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Abstract
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1 Introduction

This paper addresses an unanswered question in the macro-finance literature: what are the

aggregate effects of deposit shocks? Identifying the effect of disruptions in bank deposits

on economic growth is a major empirical challenge. The extant literature uses micro-data to

exploit cross-sectional variation in banks exposures to deposit shocks to identify the relative

effect of such shocks on the allocation of credit and other firm outcomes.1 While the cross-

sectional approach is considered the gold standard of identification, cross-sectional estimates

cannot be interpreted as aggregate estimates. The main reason is that other aggregate variables

that do not exhibit cross-sectional variation can affect the aggregate elasticity between deposit

shocks and aggregate outcomes (Nakamura and Steinsson (2018), Wolf (2021)). Specifically,

the general equilibrium effects are reflected in the intercept and not the slope. Hence, the

missing intercept problem in studies exploiting cross-sectional variation can bias the estimate

of aggregate elasticity between deposit shocks and aggregate effects. The alternative of using

aggregate data to answer the question relies on strong identification assumptions. Therefore,

despite a large cross-sectional literature and the availability of aggregate data, the debate on

the macroeconomic effects of bank deposit shocks persists.

This paper overcomes this major empirical challenge and attempts to identify the missing

intercept. We begin by documenting a new fact about the within-bank geographic concentra-

tion of deposits – at least 30% of deposits for a given bank are concentrated in a single county.

Bank deposits are geographically concentrated within a bank, as at least 30% of deposits for a

given bank are concentrated in a single county. This result differs from Drechsler, Savov and

Schnabl (2017) which documents the within-county concentration of deposits. The geographic

concentration of deposits is widespread across banks, including the Big Four banks. Overall,

this finding indicates that, within a bank, the source of deposits exhibits granularity in the

sense of Gabaix (2011).

We exploit this fact to construct idiosyncratic shocks to aggregate bank deposits by

combining the within-bank geographic concentration of deposits with local natural disaster-

induced property damages, following the granular instrumental variable (GIV) methodology

outlined in Gabaix and Koijen (2020). These shocks allow for credible identification for three

1We direct readers to the seminal work of Khwaja and Mian (2008) that has used this approach to identify the effect
of deposit shocks. Other works, for example, Peek and Rosengren (2000); Loutskina and Strahan (2009); Cetorelli and
Goldberg (2012), Schnabl (2012), Chodorow-Reich (2014), and Huber (2018) also use a similar empirical approach to
identify the relative effect of bank liquidity shocks on allocation of credit. Most recently, Choudhary and Limodio (2021)
examine the effects of bank deposit volatility.
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reasons. First, we show that natural disasters result in a permanent decline in deposits. Second,

banks have different exposures to natural disasters depending on the geographic distribution

of their deposits. Third, banks have varying degrees of importance in the economy due to their

relative shares in overall lending. Therefore, these shocks allow us to construct exogenous

variation in aggregate deposit shocks that is orthogonal to other aggregate shocks.

We use these shocks to examine the effect of deposit shocks on economic growth. We find

that the deposit shocks can significantly influence aggregate fluctuations. Specifically, a one

standard deviation granular deposit shock reduces economic growth by 0.05 to 0.07 percentage

points. Our estimate of the deposit elasticity of economic growth is 0.87, i.e., a one percentage

point decline in deposit growth is associated a 0.87 percentage points decline in economic

growth. In terms of relevance, we document that the granular deposit shocks can explain up

to 3.30% of variation in economic growth. Moreover, its explanatory power is comparable,

and in some cases, higher than common macroeconomic shocks such as oil shocks, monetary

policy surprises, uncertainty policy shocks, term spread, government expenditure shocks, and

the granular residual from Gabaix (2011). Lastly, we argue that the effect of deposit shocks

on economic growth is mediated through lending. Specifically, we provide a estimate of the

money multiplier – a $1 reduction in deposits is associated with a $1.18 reduction in lending.

Next, we study the underlying mechanism through which deposit shocks can affect

aggregate economic growth. Using micro-data on small business lending and mortgage

lending, we document a negative relation between bank deposit shocks and lending activity –

the key mechanism through which shocks to banks affect economic growth. We focus on small

business lending because of its relevance to the economy and its reliance on stable deposit

funding from banks.

We identify the effect on lending, using a within-county estimator, exploiting variation

in deposit shocks across banks using county × year fixed effects. The underlying identifying

assumption is that banks face identical investment opportunities or loan demand within a

county. A weaker version of this identifying assumption is that any friction that creates

a wedge between available investment opportunities to different banks within a county is

unrelated to the idiosyncratic disaster shocks. Furthermore, we control for county × bank

fixed effects to control for the time-invariant importance of a bank within a county as well

as all network linkages between each county – where the effect is being examined – and the

largest deposit county of the bank. This identification strategy allows us to identify the effect
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of bank deposit shocks, originating from county-level disaster shocks, on lending activity

in other regions. Our emphasis on multi-market banks allows us to measure the regional

spillovers from deposit to lending activity across disparate geographic regions.2

Using this estimator, we find that a one standard deviation deposit shock is associated

with a decline of 1.09-1.85 percentage points in small business lending growth. The negative

effect of deposit shocks on small business lending is immediate and increases gradually in

magnitude for up to five years after the initial shock, decreasing thereafter. Moreover, we

show that the contraction in lending following deposit shocks is driven by large banks. This

is important because a necessary condition for idiosyncratic shocks to explain aggregate fluc-

tuations is that the idiosyncratic shocks must affect the behavior of the large players in the

market (Gabaix (2011)).

We show that financial frictions such as banks’ reliance on deposit funding, bank capital

constraints, and informational frictions are crucial for the transmission of deposit shocks.

Specifically, we find that banks with higher reliance on deposit funding and higher Tier 1

Capital ratio contract lending more. The contraction is pronounced in areas where banks

lack a physical branch presence – a proxy for informational frictions. This test exploits cross-

sectional variation in lending across counties by the same bank, allowing us to include bank

× year fixed effects thereby strengthening the identification claim. Additionally, we show

that borrower constraints matter as the contraction in lending is concentrated among firms

which are more dependent on banks as a source of external financing. Overall, these tests

provide empirical evidence in support of the theories that financial frictions are critical in

explaining granular origins of aggregate fluctuations (Pasten, Schoenle and Weber (2017);

Khorrami (2021)).

We also document similar negative effects of deposit shocks on mortgage lending. An

advantage of focusing on mortgage lending is that it allows us to study the effect on loans

that are more likely to be financed by deposits. We exploit the inability of Fannie Mae and

Freddie Mac to purchase jumbo mortgages to identify loans that are likely to be funded by

deposits. Importantly, this test allows us to use bank × county × year fixed effects in our

estimation, estimating the effect by comparing lending growth for jumbo and non-jumbo

mortgages, for each county-bank-year observation. The results indicate that deposit shocks

2The activities of small banks are geographically confined, making identification challenging due to inability to separate the
demand and supply channels of bank lending in disaster-stricken areas and concerns of reverse causality and simultaneity
between lending activity and deposits (Boot, Greenbaum and Thakor (1993), Kashyap, Rajan and Stein (2002), Mester,
Nakamura and Renault (2007), Donaldson, Piacentino and Thakor (2018)).
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negatively affect the origination of jumbo mortgages more than non-jumbo mortgages. A

one standard deviation deposit shock is associated with a 1.40 percentage points additional

decline for jumbo mortgages relative to non-jumbo mortgages. The results indicate that the

contraction in lending is more pronounced for jumbo loans which are more likely to be funded

by deposits.

Lastly, we examine the real effects of bank deposit shocks on firm outcomes. We use

young firms to identify firms that are likely to face borrowing constraints and are unable to

find new lenders immediately after their banks receive a negative shock. We document that a

one standard deviation deposit shock to the firms’ lead banks is associated with a 16% decline

in debt, 13% decline in the book value of assets, 9% decline in employment, and a 15% decline

in capital expenditure for young firms relative to the old firms. This exercise is relevant from

two perspectives. First, it provides a glimpse of the mechanism of how deposit shocks that

translate into lending cuts transmit to the real economy. Second, this result highlights the

relevance of borrower constraints in the transmission of deposit shocks.

Overall, our results have three main implications. First, the deposit elasticity of eco-

nomic growth is large, indicating the importance of deposit shocks in driving economic

growth. Second, the geographic concentration of bank deposits provides an explanation

of how idiosyncratic shocks can aggregate to account for aggregate fluctuations. Third, this

paper demonstrates how extreme disasters can propagate across the financial system through

banking networks, especially when bank deposits are geographically concentrated.

Broadly, this paper presents a new source of financial fragility: the geography of deposits

of multi-market banks. Banks provide liquidity to the economy by funding illiquid assets

(loans) with liquid liabilities (deposits). Multi-market banks are an essential part of the

modern economy, connecting geographically distant areas economically. Multi-market banks

collect deposits from branches across geographies and allocate funds towards lending activity.

As bank loans in one area may be financed by deposits from another, local shocks to bank

deposits can transmit to distant areas. This problem is amplified when bank deposits are

geographically concentrated. We show that the geography of banking assets and liabilities

can make the economy, on aggregate, more susceptible to idiosyncratic shocks. Hence, we

propose and test a new channel for the transmission of idiosyncratic shocks: the deposits

channel.
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1.1 Related Literature

The major contribution of this paper is overcoming the missing intercept problem that has

eluded past cross-sectional studies. Past cross-sectional studies have causally identified a

relative effect between deposit shocks and aggregate economic outcomes. However, the slope

coefficients are not interpretable as macro counterfactuals. We estimate the aggregate effect

between deposit shocks and economic growth, thereby identifying the missing intercept. Our

novel empirical methodology allows us to estimate the deposit elasticity of economic growth

and the money multiplier. Specifically, this paper estimates that a 1 percentage point decrease

in deposit growth is associated with a 0.87 percentage point decrease in economic growth.

Moreover, our estimate of money multiplier is 1.18, i.e., $1 decrease in deposits decreases

lending by $1.18.

Our paper shows that there is a granular component of aggregate deposit fluctuations,

relating to the literature examining the origins of aggregate fluctuations. Gabaix (2011) shows

how idiosyncratic shocks can explain aggregate fluctuations when the distribution of firm

size is fat-tailed. Acemoglu et al. (2012) show that microeconomic idiosyncratic shocks may

lead to aggregate fluctuations in the presence of intersectoral input–output linkages. Our

work contributes to this literature by documenting that local deposit shocks can explain

aggregate fluctuations when multi-market banks exhibit a fat-tailed geographic distribution

of deposits. Hence, our paper combines the two popular theories in the literature – the

“granular" hypothesis and the network cascades. The fat-tailed geographic distribution of

bank deposits combined with the internal capital markets of multi-market banks results in

significant asymmetry in the salience of various regions as the source of funding to other

regions. Idiosyncratic shocks to such regions that are salient sources of deposit funding, are

transmitted to other regions through the network of multi-market banks. These idiosyncratic

shocks can account for aggregate fluctuations if these multi-market banks are large lenders

in the economy. Thus, this paper provides a potential answer to Cochrane (1994) – “will we

forever remain ignorant of the fundamental causes of economic fluctuations?"

Additionally, our methodology of constructing shocks provides an improvement over the

baseline methodology of Gabaix (2011). The methodology for constructing shocks in Gabaix

(2011) is susceptible to the “reflection” problem – large firms load more on common factors, i.e.,

larger firms exhibit greater procyclicality. Our reliance on natural disaster-induced property

damages provides an exogenous source of variation, circumventing concerns of endogenous
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matching. The orthogonality of the granular residual and aggregate shocks allows us to cleanly

identify the effect of a deposit shock on economic growth. We verify the orthogonality of our

measure of the granular residual by testing it against weightings by other variables.

Moreover, our work builds on the recent theoretical advances that document the salience

of financial frictions for explaining aggregate fluctuations. Khorrami (2021) presents a theoret-

ical framework showing that aggregate fluctuations emerge from idiosyncratic shocks if and

only if there are financial frictions. In an alternative framework, Pasten, Schoenle and Weber

(2017) show that financial frictions, such as price rigidity, can strongly amplify the capacity

of idiosyncratic shocks to drive aggregate fluctuations. We contribute to this literature in two

ways. First, we present a simple framework that shows that financial frictions are necessary

for the amplification of idiosyncratic shocks. Second, we provide empirical evidence sup-

porting this hypothesis. Our results show that financial frictions such as banks’ reliance on

deposit funding, regulatory constraints, and informational advantages, as well as borrowers’

constraints and inability to swiftly switch lenders can amplify idiosyncratic shocks.

Our paper relates to the longstanding literature, examining the role of banks in transmit-

ting shocks and increasing financial fragility.3 We contribute to this literature by introducing

a new fact regarding the geography of deposits – a new potential source of financial fragility.

We document that bank deposits are geographically concentrated. We show that this geo-

graphic concentration of deposits can make the overall economy more fragile as shocks to

these counties are transmitted across geographies by multi-market banks. We also contribute

to this literature, methodologically, by presenting novel bank-specific shocks, constructed us-

ing the granular instrumental variables methodology presented in Gabaix and Koijen (2020).

Deposit shocks are constructed by combining the within-bank geographic concentration of

deposits with local natural disaster-induced property damages. We produce a panel of shocks

which can be employed in future research. This differs from single period systematic shocks,

extensively used in the extant literature.

This paper is related to the burgeoning literature on “granular” effects in banking. The

extant literature has mostly focused on the effects of idiosyncratic shocks of granular borrow-

ers (Amiti and Weinstein (2018), Beaumont, Libert and Hurlin (2019), Galaasen et al. (2020)).

An exception is Kundu and Vats (2020), which documents the transmission of idiosyncratic

3Some works in this literature include Peek and Rosengren (2000); Khwaja and Mian (2008); Loutskina and Strahan (2009);
Cetorelli and Goldberg (2012); Schnabl (2012); Chodorow-Reich (2014); and Huber (2018) among others. These papers
constitute a small share of a very large literature, and is by no means, an exhaustive list. We also direct the readers to
Berger, Molyneux and Wilson (2020) for a review of literature examining the effects of banking on the real economy.
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shocks to granular firms originating outside of the banking system through banking networks.

We contribute to this literature by documenting that bank deposits are geographically concen-

trated and estimating the aggregate implications of idiosyncratic shocks to granular deposits.

Additionally, this paper is related to the emerging literature on the effects of bank industrial

organization. Drechsler, Savov and Schnabl (2017) document that bank market power, due to

the within-county deposit concentration, can affect the transmission of monetary policy. We

contribute to this literature by documenting that deposit concentration within a bank matters

for explaining the origins of aggregate fluctuations.

This paper studies the aggregate consequences of deposit shocks, originating from natu-

ral disasters. This paper adds to the existing literature, which has examined the cross-sectional

effects of natural disasters or discoveries on bank lending activity. Our contributions to this

literature are threefold. First, we identify a different channel. We examine the effect of natural

disasters on bank funding, which affects bank lending through the credit supply channel. This

stands in contrast to Cortés and Strahan (2017) which argues that the reallocation of bank

lending to affected areas after natural disasters is driven by changes in local credit demand

in the affected areas. Cortés and Strahan (2017) find that the effect of credit demand shocks

dissipates within a year, whereas, we find persistence of bank funding shocks. Second, we

focus on the importance of multi-market banks rather than local banks. Cortés (2014), Plosser

(2012), and Gilje (2019) document an increase in bank lending by local banks in counties af-

fected by natural disasters and new energy developments. The closest paper to our work is

Gilje, Loutskina and Strahan (2016). Gilje, Loutskina and Strahan (2016) document that banks

exposed to shale booms enjoy liquidity inflows, and increase mortgage lending in non-boom

counties. These papers argue that local liquidity shocks affect credit through small and re-

gional banks, as they have limited access to external debt and equity markets. Small and

regional banks are at the center of their analysis. In contrast, our work demonstrates how

local disasters can result in large deposit outflows for multi-market banks, resulting in lend-

ing contractions across counties through bank internal capital markets. We argue that local

disaster shocks are significant for multi-market banks because of the within-bank geographic

concentration of deposits. Further, our transmission mechanism occurs through the internal

capital markets of large multi-market banks, suggesting that deposits are salient even for large

multi-market banks and access to capital markets is not sufficient to fully substitute for the de-

cline in deposit growth. Therefore, our results complement Doerr, Kabas and Ongena (2022)
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which documents that funding shocks due to population aging affect risk-taking by large

banks. Lastly, our paper complements the existing literature by focusing on the transmission

of negative liquidity shocks originating from disaster-induced property damages in counties

that are salient sources of deposit funding for other counties, rather than positive shocks.

The rest of the paper proceeds as follows. Section 2 presents a simple framework. Section

3 presents the data used in the analysis. Section 4 documents the new fact about the geographic

concentration of deposits. Section 5 presents the methodology to construct deposit shocks and

documents the aggregate effect of deposit shocks. Section 6 discusses the underlying channels

through which deposit shocks can affect aggregate economic growth. Section 7 concludes the

paper.

2 Framework

In this section, we present a simple model of optimal bank allocation of funds for a multi-

market bank. This model is similar in spirit to the model of multinational firms discussed in

Giroud and Mueller (2019). This model illustrates how banks allocate internal funds upon

experiencing a local shock through their internal capital markets and the role of financial

frictions in the transmission of the shock.

Consider a multi-market bank operating in n regions with one branch in each region

denoted by i with i ∈ {1, ...,n}. Each bank branch receives deposits di from households and

disburses loans li at the start of the period. Each branch produces a revenue of αi × f (li) at the

end of the period, where f (li) satisfies the neoclassical conditions f ′(li) > 0, f ′′(li) < 0, f (0) = 0,

limx→0 f ′(li) = ∞, and limx→∞ f ′(li) = 0. Branches differ in their productivity, as indicated by

the term αi. αi captures the advantage that a bank may have in certain regions. For example,

branches may vary in their ability to produce valuable information about hard-to-evaluate

credits in certain regions. A branch may differ in its ability to procure valuable information as

a result of historical presence of the branch, presence of a physical infrastructure, or extensive

activity in that region (see Petersen and Rajan (2002), Berger et al. (2005), Hauswald and

Marquez (2006), Agarwal and Hauswald (2010), Huber (2018), and Granja, Leuz and Rajan

(2021) among others). Better than average access to local information can allow branches to

earn rents, captured by αi. αi increases as the information advantage of a branch increases.

