pi,t = λt + β[(I −Φ)−1sZ ]i∆PZ,t + γ[(I −Φ)−1diag(sLi )∆wt]i + ϵi,t, (8)

where Pi,t denotes the log price of industry i at time t, λt is a time fixed-effect, [(I − Φ)−1sZ ]i

represents the network cost shares of industry i in commodity Z, ∆PZ,t is the change in the price

of commodity Z over period t, [(I−Φ)−1diag(sLi )∆wt]i represents input cost changes due to wage

movements in various sectors whose output industry i utilizes (a necessary control suggested

by Proposition 1), and ϵi,t is an error term. It is possible to vary the time horizon over which

the differences ∆ are taken, so we examine the extent of pass-through over both one-month and

one-year horizons. If pricing were fully flexible, the model implies β = 1 no matter the first-

differencing horizon.10

We provide some intuition for interpreting our regression coefficients in light of our inclusion

of time fixed effects. The coefficient β measures a relative effect, answering the following question:

holding wage changes constant, how much more do industries with high network exposure to oil

change their prices when oil prices move relative to industries with low network exposure to oil?

This relative measurement emerges because the time fixed effect purges any national effects on

all industries’ prices, such as those related to inflation, the Federal Reserve’s response to oil price

movements, or oil price movements’ effects on inflation expectations. Formally, oil price increases

may cause price increases even in industries with no network exposure to oil (though we will

see later that they do not), but this effect will be missed in our estimates to the degree it affects

all industry prices equally in each time period. This aspect of the measurement is desirable for

us because it allows us to focus specifically on the network model’s predictions about relative oil

price pass-through across industries.

Note that this specification has a shift-share interpretation, where the shares here are the

cost shares originating from the input-output table and the shifts are commodity price changes.

9Recall that Proposition 1 assumed no shocks to TFP. The time fixed effect will not completely address comovements
in aggregate TFP with oil price changes because industries have somewhat heterogeneous loadings on aggregate TFP
in a production network model. In appendix C.1, we show that interacting a time fixed effect with industries’ model-
implied loadings on aggregate TFP does not meaningfully change our results.

10The model also implies that γ = 1. Pass-through of wages to prices is not the focus of this paper, however, and so
we will interpret the term due to general equilibrium wage effects as a control. In Appendix Tables G.2 and G.3, we
show that omitting this control does not meaningfully affect our results and that the general equilibrium wage effects
are uncorrelated with the treatment of interest over both one-month and one-year horizons. We therefore argue that
there is no loss in ignoring this term for the purposes of our analysis.
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Consequently, the identification assumption for plim β̂ = β is given by

E[∆PZ,tµt] = 0,

where µt ≡ E[[(I − Φ)−1sZ ]iϵi,t] is a cross-industry average of the product of the commodity-Z

network cost share and the unobserved component ϵi,t. In intuitive terms, if industry prices pi,t in

high commodity-Z share industries grow differentially for omitted reasons (⇒ µt ̸= 0) in periods

when shocks to the price of commodity Z also tend to occur (∆PZ,t ̸= 0) the condition will not

hold.

Recent work by Goldsmith-Pinkham, Sorkin, and Swift (2020) and Borusyak, Hull, and Jar-

avel (2022) has focused on the econometrics of shift-share designs. Our preceding identification

assumption corresponds directly to the exogeneity condition in Borusyak, Hull, and Jaravel (2022)

in the case of a macro-level shock and arbitrarily many cross-sectional units and time periods. The

condition re-frames the identifying assumption from a difference-in-differences panel regression

into a time series moment by defining the average over the cross-section µt. Consequently, they

argue that such shift-share designs are valid provided the shift term is exogenous. In our case,

the shift term is the price movement in commodity Z. We argue that this exogeneity assump-

tion is reasonable, particularly in the case of commodities such as oil, for which the price is set

in large global markets with the bulk of supply originating from foreign sources. Furthermore,

we probe the validity of the assumption by studying specific contexts wherein it is even more

likely to be true. That is, in robustness checks, we focus on specific subsets of variation most likely

to be exogenous such as the 1979 oil shock or the 2014 shale boom, and we run an instrumental

variables (IV) version of the preceding regression, instrumenting oil price changes with Kanzig’s

(2021) series of exogenous oil price shocks induced by OPEC announcements.

5.2 Main Results

We begin by using all variation in oil prices from 1997 onward, running the regression specification

given by Equation (8). The 1997 BEA input-output table is the first table with BEA codes based on

the NAICS classification, and most all BLS PPI series have become available in NAICS format by

1997 as well.11 We note that in all of our regressions, the shocked industries will be excluded from

the regression analysis.12

Table 1 shows the results of the preceding regression specification. Panel 1 shows the re-

11Both the BLS and the BEA recommend against attempting to merge NAICS codes with the older, pre-1997 SIC
codes, as the underlying industries the codes describe – even at the most granular level – are fundamentally not com-
parable in many cases.

12For example, when we consider shocks to the oil price, we will only be interested in how that shock propagates to
non-oil industry prices. Including oil in the regression introduces a source of mechanical dependence in the analysis;
most obviously, including the oil sector would mean regressing a change in the oil price on the oil sector’s network cost
share in oil, multiplied by the change in the oil price. Similarly, when pass-through of shocks to multiple commodities
is assessed jointly, all of the industries producing these commodities are excluded from the regression analysis. We are
only interested in how those commodity price movements affect non-commodity industry prices.
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Table 1 – Pass-through Regressions: The Effects of Cost Changes on Industry Price Changes

Panel 1: One Month Horizon

Panel 2: One Year Horizon

Note: *** p < 0.01, ** p < 0.05, * p < 0.10. This table shows the results of regressions corresponding to Equation
(8). That is, we regress industry price changes on cost changes resulting from the network effects of commodity price
movements. Columns (1) and (2) focus on all oil price variation from 1997-2022. Columns (3) and (4) focus on oil price
variation induced by Kanzig’s (2021) OPEC shock series. Column (5) focuses on non-oil commodity price variation
from 1997-2022. Standard errors are clustered by industry. We find that pass-through is far below the full pass-through
benchmark of 1 over a one-month horizon. More pass-through accumulates over a one-year horizon.

sults for month-over-month changes, whereas Panel 2 shows the results for year-over-year long

differences. Standard errors are clustered by industry in all cases.

Beginning with column (1) of Panel 1, we find much less than full pass-through of an oil

price shock over a one-month horizon. The extent of pass-through into industry prices is 0.503 -

just over half of full pass-through. Column (1) of Panel 2 reveals that, after a year, the extent of

pass-through increases to 0.853 - much closer to full pass-through. Recalling the finding from 3

that the petroleum refinery industry is an extreme outlier in terms of both its overall network oil

share and the proportion of this share that is due to direct, first-order exposure to oil, in column

(2) we make one simple change: dropping petroleum refineries from our sample. This allows us

to focus more on industries that are indirectly exposed to oil. Indeed, here we see that, over a

one-month horizon, the extent of pass-through of an oil price shock into industry prices is 0.252

- about a quarter of full pass-through. Over the course of a year, this number increases greatly to

0.639 but still falls short of full pass-through. Differences in coefficients between the one-month

and one-year horizon regressions are statistically significant in all cases.

In columns (3) and (4), we repeat the preceding exercise using a narrower but more plausibly

exogenous source of variation. Specifically, we use the oil shock series of Kanzig (2021). The shock
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series is formed through high-frequency identification of the effects of OPEC announcements on

oil prices. We use these shocks in a two-stage least-squares instrumental variables version of the

regressions in the previous section, instrumenting the change in the oil price with Kanzig’s shock

series. This leads to a qualitatively similar conclusion: full pass-through of an oil price shock

into industry prices does not occur on impact. Some pass-through occurs on impact and more

pass-through occurs over subsequent months.

In column (5), we repeat the exercise using variation in non-oil commodity prices. That is,

we pool all commodities apart from oil and compute the network share in all these commodi-

ties by industry. The result is again qualitatively similar: some pass-through – but less than full

pass-through – of the shocks in the month of impact, and substantially more pass-through after a

year.

In Appendix C, we show that these results are robust to a variety of modifications and al-

ternative approaches. In C.1, we repeat the analysis in Table 1 (i) without the time fixed effects,

(ii) without the wage control variable, (iii) with an added TFP control variable, (iv) with an added

control for network gas/electricity cost changes (two commodities likely to be close substitutes for

oil), and (v) with cost shares that exclude payments to capital from the denominator. All of these

exercises yield very similar results. In C.3, we modify our preceding regression specification by

adding leads and lags to study the month-by-month dynamics of pass-through in a reduced-form

manner. In C.4, we repeat this analysis using a local projections approach, finding similar results.

In C.5, we show that the same patterns are again evident in a binscatter analysis. Finally, in C.6,

we take a different approach to isolating exogenous variation. We focus on a few case studies

likely to be highly exogenous - the 1979 oil shock, the 2014 oil shale boom, and the 2020 COVID

shock - and show that these settings yield the same results as our pooled analysis.

5.3 Heterogeneity

We investigate some key dimensions of heterogeneity by interacting variables of interest with our

price shocks. Specifically,

∆Pi,t =λt + β
[
(I −Φ)−1 sZ

]
i
∆PZ,t

+ β̃
[
(I −Φ)−1 sZ

]
i
∆PZ,t × heterogeneityi

+ γ[(I −Φ)−1diag(sLi )∆wt]i + ϵi,t

We first confirm that our measure of industries’ frequencies of price adjustment, from Pasten

et al. (2017), are indeed predictive of the extent of price pass-through in the short-run. Following

the discussion in our model section, define industry i’s time to reach a fraction X of long-run

pass-through in a model with no network as − ln(1 − X)/ϕi. This is of course declining in the

rate of price adjustment ϕi. We prefer using a measurement of the pass-through “half-life,” so that
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Table 2 – Heterogeneity Analysis

Note: *** p < 0.01, ** p < 0.05, * p < 0.10. The outcome variable of this table is the month-over-month change in indus-
try prices. Columns (1) through (3) investigate heterogeneity on the (no-network) half-life of price adjustment, finding
that a higher half-life (i.e., lower price adjustment frequency) is associated with a lower level of price pass-through over
a one-month horizon. Columns (4) through (6) add downstreamness as another heterogeneity variable, finding that it
matters above and beyond price adjustment frequency alone; downstream industries have lower levels of price pass-
through over a one-month horizon. Columns (7) through (9) study the standard deviation of an industry’s marginal
costs as an interaction term. Because the half-life of price adjustment remains significant, said half-life measures more
than just the volatility of an industry’s marginal costs.

X = .5.

In Table 2, we display the results of regression specifications with the no-network half-life of

price adjustment as an interaction term in columns (1), (2), and (3). Whether we study all variation

in oil prices, the Kanzig IV variation in oil prices, or variation in non-oil commodity prices, the

interaction term is strongly significant. A higher half-life (i.e., lower price adjustment frequency)

is associated with a lower level of price pass-through over a one-month horizon.

Columns (4), (5), and (6) repeat this exercise, adding excess pass-through time due to down-

streamness (defined in Definition 3) as another interaction term. In the case of all oil price vari-

ation, the Kanzig IV variation, and the non-commodity price variation, the downstreamness in-

teraction term is negative and statistically significant. Industries further downstream have lower

levels of price pass-through over a one-month horizon. Because we have controlled for potential

differences in rates of price adjustment, this suggests it is not merely the case that downstream

industries experience less pass-through because they adjust prices more slowly. Downstream-

ness measures something distinct; it does matter, even conditional on frequency of price adjust-

ment.13

In Appendix C.2, we investigate heterogeneity on some other factors that could plausibly

affect pass-through: concentration, firm size, inventories, and the capital share (all measured at

13We may be over-controlling here if industries have a low frequency of price adjustment because they are down-
stream from volatile input price movements and there is measurement error in downstreamness.
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the sector level). Adding these additional heterogeneity terms to the regressions in the preceding

table does not change the result that pass-through is slower for downstream firms.

In Appendix C.5, we plot binscatters of industry price change on network cost change over

varying time horizons. This allows us to investigate some additional dimensions of potential

heterogeneity: size and sign of shock, both of which would exist if second-order effects were

operative. What we find is little to no evidence of heterogeneity in either of these dimensions.

Specifically, after a year, we do not find evidence that the extent of pass-through is lesser for small

cost changes than for large ones; this would entail a flat slope around the origin, which is not

the case. Nor do we find an asymmetry on the sign of the shock; both negative and positive cost

shocks are passed through into industry prices to the same extent. The slope of the line of best

fit in these binscatter plots is also increasing in the time horizon over which the industry price

change is examined. In other words, the binscatters once again reveal that pass-through tends to

accumulate over time rather than be realized immediately upon shock impact.

Taken together, these initial empirical results suggest that long-run pass-through implied in

Proposition 1 is achieved gradually, rather than on shock impact. They also suggest that a careful

examination of the dynamics of pass-through - and how they are mediated by the production

network structure - is in order.

6 Empirical Analysis using Model-derived Dynamics

Our model does not just determine the long-run pass-through of commodity price movements

into industry prices. It also characterizes the transition dynamics to that long run, as seen in

Proposition 2. Compared to the previous section, which focused largely on whether long-run

pass-through occurred and whether it was gradual, this section treats the pass-through dynamics

of the model seriously and tests whether they are empirically accurate.

We begin by describing a minimum distance procedure that would require estimating in-

dustry price responses to commodity price movements for each industry individually using time

series variation. Motivated by some challenges inherent in this methodology – among them the

noise in estimates, particularly for downstream firms – we develop a broadly useful general-

ized method of moments (GMM) approach for testing dynamic macroeconomic models using

a shift-share technique in which the shares are time- and horizon-specific and the shifts are dy-

namic. This approach, we think, jointly removes the need to estimate pass-through industry-

by-industry and enables convincing cross-sectional identification using commodity prices move-

ments directly.

This section also contains our structural estimation of the degree of forward-lookingness, a

parameter that can substantially affect the dynamics of price adjustment, especially for down-

stream industries, as shown in Proposition 3. We further validate these estimates by augmenting

the model and structural analysis to handle expected deviations of shocks from complete persis-
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tence as measured in futures markets—deviations that would be neglected by myopic agents.

6.1 Minimum Distance

To motivate our dynamic shift-share identification strategy, we first fix ideas through a straight-

forward minimum distance exercise. Simply put, we estimate the pass-through of oil price move-

ments to industries’ prices and compare those empirical impulse response functions to those we

find when solving the model.

Formally, we estimate empirical pass-through of a persistent commodity shock by using the

regression

∆Pi,t = αi +
24∑
h=0

βih∆PZ,t−h + ϵi,t, (9)

where ∆Pi,t is the month-over-month change in industry i’s log price, αi is an industry-specific

constant, ∆PZ,t−h is the month-over-month change in the commodity price h periods ago, and ϵi,t
is an error term. Aggregating the estimated coefficients, we form impulse response functions for

each industry and horizon:

IRFDatai,H =

H∑
h=0

β̂ih.

Stacking across industries and horizons, we form the vector of impulse responses IRFData. Note

that these impulse responses are specific to the commodity chosen in regression equation (9), but

we suppress this dependence to minimize additional notation.

After solving the model, it is straightforward to compute impulse response functions for each

industry and horizon. Solving the model numerically requires some calibration, which we denote

by α, the vector of all parameters we would like to estimate. We specify these parameters in

more detail later, but they include, for example, the degree of forward-lookingness mf . Stacking

impulse responses from the model’s solution across industries and horizons in the same order we

did for the empirical IRFs, we form the empirical moment

m̂(α) ≡ IRFData − IRFModel(α).

The parameter vectorα is then selected to minimize squared error. The moments can be weighted

so that the procedure is efficient by using an estimate of inverse variance of the moments. This

estimate can be constructed using the variance matrix estimated in the panel regression (9). The

optimal parameters solve

α̂ = argmin
α

m̂(α)′V̂ar(m̂(α))−1m̂(α).

While we set up this problem in the space of impulse response functions, it would have been

equivalent to match the β’s estimated in regression (9) with their model variants, which we term
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the pass-through coefficient

passthroughi,h(α) = IRFModel
i,h (α)− IRFModel

i,h−1 (α),

where IRFModel
i,−1 (α) is set to 0. Formally, it is also true that

α̂ = argmin
α

(
β̂ − passthrough(α)

)′
V̂ar(β̂)−1

(
β̂ − passthrough(α)

)
.

6.2 Shift-share GMM Motivation

There are several challenges introduced by the minimum distance design. Foremost is whether the

estimates of β in regression (9) are unbiased. Even oil price changes are often correlated with, for

example, movements in aggregate TFP or business cycle developments that also influence prices.

Movements in other commodity prices are typically seen as even less exogenous than oil price

movements, making this problem worse whenZ is not set to oil. Beyond bias, the industry-specific

estimates from regression 9 reveal substantial noise outside of industries such as petroleum re-

fineries. We specifically want to focus on the timing and extent of pass-through to downstream

firms, where it is difficult to estimate pass-through of commodity price movements using a time

series approach, and where the degree of forward-lookingness matters substantially.

Second, the coefficients in regression (9) also capture general equilibrium effects of oil price

movements, such as reactions in inflation expectations and responses by the monetary authority.

Such effects are thought to generate movements that affect all industries similarly much more

than than magnifying or attenuating relative price movements. For this reason, results we present

using the minimum distance approach will use a fully specified macroeconomic model that in-

cludes sticky wages and reactions by the monetary authority,14 while results we present using the

approach below can use the supply-side results presented in Proposition 2.

To address these issues jointly, we propose using a shift-share design with the model’s pass-

through coefficients passthroughi,h(α) as industry- and horizon-specific shares and the commod-

ity price movement as the shift. We can test whether pass-through in the data follows the model’s

predictions using the regression

∆Pi,t = λt +
H∑
h=0

βh(α)passthroughi,h(α)∆PZ,t−h + ϵi,t, (10)

where ∆Pi,t is the month-over-month change in industry i’s log price, λt is a time fixed effect,

∆PZ,t−h is the month-over-month change in the commodity’s log price h periods ago, and ϵi,t is

an error term. If the model is capable of fitting the patterns in the data and our OLS is unbiased,

we should have the vector β(α0) = 1 for some calibration α0.

14The details for the fully specified model can be found in Appendix A.4.
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Compared to regression equation (8), our shift-share design from the reduced-form sec-

tion, we now have a serious treatment of the horizon-composition of the industry’s network cost

share.15 Formally, since
∑∞

h=0 passthroughi,h(α) = [(I −Φ)−1sZ ]i, a unit shock to the commodity

price has the same long-run effect as in the prior regression model. Because shocks take time to

propagate throughout the network, there is now a role for lagged commodity price changes to

predict current industry price changes through the component of network propagation that has

yet to occur.

Our test of how close the β’s are to 1 can be visualized by comparing

IRFDatai,H (α) =
H∑
h=0

β̂h(α)passthroughi,h(α),

where β̂h(α) are the estimates from regression equation (10), to the model-derived IRFs, IRFModel
i,H (α).

