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Bottom-up stimulus-driven visual salience is largely automatic, effortless, and
independent of a person’s “top-down” perceptual goals; it depends only on features
of a visual stimulus. Algorithms have been carefully trained to predict stimulus-
driven salience values for each pixel in any image. The economic question we
address is whether these salience values help explain economic decisions. Our first
experimental analysis shows that when people pick between sets of fruits that have
artificially induced value, predicted salience (which is uncorrelated with value by
design) leads to mistakes. Our second analysis uses evidence from games in which
choices are locations in images. When players are trying to cooperatively match
locations, predicted salience is highly correlated with the success of matching (r =
.57). In competitive hider-seeker location games, players choose salient locations
more often than predicted by the unique Nash equilibrium. This tendency creates
a disequilibrium “seeker’s advantage” (seekers win more often than predicted in
equilibrium). The result can be explained by level-k models in which predicted
stimulus-driven salience influences level-0 choices and thereby influences overall
perceptions, beliefs, and choices of higher-level players. The third analysis shows
that there is an effect of visual salience in matrix games, but it is small and
statistically weak. Applications to behavioral IO, price and tax salience, nudges
and design, and visually influenced beliefs are suggested. JEL Codes: D91, C91,
C72.
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I. INTRODUCTION

Features of a stimulus that grab attention are called “salient.”
Of the different types of externally triggered sensory salience,
visual salience is the best understood and is clearly important
given the amount of information that people process through the
visual system. This investigation is about whether one type of
visual salience can be predicted and can help explain choices in
experimental economic decisions and games.

Many economists have studied attention and salience re-
cently, as part of growth in the foundations of behavioral eco-
nomics. Notable contributions include salience theory (Bordalo,
Gennaioli, and Shleifer 2012b, 2013a, 2013b), a related model
of focusing (Kőszegi and Szeidl 2013), and theories of rational
(Sims 2003, 2006; Caplin and Dean 2015; Caplin, Dean, and
Leahy 2019; Caplin et al. 2020; Kőszegi and Matějka 2020; Mack-
owiak et al. 2020) and dynamic inattention (Schwartzstein 2014;
Gagnon-Bartsch, Rabin, and Schwartzstein 2018). The SAM algo-
rithm salience is different from these economic models in content
and purpose. We defer the comparison of those models to Sec-
tion VII.

To begin with, there is an important distinction between
“bottom-up” and “top-down” salience (e.g., Baluch and Itti 2011;
Chun, Golomb, and Turk-Browne 2011).1

Bottom-up salience is what the human visual system no-
tices most quickly and automatically. Bottom-up salience is also
called “stimulus-driven”—the term we use from now on—because
it depends only on the properties of a stimulus. Stimulus-driven

1. There is an ongoing debate in attention science about how sharp the bottom-
up versus top-down distinction is. Awh, Belopolsky, and Theeuwes (2012) give the
example of the history of selective attention to a feature, which seems to influence
future attention. That influence is not purely stimulus-driven (because it depends
on previous attentive behavior, not just the stimulus itself), nor is it accomplishing
a goal. Another example is faces. Faces are considered to be bottom-up salient for
humans, but they help achieve a variety of goals that are generally evolutionarily
important (such as emotional communication, friend-foe detection, mate choice,
and social learning). These goals might be even more important in a particular
domain, like decoding facial emotion while watching a dramatic movie. So a person
watching a movie sees faces that have both automatic bottom-up salience, and
additional top-down salience to achieve the goal of understanding the movie. In
general, the two processes together can be thought of as a family of filters that have
been adaptively shaped by forces ranging almost continuously from evolutionarily
conserved universal principles to others locally tuned by personal experience and
valuation.
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PREDICTABLE EFFECTS OF VISUAL SALIENCE 1851

properties can be further divided into low- and high-level fea-
tures (Judd et al. 2009). Low-level features are independent of
object identity, meaning, and categorization; they include inten-
sity, orientation, color, and motion. Higher-level features combine
low-level features to identify and categorize objects and direct at-
tention to objects that are familiar, semantically meaningful, and
generally valued. Faces, people, and text are generally salient
high-level features.

Many algorithms have been trained to predict stimulus-
driven salience using large image sets and eye-tracking data from
people who are “freely gazing” at the images for three to five
seconds. These algorithms produce “salience maps” that closely
match the actual gaze patterns.

In contrast to stimulus-driven attention, top-down attention
is directed to achieve specific goals. We refer to top-down atten-
tion as “goal-directed” attention.2 Goal-directed attention includes
“extra-retinal3 information such as intrinsic expectations, knowl-
edge and goals” (Baluch and Itti 2011, 210).

To illustrate the distinction between stimulus-driven and
goal-directed attention, consider the classic study by Yarbus
(2013), done in 1967. He showed subjects a painting of people
in a room. One group was told to freely gaze. Another group was
told to “estimate the material circumstance” of the people in the
painting. The third group was told to “estimate the ages of the peo-
ple” in the painting. Eye-tracking showed that each of the three
groups looked at somewhat different parts of the images.4 Their
gaze differences were due to differences in goal-directed atten-
tion. However, there was also a substantial overlap in measured
attention. For example, people in both the free gaze and the “es-
timate the ages” goal conditions looked at faces in a similar way.

2. Stimulus-driven and goal-directed attention are also sometimes called “ex-
ogenous” and “endogenous” in attention psychology. Although we will not use this
terminology, it is useful to emphasize the difference between stimulus-driven and
rational (endogenous) attention models, discussed in Section VII.

3. “Extra-retinal” means that the information attended to because of goal-
directed guidance is not input to the retina, but is instead represented in the
visual cortex and other regions such as the superior colliculus (see Veale, Hafed,
and Yoshida 2017); that information is in the proverbial “mind’s eye” rather than
coming from the retina.

4. Reversing the order of inference in Yarbus’s early study, Haji-Abolhassani
and Clark (2014) showed that perceptual goals could be inferred reliably from
eye-gaze patterns.
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This overlap indicates that the measured attention to faces was
both stimulus-driven and goal-directed when the goal was age
estimation.

The hypothesis tested in this article is whether stimulus-
driven salience influences incentivized choices in three exper-
iments involving decisions and strategic games. This type of
salience lies outside of popular rational-inattention modeling,
which is a specific mathematical derivation of optimal goal-
directed attention (discussed further in Section VII). The re-
sults, therefore, provide evidence that goal-directed models (in-
cluding rational inattention) are leaving out a type of attention—
stimulus-driven salience—which is important behaviorally.

A preview of the first experiment illustrates the conflict be-
tween stimulus-driven salience and goal-directed perception. Sub-
jects saw two sets of fruits, on the left and right halves of their com-
puter screen. The two fruit sets were constructed to have different
stimulus-driven salience, and different induced monetary value.
The subjects’ goal was to choose the set with the highest induced
value, which requires goal-directed perception. Under time pres-
sure, stimulus-driven salience sometimes shifted choices toward
the high-salience options, even if those were low-value choices (see
also Milosavljevic et al. 2012; Towal, Mormann, and Koch 2013).

The other two experiments test whether stimulus-driven
salience influences strategic choices that are intended to accom-
plish goals of (i) either coordinated matching, or hiding and seek-
ing, in location games and (ii) maximizing payoffs in normal-form
matrix games. Predicted salience helps explain choices in the first
set of location games and is weakly associated with low-level
thinker choices (as classified by eye-tracking) in the second set
of normal-form games.

The empirical analysis uses an algorithm called the salience
attentive model (SAM).5 SAM takes any 2-D color image as an
input and predicts stimulus-driven attention—what most peo-
ple will look at—in the first few seconds. The SAM algorithm
is general, so it can be applied to any economic or social de-
cisions influenced by images. Potential applications include ad-
vertisements; visual design features of “nudges”; televised politi-
cal debates; e-commerce websites; virtual house tours; retail tags
showing prices, promotions, or taxes; point-of-purchase displays;

5. SAM is the first of several acronyms we use repeatedly. They are summa-
rized in Online Appendix Table J1.
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PREDICTABLE EFFECTS OF VISUAL SALIENCE 1853

social media; face-to-face interviewing; and graphical displays of
information.

Here is the structure of the article. Section II presents the
SAM algorithm. Section III describes the choice experiment pit-
ting stimulus-driven salience against goal-directed attention. The
results from location game experiments are described in Sec-
tion IV and explained with cognitive hierarchy and level-k mod-
eling in Section V. Section VI is about matrix games. Section VII
describes several recent economic models of salience and attention
and contrasts them with our approach. Section VIII concludes by
speculating about other economic applications.

II. THE SALIENCE ATTENTIVE MODEL (SAM) ALGORITHM

Algorithms that take images as inputs, and output predic-
tions about where people will look, have been an active area of
research in visual neuroscience since the 1990s. A brief history
will help clarify what the algorithms do (see Online Appendix B
for more details).

The earliest algorithms included only low-level features (Itti,
Koch, and Niebur 1998). Using these features as a starting point
was motivated by decades of research on the cognitive neuro-
science of perception, including animal and human neuroanatomy,
and detailed understanding of functions and interaction of differ-
ent parts of the human visual cortex.6 We note these facts as an
indication for readers of how much is known about basic aspects
of the neural circuitry underlying attention and its connection to
behavior, including the ability to causally change attention and
subsequent behavior.