Each branch must return an amount of (1 + ri) × di to its depositors at the end of the period.
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Bank lending decisions are funded out of deposit inflows. Banks have internal capital markets

that allow them to move deposits across branches to make lending decisions to maximize

overall bank value (Stein (1997)). Thus, the relevant budget constraint is at the overall bank

level, i.e.,
∑

i di ≥
∑

i li. The firm solves the following problem (equation 1) where λ denotes

the Lagrange multiplier associated with the budget constraint.

max
{li,λ}i=n

i=1

[
∑

i

αi × f (li) −
∑

i

(1 + ri) × di] + λ[
∑

i

(di − li)] (1)

The first order conditions are:

[li] : αi f ′(li) − λ = 0 ∀i (2)

[λ] : λ[
∑

i

di −
∑

i

li] = 0 λ ≥ 0 (3)

We draw two insights from the first order conditions. First, if the budget constraint is slack

or λ = 0, bank allocation of funds is first-best. The bank will allocate funds to each region i

until the marginal revenue product generated by li is equal to zero. If the budget constraint

is tight, i.e., the bank is constrained, the marginal revenue product generated by łi is then

equal to λ, which is greater than zero. This suggests that when the bank is constrained, the

amount of funds allocated to each region i is strictly less than the amount of funds allocated

to each region i when the bank is unconstrained. Hence, when the bank is unconstrained, the

allocation of funds is first-best.

Next, we consider how a deposit shock in region j ( j , i) affects lending in region i.

To study this, we differentiate the first-order conditions presented in equation 2 and 3 with

respect to d j. This yields the following equations.

∂li
∂d j

=
1

αi · f ′′(li)
×
∂λ
∂d j

> 0 (4)

∂λ
∂d j

= [
∑

i

1
αi f ′′(li)

]−1 < 0 (5)

Hence, a robust prediction of this framework is that negative shocks to deposits in one region

lead to a contraction in lending in all regions, including regions which are not directly affected

by the shock. Intuitively, a negative deposit shock in region j raises the shadow value of a

marginal dollar of funds, λ. As a result, banks adjust their lending activity in each region to
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ensure that the optimality condition is satisfied. This is driven by the decreasing returns to

scale of loans, i.e., f ′′(li) < 0. Simply put, multi-market banks smooth out negative deposit

shocks in one region by decreasing lending in all regions.

Additionally, we derive two other testable implications from this framework. First, the

decline in lending is larger for banks facing tighter financial constraints. This is represented

by the change in the shadow value of the marginal dollar of funds, following a deposit shock
∂λ
∂d j

. Intuitively, it implies that negative deposit shocks push banks closer to their constraints

resulting in a reduction in lending. Second, the decline in lending is lower in regions where

banks earn rents due to their superior ability in accessing information, as represented by αi.

The decline in lending, following a negative deposit shock, is lower in regions where banks

possess greater informational advantages. Intuitively, banks cut lending more in regions

where returns to lending are lower.

3 Data

We construct natural disaster shocks using the Spatial Hazard Events and Losses Database for

the United States (SHELDUS). SHELDUS is a county-level hazard and loss dataset, provid-

ing detailed information on natural disaster dates, affected counties, and direct losses (e.g.,

property and crop losses, injuries, and fatalities). Coverage of natural disasters includes thun-

derstorms, hurricanes, floods, wildfires, and tornadoes. The data is sourced from the “Storm

Data and Unusual Weather Phenomena” published by the National Climatic Data Center

(NCDC). We report summary statistics on aggregate property damages in Table 1, property

damages by hazard type in A.13, and present a heatmap of the property damage per capita in

Figure A.1.

We obtain branch-level bank deposits data from the Federal Deposit Insurance Corpora-

tion (FDIC). The FDIC conducts an annual survey of branch office deposits, the Summary of

Deposits (SOD), for all FDIC-insured institutions. The survey collects information on branch

characteristics such as total deposits, information on parent banks, and detailed addresses as

of June 30th of each year. The data covers the universe of US bank branches and spans from

1994 until 2018. We restrict the sample to banks that have branches in more than a single

county.4

4Our results are robust to changing this threshold.
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To examine lending outcomes driven by the bank deposit shock, we leverage small

business lending data collected under the Community Reinvestment Act (CRA), spanning

from 1997 until 2018. The CRA defines small business loans as commercial and industrial

loans of $1 million or less. All depository institutions above a certain asset threshold (e.g.,

$1.252 billion in 2018) must report the geographic distribution of their small business loans. The

CRA data is the most comprehensive data on small business lending and covers approximately

86% of all loans under $1 million (Greenstone, Mas and Nguyen (2020)).

We supplement our analysis of bank lending with mortgage origination data collected

under the Home Mortgage Disclosure Act (HMDA), spanning from 1995 to 2017. Notably, we

categorize mortgage loans based on (1) loan type - mortgages for home purchases, refinancing

and home-improvement, and (2) loan size - jumbo and non-jumbo. Jumbo loans are typically

not sold to the Government Sponsored Enterprises (GSEs), Fannie Mae and Freddie Mac.

We extract balance sheet information of US non-financial and non-utilities firms from

Compustat and merge this data with the information on firms’ lead bank using Dealscan. The

data on quarterly bank balance sheet and income statement comes from the call report data

and data on regulatory bank capital comes from SNL. These datasets span from 1994 until

2018.

We use several macroeconomic shocks in our analysis, measured at the quarterly fre-

quency, spanning from 1994 until 2018. The data on common macroeconomic indicators such

as yields, total government expenditure and gross domestic product (GDP) comes from FRED

provided by the St. Louis Fed. The term spread is the government six-month yield minus the

three-month yield. The government expenditure shock and economic growth are defined as

the percentage change in the total government expenditure and GDP, respectively. The data

on oil supply shocks and economic policy uncertainty index comes from Känzig (2021) and

Baker, Bloom and Davis (2016), respectively. We construct data on monetary policy shocks

and granular shocks to large firms as in Gorodnichenko and Weber (2016) and Gabaix (2011),

respectively.

Lastly, we account for shocks to demand using the US Small Business Administration

(SBA) disaster loan data. SBA provides disaster assistance following a declared disaster.

This assistance comes in the form of low-interest long-term disaster loans for damages that

are not covered by insurance or other recoveries to businesses of all sizes, private nonprofit

organizations as well as homeowners and renters. The SBA disaster loan data provides
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information on such verified losses caused by disasters. These damages reflect the cost of

repair and are proportional to the amount of SBA disaster loans. We use the total losses to

businesses and homes to construct a measure of loan demand following disasters. This data

is available from 2000 through 2018.

4 Geographic Concentration of Bank Deposits

We begin our analysis by documenting several new facts on the geographic concentration

of deposits. First, we show that deposits are geographically concentrated within banks.

Second, we note that this geographic concentration is not a new phenomenon; deposits exhibit

geographic concentration within banks from 1994 – the first reported year in the Summary of

Deposits data. Third, the geographic concentration of deposits within bank is evident across

all banks, regardless of size. Lastly, we show that the county that raises the largest deposits

for any given bank is geographically dispersed across the US.

4.1 Banks Raise 30% of Deposits From a Single County

Figure 1 demonstrates that deposits are geographically concentrated within banks. Figure

1a presents the relationship between the share of deposits and the county number ordered

by deposits. The county number refers to the rank of a county by the amount of deposits

it raises, i.e., county #1 refers to the county that raised the greatest amount of deposits for

a given bank. Hereafter, we describe county #1 as the largest deposit county. The share of

deposits associated with each county number is measured using three methods: Simple Avg,

Weighted Avg, and Reg Margins. The Simple Avg method takes the average share of deposits

in each county number. The Weighted Avg method takes the average share of deposits in each

county number, weighting by total assets of each bank. The Reg Margins method retrieves

the estimates associated with the regression of share of deposits on the county number, after

including bank × year fixed effects and county × year fixed effects. The three methodologies

yield consistent results. Regardless of the methodology, we find that the largest deposit county

accounts for almost 30% of bank deposits.
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4.1.1 Is Geographic Concentration a New Phenomenon?

We complement this fact with a temporal analysis, investigating whether the geographic

concentration of deposits within banks has varied over time. In Figure 1b, we conduct a

temporal analysis to study how various measures of the share of deposits in the largest

deposit county have varied from 1994-2018. We present the time series plots of the simple

average, weighted average, first percentile, and tenth percentile of the share of deposits in

the largest deposit county. We draw three noteworthy insights from this analysis. First, we

find that geographic concentration of deposits within banks is apparent from 1994 – the first

reported year in the Summary of Deposits data. Second, we find that there is considerable

concentration even at the first and tenth percentile values of the share of deposits in the largest

deposit county. Third, we find that the deposit concentration exhibits a marginally downward

trend over time.

4.1.2 Does Geographic Concentration Vary with Bank Characteristics?

Next, we investigate the prevalence of the geographic concentration of bank deposits. To

this end, Figure 2 examines the relationship between the geographic concentration of bank

deposits and bank size.5 Figure 2a reports the relationship between the percentile of bank

assets and share of deposits in the largest deposit county. Figure 2a indicates that there are

not any distinguishable differences in the share of deposits in the largest deposit county for

banks which operate at lower percentiles of bank assets relative to banks which operate at

the higher percentiles of bank assets. We investigate the issue further by documenting the

geographic concentration of bank deposits among the Big Four banks in the US, as shown in

Figure 2b. Figure 2b documents the relationship between the share of deposits and the county

number for the Big Four banks in the US. The share of deposits in the largest deposit county

is highest for Citibank (≈ 0.5), followed by JP Morgan (≈ 0.4), Wells Fargo (≈ 0.25), and Bank

of America (≈ 0.1).6 Overall, the results of this analysis indicate the prevalence of geographic

concentration of bank deposits across the distribution of bank size.

5We replicate the analysis for other bank characteristics such as deposits, total liabilities, book value of equity, and total
loans and find similar results, see Appendix Figure A.2.

6Appendix Figure A.5 shows the average share of deposits in the largest deposit county for the Big Four banks over our
sample period.
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4.1.3 Is Geographic Concentration Driven by Online Banking?

A potential concern of our analysis is that the deposit concentration may be spuriously at-

tributed to online deposits being reported at the bank’s headquarter branch. As a result, one

would expect the geographic concentration to mechanically increase over time as banks raise

a greater fraction of their deposits through their online branches. Figure 1b documents a

downward temporal trend in deposit concentration, instead of an upward trend, hence, alle-

viating this concern. Moreover, Appendix Figure A.5 exhibits a decline in the average share

of deposits in the largest deposit county for the Big Four banks over our sample period – the

most active banks in online banking.

4.1.4 Does Geographic Mismeasurement of Deposits Drive Concentration?

An issue with the Summary of Deposits (SOD) data is that some branches, may have a

disproportionately high number of non-local deposits. This may be particularly relevant for

the headquarter branches of national banks.7 Due to reporting stipulations, the total amount

of non-local deposits measured in a bank’s headquarter branch may significantly impact

our measures of deposit concentration. While this is a limitation of the SOD dataset, we

attempt to address this concern by examining the deposit concentration for banks that moved

headquarters in our sample period. Specifically, we evaluate the change in total deposits in

the headquarter county when banks changed their headquarter branch. We use this change

to recalculate our measure of within-bank deposit concentration in three distinct ways. First,

we remove the change in deposits at the headquarter county and distribute this change in

deposits across all counties based on the previous year’s county share of deposits. Second, we

remove the change in deposits at the headquarter county and equally distribute this change

across all counties. Third, we remove the change in deposits at the headquarter county and

completely omit this change in calculating the deposit shares of all counties. Appendix Figure

A.3 presents these results for the years in which the banks moved their headquarters. That

is, our sample only consists of 160 banks that moved their headquarters during the year they

changed headquarters. These results are similar to the results reported in Figure 1a, indicating

7According to the SOD reporting instructions, deposits should be assigned to the office in closest proximity to the account
holder’s address or where the account is most active, or where the account was opened. These guidelines imply that
reported deposits in each branch reflect deposits raised by that branch in its county, and, as a general rule, is indeed so.
However, the instructions also recognize that “certain classes of deposits and deposits of certain types of customers may
be assigned to a single office for reasons of convenience or efficiency” (see, page 3 of the 2021 instruction manual). The
implies that allocation of deposits such as brokered deposits, internet deposits, etc. may be assigned to any location that
any single institution chooses, which is often the headquarter branch of the bank.
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that the geographic misattribution of bank deposits due to SOD reporting guidelines are

unlikely to drive our results.

We complement this analysis by examining the effect of the within-bank deposit concen-

tration, after removing the headquarter branch of the bank. Appendix Figure A.4 presents

the results. We find that 20 to 25% of bank deposits come from a single county, even after

removing the deposits at the headquarter branch to account for any geographic misattribution

of deposits.8

4.1.5 Geographic Distribution of Largest Deposit Counties

Lastly, we explore the geography of banks’ largest deposit county in Figure 3. The heatmap

illustrates two salient features associated with the largest deposit county: dispersion and

granularity. The figure illustrates that the largest deposit county is geographically dispersed

across the United States, as depicted in blue. The number of banks for whom a county is the

largest deposit county is represented by the intensity of the shading; counties which serve as

the largest deposit county for many (few) banks is shown in darker (lighter) blue. More than

50% of the largest deposit counties are the largest source of deposits for at least five banks.

This indicates the presence of granularity, in the sense of Gabaix (2011), associated with the

largest deposit county, i.e., certain counties are the largest deposit counties for several banks.

5 Aggregate Fluctuations

This section investigates the deposit channel of aggregate fluctuations by documenting the

relationship between granular deposit shocks and aggregate economic growth. First, we

document the short-run and the long-run affects of local disaster shocks on local bank deposits.

Second, we develop a methodology to construct granular deposit shocks from local disaster

shocks. Third, we present our key finding – granular deposit shocks can explain fluctuations

in aggregate economic growth.

8Note that while we remove deposits at the headquarter branch from the total deposits raised in a county, they are still
included in the measure of total bank deposits. This treatment induces a downward bias in our estimate of the share of
deposits coming from the largest county.
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5.1 Disasters and Deposit Growth

This section investigates the short-run and long-run responses of local disaster shocks on

local deposit growth. Table 1 presents the summary statistics of deposit growth and property

damage following a disaster at the county-year level. The median deposit growth is 3.37%,

while the standard deviation is 9.20%. The median total property damage per capita is $1.67

in 2018 dollars, while the median total property damage is $55,369 in 2018 dollars. The

distribution of property damage is right skewed with significant damages in the tails of the

distribution. We begin by studying the immediate response of deposit growth to disaster

shocks. The empirical specification is the following,

∆ln(Deposits)c,t = β ×Disaster Shockc,t−1 + θc + θs(c∈s),t + εc,t (6)

where ln(Depositsc,t) denotes the amount of deposits raised in county c in year t across all banks,

∆ln(Depositsc,t) denotes year-over-year deposit growth, and Disaster Shockc,t is measured as

the aggregate dollar amount of property damage per capita in county c in year t. θc and θs(c∈s),t

indicate county and state × year fixed effects, respectively. The economic consequences of a

disaster may depend on the degree of location-specific adaptation, and resilience (Guiteras,

Jina and Mobarak (2015)), geography (Hsiang and Jina (2015)), and other location-specific

factors such as vulnerability to natural disasters. County fixed effects help control for such

location-specific factors, estimating β using only within county variation in disaster shocks,

while controlling for state-level time-varying factors.

Appendix Table A.1 presents the results from the estimation of equation 6. Columns 1-6

present the estimate of β for successive levels of year, county, and state × year fixed effects.

Across all specifications, the point estimate is negative and statistically significant at the 1%

level. The estimate of interest remains stable in magnitude despite the model R2 increasing by

18 percentage points from column 1-6. Economically, a one standard deviation disaster shock,

denoting a loss of $570 per capita, is associated with a 0.07-0.11 percentage points decline in

deposit growth – comparable to the 25th percentile of deposit growth.9 These results are robust

to the inclusion of lagged shocks, shown in Appendix Table A.2.10

9The effect is computed by multiplying the point estimate with the standard deviation of deposit growth. Specifically, we
multiply the estimate range [−0.0080,−0.0121] with the standard deviation of deposit growth (9.2%) to get the effect range
of [−0.07,−0.11].

10We conduct a placebo test to validate the relationship between disaster shocks and deposit growth is not spurious. See
Appendix Figure A.6 fr details.
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While these findings indicate an immediate decline in deposit growth following disaster

shocks, it is unclear how persistent these effects are. We conduct a Jordà projection to analyze

the long-run response of deposit growth to disaster shocks. The results of the projection are

presented in Figure 4. The findings indicate that the effect of disaster shocks on deposit growth

is permanent, exhibiting a strong negative effect of disaster shocks on deposit growth even ten

years after the shock. The persistence of the effect on deposit growth stands in stark contrast

to the transience of the effect on lending growth in disaster affected counties driven by the

demand channel (Cortés and Strahan (2017)).11

The negative effect of natural disasters on local deposit growth is consistent with the

extant literature which documents negative local short-run and long-run economic effects of

natural disasters, particularly when disasters can be objectively measured using indicators

such as physical losses (see meta-analysis presented in Lazzaroni and van Bergeijk (2014) and

Klomp and Valckx (2014)). Other works have documented a negative long-run effect of large

natural disasters on life-satisfaction and happiness (Hudson et al. (2019)), and human health,

well-being and development (Kousky (2014)). As disasters destroy capital, households may

be forced to consume from their savings. Additionally, deposits are the most liquid form

of funds that may be used in the process of recovery and reconstruction following natural

disasters. Moreover, households may hold liquid deposits to self-insure themselves against

future natural disasters. All these forces can produce a permanent decline in savings.12

Overall, our findings indicate that local disaster shocks negatively affect local bank deposits,

and, this effect is permanent.

5.2 Effect of Deposits on Aggregate Fluctuations

This section (1) presents the methodology to construct granular deposit shocks using local

disaster shocks, and, (2) documents the effect of negative deposit shocks on aggregate economic

growth using the GIV methodology developed in Gabaix and Koijen (2020).

11Cortés and Strahan (2017) document an increase in lending by banks in areas affected by disasters, however, this increase
in lending disappears one year after the disaster.

12Combining the household level savings data from Germany with the natural experiment of the European Flood of August
2002, Berlemann, Steinhardt and Tutt (2015) document that natural disasters depress savings. We direct the readers to
the review of the literature presented in Botzen, Deschenes and Sanders (2019) for discussion and relevance of different
direct and indirect channels through which natural disasters affect local long-run economic growth.
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5.2.1 Identifying Strategy

The primary objective of this paper is to study the relationship between deposit shocks and

aggregate fluctuations in economic growth. The relationship of interest is the following,

∆GDPt

GDPt−1
= α + β × ∆ln(Deposits)t−1 + εt (7)

where ∆GDPt
GDPt−1

is the US GDP growth at time t, and ∆ln(Depositst) is the total deposits growth

in year t. The coefficient of interest is β, which estimates the deposit elasticity of economic

growth. However, estimating the coefficient β directly as in equation 7 is likely to produce

biased estimates due to a host of endogeneity issues. For example, the error term (εt) in

equation 7 may capture unobserved latent factors correlated with demand and supply of

deposits that can bias the estimate.

We address this issue by constructing granular deposit shocks using local disaster shocks

à la Gabaix and Koijen (2020). Natural disasters are likely to be uncorrelated with the observed

and unobserved latent factors, thereby circumventing concerns of endogeneity. We directly

estimate the effect of the granular deposit shocks on aggregate fluctuations, under the identi-

fying assumption that the granular deposit shocks, constructed using exogenous local disaster

shocks, are uncorrelated to preexisting innovations in the GDP growth process. We discuss

the construction and properties of these shocks next.