While we will still refer to IRFDatai,H (α) as “the empirical IRF,” it is crucial to note that this measure

varies with α and so is not independent of the model. We find this empirical IRF to be useful as it

does not require estimating empirical IRFs for each industry using time-series variation; instead,

it is identified using a dynamic shift-share design. Importantly, this means our GMM procedure

is no longer minimum distance but rather a “true” GMM in which the empirical moments are

model-dependent.

Why do we not consider a minimum distance procedure instead using our shift-share esti-

mates from the previous section? This approach is flawed because the model-consistent calcula-

tion of the shift variable used to estimate the empirical moments changes with the model param-

eters being estimated in our setting. Our approach correctly adjusts the empirical moments as the

underlying model changes.

If the model is capable of fitting the data for the calibration α0 and our OLS estimates from

regression equation (10) are unbiased, then our empirical and model-derived IRFs should be iden-

tical, and we have the moment equation

m(α0, H) = E[IRFDatai,H (α0)− IRFi,H(α0)] = 0.

In our GMM estimation, we use m(α0, H) = 0 as our moment condition for a vector of hori-

zons H , typically between 12 and 24 months, depending on our power. The number of horizons

H + 1 is the number of moment conditions. The GMM procedure is as follows: given α, we will

estimate the model, run regression (10) withH lags, construct IRFs for each industry, and generate

the quadratic error measuring how far the moment conditions are from 0. Then we choose the α
15We have also now completely dropped the general equilibrium wage control. As discussed previously, in Appendix

Tables G.2 and G.3, we showed that omitting this control does not meaningfully affect our results and that the general
equilibrium wage effects are uncorrelated with the treatment of interest over both short and long horizons. Any worries
that this result changes meaningfully if a dynamic path of sticky wages is considered are handled by our robustness
check with the minimum distance procedure, which uses a fully closed model incorporating gradual adjustment of
sticky wages. The results from this fully specified model are not meaningfully different.
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that minimizes the error. Standard errors are clustered at the industry level.

All estimation exercises for oil in this section will exclude petroleum refineries from the re-

gression, as they are a notable outlier with substantial power to influence estimation of β0 and β1
in particular. Though this is a meaningful concern in principle, we show in Appendix D.1 that in-

cluding refineries in our structural estimation does not meaningfully change our results, revealing

robustness of our procedure to a large outlier.

6.2.1 Specifications Testing Forward-lookingness about Network Dynamics

Now, we preview that one element of α is the myopia parameter, mf . For any estimate α̂ =

(α̂−mf
, m̂f ) such that m̂f ̸= 0, we can measure how much industries are increasing prices due to

forward-lookingness using

passthroughi,h(α̂) = passthroughi,h(α̂−mf
,mf = 0)︸ ︷︷ ︸

Myopic Pass-through

+FLGapi,h(α̂),

with

FLGapi,h(α̂) = passthroughi,h(α̂−mf
,mf = m̂f )− passthroughi,h(α̂−mf

,mf = 0)︸ ︷︷ ︸
Additional Pass-through due to GMM-optimal Forward-lookingness

.

If the component of industry pricing due to forward-lookingness is correct, we can run the regres-

sion

∆Pi,t = λt +

H∑
h=0

βh,Myopicpassthroughi,h(α̂−mf
,mf = 0)∆PZ,t−h

+
H∑
h=0

βh,FLGapFLGapi,h(α̂)∆PZ,t−h + ϵi,t,

(11)

to test whether βh,Myopic = βh,FLGap = 1 for all h. In particular, βh,FLGap ̸= 0 tells us that the

forward-looking component of the New Keynesian model has predictive power for pass-through

of commodity shocks. Formally, this regression captures the experiment in which two hypotheti-

cal industries with the same path of pass-through as predicted by the myopic model differ in the

degree to which forward-lookingness affects the timing of their pass-through.

6.2.2 Specifications Testing Forward-lookingness about Shock Persistence

We have so far assumed that all commodity price changes are fully persistent. In appendix E, we

show that futures data can be used to measure expected movements in future commodity prices.

The expanded model advances upon our pass-through object passthroughi,h(α), delivering pre-

dictions passthroughi,h,m(α): how much industry i should change prices in response to a unit

shock to commodity prices h periods ago at maturity m. This is a rich object: fix h = 0 and con-
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sider m = 0 and m = 1. For m = 0, the object is the predicted effect of increasing commodity

prices by one unit today, holding future prices constant (i.e., an immediately and fully mean-

reverting shock). For m = 1, the object is the predicted effect of increasing commodity futures at

a 1 month horizon by one unit, holding current and other future prices constant (i.e., an imme-

diately and fully mean-reverting shock expected to occur next month). So the old pass-through

prediction is passthroughi,h(α) =
∑

m≥0 passthroughi,h,m(α), i.e. pass-through of a level shift up

in the commodity futures curve.

To test whether agents pass through changes in the futures curve, holding changes in the spot

price constant, we consider the regression

∆Pi,t =λt +

H∑
h=0

βh,Spot(α)passthroughi,h,m=0(α)∆POil,t−h

+
H∑
h=0

βh,Futures(α)
M∑
m=1

passthroughi,h,m(α)∆fZ,t−h,m + ϵi,t.

(12)

Again, all of these β’s should be 1 if the model is correct and the OLS is unbiased. In particular,

βh,Futures(α) > 0 represents that industries are passing through changes in expected future com-

modity price changes, holding changes in the current commodity price constant. It is vital that this

regression is performed jointly to estimate βh,Spot and βh,Futures because changes in current com-

modity prices are typically highly correlated with changes in expected commodity prices in the

future, so a regression separately estimating these parameters would suffer from severe omitted

variables bias.

6.3 Model Calibration

Recall from Proposition 2 that, to solve the model for a persistent, unexpected commodity price

change, we require measurements of (1) the frequencies of price adjustment for each industry,

θ, (2) the degree of forward-lookingness mf , (3) the discount factor δ (or a transformation of

the steady-state interest rate), (4) the input-output matrix Φ, and (5) the commodity cost shares

sZ .

We take the frequencies of price adjustment from the Pasten et al. (2017) data. We estimate the

myopia parameter, mf . We calibrate a standard annualized discount factor, δ = 0.96. Finally, we

use the input-output data as much as possible to calibrate the input-output matrix and commodity

cost shares, but these data lack measures of markups required to convert input shares in sales to

input shares in cost; the key difference between sales and cost are capital payments, which are

comprised of rental payments (part of cost) and profits (not part of costs).

To overcome this issue, we estimate how much payments to capital are profits, on average.

In particular, because rental payments are weakly positive in every period, industry profits cannot

exceed measured payments to capital in the industry. We also impose that steady-state profits are
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weakly positive. Therefore, we can estimate the profit share of payments to capital, γ ∈ [0, 1],

leading to cost calibrations in each industry of

Ci(γ) =
∑
j

PjX
j
i +WiLi + (1− γ)RiKi.

Then the input-output matrix is calibrated using Φi,j = PiX
j
i /Ci(γ), and the commodity cost

shares are calibrated using sZi = PZZi/Ci(γ).

Note that, though we estimate a common γ for all industries, the industry markup is hetero-

geneous: µi(γ) = PiYi/Ci(γ). We will present the results of our estimation of γ in terms of the

markup for the average industry, i.e. µ(γ) = 1
I

∑
i µi(γ), with standard errors computed using the

delta method and the GMM standard errors for γ̂.

The model solutions also depend on whether the commodity price change is persistent and

unexpected. Fortunately, real oil prices are approximately a random walk over a horizon of one

year, and the real oil price is relevant for us (rather than the nominal price) because of our use

of time fixed effects.16 For our analysis of other commodities, we will only include commodities

for which we cannot reject the random walk model in a time series analysis. Finally, futures

prices may provide some information about how a given commodity price movement is expected

to evolve in the future. We incorporate futures explicitly in two subsections here and provide

additional details in Appendix E.

Model identification requires that, for some calibration α0 = (mf,0, γ0), the model’s impulse

response functions are expected to be the same as their empirical variants (m(α0, H) = 0). We

want to note that this is not mechanically the case, because cumulative pass-through in an industry

is, at every horizon, bounded below by that coming from complete myopia, mf = 0, and no

industry profits γ = 0, and bounded above by that coming from rational expectations, mf = 1,

and no rental payments, γ = 1. The model may not be identified, for example, if there is no pass-

through to indirect users of the commodity or if pricing is completely flexible. Fortunately, we

have already rejected these alternative hypotheses in Section 5.

Now, we conduct our analysis for both oil and non-oil commodities. Because the industries

using these commodities in their supply chains are different, we estimate a different γ for each

case to capture the potential for heterogeneity in profit rates across industries. Though we have

not microfounded the degree of myopia, we will also allow it to vary with the commodity being

shocked. This will allow us to establish facts about whether firms pass through some shocks as if

they are forward looking and some shocks as if they are myopic.17

16We have verified this persistence in a time series analysis for our sample, and this degree of persistence has been
found elsewhere in the literature (see, e.g., Alquist et al. (2013)).

17Consider the example of a furniture manufacturer that is exposed to oil because it uses petroleum-based foam
cushioning in its chairs or produces memory foam mattresses. Suppose there is an oil price increase just before the
company sets its annual catalog of prices. Forward-lookingness, i.e. mf > 0, implies that such a manufacturer will
increase prices, even if it has not yet experienced an increase in the underlying foam costs, anticipating such a cost
increase in the near future. We believe there are many reasons, both behavioral and non-behavioral, that such a firm
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6.4 Results for Oil

First, we use our shift-share GMM framework to estimate α using oil price movements. When

equally weighting the moments (1-step GMM), we find m̂f = 1 (SE = 0.224) and µ̂ = 1.231 (SE =

0.098).18 Therefore, the data prefers rational expectations and a steady state markup of 1.23. Recall

again that this is the markup required to fit impulse responses of industries passing through oil

shocks, which is not necessarily the aggregate markup if oil-dependent industries (in the network

sense) have systematically different markups than other industries. To get a sense for how good

the model fit is, and to assess model fit under other parameter values, developing the intuition

behind our standard errors, we now plot our results.

Panel 1 of Figure 4 shows the fit of our GMM-optimal model for the average industry, which

was the fit we tried to optimize. We see that the fit is adequate for the duration of the IRF, and the

average industry requires about 20 months to reach 75% of long-run pass-through.

Panel 2 uses the GMM-optimal model but sets mf = 0 rather than using the GMM-optimal

rational expectations. Early on, pass-though is not substantially different, suggesting that very

upstream industries are identifying these coefficients – recall from Proposition 3 that myopia does

not affect pass-through speed for direct users of the commodity when the shock is unexpected and

fully persistent. Later in the IRF, however, the myopic pass-through measures predict too much

pass-through, and so the β’s estimated from regression (10) at higher lags are on average less than

one.

Finally, Panel 3 uses the GMM-optimal model but sets µ = 1 rather than using the GMM-

optimal markup. Setting a lower markup reduces industries’ network exposures to the commod-

ity, thereby reducing our prediction of the extent of long-run pass-through. We see that there is

more pass-through in the data than predicted by the model under a calibration of no markup. By

revising the estimated markup up from 1, the GMM-optimal model is able to improve fit.

may not be forward-looking in this way. Oil is quite far upstream from furniture manufacturers, so it may be unlikely
that they pay attention, even if the oil shock is particularly salient. For a firm to build in upstream cost shocks into
pricing before marginal cost has been affected, they need information on when and how much the shock should affect
their marginal cost. To acquire this information, they would likely need to pay a consulting firm, and so it is not costless
to be forward-looking. To even think about hiring consulting services, they would need to be attentive to supply chain
risks. It is sensible to think that it would be quite rational for firms not to form costly forward-looking expectations
about marginal cost emerging from upstream price increases, particularly when ultimate exposure to the upstream
price increases is small or the commodity prices are not volatile. For these reasons, we will allow mf to vary across
commodity and assess its variation.

18As in our empirics in the previous section, standard errors are clustered by industry.
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Figure 4 – GMM Results for Industry Pass-through of Oil Price Changes

Note: Model fit is good for the GMM-optimal model, as shown in Panel 1. We provide intuition for how parameters
are identified and show results for alternative calibrations in Panels 2 and 3. Under alternative calibrations, model fit
is meaningfully worse. Panel 2 analyzes the case where firms respond myopically to oil price increases; for higher
lags, the myopic model predicts more pass-through than the data appears to warrant. Panel 3 assesses the case where
firms are competitive instead of pricing with some markup over marginal cost. The competitive case yields too little
pass-through at all horizons to be consistent with the data.

Our estimates are robust to instead using a 2-step GMM procedure, which uses our previous

estimates to form an optimal weight matrix for the moments. In the 2-step procedure, we find

m̂f = 1 (SE = 0.101), and µ̂ = 1.048 (SE = 0.043). In other words, the rational expectations result is

unchanged. The only difference here is a lower markup and smaller standard errors.

6.4.1 Minimum Distance Results

While the time series estimates of empirical impulse response functions for each industry are very

noisy, even using all oil price variation, the minimum distance procedure does yield similar re-

sults. Using minimum distance with the efficient weight matrix, we find rational expectations,

mf = 1 (SE = 0.092), and a markup over marginal cost, µ = 1.312 (SE = 0.052).19 The minimum

distance procedure tries to fit every industry’s impulse response at every horizon, and weights

these responses by the inverse variance matrix. It is not quite possible to show model fit in im-

pulse response form as a result — the set of industries identifying coefficients changes at each

horizon, and such a plot, even with standard errors, does not show how covariances between

these estimates at each horizon affect the result.

We can and do, however, show model fit for the equally weighted average industry, the

same industry shown in in Panel 1 of Figure 4. To keep the empirical moment independent of

the model, the key benefit of this approach, we scale all series by the cumulative pass-through

achieved in two years according to the empirical pass-through estimates. A complex covariance
19This procedure was performed on the same sample as the shift-share design. For example, petroleum refineries

were excluded from the analysis.
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Figure 5 – Minimum Distance Results for Industry Pass-through of Oil Price Changes

Note: The figure depicts empirical and model derived pass-through of a persistent oil price increase for the average
industry. As in our shift-share approach, we see that minimum distance estimation favors rational expectations and
a markup over marginal cost to fit oil pass-through patterns in the data. Note that this figure scales all series by 2-
year empirical pass-through to keep the empirical moment independent of long-run pass-through in the model, which
depends on the estimated markup.

pattern is evident in the standard errors for the empirical moments; strong negative covariance at

certain horizons means we are only relatively certain about the degree of pass-through at a few

horizons (e.g., 7 months, 13 months, etc.). Despite this noise, we retain reasonable standard errors

on parameter estimates.

We also point out that the relationship between the IRFs from the myopic model and the data

reverses between the GMM procedure and the minimum distance procedure. In Figure 5, the data

series is independent of the model series, and the model series clearly shows less pass-through

than is present in the data, i.e. it is below the data series. In Figure 4, the data series depends on

the model. For longer horizons, when myopia is relatively more important for pass-through, the

model predicts far more pass-through than is present in the data, leading to estimated β’s below

1 and a resulting “empirical IRF” that lies below the model series.

Recall that because the empirical impulse responses in the minimum distance approach in-

clude general equilibrium effects that affect all industries, such as movements in the aggregate

wage or the response of the monetary authority, we use a fully closed model for the results shown

in Figure 5. Summarizing, the fully closed model uses a standard household setup with sticky

wages (e.g., Galı́ 2015), nested CES production in each industry (e.g., Rubbo 2020), and a Taylor

rule. Full details are contained in appendix A.4.

6.4.2 Cross-sectional Fit Compared to Section 5

In section 5, we found that one-month and one-year network pass-through of commodity price

movements was more limited than long-run pass-through, which would be reached instanta-
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neously if pricing was fully flexible. In Figure 6, we show the fit of that model’s predictions in

the cross section, using binned scatter-plots, compared to the fit of the GMM-optimal dynamic

model. As in section 5, we analyze model fit over both one-month and one-year horizons. To let

the data speak as clearly as possible, we do not residualize first for time fixed effects. Each point in

the plot can be interpreted as showing how much the x-axis delineated model predicts an industry

should change prices in response to an oil price movement, compared to the industry’s realized

price change. These points are averages, as each binned scatter-plot contains 500 bins.

Comparing the GMM-optimal fit (Panels 1 and 3) to fit under the model that would be correct

if pricing were fully flexible (Panels 2 and 4), we first notice that the GMM-optimal model has pass-

through coefficients that are much closer to 1 at both horizons. This means that the GMM-optimal

model is accurately predicting empirical pass-through at both one-month and one-year horizons,

as opposed to the flexible pricing model that predicts too much pass-through at both one-month

and one-year horizons. While the GMM coefficients are partially a result of the moment targeting,

we reiterate here that the model did not mechanically have the ability to fit any pass-through

data, and we used just two parameters to match average pass-through at 25 distinct horizons. We

also highlight that, with just two parameters, we did not mechanically have the ability to explain

the large heterogeneity that exists in the data. Despite this, the GMM-optimal model has a much

higher R2 in the panel of PPI changes. In particular, the GMM-optimal model explains 8.5% of

the variation in one-year PPI changes, compared to just 2.1% in the model that would be correct

under flexible pricing. The R2 of the GMM-optimal model in one-year PPI changes is comparable

to the R2 of a time fixed effect in one-year PPI changes.

6.4.3 Upstream and Downstream Industries

Rather than looking at the IRF for the average industry, we can visualize the solution for the

10% most upstream and downstream industries. These IRFs let us examine how close the β’s

from regression (10) are to 1 for different lags, since upstream industries pass through the shock

faster than the average industry, while downstream industries pass through the shock more grad-

ually than the average industry. In Figure 7, we see that fit remains good for these visualizations.

Moreover, we see how different the speed of pass-through can be as a result of downstreamness.

Upstream industries reach 75% of long-run pass-through in 6 months, while the average indus-

try takes around 20 months and downstream industries have not yet achieved 75% of long-run

pass-through after two years.
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Figure 6 – Cross-sectional Fit of the GMM-optimal Model for Oil Price Changes

Panel 1: GMM-optimal, 1-month Horizon Panel 2: Flexible Pricing, 1-month Horizon

Panel 3: GMM-optimal, 1-year Horizon Panel 4: Flexible Pricing, 1-year Horizon

Note: These plots show fit of the x-axis designated model predictions on realized changes in PPIs. Each binned scatter-
plot contains 500 bins. Compared to the right column panels using the model from our reduced-form section 5, we
see that the GMM-optimal model has a pass-through coefficient closer to one and a higher R2 at both one-year and
one-month horizons.
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Figure 7 – Industry Pass-through of Oil Price Changes, Upstream and Downstream

Note: The GMM procedure optimized fit for the average industry (leftmost plot). We visualize how good the fit is
for the most upstream and downstream industries in the middle and rightmost plots, finding that model fit remains
good. Moreover, we see how much pass-through speed varies with downstreamness. Upstream industries achieve 75%
of long-run pass-through in just 6 months, while the average industry requires 20 months, and the most downstream
industries have not reached 75% of long-run pass-through even in two years.

