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T his study is motivated by the challenges faced by clinics in sub-Saharan Africa in allocating scarce and unreliable
supply of antiretroviral drugs (ARVs) among a large pool of eligible patients. Existing discussion of ARV allocation is

focused on qualitative rules for prioritizing certain socioeconomic and demographic patient segments over others at the
national level. However, such prioritization rules are of limited utility in providing quantitative guidance on scaling up of
treatment programs at individual clinics. In this study, we take the perspective of a clinic administrator whose objective is
to maximize the quality-adjusted survival of the entire patient population in its service area by allocating scarce and unre-
liable supply of drugs among two activities: initiating treatment for untreated patients and continuing treatment for previ-
ously treated patients. The key trade-off underlying this allocation decision is between the marginal health benefit
obtained by initiating an untreated patient on treatment and that obtained by avoiding treatment interruption of a treated
patient. This trade-off has not been explicitly studied in the clinical literature, which focuses either on the incremental
value obtained from initiating treatment (over no treatment) or on the value of providing continuous treatment (over
interrupted treatment) but not on the difference of the two. We cast the clinic’s problem as a stochastic dynamic program
and provide a partial characterization of the optimal policy, which consists of dynamic prioritization of patient segments
and is characterized by state-dependent thresholds. We use this structure of the optimal policy to design a simpler Two-
Period heuristic and show that it substantially outperforms the Safety-Stock heuristic, which is commonly used in practice.
In our numerical experiments based on realistic parameter values, the performance of the Two-Period heuristic is within
4% of the optimal policy whereas that of the Safety-Stock heuristic can be as much as 20% lower than that of the optimal
policy. Our model can serve as a basis for developing a decision support tool for clinics to design their ARV treatment
program scale-up plans.
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1. Introduction

Many organizations strive to attain a balance between
expanding their services to new customers and main-
taining quality of service for existing customers. Such
trade-off can arise in a wide variety of sectors ranging
from non-profit organizations that depend exclu-
sively on donations as well as startups in the initial
phase of their lifecycle. This trade-off becomes partic-
ularly acute when the organization faces uncertainty
in the availability of a key resource. In this article, we
study this trade-off in a specific operational context
that of scaling up HIV treatment programs in sub-
Saharan Africa. HIV clinics in this context receive
extremely limited and uncertain supply of

antiretroviral drugs (ARVs) that needs to be used for
initiating untreated patients on treatment and for con-
tinuing treatment for patients who have been previ-
ously treated. On one hand, clinics can focus on
ensuring continuous treatment to their previously
treated patients (Schouten et al. 2011) by being con-
servative in their scale-up and capping the number of
new enrolments. However, this can lead to delay in
treatment initiation for untreated patients, which in
turn can lead to significant reduction in their quality
of life (QOL) and even death due to disease progres-
sion (Doherty et al. 2005, Farnham et al. 2013, Ford
et al. 2010). On the other hand, clinics can be aggres-
sive by enrolling many new patients but increase the
risk of their treatment interruption in future periods
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due to drug stockouts (IRINNews.org 2013a,b, VoA-
News.com 2013b), which in turn can lead to adverse
clinical outcomes such as treatment failure (Bartlett
2006, Hamers et al. 2012), drug resistance (Pray et al.
2004, WHO 2016), and increased mortality (El-Sadr
et al. 2006), and which can necessitate transitioning
patients to a much more expensive second line of
therapy (Oyugi et al. 2007, Van Oosterhout et al.
2005).
We model this trade-off embedded in the scale-up

of ARV treatment programs using a stochastic
dynamic programming framework. We classify HIV
patients from a clinic’s catchment area into the fol-
lowing categories: (i) patients who are not yet clini-
cally eligible to be initiated on treatment based on
national guidelines (ineligible), (ii) patients who are
clinically eligible but have not yet been initiated on
treatment (eligible and untreated), (iii) patients who
have been initiated on treatment earlier and are still
responsive to it (eligible and treated), and (iv) patients
who had been previously initiated on treatment but
are now resistant to it due to previous treatment
interruptions (resistant). Each period, based on the
inventory of ARVs and the number of patients in
each of the above four categories, the clinic decides
the number of treated patients and untreated patients
to treat and sets aside any remaining inventory to be
carried over to the next period. Then the following
transitions occur:

• New infections are added to the category of
ineligible patients.

• A fraction of ineligible patients move to the cat-
egory of eligible patients due to natural pro-
gression of their disease.

• Some of the untreated patients move to the cate-
gory of treated patients upon enrollment.

• A fraction of treated patients whose treatment
is interrupted in this period move to the cate-
gory of resistant patients.

Following these transitions, a fraction of patients in
each category die and the surviving patients obtain a
reward, which is equal to the per-period QOL utility
associated with their category. At the end of the
period, the clinic receives a shipment of ARVs of an
uncertain quantity. The objective of the clinic is to
maximize the total expected quality-adjusted life
years (QALYs) of its patients over the planning hori-
zon subject to availability of drugs and the number of
patients in different segments.
The resulting decision problem is related to but

substantially different from the traditional models of
multi-product and/or multi-customer inventory
rationing (DeCroix and Arreola-Risa 1998, Evans
1967) due to non-stationarity of rewards and

endogenous movement of patients across segments
depending on whether they received the product in
the current period. Consequently, unlike those
papers, static prioritization of one (high value) seg-
ment over the other (low value) is not optimal for our
problem. In contrast, the optimal policy is state
dependent and is characterized by thresholds and
switching curves that define regions in the state space
such that allocation decisions are different across
these regions. However, analytical difficulties pre-
clude complete characterization of the optimal policy
for the most general version of the problem and make
it an unlikely candidate for implementation. Hence,
we focus on few special cases to understand the
underlying trade-offs. These include the two-period
problem as well as two extreme cases of the general
multi-period problem: (i) none of the patients with
treatment interruption develop drug resistance and
(ii) when all patients with treatment interruption
develop drug resistance.
Insights from these special cases indicate that the

optimal policy for the general formulation, under
some conditions, prescribes denying treatment to
treated patients (i.e., patients already on treatment)
to avoid future treatment interruptions. This struc-
ture presents an important dilemma pertaining to
the social responsibility of the ARV program and is
unlikely to be tenable in practice. Hence, based on
the structure of the optimal policy for the three spe-
cial cases described above, we develop a Two-Period
heuristic which has a far simpler structure that
makes it amenable to implementation. Extensive
computational experiments show that the average
optimality gap of this heuristic is <4% over a wide
range of parameter values. In contrast, a Safety-Stock
heuristic based on current practice (Schouten et al.
2011, WHO 2016) yields average optimality gaps of
around 20%. Beyond better overall performance, the
Two-Period heuristic is also much more robust to
misspecification of the parameter values and is no
more difficult to implement than the Safety-Stock
heuristic.
The remainder of the study is organized as follows.

In section 2, we describe the operational challenges of
scaling up antiretroviral therapy (ART) programs
in resource-constrained settings in greater detail.
Section 3 outlines our contribution to various streams
of related literature. Section 4 provides the model for-
mulation and section 5 presents a partial characteriza-
tion of the optimal policy and its properties. Section 6
includes a formal description of the two heuristics
which are either used in practice or have practical
appeal and a procedure for obtaining the upper
bound. Section 7 contains extensive numerical illus-
trations to compare the performance of these heuris-
tics with the optimal policy. We develop an extension
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of our main model and discuss it in section 8. Finally,
section 9 provides concluding remarks.

2. Operational Challenges in HIV Drug
Supply

Benefits of ART in terms of reduced mortality, mor-
bidity, and hospitalization are well established (Ford
et al. 2010, Palella et al. 1998, Walensky et al. 2006).
Yet the coverage of ART in sub-Saharan Africa, the
epicenter of the epidemic, is still abysmally low due
to insufficient funding from international donors after
the global financial crisis in 2009 (Leach-Kemon et al.
2012, Serieux et al. 2012). To ensure that limited funds
are used most effectively, WHO guidelines stipulate
strict eligibility criteria such that only individuals
with severe or advanced HIV clinical disease (defined
as WHO clinical stage 3 or 4 and individuals with

CD4 count ≤ 350 cells/mm3) can be initiated on ART
(WHO 2016). Many countries further restrict eligibil-
ity based on clinical, demographic, and socioeco-
nomic factors (Bennett and Chanfreau 2005, Rosen
et al. 2005). However, of the 21.2 million patients con-
sidered eligible even by these stringent criteria, only
7.5 million were on treatment in 2013 (UNAIDS 2013).
Beyond insufficient funding, logistical constraints

further add to the inefficiency in the ARV supply
chain. Distribution systems for ARVs in resource-
constrained countries consist of central medical depots,
typically located in the national capital, from where the
drugs are pushed to the sites of health care delivery
(Harries et al. 2007, WHO 2003, 2005). Inadequate
inventory management skills at the clinics make it very
difficult to implement a pull system, where clinics place
orders for drugs with the central medical depots
(WHO 2003). Thus, due to weak physical infrastruc-
ture, poor supply chain management, and lack of ade-
quate information and transport systems in the supply
chain (Bateman 2013, de Vries et al. 2020, Georgeu
et al. 2012, Pray et al. 2004, Schouten et al. 2011), the
supply actually received at an HIV clinic is highly vari-
able. This aggregate shortage and variability of supply,
when combined with sub-optimal allocation policies,
leads to periodic stockouts of ARVs (Ekong et al. 2004,
IRINNews.org 2013b, VoANews.com 2013a, Wangu
and Osuga 2014, Windisch et al. 2011).
A common response to supply uncertainty in prac-

tice is to maintain a safety stock of ARVs equivalent to
several months of consumption by the treated patients
and imposing a cap on the number of new patients that
can be enrolled in every period (AllAfrica.com 2013,
Schouten et al. 2011). Yet the effectiveness of these
rules of thumb has not been rigorously studied and
there is an acknowledgment among practitioners that
more formal models are needed to understand the
underlying trade-offs (Daniel 2006).