The early low-level algorithms were steadily improved by
adding features that are higher level, and generally salient, such
as faces (Cerf et al. 2007). In the hunt for better predictive ac-

6. Veale, Hafed, and Yoshida (2017) is an excellent review. An elegant recent
example found that stimulus-driven salient features are associated with measured
neural activity in a specific area of the visual cortex called V1 (Chen et al. 2016).
V1 got that label because it is activated by retinal input earlier in time than
other regions and detects only the simplest low-level features, such as orientation
and direction. Krasovskaya and MacInnes (2019) review other examples of how
well algorithmic salience is associated with measured neural activity in the visual
cortex. Other studies show that microstimulating and lesioning specific regions of
the brain (in nonhuman animals) can causally change goal-directed attention and
behavior (Baluch and Itti 2011).
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curacy, in 2014 state-of-the-art algorithms switched to a neural
network structure in which there is less a priori specification of
what salient features are (Vig, Dorr, and Cox 2014). These neural
networks consist of multiple “layers” of connected discrete nodes.
Each node in one layer receives weighted inputs from nodes in an
earlier layer, and contributes weighted output as an input to nodes
in a later layer. The initial input layer is based on a stimulus, and
the final output layer encodes or “sees” an approximation of the
stimulus. The network is “trained” by inputting stimuli—such as
images—and propagating weighted inputs and outputs to eventu-
ally create a stimulus-specific output layer. That predicted output
layer is then compared to the objective stimulus, and the con-
necting weights linking the different layer nodes are adjusted to
improve accuracy. The SAM algorithm uses several modern vari-
ants of these methods to improve accuracy and training speed.7

The network structure is usually “pretrained” using a borrowed
“backbone” network that encodes low-level features. The network
is then trained further to learn encoding of semantically meaning-
ful objects that are commonly present in the image sets and are
looked at by the training subjects (such as apples, prices, people,
and text; see Cornia et al. 2018). The images in the SAM training
sets were highly varied, and most subjects were students or oth-
ers recruited at U.S. campuses (see Online Appendix Table B1 for
details).

These algorithms have progressed quickly because re-
searchers can try out new ideas on four popular open-access
salience data sets (SALICON, MIT1003, MIT300, CAT2000).
These are sets of images along with “ground truth” data on what
people actually looked at in the first five seconds of free gaze,

7. In technical jargon, SAM is a convolutional neural network with a salience
encoder using a long short-term memory structure. Convolution is a method that
combines encoding at different spatial scales. Crudely speaking, if features are en-
coded at fine-grained spatial scales and also at supersets of those fine-grained
scales, the object is big. The “long short-term memory” (LSTM) property is a
kludge to retain memory so that back-propagation algorithms that adjust hidden-
layer weights based on prediction errors do not overreact and create “vanishing
gradients”—which are bad. SAM uses ResNet as its “backbone” (there is also a
version with a VGG backbone). The backbone is the earliest part of the network
(i.e., the layers closest to stimulus input, encoding low-level features). That part of
the network typically has many layers and is therefore the most computationally
demanding. It is used for low-level feature extraction from the input image. People
nowadays mostly use established backbones such as ResNet or VGG, much like
using a standard set of code then adding further code by hand.
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recorded using eye-tracking and other high-quality methods for
measuring visual attention.

SAM and similar algorithms are now highly accurate. The
reported performance of SAM on the website MIT-salience is 0.88
using the AUC-Judd area-under-the-curve measure (Riche et al.
2013). An AUC of 0.50 is random and 1.0 is perfectly accurate. The
SAM accuracy of 0.88 is a little better than earlier algorithms and
approaches the accuracy of the best human-to-human benchmark,
which is 0.92.8

Figure I shows an example image and its associated SAM
saliency maps. The salience map assigns a salience value from
zero to one to each pixel of the image. The salience map is typi-
cally shown as a “heatmap” in grayscale or in color, with warmer
(redder) colors indicating higher salience.9 We adopted the default
parameters from the original approach and applied them to our
image data set. There are no additional free parameters.10

To illustrate salience and strategic choice, Figure II, Panel A
shows the map drawn by Schelling (1960) in a famous discussion
of focality and “psychological prominence.” The map shows small
square houses, a pond in the lower left, two places marked x and
y, and a river running horizontally through the lower third of
the map. A bridge spans the river. Schelling wrote: “Two people
parachute unexpectedly into the area shown, each with a map
and knowing the other has one, but neither knowing where the
other has dropped nor able to communicate directly. They must
get together quickly to be rescued. Can they study their maps and
‘coordinate’ their behavior?” (1960, 56). Schelling said seven of the
eight people (87.5%) who saw the map chose to rendezvous at the
bridge.

8. The best human benchmark indicates how strongly two different sets of
human fixation maps correlate for the same image. Each of the two sets contains
many different individuals. Human-human accuracy is less than 1.0 because of
idiosyncratic individual differences in their fixations, which make predictions from
one group to another less than perfect (Judd, Durand, and Torralba 2012).

9. We use the standard color protocol “jet” in Matlab for all the heatmaps in
this article.

10. Note that this CNN model, or any simpler variations of it, could be re-
trained on new data to understand different kinds of salience. Two studies have
coded abstract features of strategies in two-person matrix games (e.g., minimax,
equal payoffs, level-1) and fit machine learning models using those features to
explain observed choices. Hartford, Wright, and Leyton-Brown (2016) is a neural
network and Fudenberg and Liang (2019) is a random forest.
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original image SAM map

most salient (75%ile) parts saliency map overlayed

FIGURE I

A Salience Algorithm Example

Top left: An original image. Top right: The SAM saliency map, in which greater
brightness indicates higher saliency. Bottom left: The area of the original image,
which is 75% most salient. This area is generated from ranking all saliency values
of each pixel. Bottom right: The original image with the saliency heatmap overlaid
on it (warmer red colors indicate higher saliency). Source: Original photograph by
Conor Wong Camerer (reproduced with permission).

In a larger incentivized experiment, N = 61 UCLA students
earned $1 if they matched. They chose the bridge 59% of the time
(see Figure II, Panel B).11 The SAM algorithm predicts that the
bridge area, and the upper left road fork, are the most salient
features (Figure II, Panel C).

Note that SAM does not predict that the “x spot” is salient,
even though it was chosen by 25% of the subjects. For stimulus-
driven algorithms, “x” is a special configuration of low-level
features—two lines with diagonal orientation, that meet symmet-
rically in the middle. The x is also a high-level feature because it
is a letter in many languages; that is, it is a recognized semantic
object. However, the algorithm, as it was trained on other images,

11. These data were collected in conjunction with Milica Moormann and Alec
Smith.
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FIGURE II

Schelling’s Map Revisited

Panel A: Original map. Panel B: Choice frequencies heatmap, where redness in-
dicates choice frequency. Panel C: The SAM algorithm predicted salience heatmap.
Panel A reproduced from Thomas C. Schelling, The Strategy of Choice (Cambridge,
MA: Harvard University Press, 1960, 1980) Used by permission. All rights re-
served.

was not originally capable of learning that “x” is familiarly known
(to many UCLA subjects) to sometimes indicate locations of buried
treasure on a map. So the x has minimal stimulus-driven salience,
and SAM did not learn its goal-directed value for coordinating a
meeting place on a map.

To distinguish the effects of purely visual salience and goal-
directed attention further, we did an online experiment in which
the 10 most prominent map locations were described in a verbal
list. There was no accompanying visual map. Just as in the map
experiment, matching the list choices of others gave a reward. The
subjects’ list choices were not the same as the map-based choices.
The most popular choices were “x on the map” and “small house
near the pond” (49% and 14%). Only 5% chose “bridge” (see Online
Appendix F). This discrepancy shows that the popularity of the
bridge choice depends on visual salience rather than its semantic
content.12

II.A. Explainable AI and the SAM Black Box

Before proceeding, we note that the SAM algorithm is neither
a model nor a mechanism, in the sense that economists typically
use those terms. Neural network models (including SAM) are often

12. Rihn, Wei, and Khachatryan (2019) finds a related effect, that visual
attention to a logo rather than text description of a type of plant changes valuation.
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called “black boxes” because the basis of their predictions is in
“hidden layers” that are difficult to interpret. One cannot readily
do the comparative statics analysis that is useful in economics: for
example, there is no simple mathematical way to easily compute
how a change in an input image leads to a change in the outputted
salience map.

However, an active area called “explainable AI” is concerned
precisely with how to make opaque AI output more understand-
able (Hinton, Vinyals, and Dean 2015; Lipton 2018; Ras, van Ger-
ven, and Haselager 2018; Arrieta et al. 2020; Belle and Papantonis
2020; Fan, Xiong, and Wang 2020).13 Some progress has already
been made in explainability for deep neural networks predicting
visual salience. For example, He et al. (2019) used an image set in
which a neural network predicts visual salience in a set of images.
The categorical features in each image were also laboriously an-
notated by hand. That is, people looked at the images and coded
the locations of vehicles, plants, animals, and so on. Then salience,
as encoded at the middle-layer output of the neural network, was
extracted (like examining a partially finished manufactured prod-
uct). They found that the hand-coded categorized features were of-
ten correlated with the middle-layer salience predictions at these
features’ locations. That correlation means that much of what the
hidden middle layers were doing is learning the semantic cate-
gories of image features. In order of importance, 12 categories
of features—a person’s head, “other”, an object, a person’s body
part, etc.14—were most commonly encoded by the middle network
layers.