6.4.4 The Role of Forward-lookingness about Network Dynamics

Now, recall that regression (11) split the GMM-optimal model’s solution into the myopic solution

and the component due to forward-lookingness about network dynamics. If forward-lookingness

is truly operative, it should have predictive power in the cross-section: industries that should

increase prices faster due to forward-lookingness, holding myopic exposure to the shock constant,

should increase prices faster in the data. As before, we present our results in IRF form. This time,

rather than plotting separate results for upstream and downstream industries, we will merely

focus on a notional industry comprised of the top 10% industries affected by rational expectations

in the model. We plot separate IRFs for the myopic component and the rational expectations gap.

To prepare for the shape of the IRF for the forward-looking gap, we note that

IRF
FLGap
i,H =

H∑
h=0

FLGapi,h(α̂) → 0 as H → ∞,

which follows from long-run pass-through of a persistent shock being the same under rational

expectations and myopia (Proposition 1).

We show our results in Figure 8. We see that there is a strongly statistically significant effect

of forward-lookingness on pass-through that tends towards zero as predicted by the model. For

the industries comprising the IRF – those most affected by rational expectations – we see that

the boost to pass-through from forward-lookingness is nearly 20% of long-run pass-through 4-5

months after the shock.
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Figure 8 – Tests of Forward-lookingness about Network Dynamics

Note: We plot the results of our test that pass-through due to forward-lookingness about network dynamics under
rational expectations is present in the data. Statistical significance in the left panel implies we cannot reject that firms
are forward-looking about the gradual pass-through of upstream shocks to their marginal costs. The fact that the
model lies within the standard error bars in the left figure, moreover, visualizes that we cannot reject a degree of
forward-lookingness consistent with rational expectations. Further, we see that in the top 10% of industries affected by
forward-lookingness, rational expectations provides a pass-through boost nearing 20% of long-run pass-through five
months after the oil price change.

6.4.5 The Role of Forward-lookingness about Shock Persistence

The finding of rational expectations suggests that firms should be forward-looking not only about

gradual pass-through of oil price movements through supply chains to their marginal costs; they

should also be forward-looking about future movements in oil prices, to the extent that the mar-

ket possesses information about such movements. The futures test we described represents an

experiment asking whether firm pass-through differs under different expected paths for oil prices,

measured with oil futures, holding the price change constant in the spot market.

We show our results in Figure 9, which decomposes the impulse response of a level shift in

the entire futures curve into the pass-through component due to the change in the spot price and

the component due to the change in futures prices. Our results are consistent with the model’s

predictions, and rational expectations in particular, that pass-through of spot price changes differs

substantially with the change in the futures curve. In Appendix E.3, we confirm these findings in

a reduced-form approach consistent with our empirical analysis from Section 5.
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Figure 9 – Tests of Forward-lookingness about Oil Shock Persistence

Note: We plot the results of our test that pass-through due to forward-lookingness about oil shock persistence under
rational expectations is present in the data. Statistical significance in the left panel implies we cannot reject that firms
are forward-looking about the persistence of an oil price shock; formally, firms pass-through the same shock to the oil
spot price differently under different shifts in the oil futures curve. The fact that the model lies within the standard
error bars in the left panel visualizes that we cannot reject a degree of forward-lookingness consistent with rational
expectations. We are only powered to perform this analysis out to 22 lags rather than 24.

6.4.6 Homogeneous Frequency of Price Adjustment

We assess whether using the heterogeneous frequencies of price adjustment from Pasten et al.

(2017) are needed to fit the data. We show in Appendix D.2 that, if we instead use the same

frequency of price adjustment for all industries, set equal to the equal-weighted average frequency

of price adjustment in the Pasten et al. (2017) data, model fit is substantially worse than the fit

of the GMM-optimal model. The price duration associated with this average frequency is five

months. Note that in this case, industries still have different rates of pass-through because they

are differentially downstream from the shock (as predicted by Proposition (3)).

6.4.7 Large versus Small Shocks

While we have assumed time-dependent pricing, a model with state-dependent pricing might

find that industries pass through large movements in commodity prices faster than small move-

ments in commodity prices. We partition monthly oil price movements into two sets: those whose

absolute size is larger than the median absolute size of oil price movements starting in 1997, and

those whose absolute size is smaller. By a result from Auclert et al. (2022), if state-dependent

pricing is operative, we should find evidence of faster pass-through for large shocks than pre-

dicted under our GMM-optimal time-dependent pricing model. In appendix D.4, we show that

the GMM-optimal model retains good fit for both large and small oil price movements, and there

is no statistically detectable difference in pass-through of small versus large shocks.
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Figure 10 – Estimates of Myopia for Non-oil Commodities

Note: Unlike the case of oil, where the GMM-optimal model used a myopia estimate of 1, we find that complete myopia
(an estimate of 0) is required to fit the pass-through of non-oil commodity price movements. The standard errors are
relatively tight, suggesting meaningfully worse model fit for higher levels of forward-lookingness, and certainly allow
us to reject rational expectations.

6.5 Non-oil Commodities

Using the same procedure we used for oil but for each non-oil commodity separately, we estimate

α = (mf , γ) for each of fourteen commodities – all of the commodities with price movements for

which we cannot reject the random walk model. We pool pass-through for shocks at lags 13-24

into a single treatment term as we possess substantially less power for these commodities than

we do with oil. We find that we do not have substantial power to estimate the markup precisely

for most non-oil commodities, but we do have power to estimate the degree of myopia for most

commodities. We show our results in Figure 10. For all precisely estimated cases, we find mf = 0,

or complete myopia. The only outliers are (1) beef cattle ranching and farming, (2) animal pro-

duction, except cattle/poultry/eggs, and (3) dairy cattle and milk production, and in these cases

the standard errors reveal we have no power to estimate myopia in the data – they span the whole

space for the parameter. The relatively tight standard errors on the precisely estimated myopia

coefficients imply that the model fit is meaningfully worse under different values of mf .20

In this sense, oil is very special among the commodities. Downstream industries, even those

that do not use oil directly in production, act as though they pay attention to oil prices, passing

through changes before their marginal costs fully reflect the changes in the oil price. For commod-

ity price movements beyond oil, firms act as though they are less attentive to the cost increases

of their upstream suppliers. This underlines how the delay in pass-through due to downstream-

ness can be even more important than one would expect under rational expectations. We show in

Appendix D.5 that our results are again robust to a 2-step GMM procedure, with identical point

estimates and smaller standard errors.
20Standard errors are adjusted for the estimates being on the boundary of the parameter space, in which case they

(asymptotically) have a halfnormal distribution (Andrews 1999).
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Figure 11 – Tests of Forward-lookingness about Grain Shock Persistence

Note: We plot the results of our test that pass-through due to forward-lookingness about grain shock persistence under
rational expectations is present in the data. Statistical insignificance in the left panel implies we can reject that firms are
forward-looking about the persistence of a grain price shock; formally, firm pass-through is the same for all changes in
grain spot prices, regardless of the shift in the grain futures curve. Point estimates above 0 in the left panel suggest that
there may be some forward-lookingness, but this evidence is much weaker than the evidence we found for oil. We are
only powered to perform this analysis out to 12 lags rather than 24.

6.5.1 The Role of Forward-lookingness about Shock Persistence

If firms behave myopically concerning network dynamics when passing through shocks to non-oil

commodity prices, then there may also not be detectable differences in pass-through of the same

spot price change when there have been different movements in commodity futures curves. More

formally, the futures terms in Figure 9 should be indistinguishable from 0 when performed for

non-oil commodities if firms act as myopically about differences in shock persistence as they do

about network dynamics.

Because commodity futures outside of oil and corn do not merge cleanly with the commodity

categories in our input-output data, we test the myopic hypothesis for pass-through of non-oil

commodity price movements using corn. The results are shown in Figure 11 using the GMM-

optimal model for corn but assuming rational expectations. While there is one period of statistical

significance of the futures pricing terms, most futures terms are statistically indistinguishable from

zero, and evidence of forward-lookingness is substantially weaker than we saw for oil in Figure 9.

For corn, movements in the spot price lead to statistically similar pass-through regardless of the

movement in the futures curve.

We replicate this finding using our reduced form approach pooling all non-oil commodities

(and their future prices) in Appendix E.3. In this case, evidence of myopia for pass-through of non-

oil commodity price movements, compared with rational expectations for oil price movements, is

even starker.
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Figure 12 – News Coverage and Search Volume by Commodity

Note: Data on number of news articles is from Factiva for the period 1997-2023. Commodity categories are constructed
to mirror BEA commodity categories from the input-output tables. For commodity categories made up of multiple
constituent commodities, a weighted average is taken in order to reflect the average level of attention paid to that
commodity category. For example, for “Poultry and Egg Production,” the average number of articles making reference
to each type of poultry and to eggs is computed (weighted by employment, per the QCEW, which has granular data
for each constituent commodity). Data on Search Volume Index (SVI) is from Google Trends for the period 2008-2023.
SVI is a relative measure of search frequency; here, “Oilseed Farming” is indexed to 1. Commodity categories with
multiple constituent commodities are again averaged as above.

6.5.2 Commodity Salience

As discussed above, we find evidence of rational expectations in the context of oil and myopia in

the context of non-oil commodities. But why is behavior different in the context of oil? We suggest

that this relates to the uniquely pervasive salience of oil relative to other commodities. Virtually

every American receives a daily signal about the changing price of oil in the form of fluctuating

prices at the gas station around the corner. And swings in oil prices are invariably accompanied

by a bevy of news reports discussing the swings and their causes.

We provide some suggestive evidence to this effect in Figure 12, where we show that oil is an

outlier relative to the other commodities in terms of both the number of news articles mentioning

oil and the volume of Google searches for oil compared to other commodities. While this is not

a causal analysis, it underlines one key way - which feeds into attentiveness - in which oil stands

out from all other commodities.
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7 Application: Network Oil Inflation

As we have shown in our empirical work, oil and other commodity shocks generate inflation be-

yond changing prices for products in which they are directly used. An inflation measure that

subtracts only the direct component of oil inflation (derived from changes in consumer gasoline

prices) does not fully purge oil inflation from aggregate inflation, as all of oil’s network uses re-

main embedded in the aggregate inflation measure. Moreover, because network propagation of

shocks takes time to occur, inflation may be predictable using the network component of oil infla-

tion.

We begin in subsection 7.1 with a practitioner’s guide for how to apply our model to purge

the network effects of a commodity price movement from inflation. In subsection 7.2, we then

illustrate this procedure for the case of oil price changes, providing estimates of how oil prices

affect aggregate inflation both directly and indirectly. We produce historical series of inflation

resulting from the direct and indirect effects of historical oil price changes. In subsection 7.3,

we explore whether Core Personal Consumption Expenditures (Core PCE) inflation is predictable

using the network component of oil inflation. Further, we assess how much of aggregate PCE

inflation’s variation can be explained using network oil inflation.

7.1 A User’s Guide

While we focus on the inflation arising from oil in this section, our model can be applied to purge

the direct and indirect effects of any commodity price movement from aggregate inflation. This

may be a desirable exercise for practitioners at private and central banks and policy institutes,

among others. In particular, if one thinks a specific supply chain disruption or commodity price

increase is responsible for observed inflation, our framework can be used to quantify how much

inflation should result and over what time horizon. In this subsection, we provide a framework

outlining how to apply our model to remove the direct and indirect effects of any sectoral price

movement from inflation. The rest of our application section illustrates this methodology for

oil.

Recall that the model can be solved to determine the dynamic pass-through of any commod-

ity price change to all industry prices, using the formula provided by Proposition 2. As in our

structural estimation section, denote by passthroughi,h(α) the proposition’s prediction for how a

unit log point increase in the chosen commodity price h periods ago affects prices in sector i under

model calibration α. The optimal calibration α̂ is chosen to match the cross-sectional variation in

industry price changes resulting from variation in the commodity price, as we did in our struc-

tural estimation. We recommend using rational expectations for oil price changes and complete

myopia for non-oil commodity price changes. We also recommend using frequencies of price ad-

justment measured for each industry, as we have through our Pasten et al. (2017) data. Finally,

we recommend, for oil price changes, using our GMM-estimated aggregate markup. For other
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commodities, we were underpowered to estimate the markup; the competitive case would pro-

vide a conservative benchmark, but we would also recommend using a calibration with measured

markups in each industry.

The response of aggregate PCE inflation to a sequence of changes in the commodity price is

then

Π̂t = Intercept+
∑
i

PCESharei

H∑
h=0

passthroughi,h(α̂)∆PZ,t−h, (13)

an intercept plus the personal consumption expenditures weighted average of industry pass-

through coefficients (under the optimal calibration) multiplied by the changes in the commodity

price. The intercept is required because our model is a supply-side model (not a closed model with

a demand side and monetary rule) and α is estimated using cross-sectional variation (exploiting

use of a time fixed effect).

The literature on aggregating cross-sectional estimates provides many methods for determin-

ing an intercept. We now discuss one such method – our favored method for oil – which requires

the user to possess a commodity-price instrument valid for time-series identification. With such

an instrument, one can estimate the intercept as the effect of the commodity price movement on

a hypothetical sector with no network exposure to the commodity. Intuitively, in our supply-side

model, such a sector is not predicted to experience a price change in response to the commodity

price increase. Any price change experienced by the sector, therefore, must come from systematic

comovement in general equilibrium effects, such as a response of the monetary authority to the

commodity price change or a response of inflation expectations. This exercise can be conducted

using a 2SLS variant of regression (10) without a time fixed effect. We provide the full details of

this procedure applied to oil in Appendix F.2, finding no statistically-significant evidence of an

intercept. This is consistent with all relative price movements generated from oil passing through

to aggregate inflation. We note that our fully closed model, which uses standard parameters and

is described in Appendix A.4, does not lead to a meaningfully different result.21

Given an intercept, the PCE share of each industry, model-derived pass-through coefficients

with the optimal calibration α̂, and the sequence of commodity price changes, the user can apply

formula (13) to compute the effects of the price changes on aggregate inflation. Because propa-

gation takes time to occur, these effects should predict aggregate inflation – a testable hypothesis.

Moreover, subtracting these effects provides a measure of inflation purged of the direct and indi-

rect effects of the sequence of commodity price changes; formally, the new measure considers the

counterfactual scenario in which the commodity price was constant.

Many of the steps listed above can optionally be subjected to additional robustness checks.

We perform some of these checks in our illustration. Furthermore, the direct and indirect effects

21It is easy to write a model where relative price movements generated from oil do not pass through to aggregate
inflation. Consider a monetary authority assumed to change the money supply so that the aggregate price level always
remains constant. In this model, changes in the oil price would not affect inflation. This is why we prefer the empirical
approach but are reassured that closing our supply-side model in a standard way leads to a similar result.

44



of the commodity on inflation can be decomposed. This is particularly useful in the case of oil

because its direct effects on gas prices are large and already purged from PCE inflation in the Core

PCE inflation series. The Core PCE inflation series, on the other hand, does not purge the indirect

effects of oil price movements.

Finally, the user may wish to incorporate expectations information from commodity futures

data when computing the commodity inflation series. We outline this procedure for oil in Ap-

pendix F.1.

7.2 Illustration: Oil

Now, we apply our guide from the preceding section to compute network oil inflation.22 We

decompose this inflation into direct and indirect sources. Consumer use of gasoline appears in

the data as personal consumption expenditures from the petroleum refining sector. The effect

of oil prices on gas prices paid by consumers is typically considered to be direct oil inflation,

which is thought to be purged from Core PCE inflation relative to overall PCE inflation. The effect

stemming from all other industries’ price responses is indirect oil inflation, which is not explicitly

removed from Core PCE inflation, and our results imply that it will result in further inflation from

oil price movements.

We can visualize our model’s predictions for the contribution of oil prices to the petroleum

refinery and non-refinery components of aggregate inflation. Figure 13 reports our results. In

Panel 1, we see that, of the about 0.06 percentage points of aggregate inflation resulting from 1%

shock to oil prices, just over 0.02 percentage points comes from consumer gas purchases, while

about 0.04 percentage points comes from consumer purchases from all other industries. The indi-

rect inflationary effect is realized slowly, dominating the direct effect only after 5 months, and only

75% of the total indirect effect is realized over the first year after the oil price change. In Panel 2,

we compute the predicted year-over-year inflation resulting from historical oil price movements,

applying equation (13) but decomposing direct and indirect effects. The magnitude of the com-

bined direct and indirect effects is not uncommonly above 2%, and it exceeded 3% in the early-mid

1970s. We note again how gradual the indirect effects can be, a result that is clearly visible in the

indirect effects of the 1970s and early 1980s oil price changes.

In Appendix F.6, we subtract these historical effects from aggregate PCE inflation. Underly-

ing inflation is lower than the headline figure for all of 2021 and much of 2022; in the latter half of

2022, underlying inflation continues to increase despite headline inflation declining.

22While our GMM-optimal procedure optimized fit for the equally weighted average industry, we confirm in Ap-
pendix F.5 that the fit remains good for the PCE-weighted average industry, both including and excluding petroleum
refineries.

45



Figure 13 – Inflationary Effects of Oil

Note: Panel 1 is the model-predicted response of the aggregate price level (in log points) to a log point shock to oil
prices. The total price level response due to a log point oil price increase is 0.06 log points, with most of the effect due
to gas prices increasing being realized on impact. The indirect effect due to all other price increases is realized slowly
and only dominates the direct effect after about 6 months. Eventually, the indirect effect is about twice as large. Panel 2
shows how both components of oil inflation have affected aggregate, year-over-year inflation historically. In the 1970s
and 1980s, it is particularly clear that indirect oil inflation has lasting effects on the aggregate price level. In the 1970s,
direct and indirect effects of oil contributed to more than 3 percentage points of aggregate, year-over-year inflation.

7.3 Explaining the Predictability of Official Inflation Measures

Now, there is an important difference between our predictions for aggregate PCE inflation and

the actual effects on official PCE inflation. Official PCE inflation is constructed primarily using

price measurements from the consumer price indices, while our empirical tests were conducted on

measurements from the producer price indices. This distinction is important because wholesalers

and retailers must past through producer price changes before consumers see a price change. If

pass-through is disrupted at this step, or is additionally slowed through price rigidity among

wholesalers and retailers, our model’s predictions for aggregate producer price inflation could

differ from their effects on consumer price inflation.