3. Literature Review

The primary contribution of this study is to provide
quantitative insights on how HIV clinics in resource-
limited settings should scale-up their treatment pro-
grams when faced with uncertain and limited drug
supply. A secondary contribution, in doing so, is to
extend models of multi-item inventory management
by incorporating endogenous customer dynamics
between different segments and supply uncertainty.
We discuss these contributions in the context of three
relevant streams of literature related to our study.

3.1. HIV Treatment Rationing
Early literature on rationing of ARVs (Bennett and
Chanfreau 2005, Macklin 2004, McGough et al. 2005,
Rosen et al. 2005, Sharif and Noroozi 2010) is domi-
nated by discussion of prioritization schemes based
on socioeconomic and demographic variables (i.e.,
“which” new patients to enroll) so as to meet ethical
criteria such as equity and fairness. Rosen et al. (2005)
extends these to include clinical effectiveness, imple-
mentation feasibility, cost, economic efficiency, social
equity, and provides a qualitative evaluation of vari-
ous national policies.
However, this discussion has limited utility in mak-

ing operational decisions on how to scale-up treat-
ment programs at the level of individual clinics
because of a lack of quantitative framework. More-
over, it adopts a static perspective, that is, the ration-
ing or prioritization decision is treated as a one-time
decision and focuses only on the aggregate shortage
of drugs but ignores the uncertainty in the supply of
ARVs received at the health facilities.
We address these limitations in a quantitative

model which captures the trade-off between initiating
new patients on treatment and ensuring treatment
continuation of patients already on treatment. This
trade-off has not been explored in the clinical litera-
ture, which either shows that initiating treatment is
better than no treatment through cost-effectiveness
studies (Badri et al. 2006, Cleary et al. 2006, Palella
et al. 1998) or that continuous treatment is better than
interrupted treatment through studies on structured
treatment interruptions and impact of treatment
adherence (Danel et al. 2006, Lawrence et al. 2003,
Paterson et al. 2000).

3.2. Global Health Supply Chains
Recent work on global health supply chains repre-
sents an important part of the emerging literature on
socially responsible operations. Kraiselburd and
Yadav (2013) highlight the lack of coordination across
multiple donors and the recent reduction in budget-
ary allocations toward humanitarian aid after the
financial crisis as the major challenges at the macro
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level for these supply chains. Taylor and Xiao (2014)
compare the effectiveness of purchase vs. sales sub-
sidy in private distribution channels to improve the
availability of products from the perspective of
donors. Gallien et al. (2017) build a quantitative
model to predict the joint impact of procurement and
funding delays in global health programs on drug
availability and stockouts at the country level. Natara-
jan and Swaminathan (2014) focus on managing
inventory levels of a nutritional product and deter-
mining optimal procurement policy by taking into
account the uncertainty associated with funding
amount and schedule.
We focus on the tactical decisions with the clinic

as the decision-making unit and study the impact of
operational decisions directly on health outcomes.
Similar to our approach, McCoy and Johnson (2014)
also consider a multi-period problem faced by a
clinic in deciding the number of new patients to
enroll in each period so as to minimize the number
of infected patients over the problem horizon.
However, the main trade-off in their model is
between reduced disease transmission due to initia-
tion of new patients on treatment and reduced
treatment adherence due to every subsequently
enrolled patient living farther from the clinic. They
do not consider supply uncertainty and treatment
interruption induced by stockouts; the main driver
of treatment interruption and drug resistance in
their model is reduced adherence of patients to
follow-up visits if they live farther from the clinic.
Another recent paper that is related to ours is
Natarajan and Swaminathan (2017), which analyzes
the problem of allocating limited inventory of drugs
among patients with different health states. The
main point of distinction here is that we model a
chronic disease where the patients who receive
treatment continue to return in subsequent periods
and thus compete for drugs along with new
patients whereas Natarajan and Swaminathan
(2017) model an acute condition where the patients
in the less severe health state are cured after treat-
ment and exit the system. This leads to significant
differences in the state transition equations and
consequently the structure of the optimal policy. A
secondary point of distinction is that Natarajan and
Swaminathan (2017) focus on the impact of the tim-
ing and the variability in donor funding that is
used to procure the drugs whereas our focus is on
designing clinic-level program scale-up policies in
the presence of an uncertain exogenous supply of
drugs.

3.3. Inventory Management
Our model is related to the broader literature on
periodic review multi-item inventory models with

resource constraint (DeCroix and Arreola-Risa 1998,
Evans 1967). These models typically include an exoge-
nous and deterministic constraint on the procurement
budget in each period and the underage and overage
costs of multiple products are also exogenously speci-
fied and stationary, which allows ranking them in the
order of importance. For continuous time formula-
tions, see Ha (1997) and de Véricourt et al. (2003).
Our model differs from these in two key aspects.

On the demand side, the customer segments are
inherently related as customers from one pool
(untreated) are moved permanently to another pool
(treated) as a result of the treatment decisions. Such
dynamics in the product space, corresponding to
cross-product substitution, have not been studied pre-
viously. Combined with non-stationary cost of not
serving each of the two segments, these dynamics
yield an interesting result. In some cases, the high-
value patient segment is not fully served despite the
availability of adequate inventory. This can be inter-
preted as inter-temporal rationing between patients
of the same segment, a feature that is absent from the
existing models. In a recent paper, Deng et al. (2014)
also consider an inventory model where the demand
in future periods depends, among other things, on
past service experience of customers. However, in
their models, customers from the two segments can-
not be distinguished from each other and the focus is
on deciding the optimal inventory levels in each
period and not the allocation of available inventory
among the two segments. On the supply side, the key
point of departure from the literature is the uncer-
tainty in the supply and the absence of an ordering
decision for the clinics.

4. Model Preliminaries

In this section, we present a formal model for the deci-
sion problem faced by a resource constrained individ-
ual clinic. To reflect the finite planning horizon of
such clinics, we consider N discrete periods, where
n = 1 denotes the last period and n = N denotes the
first period. The clinic receives an exogenous uncer-
tain supply of first-line ARVs every period and needs
to decide how to allocate the available supply of
drugs between untreated and treated patients so as to
maximize the expected quality-adjusted survival of
its patients. We first describe various building blocks
of our model, and then combine them to formulate
the clinic’s dynamic decision problem.

4.1. Patient Dynamics
We divide the patient population in each period into
four broad segments depending on their health status,
subsequent clinical eligibility for treatment initiation
and sensitivity to first-line ARVs.
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Let yn;i be the number of patients who are ineligible

for treatment according to the national treatment eli-
gibility guidelines at the beginning of period n. Let
yn;u denote the number of previously untreated eligi-

ble patients, henceforth referred to as untreated
patients. Similarly, let yn;t denote the number of previ-

ously treated patients, who are still responsive to
first-line treatment and are henceforth referred to as
treated patients. Finally, let yn;r be the number of previ-

ously treated patients who have failed the first-line of
therapy and are henceforth referred to as resistant
patients.
Next, we describe the transitions between these dif-

ferent segments, which are represented schematically
in Figure 1. Note that the demand for first-line ARVs,
which is the focus of our analysis, consists of treated
and untreated patients, yn;t and yn;u. Let xn;t and xn;u
denote the number of treated and untreated patients
that the clinic decides to treat in period n.
The pool of ineligible patients increases by a factor αi

due to diagnosis of new infections and decreases by a

factor αe due to patients becoming eligible for treat-
ment due to clinical disease progression. A fraction βi
of the ineligible patients in period n survives to the
next period n − 1. Then, the number of ineligible
patients at the beginning of period n − 1 as a result of
these transitions is given by:

yn�1;i ¼ βi yn;i 1� αe þ αið Þ
� �

: (1)

The pool of untreated patients increases by αeyn;i as

ineligible patients become eligible due to disease pro-
gression and reduces by xn;u due to initiation of
patients on treatment. A fraction βu of the untreated
patients survives to the next period. Thus, the number
of eligible untreated patients at the beginning of period
n − 1 is given by:

yn�1;u ¼ βu yn;u � xn;u þ αeyn;i

� �
(2)

At the beginning of period n, the clinic decides to
treat xn;t of the yn;t previously treated patients and

Ineligible Pa�ents
( , )

Untreated Pa�ents
( , )

Treated Pa�ents
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Figure 1 Flow of HIV Patients Through Various Stages of Disease Progression and Treatment
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enroll xn;u new patients. Of the remaining (yn;t � xn;t)

patients, who were treated previously but remain
untreated in this period, a fraction γt develop resis-
tance to first-line treatment, which we refer to as the
coefficient of resistance. Let �yn�1;t denote the number

of previously treated patients who receive treatment
and y

n�1;t
denote the number of patients who do not

receive the treatment in period n but are still sensitive
to treatment. Then, the number of treated patients at
the beginning of period n − 1 is given by:

yn�1;t ¼ �yn�1;t þ y
n�1;t

¼ βtðxn;t þ xn;uÞ þ βt 1� γtð Þðyn;t � xn;tÞ
¼ βtðyn;t � γtðyn;t � xn;tÞ þ xn;uÞ (3)

where βt denotes the survival rate of treated patients.
We assume that βt > βu as treatment initiation is
expected to improve the survival rate of patients.
On the flip side, the pool of resistant patients

increases by γtðyn;t � xn;tÞ due to treatment interrup-

tion of some of the treated patients. Thus, the number
of resistant patients at the beginning of period n − 1
is given by:

yn�1;r ¼ βrðyn;r þ γtðyn;t � xn;tÞÞ, (4)

where the survival rate of resistant patients is given
by βr. Again, we assume that βr < βt because resis-
tance to first-line treatment is expected to reduce the
survival rate of patients. Thus, the system of Equa-
tions (1)–(4) represent the patient dynamics in the
clinic’s decision problem.