5.2.2 Bank Deposit Shocks: Construction

In this section, we describe the construction of bank deposit shocks.13 Bank deposit shocks,

Γb,t for bank b at time t (quarter), are constructed by weighting county-level disaster shocks,

εc,t – property damage per capita in county c at time t – by the bank-county deposit share,

Db,c,t−1. Db,c,t−1 denotes deposits of bank b in county c. This is measured using the county-level

deposits reported by banks in the SOD database on the 30th of June of the previous year.

Γb,t =
∑

c

{
Db,c,t−1∑
c Db,c,t−1

× εc,t} (8)

Next, we investigate whether various bank characteristics can predict bank deposit shocks in

Appendix Table A.3. The bank characteristics under study include size, loans, total equity,

13We direct readers to Appendix section B for discussion on the micro foundations and the underlying assumptions of our
deposit shocks.
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cash, demand deposits, net hedging, dividend on common stock, and operating income.

Columns 1-8 present the estimates of a simple regression of the bank deposit shock, Γb,t, on

each bank characteristic. Columns 9 and 10 present the estimates from regressing the bank

deposit shocks on all bank characteristics. Column 10 includes bank and year fixed effects.

Bank characteristics under consideration along with bank and year fixed effects can explain

only 7% of total variation in bank deposit shocks. These findings demonstrate that bank

characteristics cannot robustly predict bank deposit shocks in any statistical or quantitative

sense.

5.2.3 Bank Deposit Shocks: Properties

We examine the spatial and temporal dynamics of the bank deposit shocks in Figure 5. Figure

5a plots the kernel density of the coefficients of a AR(1) process for each banks’ Γb,t. While

AR(1) estimates exhibit wide dispersion, a substantial mass is concentrated around zero. The

average AR(1) estimate is demarcated by the dashed red line at -0.03. This estimate suggests

that there is a low degree of persistence among the shocks, on average. Figure 5b plots the

kernel density of the bank-pairwise R2, produced from regressing the deposit shocks across

bank pairs. Similar to the kernel density of the coefficients of a AR(1) process, there is wide

dispersion in the R2 of the deposit shocks across banks. However, the mass is concentrated

around zero, as the average R2, demarcated by the dashed red line is 0.08.

5.2.4 Bank Deposit Shocks and Liquidity Creation

Next, we present the long-run responses of bank deposit growth and growth in bank liquidity

creation to bank deposit shocks. These tests are important for establishing the first stage, that

disaster-induced property damage to large deposit counties of a bank transmit to bank deposits

and liquidity creation.14 The results of the Jordà projections are presented in Figure 6. The

findings indicate that the effect of bank deposit shocks on bank deposit growth and growth in

bank liquidity creation is immediate and persistent for several years. A one standard deviation

negative bank deposit shock results in an immediate decline of 0.98 percentage points in bank

deposit growth. A one standard deviation negative bank deposit shock results in an immediate

decline of 0.19 percentage points in growth in liquidity creation. The effect of bank deposit

14We use “cat fat,” the preferred liquidity creation measure of Berger and Bouwman (2009), as the measure of bank liquidity
creation.
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shocks on bank deposit growth and growth in liquidity creation diminishes, starting five years

after the initial shock. Hence, the granular bank deposit shocks have a sizeable effect on bank

deposit growth and growth in liquidity creation.

Overall, our results show that bank deposit shocks lack temporal dynamics, exhibit low

correlation across banks, and can predict the aggregate bank-level decline in deposits and

liquidity creation. Therefore, these shocks are unlikely to be correlated with latent factors and

are a suitable candidate for bank-specific idiosyncratic shocks to deposits.

5.2.5 Aggregate and Granular Deposit Shocks

In this section, we describe the construction of aggregate and granular deposit shocks, using the

bank deposit shocks described in section 5.2.2. Aggregate deposit shocks, Γt, are constructed

by weighting the bank deposit shocks by each banks’ lending share, Lb,t−1, in period t − 1.

Γt =
∑

b

{
Lb,t−1∑
b Lb,t−1

× Γb,t} (9)

We present a time-series plot of the aggregate deposit shocks in Figure 7a. Based on a

narrative analysis of the crests, we label each peak and assess the magnitude of the disaster(s)

in Appendix Table A.4. Major disasters include hurricanes, floods, wildfires, and earthquakes,

which are geographically dispersed across the United States. The insurance payout was largest

for Hurricane Katrina, at $87.96 billion, and lowest for the Nisqually earthquake, at $0.44

billion. Moreover, Figure 7b plots the relationship between insurance payouts and aggregate

bank shocks, and illustrates the estimated regression equation. The figure demonstrates that

there is a strong positive relation between insurance payouts and aggregate bank shocks.

Next, we compute granular deposit shocks from aggregate deposit shocks by subtracting

equal-weighted natural disaster-induced property damages per capita from the aggregate

shocks,

Γ∗t = Γt −
1

Nb
{

∑
b

{
1

Nc
×

∑
c

1b,c,t × εc,t}}, (10)

where Nb is the number of banks and Nc is the number of counties. Gabaix and Koijen

(2020) show that subtracting equal weighted shocks from the weighted shocks eliminates

common observed and unobserved aggregate factors, assuming the loadings on these factors
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are approximately one. Hence, granular shocks provide for better identification as perfectly

controlling for all aggregate factors may be impossible making them an optimal proxy for

idiosyncratic shocks to deposit growth. Intuitively, granular deposit shocks captures the

idiosyncratic deposit growth of large banks following natural disasters.

5.2.6 Case Study: Citibank and Hurricane Sandy

This paper proposes that idiosyncratic disaster shocks can result in bank-level aggregate

deposit shocks. We use a case study to illustrate this mechanism by examining the effects

of Hurricane Sandy on Citibank’s deposits and lending activity in October 2012. Hurricane

Sandy caused severe damage to critical infrastructure in New York and New Jersey, resulting

in power outages and an estimated $19 billion in damages and lost economic activity (Gov.

(2023)).

We start by examining the effects of the hurricane on Citibank’s deposits in its three

largest deposit counties, which include New York County and nearby areas.15 Figure 8a shows

a significant decline in deposit growth of almost 45% in these counties in 2012. Additionally,

Figure 8b presents the time-series plot of Citibank’s deposit shock, constructed according to

Equation 8. Taken together, Figures 8a and 8b clearly demonstrate that Hurricane Sandy had

a significant negative effect on Citibank’s aggregate deposits and this reduction in aggregate

deposits was driven by decline in deposits in the largest deposit counties affected by Hurricane

Sandy.

5.2.7 Granular Deposit Shocks and Aggregate Fluctuations

This section shows that granular deposit shocks can explain aggregate fluctuations. We begin

by presenting a descriptive local linear polynomial plot of GDP growth and bank shocks in

Appendix Figure A.7. The figure indicates that large bank shocks are negatively related to

GDP growth. We investigate this relationship formally in Table 2, in which we regress GDP

growth on the granular deposit shock. Column 1 does not include any fixed effects. Columns

2 and 3 include quarter, and, quarter and year fixed effects, respectively. The results indicate

15To compare deposit growth, we divide the counties into two categories: Citibank’s three largest deposit counties in
each year, and all other counties. We do not restrict the comparison between New York County and all other counties
because other nearby counties in New York, such as Kings County (Bronx), Queens County (Queens), and Nassau County
(Long Island) are also among Citibank’s three largest deposit counties some years and were affected by Hurricane Sandy.
Additionally, Citibank relocated its headquarters in 2013 to Minnehaha County, which may impact deposit measurements
across large deposit counties.
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that a one standard deviation granular deposit shock reduces economic growth by 0.05-0.07

percentage points, and granular shocks can explain 2.37% of variation in economic growth.16

Table 3 documents the amount of variation in economic growth that can be explained

by granular deposit shocks. In columns 1-6, we regress GDP growth on lags of the granular

deposit shock, sequentially. In column 7, we present the results of the regression of GDP

growth on the granular deposit shock and five lags thereof. The R2 associated with column 7

demonstrates that granular deposit shocks can explain 3.30% of variation in economic growth.

In order to assess the quantitative role of the geography of bank deposits – whether

the 3.30% number is economically meaningful – consider a benchmark economy with one

county per bank and i.i.d. county-level shocks, i.e., no granularity. Assume that the aggregate

volatility in the benchmark economy is σ and the county-level growth volatility is σc. Piazzesi

and Schneider (2016) documents that the city-level house price volatility is between 2.5-3X the

size of aggregate house price volatility. For personal income, aggregate growth has a volatility

of 0.027 while county-level growth has a size-weighted-average growth volatility of 0.04, a ratio

of 1.5X. Let us aggressively calibrate our benchmark economy to have σ = 3σc and N ≈ 3, 000.

The aggregate variance coming purely from the finite sample is 3σ
√

N
= 0.055σ. The standard iid

calculation for this non-granular economy indicates that only 0.3% of total aggregate variance

can be explained without any granularity. This is substantially smaller than our baseline

finding – 3.30% of variation in economic growth is explained by granular deposit shocks.

Hence, the geography of bank deposits considerably affects aggregate economic fluctuations.

5.2.8 Explanatory Power of Deposit Shock and Other Macroeconomic Shocks

To better understand the relevance of granular deposit shocks in explaining economic growth

relative to other macroeconomic shocks, we conduct a horse race. We include oil shocks,

monetary policy surprises, uncertainty policy shocks, term spread, government expenditure

shocks, and the granular residual from Gabaix (2011). Table 4 presents these results. Column

1 presents the estimate from the regression of GDP growth on the granular deposit shocks,

reproduced from column 1 of Table 2. Columns 2-7 sequentially add oil shocks, monetary

16A concern with the findings reported in Table 2 is that the relationship may be driven by noise or sampling error given
the small sample size. We address this concern by generating placebo shocks. We do so by fitting our aggregate shocks
and common shocks to Pareto distributions. We generate placebo shocks by taking the difference of the random draws
from the estimated aggregate and common shock distributions. We estimate our baseline regression and compute the
model R2 in 1,000 simulations of the placebo shocks. Appendix Figure A.8 reports the results from the simulations. Our
placebo shocks can generate an R2 that is greater than 2.37% – our baseline R2 from Column 1 of Table 2 – in fewer than
10% of the cases. This indicates that sampling error alone does not explain variation in aggregate fluctuations.
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policy surprises, uncertainty shocks, term spread, government expenditure shocks, and the

granular residual, respectively. Column 8 includes all granular and macroeconomic shocks.

There are two takeaways from this table. First, the effect of the granular deposit shocks on

GDP growth is robust to controlling for other macroeconomic shocks. Specifically, across

all columns, a one standard deviation granular deposit shock reduces economic growth by

0.06-0.08 percentage points. Second, the explanatory power of granular deposit shocks is

comparable, and in some cases higher than other commonly used macroeconomic shocks

such as oil shocks, monetary policy shocks, uncertainty shocks, term spread, and the granular

residual from Gabaix (2011).

5.2.9 Magnitude of the Deposits Channel

For ease of interpretation, we convert our baseline estimate to units of deposit and lending

growth. To this end, we estimate a two stage least square (2SLS) specification. The identifying

assumption of the two set of regressions is that granular deposit shocks affect economic growth

only through their effect on deposit growth, which in turn affects lending growth. We regress

deposit growth on the granular deposit shocks in the first stage, and use the predicted values

of deposit growth from the first stage to identify the deposit elasticity of economic growth in

the second stage. We similarly examine this relation with lending growth to identify the loan

supply elasticity of economic growth. Further, we estimate the effect of deposit growth on loan

supply growth. Table 5 reports these results. Columns 2 and 4 report the first stage for deposit

growth and lending growth, respectively. Columns 1 and 3 report the deposit and loan supply

elasticity of economic growth, respectively. Our loan supply elasticity of economic growth is

0.14. This indicates that a 1 percentage point decrease in the loan supply results in a decline of

economic growth by 0.14 percentage points. While the f-statistic associated with this estimate

is low, the magnitude is comparable to that documented in the literature so far. Kundu and

Vats (2020) empirically estimate that a 1 percentage point increase in bank lending through

the loan supply channel increases economic growth by 0.05-0.26 percentage points. Using a

structural model, Herreño (2020) estimates that a 1 percent decline in aggregate bank lending

supply reduces aggregate output by 0.2 percent. Our estimate for the deposit elasticity of

economic growth is 0.87. The f-statistic associated with this estimate is 11.14. The results

indicate that a 1 percentage point decrease in deposit growth results in a decline of economic

growth by 0.87 percentage points. The deposit elasticity of economic growth is substantial,
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and corroborates that the deposits channel can significantly influence aggregate fluctuations.

Hence, our empirical methodology allows us to estimate the aggregate elasticity of deposit

shocks on economic growth, addressing the missing intercept problem.

Further, the deposit elasticity of economic growth is almost six times the lending supply

elasticity of economic growth, and is consistent with the observation in column 5 that a 1

percentage point increase in deposit growth corresponds to a 6 percentage point increase in

lending growth. This IV set-up provides a clean estimate of the money multiplier, indicating

that a $1 reduction in deposits is associated with a reduction of $1.18 in C&I lending.

5.2.10 Is the Effect of Deposit Concentration Capturing the Effect of County Granularity?

A concern with our analysis is that the fat-tailed distribution of bank deposits is driven by

Zipf’s law in county size distribution. Disaster shocks are also wealth or income shocks,

which affect demand, so any granularity in county populations, incomes, or wealth could

also contribute to aggregate fluctuations. In such a case the deposit concentration is simply

capturing county granularity and the aggregate effect is primarily driven by the effect of

disasters hitting counties which account for a disproportionately large share of US population,

GDP or employment. We address this concern by directly controlling for such factors. We

create alternative granular shock variables for each county. For example, the employment

granular shock is calculated as the average of property damages per capita, weighted by the

county’s share of national employment. Similarly, we create GDP and population granular

shocks which measure the average of property damage per capita, weighted by the county’s

share of national GDP and population, respectively. Table 6 presents the results of running

a horse-race between our granular deposit shock and other county-level granular shocks.

Across all columns, our estimate of interest associated with the granular deposit shocks is

fairly stable in magnitude and sign, and remains statistically significant. This indicates that

the effects of deposit concentration are not mechanically driven by the fat-tailed distribution

of county size.

5.2.11 Do the Disaster Shocks Reflect Shocks to Bank Capital or Demand?

Thus far, we have argued that our measured shocks reflect the deposits channel. However,

a concern with our proposed mechanism is that the disaster shock may be correlated with
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shocks to bank capital or demand. This concern poses a serious threat to our identification

assumption.

We directly compare the deposits channel with the bank capital and demand channels in

Appendix Table A.5, by running a horse-race between our granular deposit shock, granular

bank capital shock and demand shock. The bank capital shock is computed by weighting the

county-level disaster shocks by the amount of small business lending and mortgage lending

conducted by each bank in each county, respectively. We use these bank-level shocks to

produce aggregate bank capital shocks, as indicated in equations 9 and 10. The granular bank

capital shock used in Appendix Table A.5 is the mean of the granular bank capital shock based

on mortgage lending and the granular bank capital shock based on small business lending.

The results reported in columns 1-3 indicate that the bank capital channel does not drive the

aggregate response in GDP growth. The magnitude of the bank capital channel is neither

economically nor statistically significant; the point estimate of the granular bank capital shock

is minuscule relative to the magnitude of the deposits channel. Moreover, column 2 indicates

that the R2 associated with the granular bank capital shock is nil, hence, the granular bank

capital shock does not explain any variation in GDP growth. Columns 1 and 3 indicate

that a one standard deviation granular deposit shock reduces economic growth by 0.06-0.08

percentage points – the same range of estimates produced by Table 4.

Further, we supplement this test with demand shocks. To do so, we directly control for

home and business related disaster-losses reported in the SBA Disaster Loan Program dataset.

These losses are proportional to the change in demand caused by disasters. Columns 4-7

reports the results using these alternative measures. As before, we find that our granular

shock variable is statistically and economically significant despite accounting for these alter-

nate channels. Hence, this test corroborates that the deposits channel can explain aggregate

fluctuations.

5.2.12 Long-Run Response

Next, we study the long-run responses of GDP growth to the granular deposit shocks. Figure

9a plots the long-run response of GDP growth to the granular deposit shocks using a Jordà

projection. The figure indicates that the effect of granular deposit shocks on GDP growth is

immediate, however, transitory; the effect wanes gradually over the course of several quarters.

This result contrasts with the finding of Figure 4, in which we find that the effect of disaster
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shocks on deposit growth is permanent. This difference in the permanence of the response

may be attributed to the salience of financing frictions. Granular deposit shocks affect GDP

growth in the short-run when financial frictions are binding and acute. With time, firms and

households may substitute to other sources of external financing, hence, the effect dissipates

in the long-run.

A concern with the analysis, so far, is that our estimation strategy may be capturing the

direct effect of disasters on economic growth rather than the effect of idiosyncratic shocks to

deposit growth. We address this concern by examining the long-run response of GDP growth

on the aggregate disaster shocks, measured using total property damage per capita, using

a Jordà projection. Figure 9b reports these results. There is no statistically or economically

relevant direct effect of disasters on economic growth, as the point estimate remains close

to zero over time. This lends credence to our main finding that our results are driven by

idiosyncratic shocks to deposit growth.

5.2.13 Salience of Deposit Concentration, Disaster Shocks and Lending Share

Our shocks constructed using the GIV methodology of Gabaix and Koijen (2020) relies on

three forces to explain aggregate fluctuations – the within-bank geographic concentration of

deposits, the magnitude of disaster shocks, and the importance of the bank in the overall

economy, measured by its share of lending activity. This section highlights the salience of

these three forces by examining the sensitivity of the estimate to placebo shocks that gradually

dilute the importance of each force.

Our first exercise examines the importance of deposit concentration. We construct a

series of placebo shocks by omitting the top K deposit counties for each bank, where K ranges

from 1 to 15. For example, when K = 6, we omit each bank’s six largest deposit counties

in the construction of our granular shocks. The intuition of this test is that if the deposit

concentration of banks does not matter for our shocks to explain aggregate fluctuations, we

should observe similar results using the placebo shocks. Otherwise, if deposit concentration is

an important ingredient, the ability of these placebo shocks to explain aggregate fluctuations

should decline as K increases. Figure 10a reports the results from this exercise. K = 0 indicates

the baseline coefficient associated with the regression of our baseline granular shocks on the

GDP growth rate. Figure 10a shows that as K increases, the coefficient rapidly declines to zero.

This test indicates the salience of the geographic concentration of bank deposits. Moreover,
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the test demonstrates that the disasters and the relative shares of bank lending are insufficient

in and of themselves to generate aggregate fluctuations.