We can test whether network oil inflation using our measures passes through to official PCE

inflation by regressing official PCE inflation on our network oil inflation measures. Our results

are shown in Table 3. We see in Panel 1 that indirect oil inflation explains a substantial fraction of

official monthly PCE inflation: theR2 is 33%. The predictive power of indirect oil inflation remains

approximately the same if we include direct oil inflation, the component of oil inflation due to

consumer gas purchases; together, direct and indirect oil inflation explain 33% of the variation in

official PCE inflation. We noted earlier that official core PCE inflation tries to purge the effects of

oil inflation from official PCE inflation. Panel 2 of Table 3 reveals that it is only partially successful

in doing this; indirect oil inflation is still rather strongly predictive. We retain an R2 of 16% when

explaining official core PCE inflation with network oil inflation.
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Table 3 – Predicting Inflation with Network Oil Inflation

Panel 1: Total Inflation

Panel 2: Core Inflation

Note: *** p < 0.01, ** p < 0.05, * p < 0.10. This table shows the results of simple regressions of official PCE inflation on
our measures of network oil inflation and a constant. Robust standard errors in parentheses. We find that indirect oil
inflation predicts both PCE inflation and Core PCE inflation, even conditional on direct oil inflation. Moreover, network
oil inflation explains 16% of the variation in Core PCE inflation, even though Core PCE inflation is designed to factor
out oil price movements.
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Figure 14 – Explaining the Predictability of Official Inflation Series

Note: The red-circle series show the cumulative effect of oil price movements, instrumented using the Kanzig (2021)
variation, on Core PCE inflation (Panel 1) and PCE inflation (Panel 2). Core PCE inflation should not be predictable
by oil price movements. Our model rationalizes its predictability: inflation resulting from indirect use of oil is shown
in the blue-triangle series in Panel 1. The model-based series in Panel 2 additionally includes inflation due to gasoline
price movements. Faster pass-through in the model, combined with the long-run effect being correct, likely implies
that it takes some time for producer price (PPI) movements to pass through wholesale and retail prices to consumer
prices (CPIs).

We can further assess whether the dynamics of inflation predictability using oil price move-

ments are in line with those in the time series. First, we assess how predictable PCE and Core

PCE inflation are from oil price movements. To do this, we first run the 2SLS time-series regres-

sion

∆Pt = α+
24∑
h=0

βh∆POil,t−h + ϵt

where ∆POil,t−h is instrumented with the OPEC shock series identified in Kanzig (2021). Accumu-

lating the β’s estimated from this time series regression allows us to determine the overall effect of

oil price increases on inflation. We can use Pt equal to PCE or Core PCE inflation. We then over-

lay our model’s predicted effects on these accumulated estimates. If our model’s predictions for

aggregate inflation, constructed using producer price indices, pass through immediately to offi-

cial measures, constructed primarily using consumer price indices, the dynamics from our model

should fit the inflation predictability using oil that we see in the time series.

We show our results in Figure 14. First, from the time series impulse responses, we see that

aggregate inflation is predictable using oil price movements. Even Core PCE inflation remains

predictable using oil price movements. We see that our model can explain this predictability: oil

price movements take time to pass through to industry prices through supply chains, leading to

lagged effects on aggregate inflation. These effects are large in magnitude: from a 1 log point oil

price increase, about 0.035 log points (3.5% of the oil shock magnitude) of Core PCE inflation are

realized over the 2 years following the price increase. About 0.055 log points of PCE inflation are

realized over the 2 years following the price increase. Pass-through in the time series is somewhat

slower than what the model predicts, suggesting some additional delay resulting from gradual

pass-through of wholesalers and retailers.
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8 Conclusion

We study how much and how quickly supply chains transmit commodity price movements through-

out the production network, finding statistically-significant evidence of full but delayed pass-

through. Price rigidity interacting with the network is a major source of this delay – industries

more downstream from the shock pass it through more gradually, even if they are forward-

looking.

Our model suggests that the delay due to downstreamness is intensified when firms are

inattentive. A fully rational (and attentive) firm will observe its far-upstream suppliers’ suppliers

being hit by a cost shock and adjust their prices when they next have the opportunity to do so. A

myopic firm will wait for the shock to trickle through the supply chain and reach the firm itself

before choosing to make such a price adjustment. Empirically, we show that price pass-through

responses to oil shocks are consistent with rational expectations, whereas responses to non-oil

commodity price movements are consistent with more myopic behavior.

We then apply our model in the specific case of oil, showing that relative price movements

throughout the network generated from oil largely pass through to aggregate inflation. We show

that network oil inflation has statistically-significant and non-trivial (R2 = 16%) predictive power

for official Core PCE inflation, as well as even greater predictive power (R2 = 33%) for total PCE

inflation.

We think there are many interesting avenues for future work. While we have focused on com-

modity price movements, our model can be applied to price shocks in any sector. It could also be

applied to assess the network pass-through of exchange rate movements. We have also neglected

the distinction between labor and capital, but there may be interesting heterogeneity to explore. Fi-

nally, we think the network setting provides a powerful empirical lab for testing different ways of

endogenizing industries’ frequencies of price adjustment and the degree of forward-lookingness

in expectations.
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A Appendix: Model

Appendix A.1 proves the propositions in the model section of the paper. A.2 describes the nu-

merical solution of the model in discrete time, which is used for our empirical work. We use this

discrete time solution at a daily frequency in our empirics for two reasons: (1) to improve com-

parability of the model with our continuous time results and (2) so that our code can easily allow

forecasters to exploit that commodity prices are usually measured at least at a daily frequency –

enabling much better eve-of-release forecasts of PPI, for example, than using the previous month’s

PPI data. A.3 recasts the model in continuous time and is used for our main results in the pa-

per. A.4 fully closes the model and describes assumptions about household consumption, sticky

wages, and the Taylor rule.

A.1 Proofs

Proof of Proposition 1:

Proof. Start with the 3 equation model given by equations (5 – log-linear marginal cost), (7 – log-

linear reset price), and (6 – log-linear law of motion for prices). In the new steady state, the law of

motion implies p̂∗∞ = p̂∞. The reset price equation simplifies to p̂∞ = m̂c∞, and the marginal cost

equation, using that there are no TFP shocks, simplifies to m̂c∞ = diag(sLi )ŵ∞ + sZ p̂Z + Φp̂∞.

Eliminating marginal cost, we have

p̂∞ = diag(sLi )ŵ∞ + sZ p̂Z +Φp̂∞,

which simplifies to

p̂∞ = (I −Φ)−1diag(sLi )ŵ∞ + (I −Φ)−1sZ p̂Z .

This was our desired result.

Proof of Proposition 2:

Proof. First, see subsection A.3, which recasts the model in continuous time. We start with the

log-linearized equations for the optimal reset price and the law of motion for industry prices:

p̂∗i,t = ψiEt

∫ ∞

τ=t
e−ψi(τ−t)m̂ci,τdτ

˙̂pi,t = ϕi(p̂
∗
i,t − p̂i,t).

The log-linearization of marginal cost is the same as in the discrete time model. We begin with

the myopic case, ψi → ∞ for all i, which is more straightforward than when firms are forward
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looking. In this case, p̂∗i,t = m̂ci,t. Holding wages and TFP constant, then p̂∗t = sZ p̂Z,0 +Φp̂t. So

ṗt = ϕ̄(sZ p̂Z,0 − (I −Φ)p̂t).

This differential equation solves to

p̂t = (I − e−Bt)(I −Φ)−1sZ p̂Z,0,

where B = ϕ̄(I −Φ). This gives the desired results for myopia under heterogeneous and homo-

geneous frequencies of price adjustment.

Now we turn to the case of (partially) forward-looking firms. Denote byD the time derivative

operator. Rewrite the log-linearized model equations in partial equilibrium (holding wages and

TFP constant, which simplifies the marginal cost equation) as

Dp̂t = ϕ̄(p̂∗t − p̂t), Dp̂∗t = ψ̄(−Φp̂t − sZ p̂Z,0 + p̂∗t ).

The first equation can be rewritten as p̂∗t = ϕ̄−1(DI + ϕ̄)p̂t = (ϕ̄−1D + I)p̂t. The second equation

can be rewritten as (DI − ψ̄)p̂∗t = −ψ̄(Φp̂t+ z), where z ≡ sZ p̂Z,0. Plugging in the solution for p̂∗t ,

we have

(DI − ψ̄)(ϕ̄−1D + I)p̂t = −ψ̄(Φp̂t + z).

Rewrite this by grouping the non time derivative terms on the RHS:

(ϕ̄−1D2 +DI − ψ̄ϕ̄−1D)p̂t = ψ̄p̂t − ψ̄(Φp̂t + z) = ψ̄ [(I −Φ)p̂t − z] .

Now, we plug in our conjecture that p̂t = (I− e−Bt)(I−Φ)−1z. First, note that the RHS simplifies

nicely:

ψ̄ [(I −Φ)p̂t − z] = ψ̄
[
(I −Φ)(I −Φ)−1z − (I −Φ)e−Bt(I −Φ)−1z − z

]
= −ψ̄(I −Φ)e−Bt(I −Φ)−1z.

The LHS is

(ϕ̄−1D2 +DI − ψ̄ϕ̄−1D)(I − e−Bt)(I −Φ)−1z = −(ϕ̄−1D2 +DI − ψ̄ϕ̄−1D)e−Bt(I −Φ)−1z.

Therefore, we have

(ϕ̄−1D2 +DI − ψ̄ϕ̄−1D)e−Bt(I −Φ)−1z = ψ̄(I −Φ)e−Bt(I −Φ)−1z.
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We take derivatives on the LHS:

(ϕ̄−1D2 +DI − ψ̄ϕ̄−1D)e−Bt = ϕ̄−1e−BtB2 − e−BtB + ψ̄ϕ̄−1e−BtB.

Now, e−Bt =
∑∞

k=0
1
k!B

k by definition, and so it is clear that B and B2 commute with e−Bt.

Therefore, we have

(ϕ̄−1B − (I − ψ̄ϕ̄−1))Be−Bt(I −Φ)−1z = ψ̄(I −Φ)e−Bt(I −Φ)−1z.

So the conjectured solution works if

(ϕ̄−1B − (I − ψ̄ϕ̄−1))B = ψ̄(I −Φ).

Under rational expectations and a steady state interest rate of 0, ϕ̄ = ψ̄, so B =
(
ϕ̄2(I −Φ)

)1/2.

When the frequency of price adjustment does not vary by sectors, ϕ̄ = ϕI and ψ̄ = ψI commute

with all matrices, and so the matrix equation can be rewritten as(
B − ψ − ϕ

2

)2

=

(
ψ + ϕ

2

)2

− ϕψΦ,

or

B =
ψ − ϕ

2
I +

((
ψ + ϕ

2

)2

I − ϕψΦ

)1/2

,

where we take the roots with positive eigenvalues.

Proof of Proposition 3:

Proof. Start with the duration definition, Di =
∫∞
0 (1 − bi,s)ds, and the result from Proposition 2

that bi,t ≈ 1− (ei)′e−Btp̂∞
(ei)′p̂∞

. Then

Di ≈
∫ ∞

0

(ei)′e−Bsp̂∞
(ei)′p̂∞

ds =
(ei)′

(∫∞
0 e−Bsds

)
p̂∞

(ei)′p̂∞
=

(ei)′B−1p̂∞
(ei)′p̂∞

.

Plug in the result for myopia under homogeneous θ,B = ϕ(I−Φ), and use that p̂∞ = (I−Φ)−1sZ .

Then, under myopia,

Di ≈
1

ϕ

(ei)′(I −Φ)−2sZ

(ei)′(I −Φ)−1sZ
.

Now, just as in scalar case, we have

(I −Φ)−2 = I + 2Φ+ 3Φ2 + ...

=

∞∑
n=1

nΦn−1,
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which was the desired result.

Next, plug in the result for rational expectations and a 0 interest rate under homogeneous θ,

B = ϕ(I −Φ)1/2. Then

Di ≈
1

ϕ

(ei)′(I −Φ)−3/2sZ

(ei)′(I −Φ)−1sZ
.

In this case, term n of (I −Φ)−3/2 is (−1)n−1
(−3/2
n−1

)
Φn−1, which is less than n for n > 1.

A.2 Eigenvalue Solution of the Model (with Decomposition)

The compact version of the log-linearized optimal reset price equation (7) is

p̂∗i,t = θiβmfEt[p̂
∗
i,t+1] + (1− θiβmf )m̂ci,t.

The log-linearized law of motion for prices, equation (6), was

p̂i,t = θip̂i,t−1 + (1− θi)p̂
∗
i,t.

Combining and restricting to mf > 0,

Et[p̂i,t+1] =
1 + θ2i βmf

θiβmf
p̂i,t −

1

βmf
p̂i,t−1 −

(1− θi)(1− θiβmf )

θiβmf
m̂ci,t.

Stacking across industries,

Et[p̂t+1] = diag

(
1 + θ2i β

θiβmf

)
p̂t −

1

βmf
p̂t−1 − diag

(
(1− θi)(1− θiβmf )

θiβmf

)
m̂ct.

Recall that

m̂ct = Φp̂t + s
Z p̂Z,t + diag(sLi )ŵt − ât.

Therefore,

Et[p̂t+1] =

(
diag

(
1 + θ2i βmf

θiβmf

)
− diag

(
(1− θi)(1− θiβmf )

θiβmf

)
Φ

)
p̂t −

1

βmf
p̂t−1

− diag

(
(1− θi)(1− θiβmf )

θiβmf

)
(sZ p̂Z,t + diag(sLi )ŵt − ât).

Now, define

x̂t+1 =

[
p̂t

p̂t+1

]
, êt =


ât

ŵt

p̂Z,t

 .
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Then

Etx̂t+1 = Bxx̂t +Beêt,

The solution proceeds as follows. Perform an eigendecomposition ofBx:

Bx = V ΛV −1.

In R, the authors’ preferred programming language for solving this model, the eigenvalues in V

with magnitude greater than 1 are stacked first in the resulting decomposition. Define x̃t = V −1x̂t

and B̃e = V −1Be. Then

Et

[
x̃1,t+1

x̃2,t+1

]
=

[
Λ1 0

0 Λ2

][
x̃1,t

x̃2,t

]
+

[
B̃1

B̃2

]
êt,

where the diagonal elements of Λ1 are all greater than 1 and the diagonal elements of Λ2 are all less

than 1. The model has a unique solution if the diagonal of Λ1 is the same size as p̂ (Blanchard and

Kahn 1980), which turns out to be the case for all the input output tables published by the BEA. It

is not necessary to give the general conditions for solvability of this model for our purposes, and

so we do not undertake such a proof here.

Now the explosive eigenvalues can be solved under a transversality condition and a growth

restriction on exogenous shocks. We have

Et[x̃1,t+1] = Λ1x̃1,t + B̃1êt,

which can be forward solved to get

x̃1,t = −
∞∑
j=0

(
Λ−1
1

)j+1
B̃1Et[êt+j ] + lim

j→∞

(
Λ−1
1

)j
Et[x̃1,t+j ].

The required transverality condition is

lim
j→∞

(
Λ−1
1

)j
Et[x̃1,t+j ] = 0.

We also require that assume that shocks do not grow at an exponential rate, so that

∞∑
j=0

(
Λ−1
1

)j+1
B̃1Et[êt+j ]

is finite. Then

x̃1,t = −
∞∑
j=0

(
Λ−1
1

)j+1
B̃1Et[êt+j ].
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If the shocks satisfy Et[êt+1] = ρêt, with the eigenvalues of ρ all less than 1, we have

x̃1,t = −
∞∑
j=0

(
Λ−1
1

)j+1
B̃1ρ

j êt.

A special case is ρ = ρI , a useful assumption when we shock only one dimension of êt, in which

case

x̃1,t = −Λ−1
1

∞∑
j=0

(
Λ−1
1 ρ
)j
B̃1êt = −Λ−1

1 (I − Λ−1
1 ρ)−1B̃1êt.

Now we can turn to the eigenvalues that are less than 1. Our solution will come from the initial

conditions on prices, as lagged prices are a state variable. Rewrite V as

V =

[
V11 V12

V21 V22

]
.

Then

p̂t = V22V
−1
12 p̂t−1 + (V21 − V22V

−1
12 V11)x̃1,t.

Under a fully persistent shock normalized to occur in period 0, êt = ê0 for all t ≥ 0. So

p̂t = V22V
−1
12 p̂t−1 + (V21 − V22V

−1
12 V11)x̃0.

The long-run pass-through is

p̂∞ = (I − V22V
−1
12 )−1(V21 − V22V

−1
12 V11)x̃0,

which, as we have already shown, is

p̂∞ = (I −Φ)−1sZ

when the commodity price is shocked by 1 log point. This is long-run pass-through from Propo-

sition 1. We will focus on the case of shocking the commodity price while leaving TFP and wages

constant. In this case,

p̂∞ = (I −Φ)−1sZ p̂Z,0.

Then we have

p̂t − p̂∞ = (V22V
−1
12 )t(p̂0 − p̂∞),

with the initial IRF condition p̂−1 = 0 pinning down

p̂0 = (V21 − V22V
−1
12 V11)x̃0.
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Therefore,

p̂t = (V22V
−1
12 )tp̂0 + (I − (V22V

−1
12 )t)p̂∞.

Now, in the continuous time approximation, p̂0 ≈ 0, and in this case we can separate the timing of

pass-through due to direct and indirect exposure to oil as we did in our reduced form regressions.

Formally, recall we can write

p̂∞ = ΦOil︸︷︷︸
Direct

p̂Oil,0 + ((I −Φ)−1 − I)ΦOil︸ ︷︷ ︸
Indirect

p̂Oil,0.

Therefore, we have

p̂t = (V22V
−1
12 )tp̂0 + (I − (V22V

−1
12 )t)

ΦOil︸︷︷︸
Direct

p̂Oil,0 + ((I −Φ)−1 − I)ΦOil︸ ︷︷ ︸
Indirect

p̂Oil,0

 .

The value of (V22V −1
12 )t can be efficiently computed using the eigendecomposition

(V22V
−1
12 ) = Ṽ Λ̃Ṽ −1,

so that

(V22V
−1
12 )t = Ṽ Λ̃tṼ −1.

Putting everything together, we have

p̂t = Ṽ Λ̃tṼ −1(V21 − V22V
−1
12 V11)x̃0 + (I − Ṽ Λ̃tṼ −1)

ΦOil︸︷︷︸
Direct

p̂Oil,0 + ((I −Φ)−1 − I)ΦOil︸ ︷︷ ︸
Indirect

p̂Oil,0

 ,

with

x̃0 = −Λ−1
1 (I − Λ−1

1 )−1B̃1(0, 0, ..., 0, p̂Oil,0)
′,

where the last vector represents that we are not shocking desired markups, TFP, or wages but are

shocking oil prices by p̂Oil,0.

A.3 Model in Continuous Time

Define ϕi as the instantaneous probability that a firm in industry i can update prices, and Ẽt as

the (potentially myopic) expectations operator, to be defined in more detail later following Gabaix

(2020).

The optimal reset price for any firm j in industry i is the argmax of

max
P ∗
i,t

∫ ∞

τ=t
e−ϕi(τ−t)Ẽt

[
SDFt,τXi,j,τ

(
P ∗
i,t −MCi,τ

)]
dτ
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subject to the demand conditions

Xi,j,τ = Yi,τ

(
Pi,τ
P ∗
i,t

)
.