REMARK 1. Note that treatment has beneficial impact
in terms of reduced transmission, which occurs due
to reduced viral load in treated patients. However,
this effect is likely to be low under our assumption of
constrained resources. Even if we were to modify the
dynamics of the ineligible patient segment—by intro-
ducing an additional term that captures a linear
impact of the treated patient pool—Proposition 1 con-
tinues to hold with minor changes in the coefficients
of the decision variables and the states (Δn;t, Δn;u, and
~Δn;t). Consequently, the dynamic programming for-
mulation and the structure of the optimal policy will
not be affected by this change. ▪

4.2. Inventory Dynamics
Let wn denote the opening stock of drugs at the begin-
ning of period n, where one unit of drug corresponds
to one period of treatment for one patient. Of these,
the clinic uses xn;u doses to initiate untreated patients
on treatment and xn;t doses to treat treated patients. To
reflect the practical reality that clinics often do not

have control over how many doses they receive, we
use zn�1 to denote the exogenous random supply that
the clinic receives at the end of period n. Thus, the
amount of inventory at the beginning of period n − 1
is given by:

wn�1 ¼ wn � xn;t � xn;u þ zn�1 ¼ In�1 þ zn�1, (5)

where In denotes the inventory of drugs after the
allocation but before the receipt of supply in period n.
We assume that zn are independent, but not neces-
sarily identical, random variables with cumulative

distribution Fnð�Þ and support on ½0, zUn �. Note that
this assumption in our theoretical analysis is meant
only to demonstrate the generalizability of our
results. Throughout the numerical analysis, we ana-
lyze the setting where the supply distribution across
all periods is the same and the clinic makes its deci-
sions knowing this information. Given the suffi-
ciently long shelf lives of first-line ARVs, we do not
explicitly model the perishability of drugs.

4.3. Reward Structure
The objective of the clinic administration is to maxi-
mize the total discounted QALYs of the entire patient
population (treated and untreated) in the catchment
area. It is calculated as the sum of QOL utilities of all
patients over the planning horizon, discounted to
account for the fact that an additional year of life
today is worth more than that in the future (Vergel
and Sculpher 2008, Whitehead and Ali 2010). This
objective function is routinely used in cost-
effectiveness studies (Brennan et al. 2006) and
resource allocation problems (Brandeau et al. 2003,
Deo et al. 2013, Richter et al. 1999, Zenios et al. 2000).
Let qi and qu denote the QOL utility for ineligible

and untreated patients. For the pool of treated patients,
we assume that the patients who continue to receive
treatment in that period (given by �yn�1;t in period n)

enjoy a QOL utility of �qt while the patients whose

treatment has been interrupted in that period but are
still sensitive to treatment (given by y

n�1;t
in period n)

get a QOL utility of q
t
<�qt. Furthermore, the patients

who do not receive treatment and develop resistance
to first-line treatment move to the pool of resistant
patients and receive a QOL utility of qr. QOL utilities
associated with each of the patient segments are indi-
cated on the left-hand side of Figure 1.
Then the reward collected by the clinic at the end of

period n is given by:

hn yn�1

� � ¼ �qt�yn�1;t þ q
t
y
n�1;t

þ quyn�1;u þ qryn�1;r þ qiyn�1;i
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where yn�1≜½�yn�1; tyn�1; t
yn�1; uyn�1; ryn�1;i�t. Sub-

stituting the expressions for each of the variables in
terms of the state variables and decisions from (1) to

(4) and similarly defining xn≜½xn;txn;u�t, we obtain:

hn xn, yn
� �¼ �qtβt� quβu

� �
xn;uþ ð�qt�q

t
ð1�γtÞÞβt�γtqrβr

� �
xn;t

þ yn;u quβu
� �þyn;r qrβr

� �þyn;t q
t
1�γtð Þβt

�
þ qrγtβr

�þyn;i qiβi 1�αeþαið Þþquαeβu
� � ð6Þ

4.4. Model Formulation
Using the above components, now we can state the
decision problem of the clinic as follows:

max
xn;t ≥ 0, xn;u ≥ 0

 ∑
N

n¼1

δN�nhn xn, yn
� �� �

s:t: ð1Þ, ð2Þ, ð3Þ, ð4Þ, ð5Þ
(7)

xn;t þ xn;u ≤ wn8n, (8)

xn;t ≤ yn;t8n, (9)

xn;u ≤ yn;u8n: (10)

Equations (1)–(5) are the patient and inventory
dynamics described earlier. Constraint (8) states that
the total number of treatments delivered in period n
is limited by the available inventory. Constraints (9)
and (10) state that the number of treated and untreated
patients treated cannot be more than the total number
of treated and untreated patients in that period,
respectively.
Next, we note from the above formulation that the

decisions xn do not depend on yn;i and yn;r. Hence, we

use the recursive in Equations (1) and (4) to derive
expressions for these state variables in terms of the
initial conditions in period N and subsequent treat-
ment decisions. Furthermore, to reflect the extreme
resource-constrained nature of our application set-
ting, we assume that number of untreated patients out-
strips the available supply of drugs throughout the
problem horizon for all feasible allocation policies,
that is, yn;u >wn 8n. This allows us to reformulate an

equivalent dynamic program with reduced state
space, which is formalized in Proposition 1(ii) below.

PROPOSITION 1 (Problem reformulation).

(i) The equations for state variables yn;r, yn;i and yn;u ∀
n are as follows:

yn;r ¼ yN;rβ
N�n
r þ γt ∑

N�n

j¼1

ynþj;t�xnþj;t

� �
ðβrÞ j (11)

yn;i ¼ yN;i βi 1� αe þ αið Þð ÞN�n (12)

yn;u ¼ βN�n
u yN;u � ∑

N�n

j¼1

β
j
uxn þ j;u þ βiαe ∑

N�n

j¼1

β
j�1
u yn þ j;i

(13)

(ii) If yn;u >wn 8 n, then the decision problem as stated

in (7) can be equivalently reformulated as:

Vn yn;t, wn

� �
¼ max

xn;t ≥ 0, xn;u ≥ 0
ĥn xn, yn;t

� �n

þ δz Vn�1 yn�1;t, wn�1

� �h io
s:t: ð3Þ, ð5Þ (14)

xn;t þ xn;u ≤ wn

xn;t ≤ yn;t

and V0ðy0;t, w0Þ ¼ 0

where ĥnðxn, yn;tÞ ¼ Δn;txn;t þ Δn;uxn;u þ ~Δn;tyn;t (15)

Δ1;u ¼ �qtβt � quβu
� �

(16)

Δ1;t ¼ ð�qt � q
t
ð1� γtÞÞβt � γtqrβr (17)

Δn;u ¼
Δ1;u � quβu ∑

n�1

j¼1

δβuð Þ j n ≥ 2

�qtβt � quβu
� �

n ¼ 1

8><
>: (18)

Δn;t ¼
Δ1;t � γtqrβr ∑

n�1

j¼1

δβrð Þ j n ≥ 2

ð�qt � q
t
ð1� γtÞÞβt � γtqrβr n ¼ 1

8><
>: (19)

~Δn;t ¼ �qtβt � Δn;t n ≥ 1 (20)

In other words, under the assumption of extreme
resource constraint yn;u>wn, any optimal solution

to (7) is an optimal solution to (14) and vice
versa.

Note that the immediate marginal social benefits of
treating a patient from the two segments in period n,

Deo, Mehta, and Corbett: Optimal Scale-Up of HIV Treatment Programs
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Δn;t and Δn;u, are non-stationary and are functions of
the patient transition parameters because of our focus
on population-level outcomes in the presence of con-
strained resources. In contrast, the focus of most of
the clinical literature has been on comparing individ-
ual marginal benefits of treating treated and untreated
patients (Δ1;t and Δ1;u) by implicitly ignoring the
resource constraint and the effect of current treatment
decisions on the pool of patients in the future periods
(e.g., Granich et al. 2009).
Furthermore, the single period marginal benefits of

treating a patient from the two segments do not have
a clear and stable ranking over the problem horizon,
unlike existing models of multi-product inventory
management under budget constraint (DeCroix and
Arreola-Risa 1998, Evans 1967) where these rewards
are essentially the single period shortage costs for the
two segments. In other words, in our context, a seg-
ment that is more important in the current period
could become less important in a future period and
vice versa–a feature that is absent from those existing
models. Since the main underlying driver for this
effect is the coefficient of resistance γt as seen from
(19) and (20), we solve special instances of the formu-
lation (14) corresponding to extreme values of γt to
obtain further insights.

5. Partial Characterization of the
Optimal Policy

A complete characterization of the dynamic program
(14) would require distinguishing between many cases
corresponding to different relative rankings of the
QOL utility parameters ð�qt, qt, qu, qrÞ. To make the

analysis more manageable, we restrict our attention to
QOL utilities that are consistent with the clinical defini-
tions of various patient segments and that yield nontri-
vial inventory allocation decisions. We begin by
assuming that the treated patients who received the
treatment in a given period earn the highest QOL
utility among all patient segments who are eligible
for HIV treatment (�qt > q

t
, qu, qr). Furthermore, we

assume that q
t
> qr, that is, the patients who do not

receive the treatment but are sensitive to first-line
therapy enjoy a better QOL utility than the patients
who have developed resistance to treatment. Finally,
some cases are trivial: When qu < q

t
, qr that is, when

untreated patients enjoy a lower QOL utility than treated
patients who do not receive treatment and resistant
patients, it is optimal to prioritize treated patients in all
periods and exhaust the available inventory of drugs,
that is, x∗n;u ¼ wn and x∗n;t ¼ 0 because yn >wn 8 n.
Hence, to focus on nontrivial and interesting cases, we
assume that �qt > q

t
, qu > qr throughout our analysis.