The method just described is one way to measure the “feature
relevance” of a predicted salience map. Feature relevance could be
applied to all the images in our investigation as well, to improve
explainability. For a set of maps like Schelling’s, each spatial lo-
cation has one or more codeable features—the distance from the
center, roads, forks in roads, ponds, rivers, houses, bridges, and
so on (which were elements of the list version of the experiment).
If these features and their locations are hand-coded, regressing

13. Igami (2020) explains the connection between some high-profile neural
net training methods and structural estimation approaches invented in economics.
This equivalence does not, however, guarantee the explainability of the content of
the resulting neural networks.

14. The rest of the list is food, plant, symbol, vehicle, drink, animal head, and
text.
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the SAM salience values at each location against that location’s
features will measure how well the SAM salience values are ap-
proximated by a function of the coded features. A good fit means
the black-box salience output is approximated by explainable fea-
tures. The size and statistical strength of the regression coeffi-
cients indicate which features are most salient.

The Schelling map example sets up the empirical question in
this article: How well does stimulus-driven salience—as predicted
by SAM—predict actual choices in decisions and games? Does
stimulus-driven salience get partially or entirely inhibited when
there is also goal-directed attention?

We describe three experimental applications. They are:

i. Choices between visual images of two sets of fruits: The
sets varied in induced values and in predicted salience.
These data measure how often people picked lower-value
sets because they were higher in stimulus-driven salience.

ii. Strategic choices of locations in visual images: In
Schelling-style matching games, both players were re-
warded if they matched by choosing the same location.
In hider-seeker games, the hider wanted to mismatch and
the seeker wanted to match. These data measure whether
cognitive hierarchy or level-k structural models can fit
data, and more ambitiously, make accurate cross-game
predictions from the hider-seeker game to the matching
game.

iii. Two-player 2 × 2 matrix games: These data measure
whether stimulus-driven salience biases—which happen
to predict looking at the top row and the left column in the
matrices—can potentially explain strategy choices. This
is a tough challenge for stimulus-driven theories because
the experimental participants had a clear goal, to choose
payoff-maximizing rows or columns. They may have ig-
nored stimulus-driven salience entirely.

III. DECISIONS: FRUIT DISPLAYS

III.A. Study 1: Salience and Induced Value in Visual Fruit
Displays

The first experiment measured the empirical importance of
visual salience in a simple setting that is lifelike. Subjects were
shown two fruit sets presented on the left and right parts of an
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FIGURE III

Fruit Experiment Images

Panel A illustrates the rules of this task. Each fruit was worth a certain amount
of dollars. The value of a set was the sum of all fruit values in that set. Panel
B presents a sample image of an actual trial in this task, as subjects saw it (the
dollar values were not shown). Panel C shows the SAM salience map for the sample
image in Panel B. The left set was more salient than the right set in this example.
All images used in this task had a salience distribution similar to this example,
in that the salience peak is only distributed in one of the two sets. At the salience
peak, the value of salience was 1 (the peak is located in the middle orange of the
left set). In test images, the difference between the left and right salience peaks
had an average difference of 0.23.

image, as shown in Figure III, Panel A. Each fruit type (e.g., ap-
ples or oranges) had a unique, predetermined induced monetary
value (Smith 1976) that subjects learned before making choices.
The induced values artificially created value, so there is an objec-
tively best choice, and we can clearly judge if people are making
mistakes.15

Ninety-seven participants did this study on Prolific (a Euro-
pean online data collection platform), following a preregistration
process on the Open Science Foundation website (OSF).16 All the
participants were prescreened to have a prior approval rate of at
least 70% based on their previous participation. Each subject was
only allowed to participate in one experimental session (including
pilot studies). Participation from mobile phones and tablets was
not allowed to control for possible display effects.17 There were
five questions to check subjects’ comprehension after the instruc-
tion session. We exclude individuals who failed more than one

15. We also hope that the induced monetary values swamped minor differences
in intrinsic subjective value from personal or aesthetic preferences for fruits.

16. See https://osf.io/.
17. Even though computer screens also differ in size, phones and tablets have

more variation in screen sizes.
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question. See a full description of the experiment block design in
Online Appendix G.G1 and Online Appendix Figure G1.

The total value of a fruit set is the simple sum of the values
of all fruits in that set. The everyday analogue to this task is a
retail vendor who is buying fruits at a wholesale market to resell
and has in mind a retail price for each fruit. The retail price of the
fruit induces value to the vendor. Subjects learned the induced
values of different fruits before the main session of 20 choices.18

Although the vendor should optimally be computing resale
value, the visually salient properties of fruit (such as color, in-
tensity, and orientation), are hypothesized to influence stimulus-
driven perception. The salience and value properties are indepen-
dently controlled in the design.19 In the choice sets, visual salience
and fruit value were either positively or negatively correlated. The
empirical question is whether subjects can ignore or inhibit visual
salience, which is not generally correlated with induced value and
could therefore lead to mistakes.

The main experiment included 20 images like those in Fig-
ure III. Choices were made with a 10-second time limit. Trials
were balanced across induced values, numbers of fruits in the two
sets, and whether the more salient set was on the left or right
(see Online Appendix G.G2). Subjects earned money based on the
induced value of the sets they chose in an incentive-compatible
design (a 10% chance of earning the value of what they chose on
one randomly selected trial).

The average difference between the most salient peaks in the
two fruit sets was 0.23 on the 0–1 scale of salience. More ambitious
designs could obviously covary the size of the salience difference
and the size of value difference between the two sets. In half of
the trials, SAM-salience and induced value are “congruent”—one
set is higher in both salience and induced value. In the other half
of the trials, they are “incongruent”—the high-salience set has a
lower induced value or vice versa.

The dependent variable is 0-1 choice accuracy—did they
choose the most highly valued set? With a 10-second time limit,

18. They experienced an untimed but incentivized session before the main
session. More experimental details are in Online Appendix G.G1.

19. It is possible that stimulus-driven salience of fruits is correlated with their
subjective value in the natural ecology—for example, brightness might be visually
salient and also correlate with ripeness and fruit taste or nutrition. However, even
if this is the case, by design stimulus-driven salience is uncorrelated with induced
value, which is the only type of value a payoff-maximizing agent should attend to.
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TABLE I
INFLUENCE OF SALIENCE-VALUE CONGRUENCY IN A SIMPLE CHOICE PROBLEM (FRUIT

SETS)

Dependent variable: Accuracy (0,1)

(1) (2) (3) (4) (5)

Congruency 0.83∗∗∗ 0.90∗∗∗ 0.89∗∗∗ 0.97∗∗∗ 1.26∗∗∗
(0.32) (0.29) (0.33) (0.31) (0.41)

abs(valueDiff) 0.80∗∗∗ 0.80∗∗∗ 0.77∗∗∗
(0.23) (0.23) (0.23)

Interaction: − 0.55
Congruency*abs(valueDiff) (0.63)

Constant 1.54∗∗∗ 0.78∗∗∗ 1.99∗∗∗ 1.25∗∗ 1.26∗∗
(0.10) (0.17) (0.61) (0.57) (0.57)

Covariates No No Yes Yes Yes

Observations 1,382 1,382 1,307 1,307 1,307
Log likelihood −644.7 −591.8 −607.5 −556.7 −556.3
Akaike inf. crit. 1,293 1,189 1,239 1,139 1,141

Notes. The congruency variable is the difference between the the maximum salience level of the more
valuable set and the maximum salience level of the less valuable set (between 0 and 1). This variable will
be positive if one option is both more salient and more valuable. abs(ValueDiff) is the absolute value of the
induced value difference between left and right sets. Standard deviations are clustered on the per subject
level. “Covariates” denotes whether the current model contains covariates: education, gender, income, and
self-reported fruit preference (we ask them which fruit they prefer in everyday consumption: apples, oranges,
or equal preference). The main effect estimates are not sensitive to these covariates, as is evident comparing
specifications (1–2) to (3–4). ∗ p < .1; ∗∗ p <.05; ∗∗∗ p <.01

choice accuracies were 85% and 79% in the congruent and incon-
gruent conditions. This drop in accuracy, when salience conflicts
with valuation, is highly significant (p-value = .002, two-sided
t-test).

We test for the effect of salience, controlling for the value gain
from choosing correctly, using a logistic regression of the form:

yij = β1
(
SH

j − SL
j

) + β2abs
(
V L

j − V R
j

) + β3
(
SH

j − SL
j

)
abs

(
V L

j − V R
j

)

+β4 Xi + εi j,(1)

with robust standard errors clustered at the subject level. The
variable yij is accuracy (a 0-1 dummy variable, for person i at
image j); V L

j and V R
j are the monetary values of the left and right

sets in image j, and abs(V L
j − V R

j ) is the absolute induced value
difference (abs(valueDiff) in Table I). The congruency variable
defined earlier is SH

j − SL
j , the difference in salience of the high-

and low-valued sets. We are therefore regressing choice accuracy
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on congruency, absolute value difference, their interaction, and
covariates.20 The results are summarized in Table I. The induced
value difference and congruency variables are both significantly
associated with choice, with comparably large t-statistics (around
3–4).