The first-order condition log-linearizes to∫ ∞

τ=t
e−ϕi(τ−t)Ẽt

[
SDFSSt,τ (p̂

∗
i,t − m̂ci,τ )

]
dτ = 0,

where a superscript SS denotes a variable’s steady state value. Now, myopia in Gabaix (2020) is

defined in our setting as

Ẽt[f̂τ ] = e−m̃f (τ−t)Et[f̂τ ],

where Et is the rational expectations operator, f̂ is the deviation of any of our variables above

from steady state, and τ ≥ t. Therefore, for m̃f > 0, firms neglect future deviations of variables

of interest from steady state in making their optimization decisions, and for m̃f = 0 we recover

rational expectations.

Now, for a standard household problem, we have SDFSSt,τ = e−ρ(τ−t), where ρ is the discount

rate. Therefore, the above equation simplifies to

Et

∫ ∞

τ=t
e−(ϕi+ρ+m̃f )(τ−t)

[
(p̂∗i,t − m̂ci,τ )

]
= 0,

or (setting ψi = ϕi + ρ+ m̃f )

p̂∗i,t = ψiEt

∫ ∞

τ=t
e−ψi(τ−t)m̂ci,τdτ.

The industry price index satisfies
˙̂pi,t = ϕi(p̂

∗
i,t − p̂i,t),

where the dot notation denotes a time derivative.

A.4 Fully Closed Model

A.4.1 Households and Government

The setup for the representative household is completely standard in the NK theory of sticky

wages, following, e.g., Woodford (2003) or Galı́ (2015). Each firm j ∈ [0, 1] uses a CES aggregate

of individual labor types h ∈ [0, 1] to produce:

Lt(j) =

(∫ 1

0
Lt(j, h)

σL−1

σL dh

) σL
σL−1

.
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Firm j’s demand for individual h’s labor is thus

Lt(j, h) = Lt(j)

(
Wt(h)

Wt

)−σL
,

and total demand for individual h’s labor is (with an abuse of notation)

Lt(h) =

∫ 1

0
Lt(j, h)dj = Lt

(
Wt(h)

Wt

)−σL
,

with Lt =
∫ 1
0 Lt(j)dj and the usual wage index. Denote the discount factor by β with 0 < β < 1

and the probability an individual cannot adjust their wage in any period by θW with 0 ≤ θW < 1.

Consumption utility is given by

U(Ct) =
C1−γ
t − 1

1− γ
,

so that the marginal utility of nominal income is C−γ
t /Pt, where Pt is the price of consumption.

Labor disutility is given by

V (Lt) =
L
1+1/ϵ
t

1 + 1/ϵ
.

A wage Wt(h) that is adjusted in period t solves

max Ẽt

∞∑
k=0

(βθW )k

[
C−γ
t+k

Pt+k
Wt(h)Lt+k(h)−

Lt+k(h)
1+1/ϵ

1 + 1/ϵ

]
,

which maximizes the expected (potentially myopic) discounted value of nominal income, weighed

by the marginal utility of nominal income, net of the disutility of labor. The first-order condition

is

Ẽt

∞∑
k=0

(βθW )kLt+k(h)

[
Wt(h)−

σL
σL − 1

Lt+k(h)
1/ϵ

C−γ
t+k/Pt+k

]
= 0,

which sets the expected discounted value of the gap between the wage and a markup over the

marginal rate of substitution (marginal labor disutility over the marginal utility of nominal in-

come) equal to 0.

This equation loglinearizes to

wt(h) =
1− βmθW
1 + σL/ϵ

Et

∞∑
k=0

(βmθW )k
(
γct+k + pt+k +

1

ϵ
lt+k +

σL
ϵ
wt+k

)
, (14)

where m is the degree of consumer myopia. Clearly, anyone who resets their wage does so in the

same way, i.e. wt(h) = w∗
t for all h. The loglinearized wage index is

wt = θWwt−1 + (1− θW )w∗
t .
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These equations simplify to

Etwt+1 =

(
1

βmθW
+ θW − K

βmθW

σL
ϵ

)
wt −

1

βm
wt−1 −

K

βmθW
(γct + pt +

1

ϵ
lt),

with

K =
(1− θW )(1− βmθW )

1 + σL/ϵ
.

The Euler equation is as usual, augmented for myopia:

mEt[ct+1] = ct +
1

γ
(it −mEt[pt+1] + pt).

Consumption is a CES bundle of industry-specific consumption bundles (with elasticity σC), so

that

cit = σC(s
′pt − pit) + ct,

or, stacking across industries,

ct = σC(1s
′ − I)pt + 1ct. (15)

Finally, there is a standard Taylor rule with price and wage inflation coefficients ψp and

ψw.

A.4.2 Firms

Firms in each industry produce using a bundle of intermediate goods and labor (which could be

construed as a value added composite). The intermediate bundle is a CES aggregator of interme-

diate inputs (with elasticity σX ):

Xit(j) = F̃i(Xit(j)
1, ..., Xit(j)

I).

To a first order, firm-level demands aggregate, and we can consider the loglinearized demand of

industry i for intermediate input j:

xjit =
I∑

i′=1

ϵ
Xj

i
i′ pi′t + xit,

where xi is industry production of the intermediate bundle and the ϵ’s are log partial derivatives

of the superscript with respect to the subscript argument. Using properties of the factor demand

elasticities and defining sXi to be the share of intermediate inputs in cost, we have

xjit = σX

(
[Φ]i,·

sXi
pt − pjt

)
+ xit. (16)
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Firms then combine the intermediate bundle and labor according to

Yit(j) = AitFi(, Lit(j)).

By a similar argument, again assuming a CES aggregator with elasticity σV , we have

xit = σV s
L
i

(
wt −

[Φ]i,·

sXi
pt

)
+ yit − ait. (17)

Combining equations 16 and 17, we have

xjit = σX

(
[Φ]i,·

sXi
pt − pjt

)
+ σV s

L
i

(
wt −

[Φ]i,·

sXi
pt

)
+ yit − ait. (18)

Now, market clearing is

Yit =
∑
j

Xi
jt + Cit,

which log-linearizes to

yit =

(
Xi
)′

Yi
xit +

Ci
Yi
cit.

Now, we can stack equation 18 across using industries to obtain

xit = (σXI − σV diag(s
L
i ))diag(s

X
i )

−1Φpt − σX1pit + σV s
Lwt + yt − at.

Combining this with the market clearing equation, we have

yit =

(
Xi
)′

Yi
(σXI−σV diag(sLi ))diag(sXi )−1Φpt−σX

(
1− Ci

Yi

)
pit+σV

(
Xi
)′

Yi
sLwt+

(
Xi
)′

Yi
(yt−at)+

Ci
Yi
cit.

This form is convenient because it can also be readily stacked across industries. Denote the

demand-side IO matrix by

Ω =


X1

1
Y1

X1
2

Y1
. . .

X1
I

Y1
X2

1
Y2

X2
2

Y2

. . . X2
I

Y2
...

. . . . . .
...

XI
1

YI

XI
2

YI
. . .

XI
I

YI

 .

Then

yt = (I −Ω)−1Ω(σXI − σV diag(s
L
i ))diag(s

X
i )

−1Φpt − σX(I −Ω)−1diag

(
1− Ci

Yi

)
pt

+ σV (I −Ω)−1ΩsLwt − (I −Ω)−1Ωat + (I −Ω)−1diag

(
Ci
Yi

)
ct.
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Now recall that the vector of consumption was already pinned down in terms of prices and ag-

gregate consumption in equation 15.

Armed with this solution for output, we can finally eliminate labor supply from the NK wage

equation 14. We start with the log-linearized factor demand:

lt = σV (Φpt − sXwt) + yt − at.

Then lt = L′

L lt.

The pricing equation, which we have derived elsewhere, is

Et[pt+1] =

(
diag

(
1 + θ2i βmf

θiβmf

)
− diag

(
(1− θi)(1− θiβmf )

θiβmf

)
Φ

)
pt −

1

βmf
pt−1

− diag

(
(1− θi)(1− θiβmf )

θiβmf

)
(sLwt − at).

A.4.3 Calibration

We use a standard calibration for all parameters. We set σX = 0.1, σV = 1, σC = 1, σL = 3, ϵ = 1/4,

γ = 2, θW = 0.42 (annualized rate), ψp = 1.2, and ψw = 0. Additional parameters are calibrated as

described in the main body of the paper. In our structural work, we always constrain consumer

and firm myopia to have the same value, i.e. m = mf .

B Appendix: Processing of the BEA’s Input-output Tables

This section outlines our processing of the BEA’s input-output tables, which follows the BEA’s

guidance as provided in the “Concepts and Methods of the U.S. Input-Output Accounts,” origi-

nally published in 2006 and updated in April 2009 (the most recent documentation available on

the BEA’s website as of the writing of this paper).

The BEA publishes several datasets in its input-output accounts that are worth distinguish-

ing. It publishes benchmark Make and Use tables every 5 years, constructed primarily using the

microdata underlying the Economic Census, which is run every 5 years (1977, 1982, ...). The BEA

publishes before- and after-redefinitions versions of each of these files. The Make tables measure

how much each industry i produces each commodity j. Commodities are distinct from the com-

modities we describe in the paper, which comprise primarily upstream goods such as those from

the Oil and Gas Extraction sector. In particular, the Make tables measure how much each industry

produces their primary output, but they also tell us how much each industry produces outputs pri-

marily sold by other industries. The Use tables measure how much each industry i purchases each

commodity j, but commodity j might be produced by the main industry producer of that com-

modity or by another industry that produces that commodity. Creating an industry-by-industry

input-output table, which is required by our model, therefore requires combining information in
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both the Make and Use tables.

Before-redefinitions Make and Use tables represent the BEA’s best efforts to create input-

output measures based on the raw data. Redefinitions are made in the After-redefinition tables

“when the input structure for a secondary product of an industry differs significantly from the

input structure for the primary product of that industry” (p. 4-6 of the BEA’s documentation).

For example, the hotel industry often runs restaurants, and the input mix for restaurants differs

substantially from that of hotels. The BEA tries to reallocate restaurant output from the hotel

sector to the restaurant sector in the after-redefinitions tables. We elect to use before-redefinitions

tables in our analysis because they accord better with the standard PPI data published by the BEA.

Specifically, the producer price index for an industry in principle represents a weighted average

of prices of all products and services an industry supplies. If an industry produces outputs that

are primarily produced by other sectors, the prices of these outputs are contained in the industry’s

PPI. After-redefinitions tables could be used in combination with the BLS’s publications on PPIs

by major industry products; for instance, the BLS publishes a primary PPI dataset for the primary

outputs sold by an industry, and these primary PPIs may be a good match to the after-redefinitions

input-output tables. Because the BEA’s formal methodology for redefinitions is obscure, however,

it is difficult to know how good a match the primary PPIs are with the after-redefinitions input-

output tables.

Our harmonization of the BEA’s Make and Use tables to produce Before-redefinitions industry-

by-industry input-output tables follows exactly the BEA documentation starting on page 12-21,

and so we refer the reader there for our methodology. In 2007 and 2012, the BEA publishes

industry-by-industry input-output tables before-redefinitions in the Total Requirements format,

which represents the BEA’s measure of our Leontief inverse object, (I − Φ)−1. We are able to

replicate the BEA’s Total Requirements tables for 2007 and 2012. For other NAICS years, 1997 and

2002, we use the same methodology that replicated the BEA’s published industry-by-industry to-

tal requirements tables before redefinitions, but we cannot verify that they are the same as what

the BEA would have published. For our case study of the 1979 oil shock, we replicate this same

procedure on the Make and Use tables before-redefinitions published in 1977 to create an industry-

by-industry input-output table before redefinitions.

C Appendix: Additional Robustness of Reduced-form Empirics

In this appendix, we show that these results are robust to a variety of modifications and alterna-

tive approaches. In C.1, we repeat the analysis in Table 1 (i) without the time fixed effects, (ii)

without the wage control variable, (iii) with an added TFP control variable, (iv) with an added

control for network gas/electricity cost changes (two commodities likely to be close substiutes

for oil), and (v) with cost shares that exclude payments to capital from the denominator. All of

these exercises yield very similar results. In Appendix C.2, we investigate heterogeneity on some

66



other factors that could plausibly affect pass-through: concentration, firm size, inventories, and

the capital share (all measured at the sector level). Adding these additional heterogeneity terms

to the regressions in the preceding table does not ameliorate the statistical significance of the re-

sults. In C.3, we modify our preceding regression specification by adding leads and lags to study

the month-by-month dynamics of pass-through in a reduced-form manner. In C.4, we repeat this

analysis using a local projections approach, finding similar results. In C.5, we show that the same

patterns are again evident in a binscatter analysis. The binscatters also allow us to investigate

some additional dimensions of potential heterogeneity: size and sign of shock. We find no evi-

dence of such heterogeneity. Finally, in C.6, we take a different approach to isolating exogenous

variation. We focus on a few case studies likely to be highly exogenous - the 1979 oil shock, the

2014 oil shale boom, and the 2020 COVID shock - and show that these settings yield the same

results as our pooled analysis.

C.1 Main Table Robustness

In this section, we modify the regression specification used in our main analysis slightly. This

regression specification is given by Equation (8).

First, we drop the time fixed effects. The time fixed effect is not present in Proposition 1, so

this specification is arguably more directly linked to Proposition 1. However, as Table G.1 reveals,

this modification leads to virtually no change relative to Table 1.

Second, we drop the wage control variable. As revealed in Proposition 1, industry price

shocks are a function of both price changes in the underlying commodities and wage changes. In

the main specifications in the body of the paper, we include the wage changes. However, these

wage changes are largely uncorrelated with price changes, and results are very similar if they are

excluded, as shown in G.2.

Third, in a related exercise, instead of the change in industry prices, we place the change in

industry wages on the right-hand-side of our regression. This allows for directly assessing the

effects of network oil cost changes on industry wages. As shown in G.3, we find no evidence of

a relation between these variables. This is consistent with the fact that including or excluding the

wage control variable was found in the previous paragraph to have no meaningful effect on the

results.

Fourth, we add a TFP control variable that accounts for changing aggregate TFP. Such changes

are another factor that can feed into price changes, and if one is worried that they are correlated

with oil cost shocks, this could potentially create bias in our estimates. In a network model, in-

dustries have heterogeneous loadings on aggregate TFP, and we can control for these effects by

interacting industries’ heterogeneous loadings with a time fixed effect. Nevertheless, we find that

adding the TFP control variable scarcely changes the results, as seen in G.4.

Fifth, we add a control variable for gas and electricity. Industries with high exposure to

oil may have the ability to substitute away to gas and/or electricity when the cost of oil rises
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relative to the cost of those commodities. To the extent this occurs, it might bias our pass-through

coefficients if we do not control for the latter. We replicate our main results controlling for gas and

electricity shock exposure to show that the main findings on oil are not driven by these related

sectors. The control variable for gas/electric network cost changes is constructed analogously to

our main oil network cost change variable. The findings are displayed in G.5, where the results

are little changed relative to the baseline table.

Sixth and finally, we note that the cost shares utilized in our main regression specifications

divide the network cost of oil by the summed network cost of all commodities plus the cost of labor

and capital. We compute alternative shares excluding the cost of capital from the denominator

and repeat our main analysis, yielding Table G.6. The total amount of pass-through over both the

one-month horizon and the one-year horizon decreases, and the qualitative take-away - that pass-

through is incomplete on impact and more thorough but still incomplete after a year - is strongly

sustained.

C.2 Heterogeneity Table Robustness

In this section, we add a variety of other interaction terms to our heterogeneity table. Essentially,

in order to ensure downstreamness is not simply correlated with some other variable that could

plausibly affect the extent or pace of pass-through, we add such variables to the regression. We

obtain information on inventories by sector from the Census Bureau’s Manufacturing and Trade

Inventories and Sales data. We obtain information on market concentration by sector (marketshare

of the top 8 firms in the sector) from the Economic Census. We obtain information on average firm

size (measured by sales) by sector from Dun and Bradstreet. And we obtain information on the

capital share by sector from the BEA. Table G.7 reveals that the addition of these interaction terms

does not ameliorate the significance of the downstreamness interaction term. While some of these

other terms are statistically significant as well, downstreamness remains a crucial determinant of

pass-through. In fact, the magnitude of the downstreamness coefficient actually increases in case

of the Kanzig variation and the case of all non-oil commodity price variation. In the case of all oil

variation, it is scarcely changed.

C.3 Reduced-Form Empirics with Dynamics

C.3.1 Dynamic Reduced-Form Regression Specifications

We slightly modify our main reduced-form regression specification by adding leads and lags to

flexibly study the month-by-month dynamics of pass-through. The specification is again inspired

by Proposition 1, albeit with an arbitrary lag structure. We regress the price change in an industry

on the input cost change due to movements in the price of a commodity or commodities of interest,
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the input cost change due to movements in wages, and a time fixed effect. That is,

∆Pi,t = λt +

24∑
h=−6

βh[(I −Φ)−1sZ ]i∆PZ,t−h +

24∑
h=−6

γh[(I −Φ)−1diag(sLi )∆wt−h]i + ϵi,t, (19)

where, as before, Pi,t denotes the log price of industry i at time t, λt is a time fixed-effect, [(I −
Φ)−1sZ ]i represents the network cost shares of industry i in commodity Z, ∆PZ,t is the change in

the price of commodity Z over period t, [(I − Φ)−1diag(sLi )∆wt]i represents input cost changes

due to wage movements in various sectors whose output industry i utilizes, and ϵi,t is an error

term. In this context,
∑

h βh = 1 corresponds to full pass-through in the long run (here defined

as 24 months), as the right-hand-side variable of interest corresponds to the size of the cost shock

experienced by industry i; β0 = 1 corresponds to full pass-through on impact, consistent with

completely flexible pricing.

It is also possible to separately analyze the price pass-through of direct (first-order) expo-

sure and indirect (higher-order) exposure to cost shocks with a slightly modified version of the

preceding specification:

∆Pi,t =λt +
24∑

h=−6

ηh[s
Z ]i∆PZ,t−h +

24∑
h=−6

ρh[(I −Φ)−1sZ − sZ ]i∆PZ,t−h

+
24∑

h=−6

γh[(I −Φ)−1diag(sLi )∆wt−h]i + ϵi,t.

(20)

Here, the network share of industry i’s costs that are due to commodity/commodities is decom-

posed into the direct and indirect components of the network cost share. The coefficients ηh cor-

respond to the extent of pass-through from direct exposure to cost shocks; the coefficients ρh cor-

respond to the extent of pass-through from indirect exposure to cost shocks.