5.1. Two-Period Problem
In this section, we analyze a two-period problem,
which is the smallest nontrivial problem instance that
captures the trade-off between initiating untreated
patients on treatment now vs. reducing the chance of
treatment interruption for treated patients later. The
structure of the optimal policy depends on the rela-
tive values of the QOL utilities of various patient seg-
ments and the coefficient of resistance, which is
formally stated in Proposition 1. In section 6.2, we use
this structure to develop a heuristic for the more gen-
eral multi-period problem that is computationally
tractable and performs well.

PROPOSITION 2. There exist 0 ≤ γ1, γ2 ≤ 1 (defined in
the Appendix such that for period n = 2),

(i) If q
t
> qu and 0 ≤ γt <minfγ1, γ2g, the optimal

policy is to prioritize untreated patients over treated
patients and exhaust the available inventory of
drugs, that is, x∗2;u ¼ w2 and x∗2;t ¼ 0.

(ii) If q
t
> qu and 0< γ2 < γt ≤ γ1, the optimal policy is

to prioritize treated patients over untreated patients
and exhaust the available inventory of drugs, that

is, x∗2;u ¼ ½w2 � y2;t�þ and x∗2;t ¼ min fy2;t, w2g.
(iii) If q

t
> qu and γ1 < γt ≤ 1 or if q

t
< qu and

0 ≤ γt ≤ 1 the optimal policy is to prioritize treated
patients over untreated patients and to keep some
drugs in inventory (see Table 1 and Figure 2).

Table 1 Two-Period Optimal Policy Structure for Conditions State in Proposition 2(iii)

Region

Optimal policy

State space x ∗2;u x ∗2;t w2 � x ∗2;u � x ∗2;t

TPA 0 ≤ y2;t ≤ w2 <
θ2;u
βt

w2 � y2;t y2;t 0

TPB 0 ≤ y2;t ≤ w2 ∩w2 ≥ max fθ2;uβt
, y 2;t ð1þ βt Þ � θ2;ug w2 þ θ2;u

1 þ βt
� y 2;t y2;t w2βt � θ2;u

1 þ βt

T PC y2;t ≥
θ2;u
βt

∩ y2;t ≤ w2 ≤ y 2;t ð1þ βt Þ � θ2;u 0 y2;t w2 � y 2;t

T PD 0 ≤ w2 ≤ y 2;t 0 w2 0

Deo, Mehta, and Corbett: Optimal Scale-Up of HIV Treatment Programs
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Begin by considering the case when q
t
> qu, that is,

a treated patient with interrupted treatment has higher
QOL utility than an untreated patient. Intuitively, one
would think that it must be optimal to prioritize
untreated patients over treated patients under this sce-
nario because the immediate marginal benefit
obtained from treating an untreated patient is greater
than that obtained from treating a treated patient who
stopped receiving treatment, that is, �qt � q

t
<�qt � qu.

However, this comparison does not account for the
likelihood of developing resistance upon treatment
interruption and the QOL for resistant patients qr.
Proposition 1 shows that, after accounting for these
effects, prioritizing untreated patients is optimal only
when the coefficient of resistance is sufficiently low,
that is, when 0 ≤ γt <minfγ1, γ2g but the prioritiza-
tion reverses when it is sufficiently large (γt > γ1 or
0< γ2 < γt ≤ γ1).
Since the pool of untreated patients is infinitely

large, prioritizing that segment (Proposition 2(i))
results in all inventory being utilized. Similarly, when
prioritizing treated patients, it is optimal to exhaust
all the inventory when coefficient of resistance is
sufficiently low (Proposition 2(ii)). However, for

sufficiently high values of the coefficient of resistance
(γt > γ1), Table 1 and Figure 2 show that whether it is
optimal to utilize all available inventory depends on
the relative magnitudes of available inventory and
treated patient pool.
Specifically, for any given value of the treated

patient pool, it is optimal to carry a safety stock by
restricting the enrollment of untreated patients, if the
available inventory is greater than a certain threshold
(Region TPB). In this region, the optimal safety stock
level is

w2βt � θ2;u
1 þ βt

so as to protect against future treat-
ment interruptions. However, when the treated patient
pool is sufficiently large (Region TPC), there might
not be enough inventory available to hold this level of
safety stock. In such cases, it is optimal to not initiate
any untreated patient on treatment even though there
is inventory on hand as drug stockouts in future
periods may lead to patients developing resistance.
Finally, when q

t
< qu, treating a untreated patient

yields a lower marginal benefit than treating a treated
patient, irrespective of the value of the coefficient of
resistance (γt). In such cases, the optimal policy coin-
cides with that for q

t
> qu and high coefficient of resis-

tance (Table 1, Figure 2).

2

TPDTPA

TPC

TPB

2,
,
2,

2 = 2,

2 = 1 + 2, − 2,

1. Treat only treated pa�ents
2. Do not treat untreated pa�ents
3. Exhaust inventory

1. Treat all treated pa�ents
2. Treat some untreated pa�ents
3. Exhaust inventory

1. Treat all treated pa�ents
2. Treat some untreated pa�ents
3. Keep safety stock

1. Treat all treated pa�ents
2. Do not treat untreated pa�ents
3. Keep safety stock

Figure 2 Characterization of Two-Period Optimal Policy for Conditions Stated in Proposition 2(iii)
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5.2. N-Period Problem: Special Cases
Next, we turn our attention to the more general prob-
lem of N > 2 periods. Characterizing the optimal pol-
icy for this general problem is analytically
challenging. Specifically, the structure of the optimal
policy seems to depend critically on the coefficient of
resistance. Consequently, we focus on instances of the
problem at extreme values of the coefficient of resis-
tance, that is γt ¼ 0 and γt ¼ 1, for several reasons.
First, these cases are analytically tractable. Moreover,
as we show later, the insights from the structure of
the optimal policy for these special cases allow us to
construct a heuristic that performs well for more real-
istic problems (0< γt < 1).

PROPOSITION 3. Assume treatment interruption never
leads to drug resistance, that is, γt ¼ 0. Then:

(i) If q
t
≥ qu, then it is optimal to prioritize untreated

patients over treated patients in all periods and
exhaust the available inventory of drugs that is
x∗n;u ¼ wn and x∗n;t ¼ 0.

(ii) If qu > q
t
, then it is optimal to prioritize treated

patients over untreated patients and the optimal

policy is given by Table 2, where ϕ�1
n;uðyn;tÞ is a

monotonically increasing function such that

ϕ�1
n;uðθn;uÞ ¼ θn;u.

Proposition 3 characterizes the optimal policy for
the case γt ¼ 0. When q

t
≥ qu, the benefit from initiat-

ing all the patients in the untreated pool on treatment
exceeds that from allocating the drugs to the patients
already on treatment in the treated pool, since, even
upon treatment interruption, the patients enjoy a
higher QOL than not being initiated on the treatment.
On the other hand, when qu > q

t
, the patients in the

untreated pool may be worse off upon treatment initia-
tion in the event of supply shortage in the future
periods; Table 2 states the optimal policy in this case
and Figure 3 gives a pictorial illustration of the policy.
It is clear that the structure of the optimal policy for

the case γt ¼ 0 with qu > q
t
is consistent with that for

the two-period problem discussed above with a few
differences as highlighted in Figure 3. First, note that
the linear function w2 ¼ ð1þ βtÞy2;t � θ2;u that sepa-

rates region TPB and TPC (in Figure 2) is replaced by a

nonlinear monotone function ϕ�1
n;uðyn;tÞ in period n

that separates the regions ZB and ZC (in Figure 3). Sec-
ond, in region ZB—characterized by intermediate
values of yn;t and a relatively high value of wn—it is

optimal to maintain a safety stock of drugs which
helps restrict enrollment of untreated patients to avoid
treatment interruption in subsequent period. This
result stems from the fact that even though treatment
interruption does not lead to resistance (since γt ¼ 0),
the patients whose treatment have been interrupted
enjoy a lower QOL than untreated patients (as qu > q

t
)

for the rest of the horizon. Furthermore, in this region,
x∗n;t þ x∗n;u ¼ ϕn;uðwnÞ. Thus, the term ϕn;uðwnÞ can be

interpreted as the optimal treat up-to level, that is, the
total number of treatments to be disbursed in period
n for both untreated and treated patients. Conse-
quently, ðwn � ϕn;uðwnÞÞ represents the optimal

amount of safety stock to be carried over to the next
period. Finally, when the supply is insufficient to treat
all treated patients and reach this level of safety stock
(Regions ZC and ZD), then it is optimal to not treat
any untreated patient.
We now discuss the case when treatment interrup-

tion always leads to drug resistance, that is, γt ¼ 1.

PROPOSITION 4. If γt ¼ 1, then the optimal policy is
given by Table 3, where ϕn;tð�Þ and ϕn;uð�Þ are monotoni-

cally increasing functions and pass through the points
ðθn;t, θn;tÞ and ðθn;u, θn;uÞ in the (yn;t, wn) state space.