Our second placebo exercise examines the relevance of the importance of banks in the

economy. We measure the relative importance of each bank in the economy using its share of

total lending activity. Specifically, we construct a series of placebo shocks by excluding the most

significant banks for each quarter. The intuition of this test is that if large disasters hit deposit

counties of small banks, the aggregate effects are likely to be muted. However, if disasters hit

the important deposit counties of large banks, the aggregate effect is expected to be larger à la

Gabaix (2011). Moreover, large banks are vital nodes in the lending network structure, hence,

more likely to transmit shocks across the country à la Acemoglu et al. (2012). This intuition is

also consistent with Corbae and D’Erasmo (2021). We construct a series of shocks by varying

the bank size. Specifically, we exclude banks with lending share above the Kth percentile, with

K ranging from the 95th to the 40th percentile in 5 percentile increments. Figure 10b reports

the results from this analysis. In the x-axis, All indicates the baseline coefficient associated

with the regression of our baseline granular shocks on the GDP growth rate. The subsequent

labels denote the percentile of the bank size distribution used to construct the shocks. The

figure shows that as we construct our shocks by excluding systemically important banks, the

effect gradually declines and converges to zero. This indicates the importance of shocks to

large banks in explaining aggregate fluctuations.

Our third placebo exercise examines the relevance of the magnitude of disasters. We

construct a series of placebo shocks by excluding the most significant disasters for each quarter.

Specifically, we create a series of twelve shocks by excluding disasters with property damage

per capita above the 95th and the 40th percentile in 5 percentile increments. Figure 10c reports

the results from using these placebo shocks. In the x-axis, All indicates the baseline coefficient

associated with the regression of our baseline granular shocks on the GDP growth rate. The

subsequent labels denote the percentile of the disaster size distribution used to construct the

shocks. The figure shows that as we construct shocks by omitting large disasters, the ability of

the shocks to explain aggregate fluctuations gradually declines. The results indicate that small

disasters are likely to have only a temperate effect even if they hit the top deposit counties of

the largest banks.
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6 Mechanism

Thus far, we have demonstrated that deposit shocks can affect aggregate economic growth. In

this section, we explore the underlying channels through which this occurs. Using micro-data

on small business lending and mortgage lending, we document a negative relation between

bank deposit shocks and lending activity – the key mechanism through which shocks to banks

affect economic growth. Specifically, we document that the contraction in lending following

deposit shocks is driven by large banks, i.e., deposit shocks alter the lending behavior of large

players – a necessary condition for idiosyncratic shocks to explain aggregate fluctuations.

Additionally, we show that financial frictions such as banks’ reliance on deposit funding,

capital constraints and informational advantages are crucial for the transmission of deposit

shocks. Moreover, we document that the contraction in lending is driven by loans that are

more likely to be funded by deposits. Lastly, we examine the real effects of bank deposit

shocks on firm outcomes, demonstrating the channel (borrower constraints) through which

deposit shocks which translate into lending cuts transmit to the real economy.

6.1 Small Business Lending & Deposit Shocks

We begin our exploration of the underlying mechanism by studying the relationship between

small business lending growth and deposit shocks. We focus on small business lending for two

primary reasons. First, small businesses are the “lifeblood” of the US economy, accounting for

44% of economic activity and 48% of total employment (Kobe and Schwinn (2018)). Second,

small business loans are risky and illiquid assets, and rarely securitized, hence, lending in this

market is especially dependent on stable deposit funding from banks (Drechsler, Savov and

Schnabl (2017)).

Our empirical specification to estimate the effect of deposit shocks on lending growth is

the following.

∆ln(Lending)b,c,t = β × Γb,t−1 + θc,t + θb,c + εb,c,t (11)

where ∆ln(Lending)b,c,t denotes the growth in small business lending by bank b in county

c and year t. Γb,t−1 denotes bank specific deposit shocks measured using banks’ deposit

weighted exposure to disasters in year t − 1. θc,t and θb,c denote county × year and county ×

bank fixed effects, respectively. We interpret the estimate of β as a within-county estimator,
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identified using variation in deposit shocks across banks within a county-year observation.

This estimator measures the effect of deposit shocks on bank lending under the identifying

assumption that banks face identical investment opportunities within a county. County× year

fixed effects also allow us to control for all direct economic effects of disasters. A threat to

our identifying assumption is that banks may have comparative advantages in certain areas

due to historical connections between the bank and the area. Therefore, we include county ×

bank fixed effects to control for the time-invariant importance of a bank in a county. A weaker

version of our identifying assumption states that any friction that creates a wedge between

available investment opportunities to different banks within a county, after controlling for

county × bank fixed effects, is unrelated to the idiosyncratic disaster shocks elsewhere.

Table 7 reports the estimates from the estimation of equation 11. Column 1 presents

results from a simple regression of lending growth of bank b in county c in year t on bank-

specific deposit shock. Column 2-5 sequentially add several permutations of bank, year, and

county fixed effects to finally estimate equation 11 in column 6 with county × year and county

× bank fixed effects. Across all columns the point estimate of β is negative and statistically

significant at the 1% level. Moreover, the magnitude of the estimate remains stable despite

an increase of 20 percentage points in the model R2. Economically, a one standard deviation

deposit shock is associated with a decline of 1.09-1.87 percentage points in lending growth.17

6.1.1 Robust to Exclusion of Disaster-Prone Areas

A concern with our interpretation of the estimate is that it may still capture some effect of

disasters, despite controlling for the county × year fixed effects. We address this concern by

conducting a subsample analysis in Appendix Table A.6, presenting the results from replicating

column 6 in Table 7 for counties unaffected by disasters, and counties affected by disasters.

The results indicate that a one standard deviation deposit shock is associated with a decline of

4.48 percentage points and 1.57 percentage points in lending growth in unaffected and affected

counties, respectively. However, the estimates for the affected and the unaffected areas are not

statistically different from each other. This suggests that our results are unlikely to be driven

by counties which experience direct disaster shocks. Moreover, this result suggests that banks

funnel their deposits from unaffected counties towards affected counties which are directly

17Our results are robust to the exclusion of credit card banks from the sample. See Appendix Table A.7.
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affected by natural disasters. This finding is consistent with the results presented in Cortés

and Strahan (2017).

6.1.2 Long-Run Response

This section presents the long-run response of small business lending growth on deposit shocks

using a Jordà projection. This exercise serves two purposes. First, it allows us to quantify

the long-run response of bank lending to bank deposit shocks. Second, it addresses concerns

of reallocation of bank lending following a disaster. Cortés and Strahan (2017) document a

reallocation of bank lending towards disaster affected areas from unaffected areas following

a disaster. This reallocation is driven by higher demand for bank loans and greater lending

incentives due to federal policies in affected areas. However, Cortés and Strahan (2017) show

that the heightened demand and incentives in disaster affected areas dissipate one year after

the disaster, diluting the difference in lending between affected and unaffected areas. Our

results so far are consistent with Cortés and Strahan (2017). Examination of the long-run

response allows us to distinguish our supply side channel from the demand side channel of

Cortés and Strahan (2017).

Appendix Figure A.9 reports the coefficients from the Jordá projection for 10 years after

the disaster. All estimates are negative and statistically different from zero. The estimate also

exhibits temporal dynamics; the estimate gradually increases in magnitude in the five years

after the initial shock, and gradually decreases thereafter. Overall, the results from the Jordá

projection show that the effect of deposit shocks on small business lending persists for several

years after the disaster, as a one standard deviation deposit shock results in a cumulative

decline of 4.68 percentage points in lending growth, five years after the shock. For robustness,

we separate the long-run response for counties directly affected and unaffected by disasters

and find qualitatively similar results (see Appendix Figure A.10).

6.1.3 Does the Geography of Bank Deposits Matter?

In this section, we investigate whether the geography of bank deposits is an important con-

sideration for assessing the effects on small business lending. To this end, we present the

response of small business lending growth to an alternative measure of bank deposit shocks.

We compute bank shocks by taking a simple average of property damage per capita across

the top K counties, ordered by the share of deposits raised in the county by the bank. The
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procedure sequentially increases K from 1 to 50, i.e., in the first iteration only the property

damage per capita in the largest deposit county is considered and in the last iteration, a simple

average of property damage per capita in the top 50 counties is considered. This measure

ignores the geography of bank deposits and assumes that the deposits are equally distributed

among K counties. Appendix Figure A.11 reports the results from this estimation exercise.

The figure shows that small business lending is negatively related with property damage per

capita when K = 1, i.e., when we consider only the effect from the largest deposit county.

However, the magnitude of the effect declines as we increase K. The effect converges to zero

after K = 10. This indicates that idiosyncratic shocks to the largest deposit counties are cru-

cial. Disregarding the geography of bank deposits does not generate the effects presented

earlier in the analysis. Importantly, this indicates that in the counterfactual case, where de-

posits are equally distributed across geography, banks would be better adept at smoothing

out idiosyncratic shocks.

6.1.4 Large Banks Amplify Transmission

A necessary condition for idiosyncratic shocks to explain aggregate fluctuations is that the

idiosyncratic shocks must affect the behaviour of the large players in the market. Theoreti-

cally, idiosyncratic bank-level shocks may explain aggregate fluctuations if the distribution of

bank sizes is fat-tailed, as 1
√

N
diversification does not occur in an economy with a fat-tailed

distribution (Gabaix (2011)). While Figure 2b demonstrates that the four largest banks in the

US exhibit geographic concentration of their deposits, indicating the presence of fat tails, it

does not necessarily imply that the large banks alter their lending behaviour following deposit

shocks.

In this section, we empirically test whether larger banks contract lending activity in

response to deposit shocks. Specifically, we examine the transmission of bank deposit shocks

on lending growth for small, medium, and large banks. Small banks are banks with less than

or equal to $2 billion in assets. Medium banks are banks with greater than $2 billion in assets

and less than or equal to $35 billion in assets. Large banks are banks with greater than $35

billion in assets. Appendix Table A.8 reports the results for the estimation of equation 11

for small, medium, and large banks, separately. The results indicate that large banks reduce

lending growth by 4.18 percentage points following a deposit shock. This estimate is greater

than the baseline estimate of 1.87 percentage points for all banks, and 1.50 percentage points

31



for medium sized banks. The effect is also present among the top 20 banks, measured by

assets. Hence, our results are consistent with the theoretical literature, suggesting that large

banks alter their lending behavior following idiosyncratic shocks, explaining the aggregation

of idiosyncratic shocks in effectuating aggregate fluctuations.

6.2 Frictions and and the Transmission of Idiosyncratic Shocks

This section documents the relevance of frictions such as banks’ reliance on core deposits,

bank capital constraints, informational frictions, and borrower constraints in the aggregation

of idiosyncratic shocks as discussed in section 2.

6.2.1 Reliance on Core Deposits and the Transmission of Idiosyncratic Shocks

This section examines the role of banks’ reliance on core deposits in the transmission of deposit

shocks. Since natural disasters lead to a decline in banks’ core deposits, banks with greater

reliance on such deposits as a primary source of deposit funding are more likely to cut lending

following deposit shocks. We test this hypothesis using the following empirical specification:

∆ln(Lending)b,c,t = β1×Sh. CDb,t−1×Γb,t−1 +β2×Sh. CDb,t−1 +β3×Γb,t−1 +θc,t +θb,c +εb,c,t (12)

where High Sh. CDb,t−1 or High Core Deposit Share is an indicator variable that takes a value

of one if a bank b’s ratio of demand deposits and time deposits to total bank deposits is above

the median value in year t − 1. ∆ln(Lending)b,c,t denotes growth in small business lending by

bank b in county c in year t, and Γb,t−1 denotes deposit shocks to bank b in year t− 1, measured

using the previous year deposit weighted exposure to disasters. Column 1 of Table 8 presents

the results from the estimation of equation 12. The results indicate that the decline in lending

growth is driven by banks with greater reliance on core deposits. The point estimate associated

with Sh. CDb,t−1 × Γb,t−1 is negative, statistically significant, and economically meaningful.18

Specifically, a one standard deviation deposit shock is associated with an additional decline in

lending growth by 1.08-3.02 percentage points in for banks with high reliance on core deposits.

This supports our conjecture that the key mechanism linking idiosyncratic disaster shocks to

bank lending operates through bank deposits channel.

18We present the step-wise estimation of equation 12 in Appendix Table A.9 by sequentially adding fixed effects and find
that our estimate of interest is stable in magnitude.
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6.2.2 Bank Constraints and the Transmission of Idiosyncratic Shocks

This section examines the role of bank capital constraints in the transmission of deposit shocks.

As regulation imposes additional constraints and balance sheet costs, it can impair banks’

resilience to unanticipated shocks by pushing banks closer to their constraints. This can result

in lending contraction following a deposit shock, as discussed in section 2. We test this using

the following empirical specification:

∆ln(Lending)b,c,t = β1 × λb,t−1 × Γb,t−1 + β2 × λb,t−1 + β3 × Γb,t−1 + θc,t + θb,c + εb,c,t (13)

where λb,t−1 denotes whether a bank b is capital constrained or not in year t − 1. A bank is

defined to be capital constrained if it has lower than the median value of tier 1 capital ratio.

∆ln(Lending)b,c,t denotes growth in small business lending by bank b in county c in year t, and

Γb,t−1 denotes deposit shocks to bank b in year t − 1, measured using previous year deposit

weighted exposure to disasters. Column 2 of Table 8 presents the results from the estimation

of equation 13. The results indicate that the decline in lending growth is driven by constrained

banks. The point estimate associated with Low Tier 1 Ratiob,t−1×Γb,t−1 is negative, statistically

significant, and economically meaningful.19 Specifically, a one standard deviation deposit

shock is associated with an additional decline in lending growth by 21-25 percentage points

for constrained banks relative to unconstrained banks. This result is consistent with Rehbein

and Ongena (2021) which documents that firms connected to a strongly disaster-exposed bank

with lowest-quartile capitalization significantly reduce their borrowings and tangible assets.

6.2.3 Information Frictions and the Transmission of Idiosyncratic Shocks

This section examines the transmission of idiosyncratic deposit shocks in the presence of

informational frictions. Specifically, we examine whether banks transmit shocks more to areas

where they lack informational advantages. The discussion in section 2 indicates that banks

contract lending in areas where they lack informational advantages following deposit shocks.

We examine the transmission of idiosyncratic bank deposit shocks to markets where banks

lack informational advantage using following empirical specification:

∆ln(Lending)b,c,t = β1 ×NCb,c,t−1 × Γb,t−1 + β2 ×NCb,c,t−1 + β3 × Γb,t−1 + θc,t + θb,c + εb,c,t (14)

19We present the step-wise estimation of equation 13 in Appendix Table A.10 by sequentially adding fixed effects and find
that our estimate of interest is stable in magnitude.
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where ∆ln(Lending)b,c,t denotes growth in small business lending by bank b in county c in

year t, and Γb,t−1 denotes deposit shocks to bank b in year t − 1, measured using previous

year deposit weighted exposure to disasters. NCb,c,t−1 refers to non-core markets – markets

where banks lack informational advantage. Banks have informational advantages in their core

markets, defined using two classification schemes. First, for each bank, a county is defined

as a core market if the bank has a physical branch there, and non-core otherwise. Second, a

county is defined as core county if the bank accounts for above-median share of lending in the

county-year, and non-core otherwise. These definitions are based on the prior literature which

argues that banks have greater access to private and soft information about the quality of

borrowers and their collateral in areas where they are most proximate and active (see Petersen

and Rajan (2002), Berger et al. (2005), Hauswald and Marquez (2006), Agarwal and Hauswald

(2010), Granja, Leuz and Rajan (2021)).

Column 3 of Table 8 reports the results from the estimation of equation 14 using the first

definition of core/non-core markets, based on the presence of a bank-branch in the county.

The results indicate that the decline in lending growth is more severe for counties where

banks do not have a physical branch. The point estimate associated with NCb,c,t−1 × Γb,t−1 is

negative, statistically significant, and economically meaningful.20 Specifically, a one standard

deviation deposit shock is associated with an additional decline in lending growth by 1.53-

1.94 percentage points in counties where banks do not have a physical branch. Appendix

Table A.12 reports the results using the second classification scheme in which core is defined

by above-median share of lending in a county-year. The results indicate that a one standard

deviation deposit shock is associated with an additional decline in lending growth by 1.52-2.17

percentage points in counties where banks have limited lending presence. Overall, the results,

using the two alternative definitions of informational advantage, indicate that banks contract

lending in areas where they lack informational advantages following deposit shocks.

6.2.4 Borrower Constraints and the Transmission of Idiosyncratic Shocks

This section examines the role of borrower constraints in the transmission of deposit shocks.

Firms which are more dependent on banks as a source of external financing are hypothesized

to drive the response in lending growth to deposit shocks. We use size as a proxy for external

finance dependence, to identify firms which are most vulnerable to deposit shocks. A firm

20We present the step-wise estimation of equation 14 in Table A.11 by sequentially adding fixed effects and find that our
estimate of interest is stable in magnitude.
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is small if its gross revenue is less than $1 million, and large otherwise. Our empirical

strategy estimates the effect of deposit shocks on lending growth to constrained borrowers by

comparing small business loans to small firms and relatively large firms for each county-bank-

year observation by including bank × county × year fixed effects. In addition, we include

small × bank × county fixed effects to control for the time-invariant importance of small

firms that obtain loans from a bank in a county. The inclusion of these fixed effects relaxes

our weak identification assumption. Table 9 presents the estimates of the effect. The results

indicate that deposit shocks transmit more to constrained borrowers relative to unconstrained

borrowers. A one standard deviation deposit shock is associated with a 1.52-1.87 percentage

points additional decline for small firms relative to large firms. Hence, the contraction in

lending is pronounced for small firms.

6.3 Mortgage Lending & Deposit Shocks

We extend the analysis in section 6.1 to examine the effect of deposit shocks on mortgage

lending. We focus on the mortgage market as it is a major financial sector – the total mortgage

debt outstanding was reported to be $16.56 trillion in 2020 or 79% of GDP in the same year

(Statista Research Department (2021); BEA (2021)).

We begin by estimating the effect of deposit shocks on mortgage lending growth in Table

10. We disaggregate mortgage lending by mortgage type. Column 1 reports the point estimate

associated with mortgage lending for home purchases. Column 2 reports the point estimate

associated with mortgage lending for refinancing. Column 3 reports the point estimate asso-

ciated with mortgage lending for home improvement. The point estimate is interpreted as

a within-county estimator, identified using variation in deposit shocks across banks within a

county-year observation. In addition, we include county × bank fixed effects to control for the

time-invariant importance of a bank in a county. The results indicate that a one standard de-

viation deposit shock is associated with declines in lending growth of 1.87 percentage points

for home purchases, 1.20 percentage points for refinancing, and 0.82 percentage points for

home improvements. The pecking order of effects on different mortgage types is consistent

with the argument that contracting frictions are less pronounced for home refinancing and

improvement relative to home purchases because borrowers have an established payment his-

tory for the former (Gilje, Loutskina and Strahan (2016)). This implies that lending contraction

is dominant in loan types where banks face more contracting frictions.
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6.3.1 Long-Run Response

Next, we examine the long-run response of mortgage lending growth on deposit shocks as

shown in Appendix Figure A.12. The figure reports the coefficients from the Jordá projection

for 10 years after the disaster. The estimates are negative and statistically different from zero

for several years following the disaster. The effect of deposit shocks on mortgage lending

persists for several years after the disaster, as a one standard deviation deposit shock results

in a cumulative decline of 5 percentage points in lending growth, three years after the shock.