C.3.2 Results

We begin by using all variation in oil prices from 1997 onward, running the regression specification

given by Equation (19). The 1997 BEA input-output table is the first table with BEA codes based

on the NAICS classification, and most all BLS PPI series have become available in NAICS format

by 1997 as well.23

The red coefficients in Panel 1 of Figure G.1 plot the results of this specification month-by-

month. There is no evidence of any pre-trend in the months prior to impact of the shock. Then, in

the month of impact, roughly 50% of the shock is passed through into prices. Over the course of

the next several months, pass-through increases gradually until reaching 100%.

23Both the BLS and the BEA recommend against attempting to merge NAICS codes with the older, pre-1997 SIC
codes, as the underlying industries the codes describe – even at the most granular level – are fundamentally not com-
parable in many cases.
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There are, of course, a wide variety of commodities other than oil which are also of substan-

tial importance in US supply chains. Consequently, we pool all commodities apart from oil and

compute the network share in all other commodities by industry. Using all price variation non-oil

commodities since 1997, we then run a modified version of the previous regression. The blue coef-

ficients in Panel 1 of Figure G.1 plot the results of this specification using non-oil commodity price

variation instead of oil price specification. The results are nearly identical in both the time pattern

and extent of pass-through, with some evidence of slower pass-through for non-oil commodity

price movements.

Panel 2 of Figure G.1 includes both the oil price variation and non-oil commodity price varia-

tion as separate terms in the same regression to deal with any potential omitted variable bias. The

results scarcely change relative to the top panel, suggesting that correlated movements in non-oil

commodity prices are not driving our findings for oil price movements (or vice versa).

One might worry the results are driven by full pass-through of commodity price movements

to direct users, with relatively little pass-through deeper into the network. Figure G.2 plots the

results of the regression specification given by Equation (20), decomposing total network expo-

sure to oil price variation into direct and indirect exposure. Panel 1 again focuses on all oil price

variation. Here, the red coefficients correspond to pass-through of direct exposure to oil shocks,

whereas the blue coefficients correspond to pass-through of indirect exposure through the net-

work to oil shocks (i.e., total network exposure minus direct exposure). The results reveal no

evidence of substantial pre-trends. That is, in the months prior to an oil price movement, coeffi-

cients are not substantially positive or negative. In month 0, on impact of the shock, a high degree

of direct pass-through occurs (approximately 75%). One month after impact of the shock, addi-

tional direct pass-through occurs (approximately 25%). At this point, after just a couple months,

full pass-through has already occurred. This contrasts with the pattern of indirect pass-through,

of which very little occurs on impact. Instead, pass-through phases in slowly over the course of

eight months or so.24

Using all variation in oil prices and non-oil commodity prices helps demonstrate that full

pass-through is not merely unique to a specific context. However, it may raise endogeneity con-

cerns if, for example, oil price changes correlate with other variables that also disproportionately

affect prices in sectors with a high network oil share. In particular, our modeling framework im-

plies that changes in TFP are in the error term of these regressions. By using more exogenous

sources of oil price variation that are unlikely to be correlated with movements in TFP, we aim to

minimize concerns relating to omitted-variable-bias. Consequently, Panel 2 of Figure G.2 turns to

the oil shock series of Kanzig (2021). The shock series is formed through high-frequency identi-

fication of the effects of OPEC announcements on oil prices. We use these shocks in a two-stage

least-squares instrumental variables version of the regressions in the previous section – instru-

24Dynamic treatment effect heterogeneity predicted by the model suggests that, if anything, this is an underestimate
of the speed of pass-through. We defer a more in-depth discussion to our structural empirics using the lag structure
implied by the model.
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menting the change in the oil price with Kanzig’s shock series. Using this variation, pass-through

is again 100%, but the dynamics are slightly different – suggesting faster pass-through than we

saw in the OLS variants of the regression.

C.3.3 Heterogeneity

We similarly modify our heterogeneity specification by adding leads and lags to study the time

path of downstreamness’ effects on pass-through. Specifically,

∆Pi,t =λt +

24∑
h=−6

βh

[
(I −Φ)−1 sZ

]
i
∆PZ,t−h

+

24∑
h=−6

β̃h

[
(I −Φ)−1 sZ

]
i
∆PZ,t−h × heterogeneityi

+
24∑

h=−6

γh[(I −Φ)−1diag(sLi )∆wt−h]i + ϵi,t

Figure G.3 plots the impulse response function corresponding to the specification in column

(4) of table 2. It is apparent that the further downstream firms have delayed pass-through relative

to upstream ones. After a year has passed, however, full pass-through has been realized by both

upstream and downstream firms, and downstreamness loses its predictive power; the value of

the interaction term becomes indistinguishable from zero. Because this IRF corresponds to the

specification in column (4), the interpretation is that, if two industries have the same frequency of

price adjustment, but one is more downstream, the more downstream industry has slower pass-

through.

C.3.4 Robustness

As we did for the main regression table, it is possible to replicate these dynamic results after

excluding the wage control, controlling for gas/electricity exposure, and using cost shares that

exclude capital from the denominator. This is done in Figures G.4, G.5, and G.6, respectively.

C.3.5 Permutation Tests

In order to confirm the validity of our standard errors, as an alternative method of generating

p-values, we apply permutation tests to our main specifications. In particular, we randomly per-

mutate treatment across industries 1000 times. We run our main specifications on these placebo

variations and compare the magnitude of the coefficients resulting from these regressions with the

magnitude of the actual coefficients, yielding information on the likelihood with which the actual

coefficients resulted from pure chance. In particular, the permutation tests are performed on the

cumulative one-year pass-through coefficient. Panels 1a and 1b of Figure G.7 correspond to the re-
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gression specification given by Equation (19) measuring pass-through of total network exposure.

Panel 1a uses all oil price variation, whereas Panel 1b uses the Kanzig IV variation. In both cases,

the p-value of the actual regression coefficient is p < 0.001. Panels 2a and 2b correspond to the

regression specification given by Equation (20) measuring pass-through of direct and indirect net-

work exposure separately. Again, both direct and indirect network exposure are strongly robust

to the permutation test, yielding p-values below 1% in all cases.

C.4 Reduced-Form Empirics using Local Projections

We slightly modify our dynamic specifications from the preceding section to run them as local

projections instead and confirm that the results are similar. In particular, we run

logPi,t+k− logPi,t = λt+
24∑

h=−6

βh[(I−Φ)−1sZ ]i∆PZ,t−h+
24∑

h=−6

γh[(I−Φ)−1diag(sLi )∆wt−h]i+ ϵi,t,

repeatedly for each k from -6 through 24, plotting the coefficient β0 in each case.

Figures G.8 and G.9 exhibit qualitatively similar behavior to the parallel Figures G.1 and G.2

from the preceding section. The only difference is that they are somewhat more ill-behaved after

month 12, exhibiting slight decline in the cumulative pass-through coefficient.

C.5 Binscatter Evidence that Visualizes Identifying Variation

To illustrate that our finding of full pass-through is not merely an artefact of complex regres-

sion specifications, we plot some simple binscatters of industry price changes on industry oil cost

changes. We demean these variables by their average value in each time period to maximize con-

sistency with our regressions, which include a time fixed effect. We then split the data into 100

quantiles of industry oil cost changes and show the results for a variety of time horizons. Fig-

ure G.10 shows that - regardless of whether one examines a one-month horizon, a three-month

horizon, a six-month horizon, or a one-year horizon - there is robust evidence of a high degree of

pass-through. In particular, the slope increases with the time horizon, and by the one-year hori-

zon, the slope of the line of best fit through the binscatter is approximately one, revealing evidence

of full pass-through.

These binscatters also reveal little to no evidence for heterogeneity on the size or sign of

cost shocks industries are exposed to. The slope does not appear to vary on either side of the

origin, nor does it appear to be steeper for larger shocks than smaller ones - at least in the overall

data. In Figure G.11, I split the sample of industries into upstream and downstream industries

(i.e., industries with below- and above-median measures of downstreamness). It is evident that

the upstream industries have no heterogeneity in pass-through on the sign of the cost shock they

experience, whereas the downstream industries to exhibit such a heterogeneity. pass-through is
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lower for positive cost shocks than negative ones. This is consistent with either a higher ability of

downstream industries to substitute across inputs in the face of price increases or a reluctance on

the part of downstream, consumer-facing industries to raise the ire of consumers through large or

frequent price increases.

C.6 Case Study Results

As an additional approach to isolating plausibly-exogenous variation in oil prices, we examine a

few case studies – major movements in oil prices known from the historical record to have been

unanticipated. To do so, we slightly modify our main regression specifications to make them more

suitable for case studies wherein price variation is driven by large narrative shocks. In a variant of

an event-study difference-in-differences specification, we regress the price change in an industry

on a time fixed-effect and the network share of the industry’s costs that are due to the commodity

or commodities of interest. Specifically,

t∑
j=0

∆Pi,j = λt + βt[(I −Φ)−1sZ ]i + ϵi,t (21)

where Pi,t denotes the price of industry i at time t,
∑t

j=0∆Pi,j denotes the cumulative change in

the price of industry i from some designated base period 0 through period t, λt is a time fixed-

effect, [(I − Φ )−1 sZ ]i represents the network cost share of commodity or commodities Z in in-

dustry i, and ϵi,t is an error term.25 Here, the estimates βt should eventually align with the change

in the commodity price under full pass-through in the long run (rather than being equal to 1 in

the long run). Concretely, if there is a cumulative
∑t

j=0∆PZ,j log-point increase in the price of

our commodity of interest, full pass-through and flexible pricing would imply a coefficient value

of βt =
∑t

j=0∆PZ,j . This regression specification is well-suited for case studies, as it allows us

to plot the values of βt for each time period t against the cumulative increase
∑t

j=0∆PZ,j in the

commodity price itself.

As before, it is possible to decompose the right-hand-side variable of interest into direct and

indirect exposure to cost shocks in order to study these separately:

t∑
j=0

∆pi,j = λt + ηt[s
Z ]i + ρt[(I −Φ)−1sZ − sZ ]i + ϵi,t (22)

We begin our case studies with the 1979 oil crisis. BLS PPI data for the Petroleum Refineries

industry – one of the most crucial links in the oil supply chain – does not exist for the earlier 1970s,

nor does PPI data for many other oil-consuming sectors; consequently, the 1979 shock is the earli-

25To ease the additional notational burden, we exclude general equilibrium wage controls in the case study specifi-
cations. As we discuss in Appendices C.1 and C.3, there are no meaningful differences in our results if we exclude the
wage controls from the regression.
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est we are able to analyze reliably. The shock occurred as a result of the 1979 Iranian Revolution.

In the aftermath of the 1973 oil shock, Iran had increased its oil production in order to dampen

the loss of oil exports from Arab nations to the West. Consequently, Iran became one of the most

important oil exporters to Western economies. With the overthrow of Shah Mohammad Reza

Pahlavi and the reconstitution of Iran as an Islamic Republic under Ayatollah Khomeini, Iranian

oil production underwent a massive decline and, even after a partial recovery, exports to Western

nations remained relatively low. This higher level of oil prices was thus mostly maintained until

OPEC increased production in the mid-1980s.

Panel 1 of Figure G.12 displays the regression coefficients originating from applying Equation

(22) to the 1977-82 period surrounding the 1979 oil shock. The black line plots the monthly average

spot price of West Texas Intermediate (WTI) crude oil. The red coefficients plot the extent of pass-

through for direct exposure to oil, whereas the blue coefficients plot the extent of pass-through

for indirect exposure to oil (i.e., network exposure minus direct exposure). As can be seen in the

figure, by the end of the period of our case study, the coefficients are statistically indistinguishable

from the black line representing the WTI spot price. In other words, both direct exposure and

indirect exposure through the production network to the 1979 oil shock is fully passed through

into industry prices. While standard error bars are wider on indirect pass-through relative to

direct pass-through, point estimates are similar. There does appear to be some evidence of a slight

lag in indirect pass-through.

We next turn to another case study: the 2014 oil shale boom. Despite some relief from the

all-time peak in oil prices of nearly $150 per barrel that occurred in 2008, oil prices remained near

all-time highs throughout the early 2010s. They averaged over $90 per barrel between 2011 and

2014. These high prices coupled with the low-interest-rate regime in the aftermath of the Great

Recession created a strong incentive for U.S. companies to invest in exploration and extraction of a

source of oil theretofore untapped due to its comparative expense: shale oil. As shale oil extraction

ramped up, US oil production expanded considerably in 2014-15, and OPEC announced that it

would continue pumping oil at the same volumes to maintain marketshare – and, some have

argued, to drive the shale oil producers out of business. This led to a considerable drop in oil

prices over 2014-15 to a lower level that was mostly maintained for several years thereafter.

Panel 2 of Figure G.12 displays the regression coefficients originating from applying Equation

(22) to the 2012-17 period surrounding the 2014-15 oil shale boom. As before, the black line plots

the monthly average spot price of West Texas Intermediate (WTI) crude oil, the red dots plot direct

pass-through coefficients, and the blue dots plot indirect pass-through coefficients. The takeaway

is the same: by the end of period of the case study, full pass-through of the shock into prices

has occurred – in the case of both direct and indirect exposure to the shock. Once again, there is

some evidence of a lag in the pass-through of indirect exposure to the shock; whereas the direct

pass-through coefficients track the price of WTI crude very precisely, the indirect pass-through

coefficients do not follow every small monthly variation but rather trace out a smoother curve
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that converges to the same point over time.

The final case study on which we focus is the 2020 COVID shock. During 2018 and 2019,

the price of oil averaged approximately $60 per barrel. In the early months of 2020, as it became

apparent that COVID was becoming a global pandemic and that many nations would respond

with large-scale shutdowns of economic activity in order to control the spread of the disease, the

price of oil plummeted, averaging $20 per barrel in April and May of that year. Prices even briefly

turned negative as producers scrambled to take production offline as soon as possible. However,

the recovery from the COVID recession proved to be quicker than many anticipated, and demand

for oil quickly rebounded while much of the productive capacity remained offline. Consequently,

prices began to rebound, reaching pre-COVID levels by early 2021 and exceeding $100 per barrel

by early 2022.

Panel 3 of Figure G.12 displays the regression coefficients originating from applying Equation

(22) to the 2019-22 period surrounding the 2020 COVID shock. Again, the black line plots the

monthly average spot price of WTI crude oil, the red dots plot direct pass-through coefficients,

and the blue dots plot indirect pass-through coefficients. Yet again, by the end of the period of the

case study, full pass-through has occurred in the case of both direct and indirect exposure to the

shock, and there is evidence of a lag in the pass-through of indirect exposure - the indirect pass-

through coefficients are smoothed over the depths of the downturn in March, April, and May of

2020.

D Appendix: Robustness of Structural Estimation

In this appendix, we complete several robustness checks for our structural estimation. In D.1,

we include petroleum refineries in the analysis. In D.2, we use the average frequency of price

adjustment. In D.3, we compare pass-through speed to that found in our reduced-form dynamic

analysis. In D.4, we assess whether pass-through of large and small shocks is different. In D.5, we

report the results of our 2-step GMM procedure for non-oil commodities.

D.1 Including Petroleum Refineries

Our step 1 estimates including petroleum refineries are mf = 1 (SE = 0.248) and µ̂ = 1.162 (SE

= 0.095). These are very similar to our step 1 estimates without petroleum refineries. The results

from 2-step GMM, where we use the first step estimates to form an optimal weight matrix, are

also quite similar regardless whether we include or exclude petroleum refineries: mf = 1 (SE =

0.095), and µ̂ = 1.019 (SE = 0.040). Just as before, the only difference in estimates is a smaller value

for the markup and smaller standard errors.

Now, the visualization of our results may change with petroleum refineries because they are

such an outlier. So we reproduce our main figures displaying our oil results in Figures G.13, G.14,

G.15, and G.16. In all four cases, we see similar findings to those discussed in the paper, where
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refineries were excluded.

D.2 Using the Average Frequency of Price Adjustment

This section uses the GMM-optimal model but sets θi = θ, the average frequency of price adjust-

ment – associated with an average duration of industry prices of 5 months. We plot our results in

Figure G.17.

We see suggestive evidence that there is more pass-through in the data relative to the model

initially, followed by strong evidence of less pass-through in the data relative to the model in later

periods. This follows in part because the industries most exposed to oil have high frequencies

of price adjustment. We also note that the IRF is essentially flat starting around month 10. This

means that the β’s estimated in regression (10) are, on average, 0 starting in month 10; assuming a

homogeneous θ therefore means that cross-sectional variation in the model’s pass-through coeffi-

cients is broadly not useful for predicting which industries will change prices more in response to

oil during those periods.

D.3 Pass-through Speed Compared to Reduced Form Dynamics

Now, we address the question of why pass-through seems so much slower in our structural anal-

ysis than it did in our analysis from our dynamic reduced-form section C.3, where our shift-share

did not use horizon-specific shares. Upstream industries are the most affected by oil shocks – they

experience the largest price changes in response – and they have the fastest frequencies of price ad-

justment on average. Therefore, they primarily identify the first several lags in regression (10), the

main shift-share regression equation underlying our GMM procedure. The bulk of model-implied

variation in later lags comes from more downstream industries, which on average increase prices

less and more gradually in response to oil price movements.

These downstream industries are not as responsible for identifying any reduced-form coeffi-

cients in section 5, since the reduced-form regressions do not have dynamic, model-defined treat-

ments and therefore maximize fit (minimizing the sum of squared error) by prioritizing fit of up-

stream industries whose prices are more quickly and substantially moved by oil price changes.

We demonstrate this formally by simulating data from the GMM-optimal model. Formally,

we feed observed oil price movements starting in January 1997 into regression equation (10), set-

ting ϵi,t = 0 for all i, t and λt = 0 for all t, generating simulated price changes for every industry,

∆PSimi,t . We then re-run our reduced form regression (20) using these simulated outcomes. The re-

sults are shown in Panel 2 of Figure G.18. We see that we nearly replicate the result found earlier in

the paper, shown again for convenience in Panel 1. This formalizes the intuition that the dynamics

in reduced-form are heavily biased towards showing pass-through that is too fast.
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D.4 Pass-through of Large versus Small Shocks

While we have assumed time-dependent pricing, a model with state-dependent pricing might find

that industries pass through large movements in commodity prices faster than small movements

in commodity prices. We partition monthly oil price movements into two sets: those whose abso-

lute size is larger than the median absolute size of oil price movements starting in 1997, and those

whose absolute size is smaller. Define the corresponding dummy variable Larget = 1{|∆POil,t| >
Med(|∆POil,t|)}. Our regression of interest is a simple heterogeneity analysis on our main struc-

tural regression equation (10):

∆Pi,t = λt +
H∑
h=0

βlarge,h(α)Largetpassthroughi,h(α)∆PZ,t−h

+

H∑
h=0

βsmall,h(α)(1− Larget)passthroughi,h(α)∆PZ,t−h + ϵi,t.

(23)

By a result from Auclert et al. (2022), if state-dependent pricing is operative, we should find

evidence of faster pass-through for large shocks than predicted under our GMM-optimal time-

dependent pricing model. In Figure G.19, we show that the GMM-optimal model retains good fit

for both large and small oil price movements, and there is no statistically detectable difference in

pass-through of small versus large shocks.