Proposition 4 states the optimal policy for the case
γt ¼ 1. From Table 3 and Figure 4, note that the struc-
ture of the optimal policy for γt ¼ 1 is very similar to
that for γt ¼ 0. In particular, the regions ZA and ZB in
Figure 3 and the corresponding optimal policy in
those regions are exactly the same as the regions FA
and FB in Figure 4 and the corresponding optimal pol-
icy in those regions, respectively. The key point of dis-
tinction between the optimal policy for γt ¼ 0 and

Table 2 N-Period Optimal Policy Structure for γt = 0

Region

Optimal policy

State space x∗n;u x∗n;t wn � x ∗n;t � x ∗n;u

Z A 0 ≤ yn;t ≤ wn < θn;u wn � yn;t yn;t 0

Z B 0 ≤ yn;t ≤ wn ∩wn ≥ max fθn;u , ϕ�1
n;uðyn;t Þg ϕn;uðwnÞ � yn;t yn;t wn � ϕn;uðwnÞ

Z C yn;t ≥ θn;u ∩ yn;t ≤ wn ≤ ϕ�1
n;uðyn;t Þ 0 yn;t wn � yn;t

Z D 0 ≤ wn ≤ yn;t 0 wn 0

Deo, Mehta, and Corbett: Optimal Scale-Up of HIV Treatment Programs
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γt ¼ 1 is that the region ZD in Figure 3 for γt ¼ 0 is
split into two sub-regions FD and FE in Figure 4 for
γt ¼ 1. Furthermore, the structure of the optimal pol-
icy in region FD is similar to that in region ZD, but that
in FE is significantly different. Table 3 shows that,
even though it is optimal to prioritize treated patients
over untreated patients in this region, it is not optimal
to utilize all available inventory for treated patients
but to leave some treated patients untreated. This
result is different from those in the traditional inven-
tory rationing literature, where it is always optimal to
satisfy the entire demand from the high-value seg-
ment. The intuition behind this result is that treating
all treated patients might be beneficial in the current

period but increases the pool of treated patients and
can result in more treatment interruptions and, conse-
quently, more resistant patients, in the event of sup-
ply shortage in the subsequent periods. We clarify
this intuition using an illustrative sample path in the
example below.

EXAMPLE 1. Consider a decision problem over four
periods, that is, N = 4. Suppose at the beginning of
the problem horizon y4;t ¼ y4;u ¼ 2 and I4 ¼ 0. Fur-
thermore, assume that z1 ¼ z3 ¼ 2 and z2 ¼ z4 ¼ 0.
Now consider a “No Buffer” policy wherein, if pos-
sible, available drugs are used to satisfy the entire
demand from treated patients. According to this

( , , , )

= ,
−1 ( , ) = ,

ZA

ZD

ZC

ZB

1. Treat all treated pa�ents
2. Do not treat untreated pa�ents
3. Keep safety stock

1. Treat only treated pa�ents
2. Do not treat untreated pa�ents
3. Exhaust inventory

1. Treat all treated pa�ents
2. Treat some untreated pa�ents
3. Keep safety stock

1. Treat all treated pa�ents
2. Treat some untreated pa�ents
3. Exhaust inventory

Figure 3 Characterization of N-Period Optimal Policy for γt ¼ 0

Table 3 Optimal Policy Structure for γt = 1

Region

Optimal policy

State space x ∗n;u x ∗n;t w2 � x ∗n;t � x ∗n;u

FA 0 ≤ yn;t ≤ wn < θn;u wn � yn;t yn;t 0

FB 0 ≤ yn;t ≤ wn ∩wn ≥ max fθn;u , ϕ�1
n;uðyn;t Þg ϕn;uðwnÞ � yn;t yn;t wn � ϕn;uðwnÞ

FC 0 ≤ yn;t ≤ wn ∩ϕ�1
n;t ðyn;t Þ ≤ wn ≤ ϕ�1

n;uðyn;t Þ 0 yn;t wn � yn;t

FD 0 ≤ wn ≤ yn;t ∩wn < θn;t 0 wn 0

FE yn;t ≥ θn;t ∩ θn;t ≤ wn ≤ ϕ�1
n;t ðyn;t Þ 0 ϕn;t ðwnÞ wn � ϕn;t ðwnÞ

Deo, Mehta, and Corbett: Optimal Scale-Up of HIV Treatment Programs
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policy, x4;t ¼ 2 and x4;u ¼ 0 leading to w3 ¼ 0. Conse-
quently, x3;t ¼ x3;u ¼ 0 and both treated patients will
turn resistant from n = 3 due to stockout-induced
treatment interruption. The next drug supply arrives
in n = 2 so that w2 ¼ 2, y2;t ¼ 0, y2;u ¼ 2. Then,
clearly xn;u ¼ 2, that is, the two untreated patients are
initiated on treatment but they turn resistant in the
last period because of stockout-induced treatment
interruption. The QOL utilities earned by the
patients is shown in Table 4. Assuming δ ≈ 1, the
total QALYs for this “No Buffer” policy are
4�qt þ 8qr þ 4qu. Now consider an alternative “Buffer”
policy that allocates 1 unit of drug to 1 treated
patient in all periods and thus keeps a buffer stock
of 1 in n = 4, 2. As a result, one of the treated

patients turns resistant from n = 3 and the two
untreated patients never receive any treatment. The
total QALYs for the “Buffer” policy are
4�qt þ 4qr þ 8qu. Since qu > qr, it is clear that the
“Buffer” policy outperforms the “No Buffer” policy.

It is worth noting that the above policy, which is
optimal from the perspective of the overall popula-
tion QOL, can present an ethical dilemma for the
clinic administration if some treated patients are to be
denied treatment even when inventory of drugs is
available. To help address this dilemma in practice,
we propose two heuristics in the next section, which
impose the constraint that all treated patients should
be treated in each period as long as sufficient inven-
tory is available in that period. Administrators can
then qualitatively trade-off the loss in optimality by
following these heuristics with the ethical difficulty of
holding back treatment from treated patients in the
presence of sufficient inventory.

6. Heuristics and Upper Bound

As discussed above, analytical difficulties prevent us
from characterizing the optimal policy structure for
the general multi-period problem for intermediate

( , , , )

( , , , )

= ,
−1 ( , )

FDFA

FE

FC
FB

= ,

= ,
−1( , )

1. Treat all treated pa�ents
2. Treat some untreated pa�ents
3. Exhaust inventory

1. Treat all treated pa�ents
2. Do not treat untreated pa�ents
3. Keep safety stock

1. Treat some treated pa�ents
2. Do not treat untreated pa�ents
3. Keep safety stock

1. Treat only treated pa�ents
2. Do not treat untreated pa�ents
3. Exhaust inventory

1. Treat all treated pa�ents
2. Treat some untreated pa�ents
3. Keep safety stock

Figure 4 Characterization of N-Period Optimal Policy for γt ¼ 1

Table 4 Example to Illustrate that it Need Not be Optimal to Utilize All
Drugs When Prioritizing treated Patients for γt ¼ 1

“No Buffer” policy “Buffer” policy

Period 4 3 2 1 4 3 2 1
Supply z 2 0 2 0 2 0 2 0
QALY-treated patient 1 �qt qr qr qr �qt �qt �qt �qt
QALY-treated patient 2 �qt qr qr qr qr qr qr qr
QALY-untreated patient 3 qu qu �qt qr qu qu qu qu
QALY-untreated patient 4 qu qu �qt qr qu qu qu qu

Deo, Mehta, and Corbett: Optimal Scale-Up of HIV Treatment Programs
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values of the coefficient of resistance (0< γt < 1).
Hence, we develop two heuristic approaches to
obtain feasible solutions for the more general prob-
lem. The first approach (Safety-Stock) is similar to
that taken by practitioners in the field and the
second (Two-Period) is motivated by the structure of
the optimal policy derived for the special cases
above. Finally, we also construct an upper bound on
the optimal objective function in (14) to evaluate the
performance of these heuristics. Note that our objec-
tive behind numerical analysis of the two heuristics
is to distinguish between current practice (Safety-
Stock heuristic in its current form) and insights from
the formal analysis of the underlying trade-offs
(Two-Period heuristic).

6.1. Safety-Stock Heuristic
A common approach recommended in practice to
manage the scale-up of ART programs is to main-
tain a safety stock equivalent to few months of
demand to buffer against supply uncertainty and
consequent treatment interruptions in the future. An
equivalent approach is to designate enrollment caps,
that is, a maximum number of untreated patients
that can be enrolled in every period. For instance,
Schouten et al. (2011) describe how Malawi’s Minis-
try of Health along with UNICEF has used this
approach to scale-up their ART program since 2004.
We abstract from the implementation details and
formalize the heuristic using our modeling frame-
work as follows.
First, prioritize the treatment of treated patients.

Obviously, no untreated patients can be enrolled if the
supply is already exhausted, that is, x∗n;u ¼ 0 if

yn;t ≥ wn. However, if the supply is in excess of the

treated patients, that is, yn;t <wn, then treat all the trea-

ted patients first, that is, x∗n;t ¼ yn;t and enroll untreated

patients such that yn�1;t ¼ yn;t. The safety stock carried

to the next period is proportional to the number of
treated patients in the next period. More formally,
In�1 ¼ Ayn�1;t, where the proportionality constant A

can be interpreted as the number of months of
demand that is carried over as safety stock. From (5),
we have In�1 ¼ wn � xn;t � xn;u. Consequently, the
number of untreated patients to be treated is calculated

as x∗n;u ¼ ½wn � x∗n;t � In�1�þ. In summary,

x∗n;t ¼ minfyn;t, wng,
x∗n;u ¼ wn � xn;t 1 þ Aγtð Þ � Ayn;t 1 � γtð Þ

1 þ A

� �þ
:

The state space is partitioned into two regions
depending on the relative values of wn and yn;t.