There are two boundary conditions in which the effect of
salience disappears. When the value difference is large the ac-
curacy is 94% for both congruent and incongruent conditions (p
= .91 for the test for a difference). When the value difference is
small, the accuracy is lower and salience-value incongruence does
have an effect (78% versus 69%, p = .01). (The Table I results
pooled both types of images).

The second boundary condition is endogenous time allocation:
When there is no time limit (N = 22),21 participants in both condi-
tions are near the ceiling of perfect accuracy (congruent 94% and
incongruent 96%).

At this point, readers may be curious why subjects don’t just
ignore the stimulus-driven salience of the fruits. The reason is that
in economics jargon, perceptions are not freely disposable. The vi-
sual perceptual system is highly evolved to distill a huge amount
of visual input into a much smaller amount of useful information
and not waste the small amount that seems useful. The fastest
parts of that process occur implicitly (without conscious aware-
ness) in less than a second. Inhibiting any rapid highly evolved
implicit behavior is mentally difficult. One type of evidence about
inhibition difficulty is that exogenous manipulation of attention—
adding more “involuntary” attention to a choice object—increases
later choice of that object (albeit by a small amount; see Shimojo
et al. 2003; Armel, Beaumel, and Rangel 2008; Pachur et al. 2018;
see Mormann and Russo 2021 for a contradictory view).22

A mechanistic explanation for why irrelevant salience af-
fects choices comes from a popular class of psychological mod-
els for how attention and decision time influence choice. These

20. “Covariates” is yes when the current model contains covariates of educa-
tion, gender, income, and self-reported fruit preference.

21. An additional group of subjects collected on Prolific did only the unlimited
time experiment.

22. A related phenomenon is called the “mere exposure” effect in psychology.
Mere exposure means that repeated presentation of one unfamiliar stimulus tends
to slightly increase expressed likings for that stimulus, compared with similar
stimuli with less exposure (see Zajonc 1968; Bornstein 1989 for meta-analytic
review).
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“accumulators” (or diffusion drift) models assume that over time
perceptions and memory cumulate a running value of a latent
numerical “evidence” variable (Ratcliff 1978; Ratcliff et al. 2016;
Fudenberg, Strack, and Strzalecki 2018). A choice is made when
the variable level crosses a mental threshold or barrier. In these
models, if stimulus-driven initial perceptions enter the accumu-
lator variable, there is no known mechanism that will fully erase
their effect at low cost. If the time to decision can be endogenously
chosen by the decision maker, then a very high threshold can be set
which will dilute the early effect of stimulus-driven perceptions,
but will not always fully inhibit that effect. (This is consistent
with the absence of a salience effect in untimed trials.)

A different way to model why stimulus-driven perception
influences choice comes from the signal-extraction model of
Cunningham (2013). In that model, an “upstream” sensory sys-
tem sends information to a more “informed” downstream system
and the two kinds of information are integrated. However, the
downstream system only has partial information about input to
the sensory system. Intuitively, the brain may partially accumu-
late the stimulus-driven perception into a decision variable as if
it might have come from value-driven attention.23

IV. STUDY 2: MATCHING AND HIDER-SEEKER LOCATION GAMES

This section reports new experimental data from location
games. Schelling’s map game is an example of a location game.
In our general location games, two players saw a common visual
image and simultaneously choose a location—a pixel. A circle was
created around the pixels (with a radius of 108 pixels). The circle
was about one-fifth of the screen width. The baseline circle size
was chosen so that if players were choosing pixels randomly, they
would match 7.1% of the time. (One experimental treatment below
varied the circle size.)

In matching games, both players wanted to match by choos-
ing locations that had overlapping circles. In hider-seeker games,
seekers wanted to match and hiders wanted to mismatch. Inter-
actions of the hider-seeker kind include predator-prey relations
in nature. Human examples include choosing passwords to out-
wit hackers, other “coded” language and signals used in sports,

23. This kind of upstream-downstream integration is likely to be common in
the brain, leading to illusions like the atmosphere illusion (people do not fully
undo the effects of unusual foggy or clear days on distance perception).
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gangs, and other rivalries to coordinate action with teammates
and avoid detection by the other side. Industries such as fash-
ion can have follower-leader dynamics (e.g., fashion leaders want
to “hide” by choosing unique new designs, and outsiders want
to “seek” by matching those designs which induce hider-seeker
structure). Visual salience might conceivably play a role in some
of these games.

The experiment had three blocks of games (see Online Ap-
pendix Figure H1): matching, the hider-seeker game in the role
of seeker or hider, and the hider-seeker game in the opposite role
of the one in the second block. The matching block always came
first, followed by the hider and seeker blocks in a randomized
order between subjects. During each block, there was a feedback
sequence in which the choice the other player made was revealed
to a player right after both choices, by showing the circle around
the other player’s pixel choice and the player’s own circle. In a “no
feedback” sequence, those results were not revealed.

The matching block had two sets of 20 images for each of the
two feedback treatments (40 images in total). The hider-seeker
game used a different set of 19 images for each of the two feedback
treatments (38 images in total). For each image, subjects played
once as a hider and once as a seeker. An additional short session
of hider-seeker games followed in the last block (16 images) with
a bonus payment 10 times higher than in the baseline, to test for
effects of higher incentives.

There was unlimited time to read instructions but only six
seconds to make a choice. Subjects got no payoff if they didn’t re-
spond before the known time limit (see the instructions in Online
Appendix H). The results shown to subjects in the feedback con-
dition were drawn from previous choices of actual subjects (using
different previous subjects for each image).

One hundred fifty-one subjects participated, excluding a pilot
data set for power analysis. Of these 151 subjects, 29 people (13
men, 16 women) participated in the lab, one at a time, in a small
testing room where their eye movements were recorded. Fifteen
of those subjects were from the Caltech community and 14 from
the neighboring community (there were no differences in results
between the two groups). The bonus payments were $0.20, $0.10,
and $0.40 in matching, hiding, and seeking games, respectively,
for each “win” per trial (image). Participants were paid the cumu-
lative monetary amount at the end of the experiment. In the lab
experiments, all the visual images were displayed on a computer
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screen in 1920 × 1080 resolution. The other (N = 122) subjects
participated online through Amazon Mechanical Turk (MTurk).24

Images were randomly selected from a large image pool (273) with
five categories (abstract art, city, faces, social scenes, and nature).
The image set contained images with only one obvious salience
center and more complex images that have multiple salience cen-
ters (Judd et al. 2009).

There were some behavioral differences between choices in
the feedback and no-feedback conditions.25 The largest effect is
that the matching rate is higher with feedback than with no feed-
back (64% versus 35%). However, the seeker win rate in hider-
seeker games is the same in both conditions (9%) and most other
differences are not substantial. We therefore report only data from
the feedback condition in this main text. The corresponding no-
feedback results are in an Online Appendix D.

Figure IV shows examples of result screens that subjects saw
during the experiment.

IV.A. Analysis and Results

Equilibrium game theory generates a statistical benchmark
for what people might do.26 In location games, strategies are pixels
in x-y space (and their resulting circles).

For the matching coordination game, choices by the two play-
ers of any two pixels that create overlapping circles constitute a

24. Online experiments have the same instructions and block orders as the
in-lab version, except that everything is shown in a web browser. This study was
preregistered on the Open Science Framework (https://osf.io/yuqjg/) during data
collection and before analysis. The sample size was predetermined before the data
collection process, based on a pilot study (N = 29) carried out in March 2017.

25. Both feedback and no-feedback blocks were included because each one
answers a different question of interest. To help ensure increased subject com-
prehension in learning-by-doing, and especially in testing equilibrium concepts,
the standard practice in experimental economics is to provide feedback. However,
whether salience is predictive even with no feedback is an interesting question,
too. That is why we did both.

26. A game-theoretic idea which might help explain how salience influences
choices is correlated equilibrium (Aumann 1974). When both players receive a
common public signal and a strategy is conditioned on the signal values, a corre-
lated equilibrium occurs when nobody wants to deviate from recommended strate-
gies. Stop signs and green-yellow-red traffic lights, for example, act as correlating
devices (also enforced by law) to create a commonly observed visual signal that co-
ordinates traffic and reduces accidents. In these terms, our study is about whether
the stimulus-driven visual salience of image locations works as a correlating device
in matching games.
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Mismatch(A) (B)

(C) (D)

No response trial

Matched Matched

FIGURE IV

Examples of Trial Outcomes with Feedback, Showing Circled Pixel Choices

Source: Original photographs by Conor Wong Camerer (reproduced with permis-
sion).

pure strategy Nash equilibrium. One image contains about two
million (1,920 × 1,080) pixels. Since any pixel match is a pure
equilibrium, there are an enormous number of equilibria. There
are also many mixed equilibria. So standard equilibrium theories
do not rule out any of the location choices.27

For the hider-seeker game, there is a unique Nash equilibrium
in which all locations are chosen equally often.28 The fact that
equal randomization over all strategies is the unique hider-seeker

27. Note that if players have a personal utility from picking a specific location
or a type of image feature, such preferences might conceivably reduce the set of
equilibria, particularly if a selection principle such as payoff-dominance is applied
(see Bacharach (1993); Bacharach and Bernasconi (1997)). However, such results
would likely be sensitive to whether such preferences were commonly known.