D.5 2-Step GMM for Non-oil Commodities

We show that our results for non-oil commodities are robust to a 2-step GMM procedure, where

we use the results from our 1-step GMM procedure to form an optimal weight matrix and re-run

GMM re-weighting the moments using this matrix. The results are shown in Figure G.20.

E Appendix: Incorporating Futures

In this appendix, we first extend our model solution to incorporate use of commodity futures

to measure expected commodity spot prices in the future. We then test additional moments of

interest, such as whether firms pass-through expected changes in futures prices, holding the spot

price constant. We view this as a method of asking whether “forward-guidance” has predictive

power for firm pricing.

Finally, we return to our analysis permitting an arbitrary lag structure, using a regression

equation like those in Appendix C.3. Again, we confirm that firms pass through changes in ex-

pected future oil prices, holding changes in the spot price constant.
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E.1 Model Solution with Futures

As we showed in detail in Appendix A.2, the model can be written as

Etx̂t+1 = Bxx̂t +Beêt,

where

x̂t =

[
p̂t−1

p̂t

]
, êt =


ât

ŵt

p̂Z,t

 ,
and the matricesB come from the equation26

mfEtp̂t+1 = diag

(
1 + θ2i δ

θiδ

)
p̂t−

1

δ
p̂i,t−diag

(
(1− θiδmf )(1− θi)

θiδ

)
(Φp̂t+s

Z p̂Z,t+diag(sLi )ŵt−ât)

and using the typical method to create a first-order difference equation from the above second-

order equation. If the eigendecomposition of Bx is Bx = V ΛV −1, and we define x̃t = V −1x̂t and

B̃e = V −1Be, then

Et

[
x̃1,t+1

x̃2,t+1

]
=

[
Λ1 0

0 Λ2

][
x̃1,t

x̃2,t

]
+

[
B̃1

B̃2

]
êt,

where the elements of the diagonal matrix Λ1 are all greater than 1. Denote

V =

[
V11 V12

V21 V22

]
.

Proposition 4. The solution for prices as a function of the state variable (lagged prices) and the shock vector
is

p̂t = V22V
−1
12 p̂t−1 − (V21 − V22V

−1
12 V11)x̃1,t,

where

x̃1,t =
∞∑
j=0

(
Λ−1
1

)j+1
B̃1Et[êt+j ].

Now, when we shock oil (and oil futures) we will be setting all wage and TFP dimensions of the shock êt+j
equal to 0. In this case,

x̃1,t =

∞∑
j=0

(
Λ−1
1

)j+1
B̃1,ZEt[p̂Z,t+j ],

where the column vector B̃1,Z is the appropriate subset of the matrix B̃1, namely all rows and the last
column, given the placement of p̂Z,t in êt.

26We restrict here tomf ∈ (0, 1] so that we can divide by it. This isn’t necessary if we instead wrote the model without
expectations of x̂t+1 on the left-hand side, but I did it this way first, and it doesn’t affect our ability to solve or estimate
the model, since the solution is still well-defined for very small values of mf .
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Now, it is instructive to write the solution in first-differences form. The price component is

straightforward, but the first-difference of x̃1,t is more interesting. We have

x̃1,t − x̃1,t−1 =
∞∑
j=0

(
Λ−1
1

)j+1
B̃1,Z (Et[pZ,t+j ]− Et−1[pZ,t−1+j ]) ,

where we can write pZ without a hat because the steady-state component is not time-varying. The

difference in expectations can be decomposed as follows:

Et[p̂Z,t+j ]− Et−1[p̂Z,t−1+j ] = Et[∆PZ,t+j ] + (∆Et)[p̂Z,t−1+j ].

In this formulation, we see that the relevant oil shocks for pricing behavior include the current and

expected future changes in oil prices, Et[∆PZ,t+j ], as well as the news received about oil prices,

measured by the changes in expectations (∆Et)[p̂Z,t−1+j ].

Now we will assume log commodity futures prices satisfy fZ,t,m = −cm +Et[pZ,t+m], so that

the log price of an oil future at period twith maturitym is the period t expectation of log oil prices

m months in the future, minus a composite risk-premium/opportunity cost, cost of carry, and

convenience yield component cm which may vary with the maturitym but not the time period t.27

We say c0 = 0 because the futures price at a maturity of 0 is known and equal to the spot price. It

follows from these assumptions that

fZ,t,m−1 = fZ,t−1,m + cm − cm−1 + (∆Et)[pZ,t+m−1],

so that the futures price at maturity m − 1 today is what the market thought the price would

be last period, plus a change due to the maturity evolving (which alters the total cost of carry,

convenience yield, etc.), plus any news received about the oil price. We can apply our assumption

to derive

Et[p̂Z,t+m]− Et−1[p̂Z,t−1+m] = fZ,t,m + cm − (fZ,t−1,m + cm)

= fZ,t,m − fZ,t−1,m.

Therefore, under our assumption that cm is not time-varying, the change in futures prices at fixed

maturities can be used to measure our difference of interest. So

∆x̃1,t =

∞∑
m=0

(
Λ−1
1

)m+1
B̃1,Z∆fZ,t,m,

where the time difference operator holds the maturity fixed.

Proposition 5. Under our assumption about how commodity futures prices relate to expectations of future

27This assumption neglects time-varying risk free rates, which are not a major driver of the variation over this period,
and embeds some limits to arbitrage.

79



commodity prices, the solution in Proposition 4 can be written in first-differences as

∆pt = V22V
−1
12 ∆pt−1 − (V21 − V22V

−1
12 V11)

∞∑
m=0

(
Λ−1
1

)m+1
B̃1,Z∆fZ,t,m.

Now, we can add a lag structure when we perform our empirical tests. Define A1 = V22V
−1
12

and A2 = −(V21 − V22V
−1
12 V11). Then

∆pt = A1∆pt−1 +A2

∞∑
m=0

(
Λ−1
1

)m+1
B̃1,Z∆fZ,t,m

= A2
1∆pt−2 +A1A2

∞∑
m=0

(
Λ−1
1

)m+1
B̃1,Z∆fZ,t−1,m

+A2

∞∑
m=0

(
Λ−1
1

)m+1
B̃1,Z∆fZ,t,m,

and, more generally,

∆pt = AH+1
1 ∆pt−(H+1) +

H∑
h=0

Ah1A2

∞∑
m=0

(
Λ−1
1

)m+1
B̃1,Z∆fZ,t−h,m.

We have found that, for H large enough, the state variable ∆pt−(H+1) should not matter much for

for pricing in period t (formally, AH+1
1 ≈ 0), unless it is explosively large (which is not the case in

the data). Therefore our main pass-through object for empirical work will be

Definition 4. Under model calibration α, prices in industry i react to a change in the commodity future h
periods ago at maturity m according to

passthroughi,h,m(α) =
[
A1(α)

hA2(α)
(
Λ1(α)

−1
)m+1

B̃1,Z(α)
]
i
.

The following corollary results:

Corollary 2. For large H ,

∆pi,t ≈
H∑
h=0

∞∑
m=0

passthroughi,h,m(α)∆fZ,t−h,m.

In pratice, we will let the highest maturity be 60 months. It is also the case that
(
Λ1(α)

−1
)61 ≈

0, so there is likely no loss from this cut-off in practice, unless the changes in oil futures prices were

exploding with the maturity – this is not the case in the data.
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E.2 Empirical Setup

Before incorporating futures, we assumed that all oil price changes were fully persistent. The

model gave us predictions, for each industry i, about how much the price should change in re-

sponse to a unit oil price change h periods ago, which we denoted passthroughi,h(α), where α

was the vector of calibration parameters used in the model. We tested these model predictions

using the regression

∆Pi,t = λt +

H∑
h=0

βh(α)passthroughi,h(α)∆PZ,t−h + ϵi,t.

If the model under calibration α was correctly specified, and the OLS was unbiased (the argu-

ment for which relies on shift-share identification assumptions for an exogenous shifter), then we

should have β̂h(α) = 1 for all h. Our GMM estimated α to get these β’s as close as possible to

1.

After incorporating futures, the model instead delivers predictions passthroughi,h,m(α): how

much industry i should change prices in response to a unit shock to oil prices h periods ago at

maturity m. This is a rich object: fix h = 0 and consider m = 0 and m = 1. For m = 0, the object is

the predicted effect of increasing oil prices by one unit today, holding future prices constant (i.e.,

an immediately and fully mean-reverting shock). For m = 1, the object is the predicted effect of

increasing oil futures at a 1 month horizon by one unit, holding current and other future prices

constant (i.e., an immediately and fully mean-reverting shock expected to occur next month). So

the old pass-through prediction is passthroughi,h(α) =
∑

m≥0 passthroughi,h,m(α).

A full test of the model incorporating futures would be

∆Pi,t = λt +
H∑
h=0

M∑
m=0

βh,m(α)passthroughi,h,m(α)∆fZ,t−h,m + ϵi,t,

where ∆fZ,t−h,m is the change in the commodity futures price in period t−h holding the maturity

m fixed (m = 0 denotes the change in the spot price, whereas m > 0 is the change in a commodity

future). If we include 24 lags and 60 months of futures data, this is 25× 61 treatments, yielding far

too many β’s to estimate. But thinking about why this is so complicated is instructive: the model

predicts that, in period t, prices are still responding to, e.g., movements in the 40 months oil future

10 months ago.

This regression is infeasible for a typical number of lags and maturities because it yields

(H + 1) × (M + 1) β’s to estimate. We now refer back to the main body of the paper for how we

collapse the large number of β’s above into a smaller set more feasible to estimate.
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E.3 Reduced-form Test of Forward-lookingness about Shock Persistence

We now incorporate futures exposure into our regression setup from Section C.3 of the paper. This

section used an arbitrary lag structure with industries’ long-run exposures to commodity shocks,

rather than using the dynamic model’s implied lag structure for industry pass-through. We alter

regression equation (19) to include an additional set of terms that should be predictive of industry

price changes if industries incorporate commodity futures data when forming expectations about

future commodity prices. This regression is most closely related to the fully structural regression

test captured in regression 12.

∆Pi,t = λt +

24∑
h=−6

βh,Impact[(I −Φ)−1sZ ]i∆PZ,t−h

+

24∑
h=−6

βh,Forward[(I −Φ)−1sZ ]i∆fZ,t−h,m + ϵi,t.

We use the change in the one-year maturity future, so m = 12. When pooling non-oil commodi-

ties, we weight changes in commodity futures by the commodity weights underlying the S&P

commodity index.

We plot our results for oil in the left panel of Figure G.21. We see very similar results to

those found in Figure 9, with oil price movements only translating into (lasting) price increases

further down the supply chain when the oil price movements are expected to persist. We also plot

our results for non-oil commodities in the right panel of Figure G.21. In stark contrast, we find

very little evidence of differential pass-through for different movements in the non-oil commodity

future curve, holding movements in spot prices constant.

F Appendix: Additional Empirics for Application

In this section, we discuss further details for the application of our model. In F.1, we outline how

to incorporate commodity futures into measured network oil inflation. In F.2, we estimate the

aggregation intercept. In F.3, we show that oil price movements have no effect on the Federal

Funds Rate. In F.4, we show how oil price movements pass through to aggregate inflation in a

fully specified model. In F.5, we show the fit of our GMM-optimal model for the PCE-weighted

average industry. In F.6, we subtract network oil inflation from aggregate PCE inflation.

F.1 Incorporating Oil Futures Data

The formula for predicting inflation changes from formula 13 to

Π̂t = Intercept+
∑
i

PCESharei

H∑
h=0

M∑
m=0

passthroughi,h,m(α̂)∆fZ,t−h,m, (24)

82



which is an intercept plus the prediction arising from our analysis in Appendix E. Recall that the

notation ∆fZ,t−h,m is the change in the futures price at a fixed maturity. The procedure determin-

ing the intercept, outlined below in Appendix F.2, can analogously be updated for use of futures.

Formally, just replace the industry shock

H∑
h=0

passthroughi,h(α̂)∆PZ,t−h

with
H∑
h=0

M∑
m=0

passthroughi,h,m(α̂)∆fZ,t−h,m,

for H and M suitably large, say H = 24 and M = 60, which is feasible using futures data.

F.2 Appendix: Regressions for Computing Aggregation Intercept

Recall that regression 10 tested our GMM-optimal model and was given by

∆Pi,t = λt +

H∑
h=0

βhpassthroughi,h(α̂)∆PZ,t−h + ϵi,t,

where α̂was the GMM-optimal calibration. The variant of this regression that allows us to assess

the effects of oil price increases on a hypothetical industry with no network exposure to oil merely

removes the time fixed-effect and adds interaction terms as required:28

∆Pi,t = α+

24∑
h=0

δ1,hpassthroughi,h(α̂) +

24∑
h=0

δ2,hpassthroughi,h(α̂)∆PZ,t−h +

24∑
h=0

β̃h∆PZ,t−h + ϵi,t.

(25)

Then
∑

h β̃h is the effect of a unit oil price increase on prices in a sector with no network exposure

to the commodity, i.e. the aggregation intercept.

Now, because this regression uses time-series variation, an instrument with valid identifica-

tion for the time series is required. We therefore instrument oil price changes with the Kanzig

instrument and the interaction between the network exposures and the oil price changes with the

interaction between the network exposures and the Kanzig instruments at the appropriate hori-

zons. Our results are depicted in Panel 1 of Figure G.22. We see that, as before, with the exception

of two values for h, we cannot reject that
∑

h β̃h = 0.

We can alternatively use the dynamic forms of our reduced-form regressions to compute the

intercept, though we prefer the approach using the GMM-optimal dynamics from above. Recall

28The δ1 terms are optional.
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that regression 19 was

∆Pi,t = λt +

24∑
h=−6

βh[(I −Φ)−1sZ ]i∆PZ,t−h +

24∑
h=−6

γh[(I −Φ)−1diag(sLi )∆wt−h]i + ϵi,t.

The variant of this regression that allows us to assess the effects of oil price increases on a hypo-

thetical industry with no network exposure to oil is therefore

∆Pi,t = α+ δ1[(I −Φ)−1sZ ]i +
24∑

h=−6

δ2,h[(I −Φ)−1sZ ]i∆PZ,t−h +
24∑

h=−6

β̃h∆PZ,t−h + ϵi,t. (26)

Then
∑

h β̃h is the effect of a sequence of oil price increases on prices in a sector with no network

exposure to the commodity. Now, because this regression uses time-series variation, an instrument

with valid identification for the time series is required. We therefore instrument oil price changes

with the Kanzig instrument and the interaction between the network exposure and the oil price

changes with the interaction between the network exposure and the Kanzig instrument. Our

results are depicted in Panel 2 of Figure G.22. We see that, with the exception of a couple pre-

periods, we cannot reject that
∑

h β̃h = 0.

F.3 No Effect of Oil Price Movements on the Federal Funds Rate

We regress changes in the federal funds rate on distributed lags of the Kanzig shocks to establish

whether exogenous oil price increases (decreases) lead to increases (decreases) in the federal funds

rate. We find no statistically significant evidence of this effect and negative point estimates. The

results are shown in Figure G.23. We also show results for a regression of changes in the FFR on

distributed lags of oil price changes, instrumented with the Kanzig shocks. This approach leads

to the same result.

F.4 Fully Closed Model’s Implications for the Intercept

In appendix section A.4, we outlined the assumptions for our fully closed macroeconomic model

that includes a household and a Taylor rule. Rather than computing the intercept empirically, we

can simply plot the effect of an oil shock on aggregate inflation in that model. It includes many

of the potentially correlated general equilibrium effects we discussed as potentially problematic

for our supply-side model: movements in the aggregate wage or in monetary policy that would

primarily appear in the time fixed effect our of reduced-form and structural analyses.

We plot the results in Figure G.24. The model leads to results very similar to our findings

from Figure 13. If anything, they are slightly higher effects than we found in Figure 13. The reason

is that, while the Taylor rule implies contractionary monetary policy in response to the inflation

resulting from the oil shock (we have no output gap in our Taylor rule), enough substitution to
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labor from the intermediate input bundle is possible throughout the network that aggregate wages

rise by more than enough to offset the contractionary monetary policy.

F.5 Robustness: Model Fit for the PCE-weighted Average Industry

Before computing network oil inflation, we apply an important robustness check: is the model fit

for our GMM-optimal calibration α̂ still good for the PCE-weighted average industry? Our GMM

aimed at optimizing fit for the unweighted average industry. To assess this, we can compare the

IRF of PCE inflation to an oil shock in the model,

IRFH =
∑
i

PCESharei

H∑
h=0

passthroughi,h(α̂).

with the IRF in the data,

IRFDataH =
∑
i

PCESharei

H∑
h=0

β̂h(α̂)passthroughi,h(α̂),

where β̂h(α̂) was computed as in our structural estimation, using regression equation 10.

The results are shown in Figure G.25. We see that model fit remains good for the PCE-

weighted average industry, even though fit was optimized for the equally weighted average in-

dustry.

F.6 Removing All Oil Inflation from Aggregate Inflation

Having confirmed that our measures of network oil inflation pass through to official PCE infla-

tion, we show how much aggregate inflation is changed if the entire contribution of oil prices to

aggregate inflation is removed. We subtract the components of oil-induced inflation in gasoline

prices and non-gas prices from official PCE inflation, showing our results in Figure G.26.