Clearly, the performance of this heuristic will depend
on the value of A. Lower values of A correspond to
lower safety stock and increased risk of treatment
interruptions in the future periods whereas higher
values of A correspond to greater safety buffer and
fewer untreated patients being initiated on treatment
in the current period. In our numerical experiments,
we perform line search over a sufficiently large inter-
val to compute the best value of A which we denote
by A∗.

6.2. Two-Period Heuristic
We develop a heuristic that draws on the insights of
the N-period optimal policies for extreme values of
the coefficient of resistance (γt ¼ 0 and γt ¼ 1) and the
two-period optimal policy for intermediate values of
the coefficient of resistance. Recall that in those
optimal policies, we do not have a closed-form
expressions for the parameter θn;u for n > 2. Further-

more, the expression for the curves ϕ�1
n;uð�Þ and

ϕ�1
n;t ð�Þ, n ≥ 2, that separate different regions in the

state space are complex. Hence, we make the follow-
ing simplifications while retaining key elements from
the structure of those optimal policies to obtain good
performance: First, we replace the parameter θn;u with

θ2;u ¼ F�1
�
1þ Δ2;u þ δð~Δ1;t � Δ1;tÞ

2δðΔ1;t � Δ1;uÞ
�

for all n. Second, we

replace the curve wn ¼ ϕ�1
n;uðyn;tÞ with the linear func-

tion wn ¼ nyn;t � ðn� 1Þθ2;u for all n, based on the fol-

lowing intuition: In the optimal policy for γt ¼ 1, the

curve wn ¼ ϕ�1
n;uðyn;tÞ separates the region FB (where

some untreated patients are initiated on treatment)
from FC (where no patient from the untreated pool is
initiated on treatment). For a fixed level of inventory,
note that as one approaches the end of horizon (i.e., as
n decreases) the risk from initiating untreated patients
on treatment reduces, which in turn implies that the

slope of the curve wn ¼ ϕ�1
n;uðyn;tÞ decreases. Third, to

address the ethical dilemma that arises in region FE of
the optimal policy for γt ¼ 1, we prioritize the treat-
ment of treated patients and exhaust the inventory if
the patients in the treated pool outstrip the supply.
This constraint naturally eliminates region FE and

helps simplify the curve wn ¼ ϕ�1
n;t ðyn;tÞ to wn ¼ yn;t for

all n. These three modifications ensure that the struc-
ture of the optimal N-period policies for γt ¼ 0 and
γt ¼ 1 and the optimal two-period policy for interme-
diate values of γt is retained to the extent possible and
consequently, as we will see below, helps achieve bet-
ter performance. The resulting structure of the heuris-
tic, which we refer to as Two-Period heuristic, is
shown in Figure 5. Under this heuristic:
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We conclude this subsection by comparing the struc-
ture of the two heuristics. The Safety-Stock heuristic is
conceptually quite simple but difficult to implement as
it requires computation of the optimal value of A
numerically. The Two-Period heuristic, on the other
hand, has a seemingly complex structure but it can be
implemented easily as it is characterized by a single
threshold which can be computed using a spreadsheet
if a user can provide the underlying parameter values.

6.3. Upper Bound
Due to the computational challenges involved in cal-
culating the optimal policy through backward induc-
tion for longer horizons and intermediate values of
0< γt < 1, we construct a simple perfect information
upper bound on the objective function to evaluate
and compare the performance of the heuristics (e.g.,

Bertsekas 1999, Chapter 6). In particular, we generate
K sample paths corresponding to realizations of drug
supplies over the problem horizon denoted by
z½i� ¼ ½z1½i�, z2½i�, . . ., zN½i��, where zn½i� is drawn from
the distribution Fnð�Þ. We calculate the optimal deci-
sions for the ith sample path by solving the following
linear program:

Ui
NðyN;t, wNÞ ¼ max

xn;t½i�, xn;u½i�8n
∑
N

n¼1

ðΔn;txn;t½i�

þΔn;uxn;u½i� þ ~Δn;tyn;t½i�Þ ð21Þ
s:t: ð3Þ and

xn;t½i� þ xn;u½i� ≤ wn½i� 8n
xn;t½i� ≤ yn;t½i� 8n

HD
HA

HC
HB

( 2, , 2, )

= , − ( − 1) 2, = ,

1. Treat only treated pa�ents
2. Do not treat untreated pa�ents
3. Exhaust inventory

1. Treat all treated pa�ents
2. Do not treat untreated pa�ents
3. Keep safety stock

1. Treat all treated pa�ents
2. Treat some untreated pa�ents
3. Keep safety stock

1. Treat all treated pa�ents
2. Treat some untreated pa�ents
3. Exhaust inventory

Figure 5 Characterization of Two-Period Heuristic

x∗n;t ¼ minfyn;t, wng,

x∗n;u ¼

wn � yn;t if yn;t <minfwn, θ2;ug & wn < θ2;u

wn þ ðn� 1Þθ2;u
n

� yn;t if wn ≥ maxfθ2;u, nyn;t � ðn� 1Þθ2;ug
0 otherwise:

8>>><
>>>:
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yn�1;t½i� ≤ xn;u½i� þ yn;t½i� � γtðyn;t½i� � xn;t½i�Þ 8n

wn½i� ¼ wnþ1½i� � xnþ1;t½i� � xnþ1;u½i� þ zn½i� 8n

xn;u½i� ≥ 0 8n

xn;t½i� ≥ 0 8n:
The upper bound, UNðyN;t, wNÞ, is then calculated

as a sample average of K perfect information value

functions Ui
NðyN;t, wNÞ:

UNðyN;t, wNÞ ¼ 1

K
∑
K

i¼1

Ui
NðyN;t, wNÞ: (22)

7. Numerical Illustrations

In this section, we evaluate the performance of the
two heuristics using the objective value measured in
QALYs and understand how it is affected by the mag-
nitude of supply uncertainty and the coefficient of
resistance. We divide our numerical experiments in
two parts: (i) comparison of upper bound with the
optimal policy (section 7.2) for small-sized problems
and (ii) comparison of the heuristics with the upper
bound (section 7.3) for large-sized problems. We
begin by describing the parameter values used in the
numerical experiments (section 7.1).

7.1. Parameter Values
To the extent possible, we base our parameter values
on published literature and vary them over reason-
able ranges to conduct sensitivity analysis. All param-
eter values and their corresponding sources are listed
in Table 5.
As noted earlier (section 5), we restrict our numeri-

cal experiments to nontrivial cases, that is,
�qt > q

t
, qu > qr. Since the QOL utility values reported

in the literature depend on the underlying health state
of the patients, which is determined by a combination
of the CD4+ count and viral load, we make certain

assumptions to map them onto the treatment catego-
ries as required in our model.
As per WHO guidelines for resource-limited set-

tings, patients become eligible for ART when the
CD4+ count drops below 350 cells per cubic millime-
ter (WHO 2016). Hence, we assumed that the untreated
patients have an average CD4+ count of 200–350 cells
per cubic millimeter. We estimated the QOL utility
for these patients (qu) to be 0.84 based on the results of

a meta-analysis of more than 25 individual studies
(Tengs and Lin 2002) and varied it from 0.74 to 0.92
for sensitivity analysis. Furthermore, we assumed
that treated patients who are sensitive to treatment are
asymptomatic and accordingly estimated their QOL
utility value (�qt) to be 0.93 based on the values

reported in the literature (Sanders et al. 2005, Tengs
and Lin 2002, Weinstein et al. 2001) for asymptomatic
patients. Furthermore, we assumed that the QOL util-
ity for treated patients who did not receive treatment
in a particular period but are still sensitive to treat-
ment to be approximately 10% lower (q

t
¼ 0:83) than

the treated patients who are receiving treatment to
reflect the effect of short-term treatment interruption.
The QOL utility values for patients resistant to treat-
ment was the most difficult to estimate. The typical
clinical outcome of failing therapy is rebound of viral
load, which then results in rapid decline in CD4+
count and development of opportunistic infections.
Some patients might also develop clinical AIDS. Since
the range of outcomes is quite large and varied, we
used a wide range of estimates and center it around
0.73 for this category.
Oyugi et al. (2007) report that about 13% patients in

a HAART program in Uganda developed resistance
during prolonged interruption of treatment due to
drug shortages. In contrast, Parienti et al. (2008)
found that sustained interruptions are more likely to
result in failure of therapy than intermittent interrup-
tions stemming from behavioral noncompliance to
treatment. Using statistical analysis, they estimated
that almost 100% of the patients would fail therapy if

Table 5 Parameter Values for Numerical Experiments

Parameter Nominal value Range of values Source

δ 0.99 – Shepard and Thompson (1979) and Drummond (1989)
βt , βu , βr 1 –
�qt 0.93 – Weinstein et al. (2001), Tengs and Lin (2002), and Sanders

et al. (2005)
qr 0.73 – Tengs and Lin (2002) and Sanders et al. (2005)
q
t

0.83 –
qu 0.84 {0.74, 0.76, 0.78, 0.80, 0.82, 0.84,

0.86, 0.88, 0.90, 0.92}
Weinstein et al. (2001) and Tengs and Lin (2002)

γt 1 {0,0.2,0.4,0.6,0.8,1} Oyugi et al. (2007), Parienti et al. (2008)
z U(1,10) {U(1,10), U(2,9), U(3,8), U(4,7), U(5,6)} Model Assumption
N 24 {12,18,24} Model Assumption
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the interruption lasted about 30 days. Hence we
considered the entire range of 0 to 1 for coefficient of
resistance γt.
A period in our model is taken to be one month

to reflect the typical frequency of shipment of drugs
to the clinics. We choose N = 24 reflecting a time
horizon of 2 years, which is typical of the funding
cycles in global health context (Natarajan and Swa-
minathan 2014). We also consider alternate time
horizons of 12 and 18 months in our sensitivity
analysis. We set the single period (monthly) dis-
count rate δ = 0.99, which is approximately equiva-
lent to an annual discount rate of 5% (Drummond
1989, Shepard and Thompson 1979). However, due
to the short horizon, our results are not sensitive to
the actual choice of the discount rate. A meta-
analysis of more than 13 cohort studies (Egger et al.
2002) found that the annual mortality rate for HIV
patients ranges from 1% to 5% for CD4+ counts of
our interest. These correspond to a monthly survival
rate of 99.5% to 99.9%. Hence, we assume that the
average monthly survival rates βt, βu and βr are con-
stant and equal to 1 for ease of computation. The
initial treated patient pool and the ARV inventory
level are set to 0, that is, yN;t ¼ 0 and wN ¼ 0, to

reflect the situation faced by a new HIV clinic. We
do not have access to operational data on the distri-
butions of drug supply received by clinics. Hence,
we vary the support of the supply distribution such
that the mean is held constant while changing the
variability.