The long-run response exhibited in mortgage lending is consistent with evidence of the supply

side channel described in section 6.1.2 in the context of small business lending.

6.3.2 Is the Effect Dominant for Lending Funded by Deposits?

We further examine the transmission of deposit shocks through the mortgage market by

exploiting a unique feature of the market. Banks often securitize mortgages, replacing deposits

with bonds as a source of finance. This securitization is due to the secondary market activities

of the government-sponsored enterprises (GSEs, i.e., Fannie Mae and Freddie Mac). Loutskina

and Strahan (2009) show that the supply of jumbo mortgages is driven by deposit funding

and liquidity constraints, as GSEs do not securitize jumbo mortgages. We exploit the inability

of Fannie Mae and Freddie Mac to purchase jumbo mortgages to identify loans that are likely

to be funded by deposits. An additional advantage of this analysis is that we can include

bank × county × year fixed effects in estimating the effect by comparing jumbo and non-jumbo

mortgages for each county-bank-year observation. In addition, we include jumbo × bank ×

county fixed effects to control for the time-invariant importance of jumbo mortgages extended

by a bank in a county. This innovation in fixed effects allows us to relax our weak identification

assumption. Table 11 reports the results for estimating the difference in lending growth of

jumbo and non-jumbo mortgages by affected banks. The results indicate that deposit shocks

negatively affect the origination of jumbo mortgages more than non-jumbo mortgages. A

one standard deviation deposit shock is associated with a 3.58 percentage points additional

decline for jumbo mortgages relative to non-jumbo mortgages. Our findings are consistent

with Bidder, Krainer and Shapiro (2021) which show that banks do not uniformly reduce

credit supply after a damaging shock. The results indicate that the contraction in lending is

pronounced for loans that are more likely to be funded by deposits.
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6.4 Firm Response, Deposit Shocks & Financial Frictions

Next, we examine the effect of bank deposit shocks on real firm outcomes. For each firm, we

identify the lead banks using Dealscan data. and aggregate the deposit shocks experienced by

all lead banks of a firm. Further, we classify firms as being financially constrained based on

the age of the firm, measured by the number of years since the initial public offering. Hadlock

and Pierce (2010) document a linear relation between firm age and constraint indicating

that young firms are more financially constrained. Moreover, young firms rely on lending

relationships with banks to procure external financing (Petersen and Rajan (1994)). Hence,

examining the heterogeneity in the cross-sectional response of young and old firms to deposit

shocks experienced by their lead banks can shed light on the salience of bank-borrower lending

relationships and financial constraints in transmitting bank deposit shocks to the real economy.

This test highlights the role of frictions in the amplification of idiosyncratic shocks to aggregate

fluctuations as discussed in Dinlersoz et al. (2018). We test this hypothesis, using the following

specification:

ln(y f ,t) = β1 × Young f ,t ×
∑

b

Γb,t−1 + β2 × Young f ,t + β3 ×

∑
b

Γb,t−1 + θi,t + θ f + ε f ,t (15)

where ln(y f ,t) denotes firm level outcome variables which include the natural logarithm of

total debt, book value of assets, employment, and capital expenditure. Young f ,t is an indicator

variable that takes a value of one for firms with age lower than the median value of age for

all firms in that year.
∑

b Γb,t−1 refers to the aggregate deposit shocks experienced by all banks

associated with firm f . θi,t and θ f denote industry × year and firm fixed effects, respectively.

The estimate of β1 is a within-firm estimator, while controlling for industry level business

cycle.

Table 12 reports the results from the estimation of equation 15. Columns 1-4 use the

natural logarithm of total debt, book value of assets, employment and capital expenditure

as the key dependent variable, respectively. As expected, the estimates of both Young f ,t and∑
b Γb,t−1 are negative. The estimate of interest associated with the interaction term Young f ,t ×∑
b Γb,t−1 is negative and statistically significant across all columns. This indicates that young

firms are more responsive to deposit shocks experienced by their banks. Specifically, a one

standard deviation deposit shock to the firms’ lead banks is associated with a 16% decline in

debt, 13% decline in the book value of assets, 9% decline in employment, and a 15% decline
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in capital expenditure. This result highlights the role of bank-borrower lending relationships

and borrower financial constraints in transmitting deposit shocks to the real economy.

7 Conclusion

Liquidity transformation is a key function of banks. Banks provide liquidity in the economy by

funding long-term, illiquid assets with liquid liabilities, primarily through demand deposits.

While liquidity transformation is critical for financing long-term illiquid assets, it is also a

source of vulnerability for banks and the economy. It is well-established that aggregate shocks

to bank capital or deposits affect bank lending activity. This paper proposes a new source of

financial fragility: the geography of bank deposits.

We introduce a new fact on the geographic concentration of bank deposits. On average,

30% of bank deposits are concentrated within a single county. The geographic concentration

of bank deposits within-bank is widespread, across banks of all sizes, including the Big

Four banks. We show that disaster shocks to counties which exhibit deposit concentration

can negatively affect bank deposits. Multi-market banks transmit these deposit shocks to

other counties through their internal capital markets. Moreover, the deposit shocks can

explain aggregate fluctuations when large lenders in the economy are affected by the local

disaster shocks. Hence, this paper overcomes a major empirical challenge of identifying the

missing intercept between deposit shocks and economic growth and estimating the aggregate

deposit elasticity of economic growth and money multiplier. Local disaster shocks result in

aggregate fluctuations through their effect on deposits, which negatively affect bank lending.

The negative effects on bank lending are large and persistent, and amplified in the presence

of financial frictions including banks’ reliance on deposit funding, regulatory constraints,

informational advantages, and borrower constraints.

Our paper introduces a hitherto undocumented source of financial fragility that may

inform academics and policymakers working on the design of optimal stabilization policies.

Concretely, the US Department of Justice Antitrust Division and FTC’s Bureau of Competition

review banks mergers and acquisitions to enforce the nation’s antitrust laws. In a similar spirit,

our findings suggest that regulators ought to consider the deposit concentration of merged

banks for its implications on financial stability.
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Figure 1: Geographic Concentration of Deposits
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(a) Cross Section
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(b) Time Series

This figure uses the summary of deposit (SOD) data from 1994 to 2018 and illustrates the geographic concentration of bank
deposits. Figure 1a orders counties by their deposit shares for each bank (the county number refers to the rank of a county
by the amount of deposits it raises, i.e., county #1 refers to the county that raised the greatest amount of deposits for a
given bank.) and reports the average deposit share of the top 20 counties. The blue line shows the simple average of the
deposit share, the red line shows the average deposit share weighted by bank total assets, and the green line shows the
average deposit share controlling for bank-year and county-year fixed effects. Figure 1b reports the average deposit share
of the counties with the largest deposit share (i.e., county # 1) by year from 1994 to 2018. The time series plots of the simple
average, weighted average, first percentile, and tenth percentile of the share of deposits in the largest deposit county in
blue, red, green, and yellow, respectively.
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Figure 2: Bank Distribution of Deposit Concentration

0
.1

.2
.3

.4
.5

.6
.7

.8
.9

1
Sh

ar
e 

of
 D

ep
os

its
 in

 th
e 

La
rg

es
t D

ep
os

it 
C

ou
nt

y

0 .2 .4 .6 .8 1
Percentile of Assets

(a) Banks By Size

0
.1

.2
.3

.4
.5

.6
Sh

ar
e 

of
 D

ep
os

its

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
County # (Ordered by Deposits)

Citi JP Morgan Wells Fargo BoA

(b) Four Largest Banks

This figure uses the summary of deposit data (SOD) from 1994 to 2018 and illustrates the relation between the geographic
concentration of bank deposits and bank size. Figure 2a sorts banks by their total assets and reports the average deposit
share of counties with the largest deposit share against the percentile of the bank assets i.e., average value of deposit share
in the largest deposit counties corresponding to the percentile of bank assets, over the sample period. Figure 2b reports the
deposit shares in the top 20 counties for the four largest banks, averaged over the sample period: Citibank (blue line), JP
Morgan (red line), Wells Fargo (green line), and Bank of America (yellow line). The county number refers to the rank of a
county by the amount of deposits it raises, i.e., county #1 refers to the county that raised the largest amount of deposits for
a given bank.
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Figure 3: Geography of Largest Deposit County

This figure illustrates the geography of a county with the largest deposit share for a given bank, averaged over the period
1994 to 2018. The intensity of the blue shading represents the number of banks for whom a county has the largest deposit
share.
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Figure 4: Long-Run Response of Deposit to Disaster Shocks
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Note: This figure uses the Summary of Deposit (SOD) data matched with the Spatial Hazard Events and Losses Database
for the United States (SHELDUS) and plots the estimated coefficient βh’s from the following specification:

ln(Deposit)c,t+h − ln(Deposit)c,t−1 = βh ×Disaster Shockc,t−1 + θc + θs(c∈s),t + εc,t.

The data spans from 1994 to 2018. The dependent variable is ln(Deposit)c,t+h− ln(Deposit)c,t−1 where ln(Deposit)c,t is the natural
logarithm of the total deposit in county c and year t. The independent variable, Disaster Shockc,t−1, is the standardized
dollar amount of property damage per capita from natural disasters in county c and year t − 1. θc and θs(c∈s),t represent
county and state-year fixed effects, respectively. The solid blue line plots the point estimate βh’s with h from 0 to 10, and
the dashed red line plots the 95% confidence interval for the point estimate βh’s. The confidence interval is computed from
standard errors clustered at the county level.
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Figure 5: Spatial and Temporal Properties of Bank Shocks
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(b) Pairwise R2 for Bank Shocks

This figure documents the properties of the bank-level disaster shocks, Γb,t. Figure 5a plots the kernel density of AR(1)
coefficient for each bank’s disaster shock. Figure 5b plots the kernel density of the bank-pairwise R2, produced from
regressing the deposit shocks across bank pairs. The vertical dashed red lines indicate the means of estimated coefficients
(Figure 5a) and R2 (Figure 5b).
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Figure 6: Long-Run Bank Response to Deposit Shocks
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(a) Deposit
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(b) Liquidity Creation

Note: This figure uses call reports and bank liquidity creation data matched with the Spatial Hazard Events and Losses
Database for the United States (SHELDUS) and plots the estimated coefficient βh’s from the following specification:

yb,t+h − yb,t−1 = βh × Bank Deposit Shockb,t−1 + θb + θt + εt.

The data used in Figure 6a spans from 1994 to 2018, and the data used in Figure 6b spans from 1995 to 2016. Figure 6a
uses the natural logarithm of the aggregate deposits of bank b in year t as the dependent variable, yb,t. Figure 6b uses the
natural logarithm of the liquidity creation normalized by the gross total assets of bank b in year t as the dependent variable,
yb,t. The liquidity creation variable is constructed following Berger and Bouwman (2009). The independent variable,
Bank Deposit Shockb,t−1, is the standardized bank deposit shock for bank b and year t−1. θb and θt represent bank and year
fixed effects, respectively. The solid blue line plots the point estimate βh’s with h from 0 to 10, and the dashed red line plots
the 95% confidence interval for the point estimate βh’s. The confidence interval is computed from standard errors clustered
at the bank level.
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Figure 7: Aggregate Bank Deposit Shock
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(b) Aggregate Shock and Insurance Payout

Note: Figure 7a plots the aggregate bank deposit shock (Γt) from Q3-1994 until Q4-2018 and indicates major disasters at its
notable peaks. Figure 7b plots the aggregate bank deposit shock against the insurance payout (blue dots) and illustrates
the best-fit line (solid red line).
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Figure 8: Case Study: Impact of Hurricane Sandy on Citibank
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(b) Bank-level Shock

Note: This figure presents the effect of Hurricane Sandy on Citibank. Figure 8a presents the deposit growth for top-3 and
non-top 3 counties for Citibank. To compare deposit growth, we divide the counties into two categories: Citibank’s three
largest deposit counties in each year, and all other counties. Figure 8b presents the aggregate bank-level deposit shock for
Citibank computed according to Equation 8.
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Figure 9: Long-Run Responses of ∆ GDP to Granular and Aggregate Shocks
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(a) Granular Shock

-.4
-.3

-.2
-.1

0
.1

.2
.3

.4
Po

in
t E

st
im

at
e

1 2 3 4 5 6 7 8 9
Quarters Since Disaster

Estimate 95% Error Band

(b) Aggregate Disaster Shock

Note: This figure uses the quarterly series of GDP from 1994Q3 to 2018Q4 and plots the estimated coefficients, βh, from the
following specification:

log(GDP)t+h − log(GDP)t−1 = αh + βh × Shockt−1 + εt

, where t indicates quarter-year. Figure 9a uses the granular deposit shock Γ∗t as the key independent variable. Figure
9b uses the aggregate disaster shock as the key independent variable, measured using total property damage per capita
due to disasters in the preceding quarter. The solid blue line plots the point estimate βh’s with h from 1 to 9, and the
dashed red line plots the 95% confidence interval for the point estimate βh’s. The confidence interval is computed from
heteroskedasticity-robust standard errors.
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Figure 10: Placebo Test: Salience of deposit concentration, disaster shocks and lending share
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(b) Bank Size
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(c) Disaster Size

Note: This figure examines the salience of deposit concentration, disaster shocks, and lending share. In Figure 10a, we
construct a series of placebo shocks by omitting the top K deposit counties for each bank, where K ranges from 1 to 15. in
Figure 10b, we construct a series of placebo shocks by excluding the most significant banks for each quarter. We construct a
series of shocks by varying the bank size. Specifically, we exclude banks with lending share above the Kth percentile, with
K ranging from the 95th to the 40th percentile in 5 percentile increments.In the x-axis, All indicates the baseline coefficient
associated with the regression of our baseline granular shocks on the GDP growth rate. The subsequent labels denote the
percentile of the bank size distribution used to construct the shocks. In Figure 10c, we construct a series of placebo shocks
by excluding the most significant disasters for each quarter. Specifically, we create a series of twelve shocks by excluding
disasters with property damage per capita above the 95th and the 40th percentile in 5 percentile increments. In the x-axis,
All indicates the baseline coefficient associated with the regression of our baseline granular shocks on the GDP growth rate.
The subsequent labels denote the percentile of the disaster size distribution used to construct the shocks.
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Table 1: Summary Statistics

# Obs Mean SD P25 P50 P75
Panel A: Bank-County-Year Level Data
Small Business Lending Growth (%) 553,345 4.85 117.15 -43.63 0.00 49.72
Mortgage Origination Growth: All (%) 1,136,531 1.83 255.73 -50.72 0.00 57.72
Mortgage Origination Growth: Jumbo (%) 1,136,531 3.84 221.23 0.00 0.00 0.00
Mortgage Origination Growth: Non-Jumbo (%) 1,136,531 1.41 254.15 -49.43 0.00 55.34
Panel B: County-Year Level Data
Deposit Growth (%) 76,755 4.48 9.20 0.17 3.37 7.12
Total Property Damage (2018 USD) 79,575 3,107,809 30,200,000 933 55,369 446,661
Total Property Damage per capita (2018 USD) 79,575 75.25 569.31 0.02 1.67 14.23
Panel C: Bank-Year Data
Bank-Level Disaster Shock (Γbt) 9,892 93.71 993.34 1.00 5.09 21.76
Ln(Assets) 9,892 14.00 1.74 12.72 13.64 15.00
Loan/Assets 9,892 0.63 0.13 0.56 0.65 0.73
Equity/Assets 9,892 0.10 0.03 0.08 0.09 0.11
Cash/Assets 9,892 0.05 0.04 0.03 0.04 0.06
Deposits/Assets 9,892 0.10 0.07 0.05 0.09 0.13
Hedge/Assets 9,892 -0.05 0.42 0.00 0.00 0.00
Dividend/Assets 9,892 0.00 0.00 0.00 0.00 0.00
Operating Income/Assets 9,892 0.02 0.01 0.01 0.02 0.02
Panel D: Aggregate Data
GDP Growth 98 1.09 0.65 0.81 1.16 1.44
Γt 97 13.12 33.98 2.02 3.67 10.56
Oil Shock 97 0.00 1.01 -0.55 -0.03 0.72
Monetary Shock 97 -0.03 0.10 -0.03 -0.00 0.00
Political Uncertainty Shock 97 0.02 0.16 -0.10 0.02 0.12
Term Spread 97 1.10 0.74 0.60 1.08 1.55
Government Expenditure Shock 97 4.40 2.51 2.97 4.34 6.17
ΓGabaix

t 29 -0.00 0.01 -0.01 0.00 0.00
Deposit Growth 98 1.6402 0.5515 1.2337 1.6924 1.9896
C&I Lending Growth 98 1.3873 5.6219 -1.1126 3.0400 4.9582

Note: This table reports summary statistics of key variables explored in this paper. The observations in Panel A are at the bank-county-year level.
The small business lending data spans from 1997 to 2018. The mortgage data spans from 1995 to 2017. The observations in Panel B are at the
county-year level and span from 1994 to 2018. The observations in Panel C are at the annual level and span from 1994 to 2018. The observations in
Panel D are at the quarterly level and span from 1994 to 2018, except ΓGabaix

t which are measured at the annual level and span from 1994 to 2018.
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Table 2: Granular Shock and Aggregate Fluctuations

Dep Var: GDP Growtht (1) (2) (3)

Γ∗t−1 -0.0631*** -0.0679*** -0.0491***
(0.0177) (0.0162) (0.0125)

Constant 1.0836***
(0.0768)

Quarter FE X X
Year FE X
# Obs 97 97 96
R2 0.0237 0.0259 0.5178

Note: This table uses quarterly GDP series from 1994Q3 to 2018Q4 and reports
the estimated coefficient β in the following specification:

%∆GDPt = α + β × Γ∗t−1 + εt

where t indicates quarter-year. %∆GDPt is a percentage change in the seasonally
adjusted quarterly GDP, and Γ∗t is the granular deposit shock. The granular
shock is standardized to a mean of zero and standard deviation of one, and
winsorized at the 1% level. Newey-West heteroskedasticity and auto-correlation
robust standard errors are reported in parentheses. *, **, and *** denote statistical
significance at the 10%, 5%, and 1% level, respectively.