28. For those unfamiliar with game theory, intuition can be gained by a sim-
plified example. Suppose there are just two locations and the hider chooses them
with probabilities p and 1 − p. If the seeker matches those probabilities, she has a
p2 + (1 − p)2 chance of winning. This sum is always lower if the seeker chooses the
most likely spot (i.e., the location with p > 0.5) because if p > 0.5, then p > p2 + (1
− p)2. To defend against this, the hider should mix equally, so p = 0.5. Every new
location that is added should also have a 1

n chance of being chosen (if there are n lo-
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equilibrium is an example of how game theory logic conflicts with
the result of human biology. We are so good at quickly noticing
salient information, while amateurs at rapidly choosing what is
unsalient to hide.29 The last thing the brain is equipped to do is
to ignore salient differences among many objects and choose them
equally often.30

IV.B. Matching Games

To analyze the behavioral data, we test whether subjects are
playing an equal random mixture across all pixels and their as-
sociated salience levels. To compare results from different im-
ages, all salience values in this section refer to the normalized
levels, which are the rank percentiles of raw measures from the
algorithm, ranked in each image. We calculated the normalized
salience value for each chosen pixel and then compared these
salience values against the baseline of equal randomization in-
dependent of salience. Kolmogorov-Smirnov tests reject the hy-
pothesis of equal randomization for all treatment conditions (p <

10−4). Subjects’ choices are not independent of salience.
To see examples of how salience affects choices, the choices

from all the subjects are plotted on one specific image in Figure V.
The salience heat map is in the middle column. The right

column shows, using red dots, the subjects’ actual location choices.
The predicted salience in the middle column and the observed
choice maps in the right column are highly overlapping.

cations) by an iterated logic. A special design that if a circle touches any boundary,
it wraps around from the opposite boundary, guarantees the equilibrium.

29. A similar conflict between logic and biology occurs in the games “rock,
paper, scissors” (e.g., Crawford, Costa-Gomes, and Iriberri 2013). When players
display the three choices with their hands, there is a slight tendency to match
an opponent’s choice (e.g., playing rock against rock) more often than predicted in
equilibrium. The explanation is that imitation of another person’s body movements
is such a highly adapted automatic behavior, that the brain cannot inhibit the
response, even though it reduces performance (e.g., you should play paper rather
than imitating rock).

30. The difficulty of inhibiting certain kinds of perception is illustrated by
Steinbeck (2011). In The Pearl the protagonist, Kino, has hidden a valuable pearl
that everyone in the small town covets. An unscrupulous doctor comes to treat
Kino’s baby, hoping to find out about the pearl. “The doctor shrugged, and his wet
eyes never left Kino’s eyes. He knew the pearl would be buried in the house, and
he thought Kino might look toward the place where it was buried. “It would be a
shame to have it stolen before you could sell it,” the doctor said, and he saw Kino’s
eyes flick involuntarily to the floor near the side post of the brush house.”
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FIGURE V

Two Matching Game Images, Salience Heatmaps, and Choices (red)

(Left) The original image. (Middle) The original image overlaid by the SAM
salience maps. (Right) The grayscale original image overlaid with the actual em-
pirical choice distributions (each red dot is one choice). This is a derivative of
“Zachary Bedrosian” by Zachary Bedrosian and is licensed under the Creative
Commons CC0 1.0 Universal Public Domain Dedication.

Statistically, the mean salience level of the pixel locations
chosen in the coordination game is 0.87. This is far above the
chance level of 0.5 (p < 10−4).

IV.C. How Predictable Is the Matching Rate across Images?

Intuitively, the matching rate for an image should be affected
by how dispersed salience is. When salience is highly concen-
trated, the rate of choosing the same pixels, and matching, should
increase. If salience is not highly concentrated, the matching rate
should be lower.

Dispersion of salience throughout an image can be measured
by the number of local salience centers.31

Online Appendix Figure A1 gives two concrete examples of
different numbers of salience centers and the corresponding game
results.

Figure VI shows that, indeed, the matching rate32 is strongly
negatively correlated with the number of salience centers

31. The typical raw salience map has flat local maxima with many adjacent
pixels with nearly equal salience. To detect salience centers we first apply a Gaus-
sian smoothing (with [300 pixel, 300 pixel] window size and standard deviation
σ = 75 pixels) to the entire image to smooth hyperlocal spikes in salience. Then
we simply take the number of local maxima for the salience distribution using the
Matlab function imregionalmax() with default settings. That function takes the
local maximum inside each 3 pixel × 3 pixel patch. If the original image has two
local maxima that are close enough together, the Gaussian filter combines them.

32. This result is based on all images from both the feedback session and the
no-feedback session using the in-lab data set (image N = 40).
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FIGURE VI

Correlation across Images between Matching Rate and Number of Salience
Centers

The figure plots the correlation between the number of salience centers and the
matching rate using both the feedback session and the no-feedback session to get
a larger image pool (N = 40 images).

(Pearson r = −0.45, p < 10−4, df = 38).33 Online Appendix
Figure A1 gives out two concrete examples of different numbers
of salience centers and the corresponding game results.

The matching rates span a range from a high rate of about
75%, for one salience center, to just above random (20%) for seven
salience centers. These results suggest that for any image, the
matching rate could be predicted ex ante with substantial accu-
racy from the salience map, before any data are collected. Put the
other way around, it is possible to find images with salience distri-
butions that will predictably yield either near-perfect matching or
near-random matching. This could be a useful tool for designers
who are trying to either enhance shared attention or undermine
it.

33. At a reader’s suggestion, we also calculated whether the number of salience
centers was correlated with the seeking win rate in hider-seeker games (across
the N = 38 images). This is an interesting question because if there are many
strategically naive hiders, the correlation will be positive. However, there is no
correlation (Pearson r = −0.10, p = .23).
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FIGURE VII

A Hider-Seeker Game Image, Salience Map, and Choices

Panel A: The original image. Panel B: The original image overlaid by the salience
map. Panels C and D: The grayscale original image overlaid with the actual empir-
ical choice distributions (each red dot represents an actual choice from one person).
Panel C is for hider choices and Panel D is for seeker choices. This is a derivative
of “Poniente Yerba Loca” by Pierre Bouillot and is licensed under the Creative
Commons CC0 1.0 Universal Public Domain Dedication.

IV.D. Hider-Seeker Games

For the hider-seeker game, we start with an example image
and data. Figure VII shows that subjects’ choices are more spread
out than in the matching game examples (Panel C shows hiding
data and Panel D shows seeking data.) In Figure VII, Panel C,
there is no distinct peak of the hider choice distribution, and few
choices are in the most salient area.

The direction of effects suggested by this example holds more
generally. The mean salience levels of hider and seeker click points
were 0.53 and 0.61, close to the chance level of 0.50.34 The same in-
lab group (N = 29) with payoffs 10 times higher had very similar
results, averaging salience levels of 0.51 and 0.64 for hiders and
seekers.35 A paired t-test showed this difference in choice salience
between hiders and seekers is highly significant (p < 10−4),

34. p = .02, t-test CI: [0.51,0.56].
35. Hiding: p-value for test against null of 0.50 salience = .59, CI: [0.48,0.54],

seeking: p-value < 10−4.
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TABLE II
REALIZED MATCHING RATE

Matching rate N of observations

Nash mixed prediction 0.071
Matching game 0.64 (0.006) 559
Hider-seeker game 0.09 (0.002) 1,060 (531(H), 529(S))
Hider-seeker game 0.09 (0.002) 1,325 (600(H), 725(S))

(between-subjects)
Hider-seeker high payoff (10×) 0.09 (0.003) 892 (446(H), 446(S))

Notes. Statistical tests against the null hypothesis that the seeker win rate is the baseline level and choices
are independently and identically distributed across subjects (which is the Nash benchmark prediction). The
number in the bracket is the standard error of the seeking win-rate in each condition.

reflecting what is suggested by the Figure VII example. The no-
feedback results had a similar difference (see Online Appendix D).

1. Seeker’s Advantage. Recall that the theoretical frequency
with which two randomly chosen location circles will match is
0.071. Table II presents the realized matching probability in each
specific game condition.36

To check robustness, the hider-seeker game experiments were
replicated in two other conditions: a high-payoff condition with
payments 10 times as large (N = 29)37 and a between-subjects
condition where subjects played only one of the two hider or seeker
roles across all their trials (53).38 In both conditions, the seeker
win rate was 9.0%, the same as in the baseline experiment. All
differences from the equilibrium prediction of 7.1% were highly
significant.39

36. Tests to compare the matching rates with random baseline were carried
out by bootstrapping a person’s hiding data and a different person’s seeking data
(or two data points from matching game) for 1,000 batches (batch size is a total
number of different pairs). We get the empirical distribution for the matching rate
and statistical significance against baseline 0.071 from that bootstrap. Specifically,
each sample is drawn by matching two random users (different ones). The batch-
seeking win rate is calculated accordingly. All values were calculated from the
average of 500 iterations of randomly matching two data points from the data set
if two subjects were in the same subblock, same image.

37. They did this session at the end of the in-lab group experimental session.
See the full batch description in Online Appendix Table H1.