7.2. Comparison of Upper Bound with the
Optimal Policy
In this experiment, we perform simulations to evalu-
ate the tightness of the upper bound. We compute the
optimal policy and the upper bound for the parame-
ter values mentioned in Table 5 and measure the

tightness of the bound as T ¼ QALYub � QALYopt

QALYopt
, where

QALYub is the average QALYs collected over the plan-
ning horizon under deterministic supply and QALYopt

is the optimal objective function value computed
through backward induction. We set the coefficient of
resistance, γt ¼ 1 for computational ease and because
we observed numerically that the gap between the
two is the largest for this case. We use K = 100,000
sample paths in equation (EC.6.1).
Table 6 shows that the average tightness of the

upper bound is below 1.6% for a 12 period problem
and below 2.6% for a 24 period problem. In general,
the upper bound is tighter for lower values of qu for a

fixed horizon. The reason for this is that optimal solu-
tion enrolls fewer untreated patients compared to the
upper bound solution due to supply uncertainty. The
impact of this under-enrollment is lower for higher

values of qu. Furthermore, the upper bound is looser

for longer problem horizons as the gaps in QALYs
due to suboptimal decisions accumulate. These exper-
iments indicate that the upper bound is reasonably
close to the optimal policy and hence we use it as a
benchmark to compare the performance of our heuris-
tics for large problem sizes, where numerical charac-
terization of the optimal policy is computationally
cumbersome.

7.3. Performance of Heuristics
In this experiment, we first compare the performance
of the two heuristics against the upper bound for dif-
ferent values of qu and γt. We chose to vary these two

parameters because their estimates based on the pub-
lished literature are the least certain. Next, we investi-
gate the impact of supply uncertainty on the
performance of the heuristics.

7.3.1. Impact of the Coefficient of Resistance ðγtÞ
and QOL of Untreated Patients ðquÞ. Figure 6a
shows that the average performance gap of the Two-
Period and the Safety-Stock heuristics increases with
the coefficient of resistance, γt, reflecting that the
trade-off becomes progressively more expensive. Fur-
thermore, the performance gap for the Two-Period
heuristic is slightly greater than that for the Safety-
Stock heuristic for γt ¼ 0 but is substantially lower for
all values of γt > 0. While the latter increases from
2.54% (for γt ¼ 0) to 11.98% (for γt ¼ 1), the former
only increases from 3.43% to 3.76%.
Figure 6c shows that both heuristics become

increasingly suboptimal (their performance gap
increases) for increasing values of qu. This is because,
for fixed values of �qt, qt and qr, higher values of qu
represent cases with higher relative penalty of treat-
ment interruption as untreated patients are progres-
sively healthier than patients whose treatment has
been interrupted. However, the impact on Safety-Stock
heuristic is much more substantial whereas the

Table 6 Tightness of Upper Bound with Respect to Optimal Policy for
γt = 1

qu

Tightness

N = 12 N = 18 N = 24

0.74 0.71% 0.88% 1.08%
0.76 0.97% 1.24% 1.53%
0.78 1.08% 1.40% 1.74%
0.80 1.15% 1.51% 1.88%
0.82 1.20% 1.59% 1.99%
0.84 1.27% 1.74% 2.05%
0.86 1.32% 1.82% 2.15%
0.88 1.37% 1.89% 2.25%
0.90 1.42% 1.99% 2.39%
0.92 1.52% 2.15% 2.59%
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performance of Two-Period heuristic is relatively sta-
ble over different values of qu.
In summary, from the first experiment, it is note-

worthy that the Two-Period heuristic is robust to varia-
tions in γt and qu. This is primarily because the value

of the threshold in the Two-Period heuristic (θ2;u)
adjusts based on the changes in the underlying prob-
lem parameters (γt and qu) allowing it to better cap-

ture the changes in the underlying trade-off of the
decision problem. However, such dependence is not
explicitly built into the estimation of the parameter A∗

of the Safety-Stock heuristic, which depends only on
the pool of the treated patients.

7.3.2. Impact of Supply Uncertainty on
Heuristics. To investigate the impact of supply
uncertainty on the performance of heuristic, we vary
the coefficient of variation of supply distribution by
keeping the mean fixed and varying the support of
the distribution as described in section 7.1 and shown
in Table 5.
Figure 6b shows that the performance of Safety-

Stock and Two-Period heuristic worsens with increase
in supply variability. For supply distribution with
low variability (CV = 0.05), the average performance
gap of Safety-Stock and Two-Period heuristic is below
2% and 0.5%, respectively. However, for supply dis-
tributions with higher variability (CV = 0.47), the per-
formance gap of Safety-Stock and Two-Period heuristic
worsens and is around 12% and 4%, respectively. The
Two-Period heuristic consistently outperforms the
Safety-Stock heuristic and the gap between the two is
increasingly greater for higher levels of supply
uncertainty.
In summary, we note that the performance gap for

the Two-Period heuristic is consistently below 4% for

all realistic combinations of the parameter values con-
sidered whereas that for Safety-Stock heuristic can be
as high as 20%, especially for high values of qu and γt,
that is, when the likelihood and impact of treatment
interruption is very high. Furthermore, its perfor-
mance is much more robust to changes in parameter
values compared to that of the Safety-Stock heuristic.
These observations suggest that a simplified two
period problem is able to capture the essence of the
dynamic trade-off between enrolling a untreated
patient now and increasing the risk of not being able
to provide uninterrupted treatment to her in the
future. On the contrary, the heuristic in which the
safety stock depends only on the size of the treated
patient pool but not the current inventory is unable to
do so and hence performs poorly. Finally, it is worth
noting that we numerically compute the “optimal”
level of safety stock for our experiments, which is
unlikely to be the case in practice. Hence, the potential
benefit of switching to a Two-Period heuristic might be
even higher.

REMARK 2. To investigate whether the superior per-
formance of the Two-Period heuristic is because of the
small scale of the problem, we also conduct experi-
ments under two additional supply distributions,
U(1, 50) and U(1, 100). We find that the main qualita-
tive insights remain unchanged: (i) The Safety-Stock
heuristic becomes increasingly sub-optimal for
greater values of qu and the performance gap

increases up to 25% for U(1, 100), and (ii) the perfor-
mance of the Two-Period heuristic is fairly stable for
different values of qu as well as the supply distribu-

tion (around 5%). These results imply that the perfor-
mance of the heuristics depends largely on the CV of
the underlying supply distribution; which is nearly
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Figure 6 Comparison of the Performance Gaps of Two-Period and Safety-Stock Heuristics [Color figure can be viewed at wileyonlinelibrary.com]
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the same for U(1, 10), U(1, 50) and U(1, 100). For brev-
ity, we report these results in Appendix EC.5.

REMARK 3. In our numerical study thus far, we
assumed that the supply distribution is the same
throughout the planning horizon. However, in prac-
tice, this distribution may vary due to several rea-
sons. In Appendix EC.5, we consider three
scenarios, where the distribution of the ARV supply:
(i) stochastically decreases over the time horizon, (ii)
stochastically increases over the time horizon, and
(iii) stochastically decreases for the first half and
then increases for the second half of the time hori-
zon. We find that the main insights from our experi-
ments continue to hold: (i) the Two-Period heuristic
outperforms the Safety-Stock heuristic, and (ii) the
performance of the Two-Period heuristic is robust
across the parameter values, whereas the Safety-
Stock heuristic becomes increasingly sub-optimal for
increasing values of QOL of untreated patients (qu)
and the coefficient of resistance (γt).

8. Model Extension

In this section, we extend our modeling framework by
introducing heterogeneity in the treated patient pool.
We create two sub-categories of treated patients—
treated-H and treated-L—that differ in their susceptibil-
ity to develop resistance upon treatment interruption
and the QOL scores. We provide a brief overview of
the extended model here and leave the details to
Appendix EC.6.