54



Table 3: Lagged Granular Shock and Aggregate Fluctuation

Dep Var: GDP Growtht (1) (2) (3) (4) (5) (6) (7)

Γ∗t -0.0068 -0.0109
(0.0111) (0.0133)

Γ∗t−1 -0.0631*** -0.0622***
(0.0177) (0.0190)

Γ∗t−2 0.0091 0.0065
(0.0141) (0.0139)

Γ∗t−3 0.0374*** 0.0347**
(0.0139) (0.0136)

Γ∗t−4 0.0077 0.0093
(0.0133) (0.0142)

Γ∗t−5 -0.0102 -0.0112
(0.0158) (0.0163)

Constant 1.0874*** 1.0836*** 1.0837*** 1.0866*** 1.0849*** 1.0844*** 1.0844***
(0.0768) (0.0768) (0.0768) (0.0779) (0.0787) (0.0813) (0.0795)

# Obs 98 97 96 95 94 93 93
R2 0.0003 0.0237 0.0005 0.0084 0.0004 0.0006 0.0330

Note: This table uses quarterly GDP series from 1994Q3 to 2018Q4 and reports the estimated coefficient βh in the following
specification:

%∆GDPt = α + βh × Γ∗t−h + εt

where t indicates quarter-year and h indicates the number of lags. %∆GDPt is a percentage change in the seasonally adjusted
quarterly GDP, and Γ∗t−h denotes the granular deposit shock and its lags. The granular shock is standardized to a mean of
zero and standard deviation of one, and winsorized at the 1% level. Newey-West heteroskedasticity and auto-correlation
robust standard errors are reported in parentheses. *, **, and *** denote statistical significance at the 10%, 5%, and 1% level,
respectively.
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Table 4: Horse Race: Granular Shock & Other Macroeconomic Shocks

Dep Var: GDP Growtht (1) (2) (3) (4) (5) (6) (7) (8)

Γ∗t−1 -0.0631*** -0.0717*** -0.0612*** -0.0621*** -0.0627*** -0.0753*** -0.0647*** -0.0806***
(0.0177) (0.0131) (0.0186) (0.0186) (0.0197) (0.0118) (0.0179) (0.0121)

Oil Shockt−1 -0.0531 -0.0560*
(0.0383) (0.0333)

Monetary Shockt−1 0.0763** 0.0532**
(0.0334) (0.0220)

Uncertainty Shockt−1 -0.0573 -0.0425
(0.0365) (0.0350)

Term Spreadt−1 -0.0141 -0.0113
(0.0492) (0.0527)

Gvt Exp Shockt−1 -0.1027 -0.0828
(0.0918) (0.0832)

ΓGabaix
t−1 0.0261 0.0150

(0.0186) (0.0177)
Constant 1.0836*** 1.0845*** 1.0841*** 1.0828*** 1.0837*** 1.0832*** 1.0836*** 1.0841***

(0.0768) (0.0749) (0.0771) (0.0751) (0.0771) (0.0826) (0.0749) (0.0783)

# Obs 97 97 97 97 97 97 97 97
R2 0.0237 0.0394 0.0581 0.0428 0.0248 0.0854 0.0277 0.1315

Note: This table uses quarterly GDP series from 1994Q3 to 2018Q4 matched with other macroeconomic variables and reports the estimated coefficients β1 and
the vector β2 in the following specification:

%∆GDPt = α + β1 × Γ∗t−1 + β2 ×Macro-Shockt−1 + εt

where t indicates quarter-year. %∆GDPt is a percentage change in the seasonally adjusted quarterly GDP, Γ∗t denotes the granular deposits shock, and Macro-
Shockt denotes the vector of macroeconomic shocks. Column (2) through (7) use oil supply surprises defined as the first principal component of the one-day
OPEC announcement return on WTI futures contracts with maturities ranging from one month to one year (Column (2)), monetary policy shock defined as
the change in fed funds futures rate within 30 minutes window around press releases of the Federal Open Market Committee (Column (3)), economic policy
uncertainty shock defined as the percentage change in the economic policy uncertainty index constructed by Baker, Bloom and Davis (2016) (Column (4)), the
term spread defined as the difference between the three- and six-month treasury constant maturity rate (Column (5)), the government expenditure shock defined
as the percentage change in the total government expenditure (Column (6)), and the granular residual of Gabaix (2011) defined as the sum of the top 100 firms’
idiosyncratic productivity shocks, weighted by the share of firms sales in GDP (Column (7)), respectively. The idiosyncratic productivity shock is computed by
taking the log difference of sales per employee and controlling for industry-level mean productivity growth. The granular shock and macroeconomic shocks
are standardized to a mean of zero and standard deviation of one, and winsorized at the 1% level. Newey-West heteroskedasticity and auto-correlation robust
standard errors are reported in parentheses. *, **, and *** denote statistical significance at the 10%, 5%, and 1% level, respectively.
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Table 5: Instrumental Variables Regression

(1) (2) (3) (4) (5) (6)
2nd Stage 1st Stage 2nd Stage 1st Stage 2nd Stage 1st Stage

∆ GDP ∆ Deposits ∆ GDP ∆ Loans ∆ Loans ∆ Deposits

Deposits Growth 0.8755** 6.0853**
(0.3155) (2.7757)

C&I Lending Growth 0.1438*
(0.0837)

Γ∗t−1 -0.0016*** -0.0099** -0.0016***
(0.0004) (0.0043) (0.0004)

# Obs 97 97 97 97 97 97
R2 0.0256 0.0187 0.0256 0.0066 0.0066 0.0187
KP LM Statistic 1.182 0.942 1.182
KP Wald F Statistic 11.137 5.511 11.137

Note: This table presents the estimates of our IV strategy. Columns (1) and (3) report the second stage regression of GDP growth
on aggregate deposit growth and aggregate lending growth, using the instrumented measures from the first stage, respectively.
The first stage regression reported in column (2) establishes a causal relation between aggregate deposit growth and aggregate
deposit shocks. The first stage regression reported in column (4) establish a causal relation between aggregate commercial and
industrial lending growth and aggregate deposit shocks. Column (6) reports the first stage regression of deposit growth on
aggregate deposits shocks, and column (5) reports the second stage estimate of the regression of lending growth on deposit
growth. Newey-West heteroskedasticity and auto-correlation robust standard errors are reported in parentheses.* p < 0.1, **
p < 0.05, *** p < 0.01.
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Table 6: Granularity or Banking Transmission?

Dep Var: GDP Growtht (1) (2) (3) (4) (5)

Γ∗t−1 -0.0631*** -0.0610*** -0.0617*** -0.0593*** -0.0735**
(0.0177) (0.0174) (0.0171) (0.0182) (0.0288)

Γ
Emp
t−1 0.0002 -0.0559***

(0.0005) (0.0186)
ΓGDP

t−1 0.0002 -0.0091
(0.0003) (0.0056)

Γ
Pop
t−1 0.0004 0.0558***

(0.0004) (0.0197)
Constant 1.0836*** 1.0795*** 1.0144*** 1.0766*** 1.0723***

(0.0416) (0.0419) (0.0530) (0.0427) (0.0588)

# Obs 97 97 97 97 97
R2 0.0237 0.0241 0.0241 0.0254 0.1507

Note: Note: This table uses quarterly GDP series from 1994Q3 to 2018Q4 and reports the estimated coefficient,
βs, in the following specification:

%∆GDPt = α + β × Γ∗t−1 + β1 × Γ
Emp
t−1 + β2 × ΓGDP

t−1 + β3 × Γ
Pop
t−1 + εt

where t indicates quarter-year. %∆GDPt is a percentage change in the seasonally adjusted quarterly GDP, and Γ∗t
is the granular deposit shock. Γ

Emp
t−1 refers to the employment granular shock constructed as the average of county-

level property damages per capita weighted by the county’s share of US employment. Similarly, we construct
ΓGDP

t−1 and Γ
Pop
t−1 as the average of county-level property damages per capita weighted by the county’s share of US

GDP and population respectively. The number of observations reduce in columns 3 and 5 as the county level GDP
data is available from 2001. All granular shocks are standardized to a mean of zero and standard deviation of
one, and winsorized at the 1% level. Newey-West heteroskedasticity and auto-correlation robust standard errors
are reported in parentheses. *, **, and *** denote statistical significance at the 10%, 5%, and 1% level, respectively.
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Table 7: Small Business Lending and Deposit Shocks

Dep Var: ∆ln(Lending)b,c,t (1) (2) (3) (4) (5) (6)

Γb,t−1 -0.0111*** -0.0131*** -0.0112*** -0.0160*** -0.0093*** -0.0148***
(0.0022) (0.0023) (0.0023) (0.0027) (0.0023) (0.0028)

County FE X X
Year FE X X
County × Year FE X X
Bank × County FE X X
Bank FE X
# Obs 553,345 553,345 553,345 553,345 553,345 553,345
R2 0.0001 0.0104 0.0163 0.1245 0.0747 0.1985

Note: This table uses small business lending data collected under the Community Reinvestment Act (CRA) and reports the
estimated coefficient β in the following specification:

∆ln(Lending)b,c,t = β × Γb,t−1 + θb,c + θc,t + εb,c,t

where b, c and t indicate bank, county, and year, respectively. The data spans from 1997 to 2018. The dependent variable
∆ln(Lending)b,c,t is the natural logarithm of small business loans originated from bank b in county c and year t. θb,c and θc,t are
bank-county and county-year fixed effects, respectively. Γb,t−1 refers to bank specific deposit shocks, measured using the previous
year’s deposit weighted average of disaster damage per capita. All variables used in this table are standardized to mean zero and
standard deviation of one and winsorized at the 1% level. Standard errors clustered at the bank and county level are reported in
parentheses. *, **, and *** denote statistical significance at the 10%, 5%, and 1% level, respectively.
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Table 8: Small Business Lending and Deposit Shocks by Bank Characteristics

Dep Var: ∆ln(Lending)b,c,t (1) (2) (3)

High Sh. CDb,t−1 × Γb,t−1 -0.0280***
(0.0054)

High Sh. CDb,t−1 0.0183***
(0.0044)

Low Tier 1 Ratiob,t−1 × Γb,t−1 -0.2196***
(0.0137)

Low Tier 1 Ratiob,t−1 -0.0277***
(0.0044)

NCb,c,t−1 × Γb,t−1 -0.0147***
(0.0045)

NCb,c,t−1 0.3570***
(0.0080)

Γb,t−1 -0.0070** -0.0067** -0.0036
(0.0035) (0.0027) (0.0031)

County × Year FE X X X
County × Bank FE X X X
# Obs 549,136 547,031 553,345
R2 0.1991 0.2002 0.2017

Note: This table uses small business lending data collected under the Community
Reinvestment Act (CRA) matched with the SNL bank regulatory data and reports the
estimated coefficient β’s in the following specification:

∆ln(Lending)b,c,t = β1 × λb,t−1 × Γb,t−1 + β2 × λb,t−1 + β3 × Γb,t−1 + θc,t + θb,c + εb,c,t

where b, c and t indicate bank, county, and year, respectively. The data spans from
1997 to 2018. The dependent variable ∆ln(Lending)b,c,t is the natural logarithm of small
business loans originated from bank b in county c and year t. θb,c andθc,t are bank-county
and county-year fixed effects, respectively. Γb,t−1 refers to bank specific deposit shocks,
measured using the previous year’s deposit weighted average of disaster damage per
capita. High Sh. CDb,t−1 or High Core Deposit Share is an indicator variable that takes
a value of one if a bank’s ratio of demand deposits and time deposits to total bank
deposits is above the median value in year t − 1. Low Tier 1 Ratio is an indicator
variable that takes a value of one for banks whose tier 1 capital ratio is lower than
its median value in year t − 1. NCb,c,t−1 is an indicator variable that takes a value of
one for counties in which bank b has a branch in year t − 1. All variables used in this
table are standardized to mean zero and standard deviation of one and winsorized at
the 1% level. Standard errors clustered at the bank and county level are reported in
parentheses. *, **, and *** denote statistical significance at the 10%, 5%, and 1% level,
respectively.
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Table 9: Small vs Large Recipients of Small Business Loans and Deposit Shocks

Dep Var: ∆ln(Lending)b,c,t,s (1) (2) (3) (4)

Smalls ×Γb,t−1 -0.0160*** -0.0160*** -0.0160*** -0.0130***
(0.0042) (0.0044) (0.0042) (0.0047)

Smalls -0.0133*** -0.0133*** -0.0133***
(0.0014) (0.0014) (0.0014)

Γb,t−1 0.0070** 0.0057
(0.0034) (0.0036)

County × Year FE X
County × Bank FE X
County × Bank × Year FE X X
Small × County × Bank FE X
# Obs 552,344 552,344 552,344 552,344
R2 0.0001 0.1710 0.5345 0.5684

Note: This table uses small business lending data collected under the Community Reinvestment Act
(CRA) and reports the estimated coefficient β in the specification:

∆ln(Lending)b,c,t,s = β1 × Smalls × Γb,t−1 + β2 × Smalls + θb,c,t + θb,c,s + εb,c,t,s

where b, c, t and s indicate bank, county, year, and firm size (small or large), respectively. The
data spans from 1995 to 2017. The dependent variable ∆ln(Lending)b,c,t,s is the change in the natural
logarithm of total small business lending to firm type s (small or large) originated from bank b in
county c and year t. Γb,t−1 refers to bank specific deposit shocks, measured using the previous year’s
deposit weighted average of disaster damage per capita. Small j is an indicator variable that takes a
value of one for loans given to firms with gross revenue less than $1 million and 0, otherwise. θb,c,t
indicates bank-county-year fixed effects. θb,c,s indicates bank-county-small fixed effects. All variables
are standardized to mean zero and standard deviation of one and winsorized at the 1% level. Standard
errors clustered at the bank and county level are reported in parentheses. *, **, and *** denote statistical
significance at the 10%, 5%, and 1% level, respectively.
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Table 10: Mortgage Lending and Deposit Shocks

Dep Var: ∆ln(Lending)b,c,t
(1) (2) (3)

Purchase Refinancing Improvement

Γb,t−1 -0.0073*** -0.0047*** -0.0032*
(0.0020) (0.0017) (0.0018)

County × Year FE X X X
County × Bank FE X X X
# Obs 1,136,531 1,136,531 1,136,531
R2 0.1302 0.1821 0.1166

Note: This table uses Home Mortgage Disclosure Act (HMDA) data and reports the esti-
mated coefficient β in the following specification: ∆ln(Lending)b,c,t = β×Γb,t−1 +θc,t +θb,c +εb,c,t
where b, c and t indicate bank, county, and year, respectively. The data spans from 1995 to
2017. The dependent variable ∆ln(Lending)b,c,t is the first difference of the natural logarithm
of mortgage lending towards home purchases (Column (1)), first difference of the natural
logarithm of mortgage lending towards refinancing (Column (2)), and first difference of the
natural logarithm of mortgage lending towards home improvement (Column (3)) originated
from bank b in county c and year t. θb,c and θc,t are bank-county and county-year fixed effects,
respectively. Γb,t−1 refers to bank specific deposit shocks, measured using the previous year’s
deposit weighted average of disaster damage per capita. All variables used in this table are
standardized to mean zero and standard deviation of one and winsorized at the 1% level.
Standard errors clustered at the bank and county level are reported in parentheses. *, **, and
*** denote statistical significance at the 10%, 5%, and 1% level, respectively.
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Table 11: Jumbo vs Non-Jumbo Mortgage Loans and Deposit Shocks

Dep Var: ∆ln(Lending)b,c,t, j (1) (2) (3) (4)

Jumbo j ×Γb,t−1 -0.0125*** -0.0125*** -0.0125*** -0.0140***
(0.0022) (0.0022) (0.0022) (0.0024)

Jumbo j 0.0099*** 0.0099*** 0.0099***
(0.0006) (0.0006) (0.0006)

Γb,t−1 0.0091*** 0.0006
(0.0016) (0.0018)

County × Year FE X
County × Bank FE X
County × Bank × Year FE X X
County × Bank × Jumbo FE X
# Obs 2,276,662 2,276,662 2,276,662 2,276,662
R2 0.0000 0.0626 0.5322 0.5513

Note: This table uses Home Mortgage Disclosure Act (HMDA) data and reports the estimated coeffi-
cient β in the following specification: ∆ln(Lending)b,c,t, j = β1×Jumbo j×Γb,t−1+β2×Jumbo j+θb,c,t+θb,c, j+εb,c,t, j
where b, c, t and j indicate bank, county, year, and loan type (jumbo or non-jumbo), respectively. The
data spans from 1995 to 2017. The dependent variable ∆ln(Lending)b,c,t, j is the change in the natural
logarithm of total mortgage lending of type j (jumbo or non-jumbo) originated from bank b in county
c and year t. Γb,t−1 refers to bank specific deposit shocks, measured using the previous year’s deposit
weighted average of disaster damage per capita. Jumbo j is an indicator variable that takes a value of
one for jumbo mortgages and zero for non-jumbo mortgages. θb,c,t indicates bank-county-year fixed
effects. θb,c, j indicates jumbo-bank-county fixed effects. All variables are standardized to mean zero
and standard deviation of one and winsorized at the 1% level. Standard errors clustered at the bank
and county level are reported in parentheses. *, **, and *** denote statistical significance at the 10%, 5%,
and 1% level, respectively.
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Table 12: Bank-Borrower Lending Relationship and Real Effects

(1) (2) (3) (4)
Debt Size Employment CapEx

Young f ×
∑

b Γb,t−1 -0.1305** -0.0928** -0.0951** -0.1379**
(0.0654) (0.0436) (0.0446) (0.0632)∑

b Γb,t−1 -0.0124** -0.0053 -0.0023 -0.0017
(0.0060) (0.0037) (0.0028) (0.0045)

Firm FE X X X X
Industry × Young × Year FE X X X X
# Obs 11,388 11,996 11,383 10,648
R2 0.9289 0.9723 0.9712 0.9516

Note: This table uses Dealscan data matched with Compustat data and reports β’s in the following
specification:

y f ,t = β1 × Young f ×

∑
b

Γb,t−1 + β2 × Young f + β3 ×

∑
b

Γb,t−1 + θi,g,t + θ f + ε f ,t

where f , and t indicates borrowing firm, and year, respectively. The dependent variable y f ,t is the
natural logarithm of total debt (Column (1)), natural logarithm of the book value of assets (Column (2)),
natural logarithm of employment (Column (3)), and natural logarithm of capital expenditure (Column
(4)). Firm age is defined as the years passed since IPO, and the variable Young f is an indicator variable
that takes one for the firms with age less than the median firm age. Γb,t−1 refers to bank specific deposit
shocks, measured using the previous year’s deposit weighted average of disaster damage per capita.∑

b Γb,t−1 refers to the sum of bvank deposit shocks for lead banks of firm f identified using the Dealscan
database. θi,g,t and θ f are industry-young-year and firm fixed effects, respectively. Industries refer to the
38 Fama-French industries. All variables used in this table are standardized to mean zero and standard
deviation of one and winsorized at the 1% level. Standard errors clustered at the firm level are reported
in parentheses. *, **, and *** denote statistical significance at the 10%, 5%, and 1% level, respectively.
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Online Appendix for:
The Geography of Bank Deposits and the Origins of Aggregate

Fluctuation
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Appendix A Figures and Tables

Table A.1: Disaster Shock and Deposit Growth

Dep Var: ∆ln(Deposits)c,t (1) (2) (3) (4) (5) (6)

Disaster Shockc,t−1 -0.0091*** -0.0121*** -0.0080*** -0.0111*** -0.0097*** -0.0080***
(0.0028) (0.0027) (0.0030) (0.0028) (0.0028) (0.0030)