38. This was an mTurk separate sample; see Online Appendix Table H2.
39. The 9% win rate for seekers does not seem to be much larger than the

equilibrium prediction of 7%. However, under the null hypothesis of Nash equi-
librium, this win rate should be identically distributed for all images, and for all
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To test whether the seeker advantage is only present un-
der time pressure, 46 people from MTurk participated in the
same hider and seeker experiment, but without a time limit. The
seeker’s win rate was again 9% (p = .002 for comparison with Nash
benchmark 7.1%). Subjects spent an average of 3.14 seconds, 4.61
seconds, and 6.44 seconds in matching, hiding, and seeking con-
ditions, respectively, when there was no time limit.40

The seeker’s advantage could depend on the size of the cir-
cle that is drawn to surround the chosen pixel. To explore this
possibility, in another experiment the circle size was enlarged to
be 1.5 times as large as in the original experiments. Then the
chance/equilibrium matching rate is about twice as high, 16%.
The seeker win rate was 18%, so there is still a small seeker’s
advantage exactly equal in absolute size (+2%) to the benchmark
circle results (p = .003, N = 66).

The seeker’s advantage must be due to a correlation between
the hiders’ choices and the seekers’ choices, which should not hap-
pen in equilibrium (except for sampling error).41 We have already
shown that hiders and seekers choose slightly higher salience lo-
cations, but at different frequencies. How exactly do those biases
lead to the seeker’s advantage? Figure VIII presents the seeking
win rates conditional on different salience levels for hiders and
seekers. The seeker’s advantage is mainly due to the concentra-
tion of wins when both players choose locations that are in the top
10% in salience.

V. A SALIENCE-INFLUENCED COGNITIVE HIERARCHY (SCH) MODEL

This section describes a parametric behavioral model meant
to explain choices and their salience sensitivity, closely following

people. This null hypothesis supplies a lot of statistical power. A more conserva-
tive approach averages all data within an image and tests whether the image-wise
matching rates are above 7% (N = 19, p = .0005). A different conservative approach
averages win rates for individuals and tests whether the average individual seeker
win rate is different than the Nash 7% (N = 29, p = .002).

40. The standard deviations were 7.10 seconds, 15.54 seconds, and 19.49 sec-
onds for matching, hiding, and seeking. These large standard deviations are not
unusual for an online experiment with unlimited time because some subjects take
much longer time than others.

41. We know that people are capable of approximately equal randomization in
these games because when they play a random computer opponent their choices
are approximately equally random (Heinrich and Wolff 2012).
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1874 THE QUARTERLY JOURNAL OF ECONOMICS

FIGURE VIII

Seeking Win Rates as a Function of Different Saliency Levels

This figure shows the average seeking win rate of hiders and seekers separately,
at each saliency level bin from 0 to 1 (with bin size 0.1). This conditional seeking
win rate looks a little different between hiders and seekers mainly because their
choices are distributed differently across saliency levels.

Crawford and Iriberri (2007a). It uses the level-k model of Stahl
and Wilson (1994) and Nagel (1995), later extended by Camerer,
Ho, and Chong (2004).

The SCH model combines cognitive hierarchy levels, a quan-
tal response function (softmax), and a salience-influenced level-0
assumption.

V.A. General Model Description

The population consists of different levels of players starting
from level 0. The proportion of level-k players is f(k), with f(k)
assumed to be Poisson distributed with parameter τ .

For all levels of players, there is randomness that will be
described using a conventional logit softmax function eλxn∑

m eλxm with
parameter λ. Higher λ corresponds to more sensitivity to xn.

In this SCH specification, the nonstrategic level-0 players
weakly prefer salient choices. The probability of choosing strat-
egy/pixel n depends on the direct salience value42 Sn of that pixel
from SAM according to:

P0n = eλ(1+μSn)
∑

m eλ(1+μSm)
.

42. Just as before, the salience values refer to the normalized ranking with
respect to each image. This way, we can use data from different images and salience
distributions in a common specification.
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PREDICTABLE EFFECTS OF VISUAL SALIENCE 1875

If μ = 0, salience is ignored and level-0 types choose randomly
among all points. We assume that λ and the salience weight μ are
common across subjects, although heterogeneous versions could
be used (e.g., Rogers, Palfrey, and Camerer 2009).

All levels of players above 0 behave in the same way as in
a standard cognitive hierarchy model. Level-k players assume
that all other players are only of lower levels (0 to k − 1), using
normalized Poisson frequencies f(k). A level-k player calculates the
expected payoffs of choosing n, denoted as EUkn. The probability
of a level-k player i choosing option n is:

Pkn = eλEUkn

∑
m eλEUkm

.

Note that salience only enters directly into the value calcula-
tions of level-0 players. This assumption tests whether a model in
which salience only enters k � 1-level players through beliefs (and
hence uses goal-directed attention) is a good approximation.43

V.B. Model Fitting Results

Besides the SCH, there are many other ways to specify models
of limited strategic thinking, which have been mixed and matched
in previous research. We fit six model specifications to the hider-
seeker data (see Online Appendix E).

Some specifications restrict the frequency of actual level-0
types to be zero, f(0) = 0, as if level-0 players are only a figment
of the imagination of higher-level types (though see Wright and
Leyton-Brown 2019). Restricting f(0) = 0 in this way clearly de-
grades fit (Online Appendix Table A2). We therefore focus only on
f(0) > 0.

A close relative of SCH is the level-k model, in which level-k
types believe all others are level k − 1 (rather than distributed
from 0 to k − 1 as in SCH) (Crawford and Iriberri 2007a, 2007b).
Level-k is usually estimated nonparametrically, allowing all fre-
quencies f(k) (up to some maximum k) to be estimated separately.

Both SCH and level-k specifications with role-specific level
frequencies fit the overall data about equally well by the Akaike
information criterion (AIC) criterion (although SCH is a little bet-
ter by the Bayesian information criterion, BIC). These games are

43. This is similar to Mehta, Starmer, and Sugden (1994) for matching games,
in which secondary salience is derived from primary salience.
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TABLE III
ESTIMATION DETAILS, ROLE-SPECIFIC SCH

λ μ τh τ s

Best-fit parameters 100 0.06 0.4 0.1
Number of observations 1,096 for hiders and 1,090 for seekers
95% CI [72.3,100] [0.05,0.08] [0.32,0.47] [0.08,0.13]

Notes. The parameters μ and λ are constrained to be the same for hiders and seekers. The confidence
interval in the table is calculated using the bootstrap method with data batch size 1,096 for hider, 1,090 for
seeker, and the number of iterations is 100.

not an ideal testing ground for comparing such differences. The
goal, instead, is to see if either SCH or level-k variants can explain
both matching and hider-seeker games, which have different goal-
directed attentional demands.

We first focus on the preferred specification of SCH. It has four
free parameters: μ, the salience weight parameter; λ, the softmax
parameter; and two role-specific parameters τ s and τh, which are
the Poisson distribution parameters of strategic levels for hiders
and seekers separately. (Allowing different λ and μ parameters
for hiders and seekers fits worse due to the large BIC penalty for
extra parameters).

We used a standard training-testing separation to avoid over-
fitting. Recall that each subject did two sessions.44 We use the
first session data as a training set to estimate parameters. The
parameter values are then fixed and used to predict data from
the second session test set (see Online Appendix). The best fitting
parameter values and measures of fit are shown in Table III.

Figure IX compares the actual choice density (frequency)
function and best-fit model predicted density functions for the
hider-seeker game. Training data are shown in the top of Fig-
ure IX, Panels A and B, and test data are shown on the bottom
of Figure IX, Panels C and D. In the choice data, there is a sharp
density increase starting around 0.9 salience for both roles (al-
though note that the y-axes are different, so the actual increase is
about half as big for hiders as for seekers). There is also a smaller
trend of slightly decreasing choice from the very lowest salience to
medium salience levels for hiders (but not for seekers). This small
dip reflects the fact that some hiders did manage to strategically

44. Two sessions contain different image sets. A first session of normal pay-
ment trials including feedback and no-feedback trials and a second session of
high-payment trials.
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PREDICTABLE EFFECTS OF VISUAL SALIENCE 1877

FIGURE IX

Frequency of Choice by Salience Level with Model Fitted Distributions

The graphs indicate what percentage of choices were made for locations with
the salience of those locations on the x-axis. Panel A: Choice data and model
prediction in the training data set seeking condition. Panel B: Choice data and
model prediction in the training data set hiding condition. Panel C: Choice data
and model prediction in the testing data set seeking condition. Panel D: Choice
data and model prediction in the testing data set hiding condition.

choose the lowest-salience locations. SCH can roughly fit these
two major features of the data.

However, the best-fit values of τ , 0.4 and 0.1 for hiders and
seekers, are much lower than typical estimates around τ = 1.5
(e.g., Camerer, Ho, and Chong, 2004; see also Riche et al. 2013,
although Fudenberg and Liang 2019 find minimal prediction error
in a large interval (0, 1.25) including low τ values).

The low values of τ estimated for SCH result from the fact
that the ability to identify τ is limited in these visual choice games.
A single-peaked SCH with Poisson f(k) does not meet the calibra-
tion challenge well. Level-1 hiders should anticipate high-salience
choices by level-0 seekers and move sharply to antisalient loca-
tions. But there are not that many low-salience choices in the
hider data (as Figure IX, Panel D shows). The SCH distribution
explains the infrequency of low-salience hiding the only way it
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can, by simply estimating few level-1 types through a low value
of τ .