8.1. Problem Formulation

Let yHn;t and yLn;t denote number of patients in the

treated-H and treated-L pool in period n, respectively,

who are still responsive to first-line treatment. Let βHt
and βLt denote the survival probabilities of the patients
in the treated-H and treated-L pool, respectively. Let γHt
and γLt denote the coefficients of resistance of the
patients in the treated-H and treated-L pool, respec-

tively. We assume that 0 ≤ γHt ≤ γLt ≤ 1 which implies
that the patients in the treated-H pool have lower pro-
pensity to develop resistance compared to patients in
the treated-L pool.
At the beginning of period n, the clinic decides to

treat xn;u untreated patients, xHn;t of the yHn;t treated-H

patients, and xLn;t of the yLn;t treated-L patients. Of the

remaining ðyHn;t � xHn;tÞ treated-H patients who remain

untreated in current period, a fraction γHt develop

resistance to first-line treatment, a fraction pHLð1� γHt Þ
transition to the treated-L pool, where pHL ∈ ½0, 1�, and

a fraction pHHð1� γHt Þ remain in the treated-H pool,
where pHH ¼ 1� pHL. Thus, the number of treated-H
patients in the beginning of period n − 1 is given by:

yHn�1;t ¼ βHt ðxn;u þ xHn;t þ ð1� γHt ÞðyHn;t � xHn;tÞpHHÞ: (23)

Similarly, of the remaining ðyLn;t � xLn;tÞ treated-L

patients who remain untreated in the current

period, a fraction γLt develop resistance to the first-

line treatment and the remaining ð1� γLt Þ fraction of
the patients remain in the treated-L pool. For sim-
plicity, we assume that none of the patients from
the treated-L pool transition to the treated-H pool,
that is, pLH ¼ 0 and pLL ¼ 1. Then, the number of
treated-L patients in the beginning of period n−1 is
given by:

yLn�1;t ¼ βLt ðxLn;t þ ð1� γLt ÞðyLn;t � xLn;tÞ
þ ð1� γHt ÞðyHn;t � xHn;tÞpHLÞ: (24)

Note that by setting pHL ¼ 0 and pHH ¼ 1, the
extended model collapses to our main model (as
none of the patients from the untreated pool transi-
tion to the treated-L segment and thus treated-H seg-
ment collapses to the treated segment).
We modify the notation of the original model to

accommodate the extended state space and use

xn :¼ ½xn;u, xHn;t, xLn;t� to denote the decision vector,

yn :¼ ½yn;i, yn;u, yHn;t, yLn;t, yn;r� to denote the number

of patients in each segment, and hnðxn, ynÞ denote the
reward collected by the clinic at the end of period n.
Then, the clinic’s decision problem in this extended
model can be stated as:

max
xn

 ∑
N

n¼1

δN�nhn xn, yn
� �� �

s:t: ð1Þ, ð2Þ, ð23Þ, ð24Þ, ðEC:12Þ, ðEC:13Þ, (25)

xHn;t þ xLn;t þ xn;u ≤ wn 8n, (26)

0 ≤ xHn;t ≤ yHn;t 8n, (27)

0 ≤ xLn;t ≤ yLn;t 8n, (28)

0 ≤ xn;u ≤ yn;u 8n: (29)

As in our main model, the dynamics of the problem
allows us to reduce the state space and reformulate
the decision problem of the clinic as a dynamic pro-
gramming problem (see Equation (EC.14) in Appen-
dix EC.6).
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8.2. Adjusted Heuristics and Numerical
Performance
The expanded state space makes the characterization
of the optimal policy for the extended model formula-
tion more difficult than that for the original model.
Hence, we employ extensive numerical experimenta-
tion to assess the robustness of our insights from the
main model in this setting. Toward this end, we
adjust our two heuristics – Safety-Stock and Two-Period
—to incorporate the additional features of our
extended model and evaluate their performance with
respect to a suitably modified upper bound (see
Appendix EC.6.1). For ease of comparison with the
results of the original model, we replicate the design
of numerical experiments from section 7 with some
changes required due to the additional parameters
involved in the extended model formulation. All

parameter values used in this numerical analysis are
described in Table EC.3 in Appendix EC.6. For brev-
ity, we only report the results for extreme values of

the coefficients of resistance, namely γHt and γLt but
our analysis confirms that the results are similar for
intermediate values.
Adjusted Safety-Stock Heuristic: This heuristic

first prioritizes the treatment of patients in the treated-
H pool followed by the treatment of patients in the
treated-L pool. Thus, for period n, we have

xHn;t ¼minfyHn;t, wng and xLn;t ¼minfðwn� yHn;tÞ
þ
, yLn;tg.

Similar to the Safety-Stock heuristic in our main
model (section 6.1), new patients from the
untreated pool are enrolled in the program such
that the safety stock carried to the next period is
proportional to the number of treated-H and
treated-L patients in the next period. The propor-
tionality constant is denoted by A. Thus, it can be
shown that the number of untreated patients to
enroll in period n is:

Adjusted Two-Period Heuristic: To account for the
newly introduced patient sub-segments, we modify
the parameter θ2;u in the Two-Period heuristic by repla-

cing Δ1;t with ΔH
1;t and

~Δ1;t with ~ΔH

1;t, where ΔH
1;t and

~ΔH

1;t are as defined in Appendix EC.6. This ensures

that when the extended model collapses to our main
model, the Adjusted Two-Period heuristic coincides
with the Two-Period heuristic. Thus,

~θ2;u ¼ F�1 1þ Δ2;u þ δð~ΔH
1;t � ΔH

1;tÞ
2δðΔH

1;t � Δ1;uÞ

� 	
. Furthermore, to

reflect the prioritization of the treated-H pool over that
of patients in treated-L group, we have

xHn;t ¼minfyHn;t, wng and xLn;t ¼minfðwn� yHn;tÞ
þ
, yLn;tg:

Finally, to determine the number of untreated
patients to enroll, we simply adjust the Two-Period heu-

ristic by replacing yn;t with ðyHn;t þ yLn;tÞ. Thus, we have:

Figure 7a (resp., Figure 7d) shows that the Adjusted
Two-Period heuristic outperforms the Adjusted Safety-

Stock heuristic for all values of γHt (resp., γLt ). Figure 7b
and e shows that the performance of both the heuris-
tics worsen with increase in supply uncertainty. How-
ever, the Adjusted Two-Period heuristic consistently
outperforms the Adjusted Safety-Stock heuristic. Figure
7c and f shows that both the heuristics become
increasingly sub-optimal for increasing values of qu.
Again, for all the parameter values, the Adjusted Two-
Period heuristic performs better than Adjusted Safety-
Stock heuristic.
These results demonstrate that the performance

of Adjusted Two-Period and Adjusted Safety-Stock
heuristics for the extended model is similar to that
of Two-Period and Safety-Stock heuristics, respec-
tively, for the original model. In other words, the
insights obtained for the original model are robust
to inclusion of heterogeneity in treated patient
pool.

xn;u ¼ wn � xHn;t 1þ AγHt
� �� xLn;t 1þ AγLt

� �� AyHn;t 1� γHt
� �� AyLn;t 1� γLt

� �
1þ A

 !þ
:

xn;u ¼
wn � yHn;t � yLn;t if yHn;t þ yLn;t <minfwn, ~θ2;ug & wn < ~θ2;u

wn þ ðn� 1Þθ2;u
n

� yHn;t � yLn;t if wn ≥ max f~θ2;u, n yHn;t þ yLn;t

� �
� ðn� 1Þ~θ2;ug

0 otherwise:

8>>><
>>>:
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9. Conclusions

In this study, we develop a parsimonious model,
which captures the fundamental trade-off faced by
HIV clinics in resource-limited settings arising from
limited and uncertain supply of drugs. Unlike previ-
ous qualitative discussions on ARV rationing in the
literature, our model is more suitable for operational
planning decisions at the clinic level as it accounts for
the inventory level and the size of treated patient pool.
Despite making simplifying assumptions, the analyti-
cal structure of the optimal policy is too complex to be
used in practice. Furthermore, its structure presents
an important ethical dilemma: under some condi-
tions, it is optimal to deny treatment to the pool of
treated patients to safeguard against future treatment
interruptions, Hence, we leverage other key structural
properties of the optimal policy to design a simpler

heuristic that performs much better than those
employed in practice over a wide range of realistic
parameter values. Finally, we show that these numer-
ical insights continue to hold for an extended model
with heterogeneity in the treated patient pool (along
the dimensions of QOL and susceptibility to develop
resistance).
In practice, any decision related to treatment ration-

ing at the operational level is intricately linked to
other aspects of the HIV epidemic such as clinical
guidelines on eligibility and impact of treatment on
prevention. Deo (2007) presents a framework for
broader issues involved in treatment scale-up includ-
ing how treatment, prevention and diagnoses are
interlinked via patient behavior and disease epidemi-
ology. However, here we focus only on the impact of
supply uncertainty on the aggregate health outcomes
of HIV-positive patients for a given set of clinical
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Figure 7 Comparison of the Performance Gaps of Adjusted Two-Period and Adjusted Safety-Stock Heuristics. In the Top Panel, γLt = 1. In Addition,

γHt = 1 in Figure 7b and c. In the Bottom Panel, γHt = 0. In Addition, γLt = 1 in Figure 7e and f [Color figure can be viewed at
wileyonlinelibrary.com]
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eligibility guidelines as a starting point since it has
not been studied before. We believe that the insights
generated from our analysis, in turn, can be used to
build a simulation model that can allow for more
detailed disease dynamics and a more accurate calcu-
lation of the QALYs for various enrollment policies.
Beyond the immediate context of HIV treatment in

resource-limited settings, our model contributes to the
vast literature on inventory rationing by explicitly
modeling the impact of past service decisions on cus-
tomer dynamics across segments. This effect is applica-
ble to organizations with limited and uncertain
availability of a key resource that strive to attain a bal-
ance between expanding services to new customers/
beneficiaries and avoiding disruption for existing cus-
tomers/beneficiaries. Examples of such organizations
include non-profits that depend exclusively on dona-
tions and startups facing funding uncertainty in the ini-
tial phase of their lifecycle. Of course, our model may
need to be adapted suitably to include other contextual
features in addition to this core trade-off and may lead
to additional insights beyond the ones presented here.
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