Year FE X X
County FE X X X
State × Year FE X X
# Obs 76,336 76,336 76,336 76,336 76,336 76,336
R2 0.0001 0.0469 0.0523 0.0993 0.1348 0.1813

Note: This table uses the Summary of Deposit (SOD) data matched with the Spatial Hazard Events and Losses Database for the
United States (SHELDUS) and reports the estimated coefficient β in the following specification:

∆ln(Deposit)c,t = β ×Disaster Shockc,t−1 + θc + θs(c∈s),t + εc,t

where c and t indicate county and year, respectively. The data spans from 1994 to 2018. The dependent variable ∆ln(Deposit)c,t is the
first difference of natural logarithm of total deposit of all banks in county c and year t. The independent variable, Disaster Shockc,t−1,
is the dollar amount of property damage per capita from natural disasters in county c and year t − 1. θc and θs(c∈s),t represent
county and state × year fixed effects, respectively. All variables are standardized to a mean of zero and standard deviation of one,
and winsorized at the 1% level. Standard errors clustered at the county level are reported in parentheses. *, **, and *** denote
statistical significance at the 10%, 5%, and 1% level, respectively.
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Table A.2: Disaster Shock and Deposit Growth with Control of Lagged Shocks

∆ln(Deposits)c,t (1) (2) (3)

Disaster Shockc,t−1 -0.0080*** -0.0086*** -0.0089***
(0.0030) (0.0031) (0.0032)

Disaster Shockc,t−2 -0.0140*** -0.0143***
(0.0028) (0.0029)

Disaster Shockc,t−3 -0.0070**
(0.0032)

County FE X X X
State-Year FE X X X
# Obs 76,336 76,336 76,336
R2 0.1813 0.1815 0.1815

Note: This table uses the Summary of Deposit (SOD) data matched with
the Spatial Hazard Events and Losses Database for the United States (SHEL-
DUS) and reports the estimated coefficient βk’s in the following specifica-
tion:

∆ln(Deposit)c,t =

k=3∑
k=1

βk ×Disaster Shockc,t−k + θc + θs(c∈s),t + εc,t

where c and t indicate county and year, respectively. The data spans from
1994 to 2018. The dependent variable ∆ln(Deposit)c,t is the first difference
of natural logarithm of total deposit of all banks in county c and year
t. The independent variable Disaster Shockc,t−1 is the dollar amount of
property damage per capita from natural disasters in county c and year t−1.
θc and θs(c∈s),t represent county and state-year fixed effects, respectively.
All variables used in this table are standardized to a mean of zero and
standard deviation of one, and winsorized at the 1% level. Standard errors
clustered at the county level are reported in parentheses. *, **, and ***
denote statistical significance at the 10%, 5%, and 1% level, respectively.
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Table A.3: Orthogonality of Bank Characteristics to Bank-Level Disaster Shock

Dep Var: Γb,t (1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

ln(Assets)b,t−1 -0.0199** -0.0149 -0.0681
(0.0087) (0.0093) (0.0538)

Loan/Assetsb,t−1 -0.0137 -0.0154 0.0249
(0.0092) (0.0108) (0.0164)

Equity/Assetsb,t−1 0.0051 0.0060 -0.0109
(0.0090) (0.0090) (0.0155)

Cash/Assetsb,t−1 -0.0080 -0.0213*** -0.0075
(0.0050) (0.0066) (0.0109)

Deposits/Assetsb,t−1 0.0283** 0.0302** 0.0205
(0.0123) (0.0140) (0.0210)

Hedge/Assetsb,t−1 0.0063*** 0.0013 -0.0029
(0.0017) (0.0032) (0.0028)

Div/Assetsb,t−1 -0.0074 -0.0092 -0.0171*
(0.0054) (0.0059) (0.0092)

Income/Assetsb,t−1 -0.0042 -0.0050 0.0135
(0.0059) (0.0060) (0.0117)

Bank FE X
Year FE X
# Obs 9,892 9,892 9,892 9,892 9,892 9,892 9,892 9,892 9,892 9,892
R2 0.0004 0.0002 0.0000 0.0001 0.0008 0.0000 0.0001 0.0000 0.0017 0.0737

Note: This figure uses the Spatial Hazard Events and Losses Database for the United States (SHELDUS) and bank call report data to report the estimated coefficient β
in the following specification:

Γb,t = β × Bank-Characteristicsb,t + θb + θt + εb,t

where b and t indicate bank and quarter, respectively. The data spans from 1995 to 2018. The dependent variable is the bank-level disaster shock Γb,t. The independent
variables Bank − Characteristicsb,t is the natural logarithm of total bank assets (Column (1)), the average loan balance divided by total assets (Column (2)), the total equity
divided by total assets (Column (3)), the total cash holdings divided by total bank assets (Column (4)), the total deposits divided by total assets (Column (5)), the net
derivatives contract held for hedging divided by total assets (Column (6)), the total dividend on common stocks divided by total assets (Column (7)), and the operating
income divided by total assets (Column (8)). Column (9) and (10) use all the bank characteristics mentioned above. All variables are standardized to a mean of zero
and standard deviation of one, and winsorized at the 1% level. Standard errors clustered at the bank level are reported in parentheses. *, **, and *** denote statistical
significance at the 10%, 5%, and 1% level, respectively.
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Table A.4: Aggregate Shock and Major Disasters

Quarter Aggregate
Bank Shock Major Disaster #1 Affected States Major Disaster #2 Affected States Insurance Payout

(in 2020 billion $)

1996q3 33.3705 Hurricane Fran NC 2.63
1999q3 30.0705 Hurricane Floyd NC 2.05
2001q1 22.8630 Nisqually earthquake WA 0.44
2004q3 83.7900 Hurricane Ivan FL, AL Hurricane Jeanne FL 14.40
2005q3 244.5543 Hurricane Katrina LA, MS 87.96
2005q4 53.5566 Hurricane Wilma FL 13.42
2008q2 27.7731 June 2008 Midwest floods IN, IA, WI 0.60
2011q2 30.5780 Mississippi River floods MS, MO Super Outbreak (Tornado) AL, MS, TN 7.60
2012q4 80.5528 Hurricane Sandy NJ 28.88
2017q3 205.3722 Hurricane Harvey TX Hurricane Irma FL 63.11
2018q4 30.4282 California wildfires CA Hurricane Michael FL 19.84

Note: This table provides a narrative analysis of major disasters at the notable peaks of the aggregate bank deposit shock Γt shown in Figure
7a. The table reports the natural disasters, states affected by the disasters and the insurance payout associated with these disasters.
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Table A.5: Granular Bank Capital Shock and Aggregate Fluctuation

Dep Var: GDP Growtht (1) (2) (3) (4) (5) (6) (7)

Γ∗t−1 -0.0645*** -0.0770*** -0.0655*** -0.0800***
(0.0167) (0.0159) (0.0209) (0.0125)

ΓC
t−1 -0.0003 0.0336 0.0375

(0.0421) (0.0421) (0.0418)
ln(Total Home Loss) 0.0817** 0.2118 0.2159

(0.0378) (0.1924) (0.1700)
ln(Total Business Loss) 0.0725* -0.1465 -0.1543

(0.0376) (0.1992) (0.1805)
Constant 1.0588*** 1.0596*** 1.0587*** 1.0219*** 1.0225*** 1.0170*** 1.0154***

(0.0470) (0.0477) (0.0472) (0.0509) (0.0512) (0.0512) (0.0513)

N 83 83 83 70 70 70 70
R2 0.0262 0.0000 0.0313 0.0336 0.0250 0.0699 0.0771

Note: This table uses quarterly GDP series from 1994Q3 to 2018Q4 and reports the estimated coefficient β in the following
specification:

%∆GDPt = α + β1 × Γ∗t−1 + β2 × ΓC
t−1 + εt

where t indicates quarter-year. %∆GDPt is a percentage change in the seasonally adjusted quarterly GDP, Γ∗t is the granular
deposit shock, and ΓC

t is the granular bank capital shock. ln(Total Home Loss) and ln(Total Business Loss) are the natural-
logarithm transformed total dollar amount of home and business losses verified by the Small Business Administration,
respectively. These variables are identified in the US Small Business Administration (SBA) Disaster Loan Program. The
granular shocks are standardized to a mean of zero and standard deviation of one, and winsorized at the 1% level. Newey-
West heteroskedasticity and auto-correlation robust standard errors are reported in parentheses. *, **, and *** denote
statistical significance at the 10%, 5%, and 1% level, respectively.
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Table A.6: Small Business Lending and Deposit Shocks: Robustness Test

Dep Var: ∆ln(Lending)b,c,t
(1) (2)

Unaffected Affected

Γb,t−1 -0.0382*** -0.0134***
(0.0131) (0.0030)

County × Year FE X X
Bank × County FE X X
# Obs 96,259 436,349
R2 0.3222 0.2089

Note: This table uses small business lending data collected under
the Community Reinvestment Act (CRA) and reports the estimated
coefficient β in the following specification:

∆ln(Lending)b,c,t = β × Γb,t−1 + θb,c + θc,t + εb,c,t

where b, c and t indicate bank, county, and year, respectively. The data
spans from 1997 to 2018. The dependent variable ∆ln(Lending)b,c,t is
the natural logarithm of small business loans originated from bank
b in county c and year t. θb,c and θc,t are bank-county and county-
year fixed effects, respectively. Γb,t−1 refers to bank specific deposit
shocks, measured using the previous year’s deposit weighted average
of disaster damage per capita. Column (1) restricts sample to the
counties that were not affected by any disaster in year t − 1, and
column (2) restricts sample to counties that were affected by a disaster
in year t− 1. All variables used in this table are standardized to mean
zero and standard deviation of one and winsorized at the 1% level.
Standard errors clustered at the bank and county level are reported
in parentheses. *, **, and *** denote statistical significance at the 10%,
5%, and 1% level, respectively.
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Robust to Exclusion of Credit Card Banks

Further, another concern in our analysis is the inclusion of small business credit card banks in
the sample. This is problematic for two reasons. First, credit card loans may be unrepresen-
tative compared to traditional small business loans. Second, the geography of bank deposits
for credit card banks may be misrepresented due to its funding structure. For example, Chase
USA’s banking office is not open to the public, and the majority of their deposits come from JP
Morgan Chase Bank as well as other affiliates (Schaffer and Segev (2021)). Appendix Table A.7
shows that our results are not sensitive to the inclusion of credit card banks. We identify loans
from credit card bank, using two alternate definitions. In column 1, we drop banks that have
at least $1 billion in loans under $100K and these loans constitute at least 75% of these loans,
following Adams, Brevoort and Driscoll (2020). In column 2, we drop banks that have at least
99% of loans under $100K, and where the average loan amount is less than $15K, following
Board of Governors of the Federal Reserve System (2010). Our results indicate that a one
standard deviation deposit shock is associated with a decline of 1.29-1.48 percentage points in
lending growth. This estimate is statistically significant at the 1% level, and is within range of
the estimates produced in our baseline table. Hence, we rule out concerns that our effects are
driven by credit card banks.

Table A.7: Small Business Lending and Deposit Shocks: Exclusion of Credit Card Banks

Dep Var: ∆ln(Lending)b,c,t (1) (2)

Γb,t−1 -0.0129*** -0.0148***
(0.0030) (0.0028)

County × Year FE X X
Bank × County FE X X
# Obs 474,887 553,227
R2 0.2139 0.1985

Note: This table uses small business lending data collected under
the Community Reinvestment Act (CRA) and reports the estimated
coefficient β in the following specification:

∆ln(Lending)b,c,t = β × Γb,t−1 + θb,c + θc,t + εb,c,t

where b, c and t indicate bank, county, and year, respectively.
The data spans from 1997 to 2018. The dependent variable
∆ln(Lending)b,c,t is the natural logarithm of small business loans
originated from bank b in county c and year t. θb,c and θc,t are
bank-county and county-year fixed effects, respectively. Γb,t−1 refers
to bank specific deposit shocks, measured using the previous year’s
deposit weighted average of disaster damage per capita. We drop
credit card banks from the sample. Column (1) drops banks that
have at least $1 billion in loans under $100K and these loans con-
stitute at least 75% of these loans, following Adams, Brevoort and
Driscoll (2020). Column (2) drops banks that have at least 99% of
loans under $100K, and where the average loan amount is less than
$15K, following Board of Governors of the Federal Reserve System
(2010). All variables used in this table are standardized to mean
zero and standard deviation of one and winsorized at the 1% level.
Standard errors clustered at the bank and county level are reported
in parentheses. *, **, and *** denote statistical significance at the
10%, 5%, and 1% level, respectively.
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Table A.8: Small Business Lending and Deposit Shocks by Bank Size

Dep Var: ∆ln(Lending)b,c,t
(1) (2) (3) (4)

Small Banks Medium Banks Large Banks Top 20 Banks

Γb,t−1 -0.0061 -0.0128*** -0.0357*** -0.0251**
(0.0308) (0.0037) (0.0087) (0.0098)

County × Year FE X X X X
County × Bank FE X X X X
# Obs 35,632 165,547 298,355 235,454
R2 0.4609 0.3254 0.2722 0.3133

Note: This table uses small business lending data collected under the Community Reinvestment Act (CRA) matched
with bank call report data and reports the estimated coefficient β in the following specification:

∆ln(Lending)b,c,t = β × Γb,t−1 + θc,t + θb,c + εb,c,t

where b, c and t indicate bank, county, and year, respectively. The data spans from 1997 to 2018. The dependent
variable ∆ln(Lending)b,c,t is the natural logarithm of small business loans originated from bank b in county c and year
t. θb,c and θc,t are bank-county and county-year fixed effects, respectively. Γb,t−1 refers to bank specific deposit shocks,
measured using the previous year’s deposit weighted average of disaster damage per capita. Sample banks are banks
with total assets less than or equal to $2 billion (Column (1)), banks with total assets greater than $2 billion but less
than or equal to $35 billion (Column (2)), banks with total assets greater than $35 billion (Column (3)), and 20 largest
banks by assets (Column (4)). All variables used in this table are standardized to mean zero and standard deviation of
one and winsorized at the 1% level. Standard errors clustered at the bank and county level are reported in parentheses.
*, **, and *** denote statistical significance at the 10%, 5%, and 1% level, respectively.
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Table A.9: Small Business Lending and Deposit Shocks by Reliance on Deposit Funding

Dep Var: ∆ln(Lending)b,c,t (1) (2) (3) (4) (5) (6)

High Sh. CDb,t−1 × Γb,t−1 -0.0163*** -0.0223*** -0.0178*** -0.0302*** -0.0108** -0.0280***
(0.0047) (0.0048) (0.0049) (0.0051) (0.0050) (0.0054)

High Sh. CDb,t−1 -0.0073*** -0.0042* 0.0182*** -0.0020 0.0164*** 0.0183***
(0.0023) (0.0024) (0.0039) (0.0024) (0.0042) (0.0044)

Γb,t−1 -0.0057* -0.0060** -0.0059* -0.0076** -0.0061* -0.0070**
(0.0030) (0.0030) (0.0031) (0.0033) (0.0032) (0.0035)

County FE X X
Year FE X X
County × Year FE X X
County × Bank FE X X
Bank FE X
# Obs 549,136 549,136 549,136 549,136 549,136 549,136
R2 0.0001 0.0105 0.0164 0.1254 0.0744 0.1991

Note: This table uses small business lending data collected under the Community Reinvestment Act (CRA) matched with the
SNL bank regulatory data and reports the estimated coefficient β’s in the following specification:

∆ln(Lending)b,c,t = β1 × Sh. CDb,t−1 × Γb,t−1 + β2 × Sh. CDb,t−1 + β3 × Γb,t−1 + θc,t + θb,c + εb,c,t

where b, c and t indicate bank, county, and year, respectively. The data spans from 1997 to 2018. The dependent variable
∆ln(Lending)b,c,t is the natural logarithm of small business loans originated from bank b in county c and year t. θb,c and θc,t are
bank-county and county-year fixed effects, respectively. Γb,t−1 refers to bank specific deposit shocks, measured using the previous
year’s deposit weighted average of disaster damage per capita. High Sh. CDb,t−1 or High Core Deposit Share is an indicator
variable that takes a value of one if a bank’s ratio of demand deposits and time deposits to total bank deposits is above the median
value in year t − 1. All variables used in this table are standardized to mean zero and standard deviation of one and winsorized
at the 1% level. Standard errors clustered at the bank and county level are reported in parentheses. *, **, and *** denote statistical
significance at the 10%, 5%, and 1% level, respectively.
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Table A.10: Small Business Lending and Deposit Shocks by Bank Constraint

Dep Var: ∆ln(Lending)b,c,t (1) (2) (3) (4) (5) (6)

Low Tier 1 Ratiob,t−1 × Γb,t−1 -0.1784*** -0.2045*** -0.1978*** -0.2161*** -0.1815*** -0.2196***
(0.0113) (0.0118) (0.0125) (0.0124) (0.0124) (0.0137)

Low Tier 1 Ratiob,t−1 -0.0056*** -0.0031 -0.0281*** -0.0033 -0.0305*** -0.0277***
(0.0021) (0.0021) (0.0038) (0.0022) (0.0042) (0.0044)

Γb,t−1 -0.0036* -0.0053** -0.0046** -0.0076*** -0.0023 -0.0067**
(0.0022) (0.0022) (0.0023) (0.0026) (0.0023) (0.0027)

County FE X X
Year FE X X
County × Year FE X X
County × Bank FE X X
Bank FE X
# Obs 547,031 547,031 547,031 547,031 547,031 547,031
R2 0.0006 0.0113 0.0172 0.1267 0.0746 0.2002

Note: This table uses small business lending data collected under the Community Reinvestment Act (CRA) matched with the SNL
bank regulatory data and reports the estimated coefficient β’s in the following specification:

∆ln(Lending)b,c,t = β1 × λb,t−1 × Γb,t−1 + β2 × λb,t−1 + β3 × Γb,t−1 + θc,t + θb,c + εb,c,t

where b, c and t indicate bank, county, and year, respectively. The data spans from 1997 to 2018. The dependent variable ∆ln(Lending)b,c,t
is the natural logarithm of small business loans originated from bank b in county c and year t. θb,c and θc,t are bank-county and county-
year fixed effects, respectively. Γb,t−1 refers to bank specific deposit shocks, measured using the previous year’s deposit weighted
average of disaster damage per capita. λb,t−1 is an indicator variable that takes a value of one if a bank’s tier 1 capital ratio is lower
than its median value in year t − 1. All variables used in this table are standardized to mean zero and standard deviation of one and
winsorized at the 1% level. Standard errors clustered at the bank and county level are reported in parentheses. *, **, and *** denote
statistical significance at the 10%, 5%, and 1% level, respectively.
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Table A.11: Core vs Non-Core Markets by the Presence of Branch

Dep Var: ∆ln(Lending)b,c,t (1) (2) (3) (4) (5) (6)