The level-k model gives better insight here about plausible
level frequencies.45 Compared with SCH, the best level-k speci-
fication estimates lower frequencies of level 0 ( f̂s(0) = 0.17 and
f̂h(0) = 0.29) for seekers and hiders, and a higher salience weight
μ̂ = 0.18 for level-0 types. Level-k also estimates larger frequen-
cies of level-2 and -3 types ( f̂s(3) = 0.66, f̂h(2) = 0.61). Although
the overall level-k fit is just a little less accurate than SCH, this
type distribution is more consistent with experimental results
than the SCH estimates of low τ (see Online Appendix E). So
while it is clear that both specifications fit the salience-choice
profiles adequately (as seen in all the figures, including Online
Appendix Figure D1), they suggest different evidence of level fre-
quencies. These games were chosen to investigate the effect of pre-
dictable salience but were not ideal to recover levels accurately.
Better methods can be developed.

V.C. Cross-Game Predictive Validation

To further test generalizability of SCH, parameters estimated
from fitting the SCH model to hider-seeker data will now be
used to predict choice behavior in the matching game. There is
no guarantee that this cross-game portability will work at all
(see Hargreaves Heap, Rojo Arjona, and Sugden 2014; but see
Crawford 2014). Identification of the salience weight μ in hider-
seeker games comes purely from the level-0’s choices and from
higher-level player beliefs and choices. In the matching games, all
higher-level types are similarly guided by goal-directed attention
because they are all trying to match the lower-level types. The
strength of salience sensitivity that is estimated in the two cases
could easily be different. Furthermore, matching and hiding are
completely opposite in strategic motives.

Figure X compares predictions of the salience-frequency pro-
file on the test set of matching game data. The left graph shows
predictions based on using hider-seeker training, that is, the free
parameters are trained on the hider-seeker data, then fixed and
used to predict (“test on”) the matching game results. The right

45. A better way to identify τ is by creating games in which different level types
choose distinct strategies (such as in the matrix games pioneered by Stahl and
Wilson 1994, and see Nagel 1995; Ho, Camerer, and Weigelt 1998; Costa-Gomes
and Crawford 2006; Kneeland 2015).
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FIGURE X

The SCH Model Calibrated on Hider-Seeker Game Data Can Predict Matching
Game Choices.

The comparison is between the matching data distribution and the two fitted
matching game distributions. Panel A: Parameter estimates from the hider-seeker
game are used to predict matching game results; log-likelihood: −2,176. Panel B:
Parameter estimates from the training matching game data are used to predict
test matching game data; log-likelihood: −1,943.

graph shows predictions of matching test-set data using match-
ing data for training (i.e., using the two-session train-test cross-
validation described already). Of course, training on the matching
data and then predicting matching test data should be more ac-
curate than training on a different type of game, and it is (LL =
−1,943). However, training on the hider-seeker data and testing
on matching is only about 10% worse (LL = −2,176). Comparing
Figure X, Panels A and B shows that the main difference is that
the hider-seeker trained parameters underestimate how sharply
matching-game test data respond to the highest salience.46

The hider-seeker structure is a good example of how stimulus-
driven and goal-directed salience can be combined. Level-0 play-
ers are only influenced by stimulus-driven salience (from the
SAM algorithm) because they do not have a strategic goal.
Higher-level types need to compute expected values of strategies,
which requires goal-directed attention. But they also form beliefs
about level-0’s that requires simulating the stimulus-driven at-
tention of level-0’s. Therefore, both types of attention need to be

46. We did not do the opposite analysis, predicting hider-seeker data based on
parameters estimated from a matching game. The meaning of doing this opposite
analysis is limited because of the identification problem. Using matching game
data only is not enough to identify the strategic level parameters because all level
players are using similar strategies of choosing salient locations.
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combined to make good choices. The fact that hiders lose more of-
ten than expected in equilibrium is associated (via the structural
model) with the fact that they are choosing too many locations
with stimulus-driven salience. Their goal of hiding, which should
guide attention to low-salience locations, does not appear to suffi-
ciently inhibit stimulus-driven salience.

VI. STUDY 3: MATRIX GAMES

Location game experiments are unusual. Most game theory
experiments, following visual conventions in textbook game the-
ory, use normal-form games in a matrix format (or occasionally
game trees). To establish boundaries of where visual salience is
predictive and where it is not, it is therefore useful to ask whether
SAM salience can help explain choices in the common matrix game
format.

First, note that the SAM training set does not contain im-
ages that resemble matrices of payoffs. Subjects in matrix game
experiments also have a clear attentional goal, which is to look
at numbers in a matrix to make a high-payoff choice. These goals
are likely to create a complicated visual search to compute beliefs
and implement decision rules, which is different than the rapid
stimulus-driven attention that SAM is designed to predict.

In fact, many studies using Mouselab and eye-tracking
stretching back three decades have shown patterns of search
consistent with goal-directed perception for strategic thinking
(Camerer et al. 1993; Costa-Gomes, Crawford, and Broseta 2001;
Johnson et al. 2002; Arieli, Ben-Ami, and Rubinstein 2011; Bro-
cas et al. 2014; Polonio, Di Guida, and Coricelli 2015; Devetag,
Di Guida, and Polonio 2016). Furthermore, most of the behav-
ioral studies about coordination and hider-seeker games have
aimed at establishing general principles of focality or psycholog-
ical prominence from strategic goals and set-theoretic properties
of strategies (see Online Appendix C for a review). So it is al-
ready known that goal-directed allocation of attention is evident
in choices from matrix payoff games. An unanswered new ques-
tion is whether stimulus-driven SAM salience has any additional
predictive power.

The possible influence of visual salience is tested here us-
ing data from Polonio, Di Guida, and Coricelli (2015). In their
experiment, 56 people played 32 normal-form games with differ-
ent strategic structures. Eye-tracking was used to record visual
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FIGURE XI

Saliency and Choices in Matrix Games

Panel A: One example (prisoner’s dilemma) of the games used in the experiment.
Panel B: The average SAM prediction of all games. Panel C: The ground truth gaze
density map generated by gaze data. Panel D: Percentage of choices choosing the
most SAM salient strategy grouped by levels (strategic thinking levels classified
by gaze and behavior data by Polonio, Di Guida, and Coricelli 2015). (N: level 0 =
551, level 1 = 402, level 2 = 371) Source: Polonio, Di Guida, and Coricelli (2015).

attention. These data are especially useful because actual gaze
maps can then be compared with SAM predictions and actual
choices.47

Figure XI, Panel A shows one example of the type of matrix
that subjects see on their computers (it’s a prisoner’s dilemma in
structure). Row player payoffs are in the lower left of each matrix
cell, and column player payoffs are in the upper right of each
matrix cell.

Figure XI, Panel B is the average prediction from the SAM
algorithm about where people look, averaged over all 32 games.
There is a predicted bias toward looking more at the top row
and the left column, as well as a row-player payoff bias (even for
column players). Figure XI, Panel C is the average measured at-
tention map calculated from eye-tracked gaze data over different
types of games (filtering out gazes that are away from payoffs).
The comparison between Figure XI, Panel B (algorithm) and
Panel C (gaze data) suggest that the algorithm does predict the

47. See Online Appendix I for more details.
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actual attention allocation during game play rather well. This
visual impression is supported by conventional statistics used in
visual science.48 Much to our surprise, the actual human gaze
data are also quite similar for row and column players (as is the
SAM salience map, because it does not vary with player roles).
This is surprising because higher-level strategic thinkers need to
direct attention to different row and column payoffs.

The main question is whether there is a congruency effect (as
in the fruits experiment 1): that is, does salience affect how often
people choose the equilibrium strategy? We look at the 24 games
that contain a unique equilibrium strategy for both players. We
also use Polonio, Di Guida, and Coricelli (2015)’s classification of
subjects into three groups based on strategic levels of thinking
from 0 to 2, using the cognitive hierarchy model.49

Figure XI, Panel D shows that level-0 and -1 types do choose
the salient strategy more often when it is an equilibrium, and
level-2’s go slightly in the opposite direction. This is consistent
with the idea that level-0’s are not using goal-directed attention,
and level-1’s and -2’s use more goal-directed attention.50

Table IV tests whether the likelihood of choosing the equilib-
rium strategy depends on salience congruency. There is no general
effect when all level types are pooled together (model 1). However,
model 2 shows that there is a substantial effect of congruency,
but only for level-0 players. (Note that level 2 is the omitted level
category so that the congruency main effect estimates the level-2
effect, which is negative). However, the significance of the level-
0 effect is only p = .12 when Bonferroni-corrected for multiple
comparisons.

Thus, the evidence for an influence of stimulus-driven
salience is suggestive but not statistically strong. It is also a sur-
prise that the salience map and gaze data are so similar. Future

48. In the computer vision field, two validation scores, AUC and CC, are
commonly used metrics to evaluate how closely salience algorithm predictions
are correlated with actual human gazes. AUC: area under the receiver operating
characteristics curve; CC: Pearson correlation (see Kummerer, Wallis, and Bethge
2018). Online Appendix Table I1 shows these statistics.

49. They classify players’ types based on their gaze patterns on matrix games.
The level-0’s only focus on the payoff property itself (intra-cell). Level-1 players
compare their own payoffs (own focused). Level-2 players also look at others’ pay-
offs (distributed attention). This classification from gaze data was then correlated
with predictions about what choices the three types should make.