In Panel 1, we see that the inflation series purged of the network contribution of oil main-

tains the interpretation that 1970s/80s inflation was not driven mechanically by oil. Note that we

cannot say whether oil was at least partially responsible for causing runaway inflation expecta-

tions, which may generate movements in aggregate inflation beyond those mechanically caused

by network oil inflation. In Panel 2, we focus on the COVID period. Early in COVID, we see

that there was a spike in inflation if network oil inflation is removed, which reflects that there

should have been much less inflation if the large oil price decline early in COVID fully passed

through to aggregate inflation and no other prices changed. After the large oil price decline early

in COVID, there was a large run-up of oil prices. We see that removing this component from of-

ficial PCE inflation does not change the finding that inflation increased substantially over 2021,

but it does reduce the overall amount of year-over-year inflation by summer 2022 to 5 percentage
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points from above 6 percentage points. Thereafter, official PCE inflation and oil prices began to

decline, but our measure of underlying inflation continues to increase through the latter half of

2022, suggesting that the apparent decrease in inflation in that period was entirely driven by the

network effects of the oil price decreases. We emphasize that our analysis is silent about whether

the oil price movements during the COVID crisis are demand or supply driven and whether they

played a role in causing inflation expectations to become unanchored.
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G Appendix Tables and Figures

Table G.1 – Pass-through Regressions: Dropping Time Fixed Effects

Panel 1: One Month Horizon

Panel 2: One Year Horizon

Note: *** p < 0.01, ** p < 0.05, * p < 0.10. This table shows the results of regressions corresponding to Equation (8),
except with the time fixed effects dropped. Columns (1) and (2) focus on all oil price variation from 1997-2022. Columns
(3) and (4) focus on oil price variation induced by Kanzig’s (2021) OPEC shock series. Column (5) focuses on non-oil
commodity price variation from 1997-2022. Standard errors are clustered by industry. We find that pass-through is far
below the full pass-through benchmark of 1 over a one-month horizon. More pass-through accumulates over a one-
year horizon.
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Table G.2 – Pass-through Regressions: Dropping Wage Control Variable

Panel 1: One Month Horizon

Panel 2: One Year Horizon

Note: *** p < 0.01, ** p < 0.05, * p < 0.10. This table shows the results of regressions corresponding to Equation (8),
except with the wage control variable dropped. Columns (1) and (2) focus on all oil price variation from 1997-2022.
Columns (3) and (4) focus on oil price variation induced by Kanzig’s (2021) OPEC shock series. Column (5) focuses
on non-oil commodity price variation from 1997-2022. Standard errors are clustered by industry. We find that pass-
through is far below the full pass-through benchmark of 1 over a one-month horizon. More pass-through accumulates
over a one-year horizon.
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Table G.3 – Pass-through Regressions: Pass-through into Wages

Panel 1: One Month Horizon

Panel 2: One Year Horizon

Note: *** p < 0.01, ** p < 0.05, * p < 0.10. This table shows the results of regressions corresponding to Equation (8),
except with the change in industry wages rather than the change in industry prices on the left-hand-side and the wage
control variable dropped. Columns (1) and (2) focus on all oil price variation from 1997-2022. Columns (3) and (4)
focus on oil price variation induced by Kanzig’s (2021) OPEC shock series. Column (5) focuses on non-oil commodity
price variation from 1997-2022. Standard errors are clustered by industry. We find no consistent evidence of an effect
of network oil cost changes on industry wages.
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Table G.4 – Pass-through Regressions: Adding TFP Control Variable

Panel 1: One Month Horizon

Panel 2: One Year Horizon

Note: *** p < 0.01, ** p < 0.05, * p < 0.10. This table shows the results of regressions corresponding to Equation (8),
except with a TFP control variable added. Columns (1) and (2) focus on all oil price variation from 1997-2022. Columns
(3) and (4) focus on oil price variation induced by Kanzig’s (2021) OPEC shock series. Column (5) focuses on non-oil
commodity price variation from 1997-2022. Standard errors are clustered by industry. We find that pass-through is far
below the full pass-through benchmark of 1 over a one-month horizon. More pass-through accumulates over a one-
year horizon.
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Table G.5 – Pass-through Regressions: Adding Network Gas & Electricity Cost Change Control

Panel 1: One Month Horizon

Panel 2: One Year Horizon

Note: *** p < 0.01, ** p < 0.05, * p < 0.10. This table shows the results of regressions corresponding to Equation
(8), except with a control for network gas/electricity cost change added. Columns (1) and (2) focus on all oil price
variation from 1997-2022. Columns (3) and (4) focus on oil price variation induced by Kanzig’s (2021) OPEC shock
series. Column (5) focuses on non-oil commodity price variation from 1997-2022. Standard errors are clustered by
industry. We find that pass-through is far below the full pass-through benchmark of 1 over a one-month horizon. More
pass-through accumulates over a one-year horizon.
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Table G.6 – Pass-through Regressions: Cost Shares without Capital in Denominator

Panel 1: One Month Horizon

Panel 2: One Year Horizon

Note: *** p < 0.01, ** p < 0.05, * p < 0.10. This table shows the results of regressions corresponding to Equation
(8), except with cost shares computed without capital in the denominator. Columns (1) and (2) focus on all oil price
variation from 1997-2022. Columns (3) and (4) focus on oil price variation induced by Kanzig’s (2021) OPEC shock
series. Column (5) focuses on non-oil commodity price variation from 1997-2022. Standard errors are clustered by
industry. We find that pass-through is far below the full pass-through benchmark of 1 over a one-month horizon. More
pass-through accumulates over a one-year horizon.
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Table G.7 – Heterogeneity on Other Plausible Correlates of Price Pass-through

Note: *** p < 0.01, ** p < 0.05, * p < 0.10. The outcome variable of this table is the month-over-month change in
industry prices. Column (1) uses all oil price variation. Column (2) is an IV specification using the Kanzig oil shock
series. Column (3) uses all non-oil commodity price variation. Standard errors are clustered by industry. We find that
the interaction with downstreamness remains significant - and of similar or greater magnitude - after the addition of
other factors that could plausibly affect pass-through.
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Figure G.1 – Month-by-Month pass-through of Oil & Non-Oil Commodity Price Changes

Panel 1: Separate Regressions

Panel 2: Joint Regression

Note: The left panel plots two separate regression specifications, both corresponding to Equation (19), which entails
regressing an industry’s price changes on that industry’s cost changes. Red (circle) coefficients plot monthly price
pass-through of network exposure to oil price changes; blue (triangle) coefficients plot monthly price pass-through of
network exposure to non-oil commodity price changes. The right panel includes these two separate sets of regressors
in the same regression. Both plots are consistent with full but gradual pass-through of commodity price movements to
industry prices.
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Figure G.2 – Month-by-Month pass-through of Oil Price Changes: Direct vs. Indirect

Panel 1: All Variation

Panel 2: Kanzig Variation

Note: Regression specifications correspond to Equation (20), which entails regressing an industry’s price changes on
that industry’s oil cost changes - separated into direct, first-order oil cost changes and indirect, higher-order oil cost
changes that filter through the production network. Red (circle) coefficients plot monthly price pass-through of first-
order exposure to crude oil price shocks; blue (triangle) coefficients plot monthly price pass-through of second- and
higher-order network exposure to crude oil price shocks. The regression in the left panel uses all variation in oil prices;
the regression in the right panel uses the Kanzig (2021) variation stemming from high-frequency identification of the
effects of OPEC announcements on oil prices. Both plots are consistent with full pass-through of oil price movements
to industry prices, with slower pass-through when exposure is indirect.
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Figure G.3 – Month-by-Month pass-through of Oil Price Changes: Upstream vs. Downstream
Industries

Panel 1: Upstream versus Downstream

Panel 2: Interaction Effect

Note: Regression specifications correspond to column (4) of Table 2, with shock terms interacted with our measure of
downstreamness. Consequently, the left panel plots monthly cumulative price pass-through of crude oil price shocks
for both upstream firms (10th percentile downstreamness) relatively close to commodity production/extraction and
downstream firms (90th percentile downstreamness) at or near the consumer side of the economy. The right panel plots
the cumulated interaction coefficient to establish that the difference is statistically-significant. Downstream firms have
delayed pass-through by several months relative to upstream firms, even conditional on frequency of price adjustment
– which is typically lower for firms more downstream from oil.
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Figure G.4 – Month-by-Month pass-through of Oil Price Changes

Panel 1: All Variation

Panel 2: Kanzig IV Variation

Note: Regression specifications correspond to Equation (20), which entails regressing an indus-
try’s price changes on that industry’s oil cost changes - separated into direct, first-order oil cost
changes and indirect, higher-order oil cost changes that filter through the production network.
Red coefficients plot monthly price pass-through of first-order exposure to crude oil shocks; blue
coefficients plot monthly price pass-through of second- and higher-order network exposure to
crude oil shocks. The specifications exclude the control for general equilibrium wage changes.
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Figure G.5 – Month-by-Month pass-through of Oil Price Changes

Panel 1: All Variation

Panel 2: Kanzig IV Variation

Note: Regression specifications correspond to Equation (20) with controls for gas and electricity
shock exposure. Red coefficients plot monthly price pass-through of first-order exposure to crude
oil price shocks; blue coefficients plot monthly price pass-through of second- and higher-order
network exposure to crude oil price shocks.
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Figure G.6 – Month-by-Month pass-through of Oil Price Changes

Panel 1: All Variation

Panel 2: Kanzig IV Variation

Note: Regression specifications correspond to Equation (20), albeit with alternative oil cost shares
that do not include capital in the denominator. Red coefficients plot monthly price pass-through
of first-order exposure to crude oil price shocks; blue coefficients plot monthly price pass-through
of second- and higher-order network exposure to crude oil price shocks.
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Figure G.7 – Results of Permutation Tests

Panel 1a: All Oil Variation, Total Network Panel 1b: Kanzig IV Variation, Total Network

Panel 2a: All Oil Variation, Direct/Indirect Panel 2b: Kanzig IV Variation, Direct/Indirect

Note: These plots display the results of 1000-repetition permutation tests on the 12-month cumu-
lative pass-through coefficient from the main specifications, as given by Equation (19) in the top
panel and (20) in the bottom panel.
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Figure G.8 – Local Projections: Month-by-Month pass-through of Oil & Non-Oil Commodity Price
Changes

Panel 1: Separate Regressions

Panel 2: Joint Regression

Note: The left panel plots two separate regression specifications, both corresponding to local projections regressions of
an industry’s cumulative price changes on that industry’s network cost changes. Red (circle) coefficients plot monthly
price pass-through of network exposure to oil price changes; blue (triangle) coefficients plot monthly price pass-through
of network exposure to non-oil commodity price changes. The right panel includes these two separate sets of regressors
in the same regression. Both plots are consistent with full but gradual pass-through of commodity price movements to
industry prices.

101



Figure G.9 – Local Projections: Month-by-Month pass-through of Oil Price Changes: Direct vs.
Indirect

Panel 1: All Variation

Panel 2: Kanzig Variation

Note: The left panel plots two separate regression specifications, both corresponding to local projections regressions
of an industry’s cumulative price changes on that industry’s oil cost changes - separated into direct, first-order oil
cost changes and indirect, higher-order oil cost changes that filter through the production network. Red (circle) coeffi-
cients plot monthly price pass-through of first-order exposure to crude oil price shocks; blue (triangle) coefficients plot
monthly price pass-through of second- and higher-order network exposure to crude oil price shocks. The regression in
the left panel uses all variation in oil prices; the regression in the right panel uses the Kanzig (2021) variation stemming
from high-frequency identification of the effects of OPEC announcements on oil prices. Both plots are consistent with
full pass-through of oil price movements to industry prices, with slower pass-through when exposure is indirect.
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Figure G.10 – Binscatters at Various Time Horizons

Panel 1: One Month Panel 2: Three Months

Panel 3: Six Months Panel 4: One Year

Note: These plots are 100-quantile binscatters displaying how (de-meaned) industry price changes
vary with (de-meaned) industry oil cost changes over different time horizons. Lines of best fit are
included. The slope of these lines can be interpreted as the fraction of cost increases that are passed
through into prices over the corresponding time horizon. Note that the slope increases with the
time horizon.
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Figure G.11 – Binscatters: Upstream vs. Downstream Industries

Panel 1: Upstream Industries

Panel 2: Downstream Industries

Note: These plots are 100-quantile binscatters displaying how (de-meaned) industry price changes
vary with (de-meaned) industry oil cost changes for upstream versus downstream industries.
Lines of best fit with a regression discontinuity at zero are included. For upstream industries (in-
dustries with below-median downstreamness), the slope is no different for negative and positive
cost shocks. For downstream consumer-facing industries (industries with above-median down-
streamness), there is evidence of lesser pass-through of cost increases.
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Figure G.12 – Case Studies

Note: Regression specification corresponds to Equation (22), which entails regressing the level of
an industry’s prices relative to some base period on the level of that industry’s oil costs - sepa-
rated into direct, first-order oil cost changes and indirect, higher-order oil cost changes that filter
through the production network. The black line plots West Texas Intermediate (WTI) crude oil
price, red coefficients plot cumulative industry price pass-through of direct/first-order exposure
to crude oil price changes, and blue coefficients plot cumulative industry price pass-through of in-
direct/residual network exposure to crude oil price changes. We confirm our findings of oil price
pass-through to industry prices as predicted by the network model. Therefore, our pass-through
findings do not vary substantially across large oil shock episodes.105



Figure G.13 – GMM Results for Industry Pass-through of Oil Price Changes (Including Refineries)

Note: Model fit is good for the GMM-optimal model, as shown in Panel 1. We provide intuition for how parameters
are identified and show results for alternative calibrations in Panels 2 and 3. Under alternative calibrations, model fit
is meaningfully worse. Panel 2 analyzes the case where firms respond myopically to oil price increases; for higher
lags, the myopic model predicts more pass-through than the data appears to warrant. Panel 3 assesses the case where
firms are competitive instead of pricing with some markup over marginal cost. The competitive case yields too little
pass-through at all horizons to be consistent with the data.

Figure G.14 – Industry Pass-through of Oil Price Changes, Upstream and Downstream (Including
Refineries)

Note: The GMM procedure optimized fit for the average industry (leftmost plot). We visualize how well the fit is for
the most upstream and downstream industries in the middle and rightmost plots, finding that model fit remains good.
Moreover, we see how much pass-through speed varies with downstreamness. Upstream industries achieve 75% of
long-run pass-through in just 6 months, while the average industry requires 20 months, and the most downstream
industries have not reached 75% of long-run pass-through even in two years.

106



Figure G.15 – Tests of Forward-lookingness about Network Dynamics (Including Refineries)

Note: We plot the results of our test that pass-through due to forward-lookingness about network dynamics under
rational expectations is present in the data. Statistical significance in the right panel implies we cannot reject that firms
are forward-looking about the gradual pass-through of upstream shocks to their marginal costs. The fact that the model
lies within the standard error bars in the right figure visualizes that we cannot reject a degree of forward-lookingness
consistent with rational expectations. Moreover, we see that in particularly exposed industries, rational expectations
provides a pass-through boost of more than 15% of long-run pass-through five months after the oil price change.

Figure G.16 – Tests of Forward-lookingness about Shock Persistence (Including Refineries)

Note: We plot the results of our test that pass-through due to forward-lookingness about shock persistence under
rational expectations is present in the data. Statistical significance in the left panel implies we cannot reject that firms are
forward-looking about the persistence of an oil price shock. The fact that the model lies within the standard error bars
in the right figure visualizes that we cannot reject a degree of forward-lookingness consistent with rational expectations.
We are only powered to perform this analysis out to 22 lags rather than 24.

107



Figure G.17 – GMM Results for Industry Pass-through of Oil Price Changes (Homogeneous θ)

Note: The figure assesses the experiment in which all industries have the average frequency of price adjustment, as-
sociated with a price duration of 5 months; the data clearly prefer the model in which more upstream industries have
higher frequencies of price adjustment and more downstream industries have lower frequencies of price adjustment,
as we observe in the data.
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Figure G.18 – Month-by-Month pass-through of Oil Price Changes: Actual vs. Simulated Data

Panel 1: Actual Data Panel 2: Simulated Data

Note: In Figure 4, we showed that the GMM-optimal model yields that the average industry reaches 75% of long-run
pass-through of an oil price movement only after 20 months have passed. Our reduced form findings (replicated in
Panel 1), however, show 75% of long-run pass-through due to indirect use of oil occurring in as few as 4 months, and
75% of long-run pass-through due to direct use occurring immediately on shock impact. In Panel 2, we show the results
of running our reduced form regression on data simulated from the GMM-optimal model. The results nearly replicate
our findings in actual data, showing that the reduced form methodology is severely biased towards pass through that is
too fast. The reason is that sectors making greater use of oil, both directly and indirectly, have much higher frequencies
of price adjustment on average.

Figure G.19 – GMM Results for Small versus Large Oil Price Changes

Note: The figure plots cumulative pass-through in the data compared to the GMM optimal model for small and large
oil shocks separately. The standard errors for pass-through differences are quantified under the interaction effect panel.
A price change is defined as large if the absolute size of the oil price change in a given month is larger than the median
absolute size of oil price changes starting in 1997.
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Figure G.20 – Estimates of Myopia for Non-oil Commodities (2-step GMM)

Note: We find that complete myopia is required to fit the pass-through of specific non-oil commodity price movements.
The standard errors are relatively tight and certainly allow us to reject rational expectations, or a myopia estimate of 1.

Figure G.21 – Baseline Result Incorporating Futures in Reduced Form

Oil Non-oil Commodities

Note: Reduced-form test of whether firms respond to movements in futures prices in addition
to movements in spot prices. For oil prices, we confirm that firms respond to both movements,
with full pass-through in the long-run (a long-run point estimate of 1). For non-oil commodity
prices, we instead find evidence that firm’s respond to movements in the spot price only. There
is no statistically significant evidence of pass-through differing with changes in the futures curve,
holding changes in the spot price constant.
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Figure G.22 – Estimation of the Intercept Required for Aggregating Industry Price Responses

Panel 1: Intercept using Regression Equation 25

Panel 2: Intercept using Regression Equation 26

Note: We plot the intercept required for aggregation in our Application section using the 2SLS
procedure described in appendix F.2. We see that, with the exception of a few periods, we cannot
reject that the required intercept is 0. This suggests that sectors with no network exposure to oil
largely do not change prices in response to oil price changes.
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Figure G.23 – FFR Effects of Oil Price Movements

Panel 1: Reduced Form using Kanzig Shock

Panel 2: IV using Kanzig Shock

Note: We plot the effect of oil price shocks on the federal funds rate, estimated using a distributed
lag model. We find no evidence of statistically distinguishable effects, and the point estimates
are negative rather than the expected positive. For our oil price shocks, we use the full Kanzig
shock series from 1975 - 2019. The reduced form effects are an order of magnitude larger because
the Kanzig shocks are standardized to be associated with a 10% oil price increase, while the IV
approach automatically re-scales effects to be associated with a 1% oil price change.
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Figure G.24 – Inflationary Effects of Oil, Closed Model

Note: The effect of a 1% oil price increase in our MD-optimal, closed model that includes a house-
hold and Taylor rule. The effects are even larger than we saw in Figure 13 because movements in
the aggregate wage more than offset the contractionary monetary policy resulting from the Taylor
rule.
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Figure G.25 – Model Tests for Aggregate PCE Inflation

Note: Our GMM-optimal model fit remains good when we plot fit for the PCE-weighted average
industry, which up-weights industries from which consumers directly make purchases. Standard
errors are much tighter when estimating model fit using petroleum refineries, highlighting the
increased precision that petroleum refineries provide in assessing on-impact pass-through in the
same month as the shock.
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Figure G.26 – Contribution of Oil to Official Year-over-year PCE Inflation

Note: Official PCE inflation is plotted against the same inflation series removing direct (through gas purchases) and
indirect (through all other industry price movements) oil inflation. During the current inflationary episode, year-over-
year inflation is reduced to a peak of 5% in early 2022, down from a peak above 6.5%, when removing all the elements
of oil inflation from official PCE inflation. But it also rises to nearly 6% in Jan 2023 due to the large oil price decline
in mid-late 2022; this result is particularly driven by removing oil’s indirect contributions, since removing just direct
contributions still reveals declining inflation in late 2022. The results also suggest there was inflation during early 2020
that was hidden by the large decline in oil prices in the early part of the pandemic; this finding is amplified by removing
oil’s indirect contributions to aggregate inflation.
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