NCb,c,t−1 × Γb,t−1 -0.0145*** -0.0155*** -0.0166*** -0.0151*** -0.0131*** -0.0147***
(0.0037) (0.0037) (0.0037) (0.0044) (0.0039) (0.0045)

NCb,c,t−1 0.0823*** 0.0902*** 0.0965*** 0.0873*** 0.3792*** 0.3570***
(0.0016) (0.0018) (0.0020) (0.0019) (0.0074) (0.0080)

Γb,t−1 -0.0004 -0.0014 0.0009 -0.0044 0.0002 -0.0036
(0.0022) (0.0022) (0.0022) (0.0032) (0.0022) (0.0031)

County FE X X
Year FE X X
Bank FE X
County × Year FE X X
County × Bank FE X X
# Obs 553,345 553,345 553,345 553,345 553,345 553,345
R2 0.0015 0.0119 0.0178 0.1259 0.0792 0.2017

Note: This table uses small business lending data collected under the Community Reinvestment Act (CRA) and reports the
estimated coefficient β’s in the following specification:

∆ln(Lending)b,c,t = β1 ×NCb,c,t−1 × Γb,t−1 + β2 ×NCb,c,t−1 + β3 × Γb,t−1 + θc,t + θb,c + εb,c,t

where b, c and t indicate bank, county, and year, respectively. The data spans from 1997 to 2018. The dependent variable
∆ln(Lending)b,c,t is the natural logarithm of small business loans originated from bank b in county c and year t. θb,c and θc,t are
bank-county and county-year fixed effects, respectively. Γb,t−1 refers to bank specific deposit shocks, measured using the previous
year’s deposit weighted average of disaster damage per capita. NCb,c,t−1 is an indicator variable that takes a value of one for counties
in which bank b does not have a branch in year t − 1. All variables used in this table are standardized to mean zero and standard
deviation of one and winsorized at the 1% level. Standard errors clustered at the bank and county level are reported in parentheses.
*, **, and *** denote statistical significance at the 10%, 5%, and 1% level, respectively.
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Table A.12: Core vs Non-Core Markets by the Share of Lending

Dep Var: ∆ln(Lending)b,c,t (1) (2) (3) (4) (5) (6)

NCb,c,t−1 × Γb,t−1 -0.0130*** -0.0160*** -0.0185*** -0.0148*** -0.0132** -0.0165***
(0.0048) (0.0050) (0.0049) (0.0053) (0.0051) (0.0055)

NCb,c,t−1 0.4846*** 0.4873*** 0.5563*** 0.4861*** 1.0018*** 1.0610***
(0.0029) (0.0029) (0.0033) (0.0029) (0.0051) (0.0050)

Γb,t−1 -0.0035 -0.0050** -0.0022 -0.0076*** -0.0040* -0.0058**
(0.0022) (0.0023) (0.0023) (0.0028) (0.0023) (0.0028)

County FE X X
Year FE X X
Bank FE X
County × Year FE X X
County × Bank FE X X
# Obs 553,345 553,345 553,345 553,345 553,345 553,345
R2 0.0554 0.0660 0.0793 0.1777 0.1814 0.3045

Note: This table uses small business lending data collected under the Community Reinvestment Act (CRA) and reports the
estimated coefficient β’s in the following specification:

∆ln(Lending)b,c,t = β1 ×NCb,c,t−1 × Γb,t−1 + β2 ×NCb,c,t−1 + β3 × Γb,t−1 + θc,t + θb,c + εb,c,t

where b, c and t indicate bank, county, and year, respectively. The data spans from 1997 to 2018. The dependent variable
∆ln(Lending)b,c,t is the natural logarithm of small business loans originated from bank b in county c and year t. θb,c and θc,t are
bank-county and county-year fixed effects, respectively. Γb,t−1 refers to bank specific deposit shocks, measured using the previous
year’s deposit weighted average of disaster damage per capita. NCb,c,t−1 is an indicator variable that takes a value of one for
county c in which bank b has small business lending market share below the median market share in t − 1. All variables used in
this table are standardized to mean zero and standard deviation of one and winsorized at the 1% level. Standard errors clustered
at the bank and county level are reported in parentheses. *, **, and *** denote statistical significance at the 10%, 5%, and 1% level,
respectively.
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Table A.13: Property Damage from Natural Disasters

Property Damage Distribution
Number of Total Damage (in 2018 Million $)

Hazard Type Affected Counties (in 2018 Billion $) P25 P50 P75 P95 P99

Hurricane 3,044 240.13 0.04 0.55 4.71 223.46 1,379.27
Flooding 23,397 181.29 0.01 0.07 0.51 8.19 58.64
Tornado 11,691 39.66 0.02 0.09 0.42 5.76 53.90
Earthquake 30 38.16 0.66 18.19 22.32 945.26 33,887.58
Wildfire 1,652 33.73 0.00 0.06 0.81 11.16 151.38
Hail 11,538 33.20 0.00 0.02 0.08 1.81 33.92
Wind 49,493 19.00 0.01 0.02 0.07 0.55 3.53
Severe Storm 42,793 13.90 0.00 0.02 0.05 0.32 1.93
Winter Weather 16,327 12.88 0.00 0.03 0.19 2.51 13.96
Landslide 687 5.67 0.00 0.01 0.24 14.63 82.02
Drought 752 3.12 - - - 3.91 17.26
Coastal 309 1.85 - - 0.00 1.68 72.97
Lightning 8,216 1.25 0.00 0.02 0.08 0.50 1.69
Tsunami/Seiche 47 0.11 0.02 0.03 0.10 15.85 42.36
Heat 691 0.05 - - - 0.08 0.17
Fog 345 0.05 0.00 0.03 0.09 0.43 1.48
Volcano 3 0.02 - 0.00 0.05 15.38 15.38
Avalanche 207 0.01 - - 0.00 0.02 0.59

All Hazard Types 171,222 624.08 0.00 0.02 0.11 1.90 21.16
Note: This table reports property damages from natural disasters in the Spatial hazard Events and Losses Database for the Unites

States (SHELDUS). The data are at the county and year level. The sample includes all natural disasters reported in SHELDUS that
occurred in the US between 1994 and 2018.
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Figure A.1: Property Damage Per Capita across Counties from 1994 to 2018

Notes: This figure illustrates the average natural disaster-induced property damage per capita across counties from 1994
to 2018. The intensity of the blue shading represents the dollar amount of property damage from natural disasters.
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Figure A.2: Geographic Concentration Across Bank Characteristics
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(a) Deposits
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(b) Liabilities
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(c) Equity
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(d) Loans

Note: This figure uses the summary of deposit data (SOD) from 1994 to 2018 and illustrates the relation between the
geographic concentration of deposits (Figure A.2a), liabilities (Figure A.2b), equity (Figure A.2c), and loans (Figure A.2d).
Each figure sorts banks by their deposits, total liabilities, book value of equity, and loans in figures A.2a, A.2b, A.2c,
and A.2d, and reports the average deposit share of counties with the largest deposit share against the percentile of the
bank deposits, total liabilities, book value of equity, and loans, respectively, i.e., average value of deposit share in the
largest deposit counties corresponding to the percentile of bank deposits, total liabilities, book value of equity, and loans,
respectively.
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Figure A.3: Deposit Concentration of Banks that Changed Headquarters
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(a) Deposit-Weighted Distribution
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(b) Equal Distribution
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(c) Omission

Note: This figure uses the summary of deposit (SOD) data and illustrates the geographic concentration of bank deposits
for banks that changed headquarters in our sample period. The figure is plotted for the years in which the bank changed
its headquarter (not all years). The y-axis represents the share of deposits and the x-axis represents counties by the order of
their deposit shares for each bank (the county number refers to the rank of a county by the amount of deposits it raises, i.e.,
county #1 refers to the county that raised the greatest amount of deposits for a given bank.). The figure reports the average
deposit share for each of the top 20 counties. The blue line shows the simple average of the deposit share across all banks,
and the red line shows the average deposit share weighted by total bank assets. Figure A.3a plots the deposit concentration
after removing the change in deposits at the headquarter county and distributing this change in deposits across all counties
based on the previous year’s county share of deposits. Figure A.3b plots the deposit concentration after removing the
change in deposits at the headquarter county and equally distributing this change across all counties. Figure A.3b plots
the deposit concentration after removing the change in deposits at the headquarter county and completely omitting this
change in calculating the deposit shares.
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Figure A.4: Geographic Concentration of Deposits after Excluding the HQ Branch
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This figure uses the summary of deposit (SOD) data from 1994 to 2018 and illustrates the geographic concentration of
bank deposits after excluding the HQ branch. The figure orders counties by their deposit shares for each bank (the county
number refers to the rank of a county by the amount of deposits it raises, i.e., county #1 refers to the county that raised
the greatest amount of deposits for a given bank.) and reports the average deposit share of the top 20 counties. When
computing the deposit share at the HQ county, the figure excludes the deposit at the HQ branch. The blue line shows the
simple average of the deposit share, the red line shows the average deposit share weighted by bank total assets, and the
green line shows the average deposit share controlling for bank-year and county-year fixed effects. .
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Figure A.5: Time Series of Deposit Concentration for Big Four Banks
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This figure uses the summary of deposit data (SOD) from 1994 to 2018 and illustrates the geographic concentration of bank
deposits over time. The figure reports the share of deposits in the largest deposit county for the Big Four banks over time.
The Big Four banks are Citibank, JP Morgan, Wells Fargo, and Bank of America.
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Placebo Test: Disaster Shocks and Deposit Growth

We conduct a placebo test to validate the relationship between disaster shocks and deposit
growth is not spurious. We estimate equation 6, using the random assignment of disaster
shocks. We refer to this as Placebo Disaster Shock. Placebo Disaster Shock is generated for each
county-year from a standard normal distribution. We estimate the coefficient associated with
Placebo Disaster Shock variable from 1,000 simulations. To negate the validity of the baseline
results, the null hypothesis that the point estimate associated with Placebo Disaster Shock
is zero, must be rejected. Appendix Figure A.6 presents the kernel density of β, coefficient
associated with Placebo Disaster Shock from 1,000 simulations. The distribution of β is centered
around 0, varying from -0.0099 to 0.0107 with a standard deviation of 0.0035. The dashed red
line denotes the location of the coefficient of the interaction term from column 6 of Appendix
Table A.1. 1.6% of estimates, among the 1,000 simulated placebo β, lie to the left of the dashed
red line. Hence, we fail to reject the null hypothesis. The average point estimate from the
placebo analysis is statistically indistinguishable from zero. The results of the placebo test
corroborate that the baseline results are not spurious.
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Figure A.6: Disaster Shock and Deposit Growth: Placebo Test
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Notes: This figure uses the Summary of Deposit (SOD) data matched with the Spatial Hazard Events and Losses Database
for the United States (SHELDUS) and plots the kernel density of the estimated coefficient β’s obtained from 1,000 simulations
of disaster shock in the following specification:

∆ln(Deposit)c,t = β × Placebo Disaster Shockc,t−1 + θc + θs(c∈s),t + εc,t

where c and t indicate county and year, respectively. The table below the figure reports the summary statistics for the
distribution of β. The data used in this figure and table spans from 1994 to 2018. The dependent variable ∆ln(Deposit)c,t is the
first difference of the natural logarithm of total deposit by all banks in county c and year t (i.e., ln(Deposit)c,t− ln(Deposit)c,t−1)).
The independent variable Placebo Disaster Shockc,t−1 measures the dollar amount of property damage per capita from
natural disasters in county c and year t − 1 and is generated randomly from a standard normal distribution. θc and θs(c∈s),t
represent county and state-year fixed effects, respectively. The dashed red line indicates the point estimate β from a baseline
regression in Column 6 of Appendix Table A.1. Among the 1,000 βs obtained from simulated placebo disaster shock, 1.6%
of them lie to the left of the dashed red line.
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Figure A.7: Bank Shock and GDP Growth
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Note: This figure presents the relation between GDP growth and bank deposit shocks. The bank deposit shocks, Γb,t for
bank b at time t (quarter), are constructed by weighting county-level disaster shocks, εc,t – property damage per capita in
county c at time t – by the bank-county deposit share, Db,c,t−1. Db,c,t−1 denotes deposits of bank b in county c.

Γb,t =
∑

c

{
Db,c,t−1∑
c Db,c,t−1

× εc,t}

The bank shocks are scaled to lie between 0 and 1.
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Figure A.8: R2 of Placebo Granular Shocks
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Notes: This figure presents the kernel density of the R2 from regressing aggregate GDP growth on placebo granular shocks.
Pareto distributions are fitted to our bank level shocks and common shocks. Placebo granular shocks are generated from
subtracting the random draws from the fitted pareto distribution for bank level shocks from the random draws from the
fitted pareto distribution for common shocks. The figure plots the kernel density of the estimated model R2 obtained from
1,000 simulations of placebo granular shock from the following specification:

%∆GDPt = α + β × Γ∗placebo,t−1 + εt

The dashed red line indicates the R2 from a baseline regression in Column 1 of Table 2. Among the 1,000 R2s obtained from
the regressions of economic growth on placebo shocks, 90.90% of them lie to the left of the dashed red line.
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Figure A.9: Long-Run Response of Small Business Lending to Disaster Shocks
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Note: This figure uses small business lending data collected under the Community Reinvestment Act (CRA) and plots the
estimated coefficient βh’s in the following specification:

ln(Lending)b,c,t+h − ln(Lending)b,c,t−1 = βh
× Γb,t−1 + θh

c,t + θh
b,c + εb,c,t

where b, c and t indicate bank, county, and year, respectively. The data spans from 1997 to 2018. The dependent variable
∆ln(Lending)b,c,t is the natural logarithm of small business loans originated by bank b in county c and year t. θh

b,c and θh
c,t are

bank × county and county × year fixed effects, respectively. Γb,t−1 refers to bank specific deposit shocks, measured using
the previous year’s deposit weighted average of disaster damage per capita. All variables are standardized to a mean of
zero and standard deviation of one and winsorized at the 1% level. The solid blue line plots the point estimate βh’s with h
from 0 to 10, and the dashed red line plots the 95% confidence interval for the point estimate βh’s. The confidence interval
is computed from standard errors clustered by bank and county.

88



Figure A.10: Disaster Affected and Unaffected Counties
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Note: This figure uses small business lending data collected under the Community Reinvestment Act (CRA) and plots the
estimated coefficient βh’s in the following specification for disaster affected and unaffected counties:

ln(Lending)b,c,t+h − ln(Lending)b,c,t−1 = βh
× Γb,t−1 + θh

c,t + θh
b,c + εb,c,t

where b, c and t indicate bank, county, and year, respectively. The data spans from 1997 to 2018. The dependent variable
∆ln(Lending)b,c,t is the natural logarithm of small business loans originated from bank b in county c and year t. Γb,t−1 refers to
bank specific deposit shocks, measured using the previous year’s deposit weighted average of disaster damage per capita.
θh

b,c and θh
c,t are bank × county and county × year fixed effects, respectively. All variables are standardized to mean zero

and standard deviation of one and winsorized at the 1% level. The solid blue line plots the point estimate βh’s with h from
0 to 10, and the dashed red line plots the 95% confidence interval for the point estimate βh’s. The confidence interval is
computed from standard errors clustered by bank and county.
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Figure A.11: Does the Geography of Bank Deposits Matter?
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Note: This figure uses small business lending data collected under the Community Reinvestment Act (CRA) and plots the
estimated coefficient βk’s in the following specification:

∆ln(Lending)b,c,t = βk
×

1
K
·

∑
j∈TopK

Property Damage per capita j,t−1 + θh
c,t + θh

b,c + εb,c,t

where b, c and t indicate bank, county, and year, respectively. j denotes the county where the bank b raises its deposits
ordered by the share of deposits raised by the county for the bank. The data spans from 1997 to 2018. The dependent variable
∆ln(Lending)b,c,t is the natural logarithm of small business loans originated by bank b in county c and year t. θh

b,c and θh
c,t

are bank × county and county × year fixed effects, respectively. Property Damage per capita j,t−1 refers to disaster-induced
property damage per capita in county j where bank b raises deposits. All variables are standardized to a mean of zero and
standard deviation of one and winsorized at the 1% level. The solid blue line plots the point estimate βk’s with k from 1
to 50, where K denotes the county ranked K by share of deposits for bank b. For example, K = 1 denotes the county that
raised the highest share of deposits for bank b. The dashed red line plots the 95% confidence interval for the point estimate
βk’s. 1

K ·
∑

j∈TopK Property Damage per capita j,t−1 is computed using a simple average of property damage per capita across
across top K counties. The confidence interval is computed from standard errors clustered by bank and county.
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Figure A.12: Long-Run Response of Mortgage Lending to Deposit Shocks
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Note: This figure uses data collected under the Home Mortgage Disclosure Act (HMDA) and plots the estimated coefficient
βh’s in the following specification:

ln(Lending)b,c,t+h − ln(Lending)b,c,t−1 = βh
× Γb,t−1 + θh

c,t + θh
b,c + εb,c,t

where b, c and t indicate bank, county, and year, respectively. The data spans from 1995 to 2017. ∆ln(Lending)b,c,t refers
to the natural logarithm of mortgage amount originated of bank b in county c and year t. θh

b,c and θh
c,t are bank-county

and county-year fixed effects, respectively. Γb,t−1 refers to bank specific deposit shocks, measured using the previous year’s
deposit weighted average of disaster damage per capita. All variables are standardized to a mean of zero and standard
deviation of one and winsorized at the 1% level. The dashed red line plots the 95% confidence interval for the point estimate
βh’s. The confidence interval is computed from standard errors clustered at the bank and county level.
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Appendix B Microfoundation of Deposit Shock

We begin by assuming that withdrawals occur uniformly across banks, i.e., the expected
deposit growth at bank b in county c is proportional to (Db,c,t−1/

∑
b Db,c,t−1). Then, for bank b,

we have:

Et(
∆Db,c,t∑
b Db,c,t−1

) =
Db,c,t−1∑
b Db,c,t−1

× εc,t (B.1)

⇒ Et(∆Db,c,t) = Db,c,t−1 × εc,t (B.2)

Dividing both sides of equation B.2 by
∑

c Db,c,t−1 yields the aggregate growth in deposits for
bank b due to a disaster shock in county c.

Et(
∆Db,c,t∑
c Db,c,t−1

) =
Db,c,t−1∑
c Db,c,t−1

× εc,t (B.3)

Aggregating equation B.3 across all counties for a bank b gives us the relationship between
shocks to bank deposit growth and disaster shocks as follows:∑

c

Et(∆Db,c,t)∑
c Db,c,t−1

=
∑

c

Db,c,t−1∑
c Db,c,t−1

× εc,t (B.4)

Equation B.4 allows us to define bank shocks as follows:

Γb,t :=
∑

c

{
Db,c,t−1∑
c Db,c,t−1

× εc,t} (B.5)

Aggregating bank-specific shocks across all banks allows us to define aggregate shocks as
follows:

Γt :=
∑

b

Γb,t =
∑

b

∑
c

{
Db,c,t−1∑
c Db,c,t−1

× εc,t}

 (B.6)
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