50. Note that we did not preregister this prediction, so our conclusions should
rightly be taken as exploratory and not a planned test of a hypothesis.
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TABLE IV
THE EFFECT OF SALIENCE-EQUILIBRIUM CONGRUENCY IN MATRIX GAMES

Dependent variable:

Whether the choice is an
equilibrium strategy

(1) (2)

Congruency 0.008 − 0.208
(whether equilibrium strategy is salient) (0.082) (0.142)

Congruency*level-0 0.465∗∗
(0.189)

Congruency*level-1 0.073
(0.197)

Constant 0.240∗ 0.348∗∗
(0.140) (0.143)

Observations 1,323 1,323
Log likelihood −910.061 −908.221
Akaike inf. crit. 1,834.122 1,834.443

Notes. The dependent variable is (0-1) whether the chosen strategy in a matrix game is the equilibrium
strategy. (All games in the data set have a unique Nash strategy.) “Congruency” indicates whether the
equilibrium option in that particular game is also more salient (which is the top row/left column). Covariates
(coefficients not reported) are: game types (DSS, PD, DSO), role (row, column), levels (level-0, level-1, level-2).
Standard errors are clustered at the individual level. ∗ p < .1; ∗∗ p < .05; ∗∗∗ p < .01

experiments could explicitly manipulate salience (guided by SAM
predictions) of particular payoffs to see if stronger effects can be
created.

VII. COMPARISON WITH OTHER SALIENCE AND ATTENTION

APPROACHES

This section briefly reviews recent economic theories that
have analyzed salience and attention and describes the relations
of those theories to our approach.

VII.A. Salience Theory

Salience theory is a theory of salience that has been widely
applied for the past 10 years in economics and finance and in other
areas (Bordalo, Gennaioli, and Shleifer 2012b, 2013a, 2013b). It
was the first economic theory to specify exactly how salience is
generally derived from attributes, and affects choice, to make
clear predictions testable from observable data. The goal of this
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section is to describe how salience is computed in that theory and
compare it to stimulus-driven SAM algorithmic salience.

In salience theory, attribute values of choice objects that are
relatively farther from a reference point (such as the average at-
tribute value51) are judged to be more salient. We’ll use the no-
tation from analysis of multiattribute choice (Bordalo, Gennaioli,
and Shleifer 2013b) to see how salience theory works. A choice k
has attribute level ak along a particular attribute dimension. The
average level across the entire choice set is ā.

The salience function is defined by σ (ak, ā). This function is
assumed to obey two properties called ordering and diminishing
sensitivity.

Ordering means that increasing the magnitude of the at-
tribute level ak by ε from ā, while decreasing the reference point
in the opposite direction by ε′, increases salience.52 Kőszegi and
Szeidl (2013) proposed a similar “focusing” model in which all
values of an attribute are weighted more heavily when an at-
tribute has more wide-ranging utilities (see Bordalo, Gennaioli,
and Shleifer 2013b, 815–16 for comparison). Diminishing sensi-
tivity means that increasing the level of both ak and ā by the same
positive amount reduces the salience of ak. Although ordering and
diminishing sensitivity are enough for most of the applications to
work, a more strict version further assumes homogeneity of de-
gree zero (i.e., σ (ak, ā) = σ (αak, αā) for α > 0). A simple salience
function that satisfies all these properties is |ak−ā|

|ak|+|ā| . We now make
two remarks about salience theory.

First, attributes such as product quality or endowment states
do not have to be numbers to be judged as salient. They could be
perfume aromas or restaurant noise levels. However, attributes
are assumed to have subjective estimated values, so that salience

51. In some applications, it is plausible that an external reference point that is
not part of a choice set influences salience. For example, the explanation of endow-
ment effects works with goods that have two attributes, and the consideration set
includes having nothing (0,0) (Bordalo, Gennaioli, and Shleifer 2012a). Including
this null state makes the best quality of the initially endowed good salient, which
creates a valuation that is inflated (compared with a no-salience benchmark). For
example, in Thaler (1985), when people are asked about their willingness to pay
for a beer on a hot day, most people will value hotel cans more than the cans from
a normal corner shop, even though they are identical goods.

52. Formally, define a sign function by μ(ak − ā) = 1 iff ak − ā �
0 and μ(ak − ā) = −1 iff ak − ā < 0. Ordering is the property that
σ (ak + μ(ak − ā)ε, ā − μ(ak − ā)ε′) > σ (ak, ā), for ε, ε′ � 0 and ε + ε′ > 0.
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can be computed and used to weight attributes in computing de-
cision values. A salient thinker will overweight the salient at-
tributes and underweight the unsalient ones.

Second, like our work, salience theory was clearly motivated
by ideas and evidence in psychology and neuroscience. Ancestors
of context-sensitivity and the ordering property are common
in historical and modern psychology. (For example, we have
repeatedly noted the importance of low-level contextual contrast
in Itti, Koch, and Niebur 1998 and later algorithms.) Diminishing
sensitivity is also a ubiquitous psychophysical (Weber-Fechner)
principle of perception. William James’s (1863) speculative list
of things that engage “passive immediate sensorial attention”
included “strange things” that can be translated as context-
deviating attributes or objects. In modern neuroscience, salience
is often defined as absolute magnitude (deviation from zero) and
is known to be encoded in the brain (McCoy and Platt 2005;
Armel, Beaumel, and Rangel 2008; Litt et al. 2011).

Recent perceptual judgment experiments (Kunar et al. 2017)
illustrate one way that salience of extreme values affects judg-
ment. Participants saw sequences of 12 two-digit numbers, pre-
sented rapidly (< 100 milliseconds) one at a time. Judgments re-
flected more attention to the highest and lowest numbers in each
stream (which are those with the highest Bordalo, Gennaioli, and
Shleifer salience; see also Tsetsos, Chater, and Usher 2012).53

Larger differences are also more salient when people are looking
for one target object out of many (including “distractors”). The
target is easier to find when it is more different than distractors
on features—such as searching for an X in a group of O’s rather
than in a group of Y’s. The target-distractor differences should be
expressible as numbers similar to normalized values of |ak − ā|
(Wolfe and Horowitz 2017, 2), as in salience theory, but we do not
know of direct equivalences of this sort.54

53. Kunar et al. (2017) found that when people were instructed to report
whether they saw a specific target number, they missed that number more often
when it was preceded by the highest or lowest number in the sequence. This is
consistent with the joint hypothesis that people were more attentive to the extreme
numbers, and exhibit a typical “attentional blink” in which attention lapses a bit
after the high attention paid to extreme numbers.

54. Wolfe and Horowitz (2017) compile a list of visual properties of features
that robustly “guide” attention. In vision science jargon, a variable X guides at-
tention if a target having property X increases the accuracy and speed of finding
that target. Relative size and higher subjective value are two guiding variables in
Wolfe and Horowitz (2017).
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Because of this generality, salience theory has been used to
explain or interpret phenomena and empirical evidence in finance,
lottery choices (including drug trafficking), legal judgments, price-
quality markets, and cross-game attention (Bordalo, Gennaioli,
and Shleifer 2013a, 2015; Spitmaan, Chu, and Soltani 2019; Der-
twinkel-Kalt and Köster 2020; Magliocca et al. 2019; Avoyan and
Schotter 2020; Dertwinkel-Kalt and Köster 2020; Cosemans and
Frehen 2021).

Salience theory and stimulus-driven salience (as defined and
applied above) focus on different aspects of salience and their im-
plications. In most applications, the two theories do not make com-
peting predictions, without additional specialized assumptions.
The experiment 1 fruit sets design is an example. SAM salience
predicts visual salience of images, then investigates whether that
special type of salience affects choices. In contrast, salience the-
ory is about salience of valued attributes, regardless of how they
are displayed or described, so it does not have a natural role for
aspects of visual salience that are unrelated to attribute values.

Both theories are simplifications that have advantages and
limits. Salience theory has the advantage of portability to many
familiar microeconomic and social science applications. It bene-
fits from the simplicity that comes from ignoring details of visual
perception. Algorithmic SAM-type salience has the advantage of
predicting rapid stimulus-driven visual attention for all possi-
ble images, but applying the theory to familiar domains such as
price-quality competition is not straightforward (as noted in our
discussion of explainable AI) and will be stimulus-constrained.

VII.B. Rational Inattention

Rational inattention (RI) models assume that people opti-
mally trade off the benefits and costs of paying closer attention.
In more technical terms, endogenously allocated attention creates
a subjective perception of objective factors. More accurate subjec-
tive perception is more costly but also improves expected decision
value.55 These models are goal-directed because there is a clear
goal—better perception is chosen to improve decision value.

RI models often start with a prior belief distribution μ over
a set of states {ω|ω ∈ 	}. In our fruit experiment, each ω is a

55. For more detail, see Sims (2003, 2006); Caplin and Dean (2015); Caplin,
Dean, and Leahy (2019); Caplin et al. (2020); Kőszegi and Matějka (2020); Mack-
owiak et al. (2020).
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possible image. For each image, there is an optimal action a ∈
{L, R} (left or right, depending on which has the higher induced
value). Denote the optimal actions by a∗(ω). There is also a pair
of numbers SL(ω), SR(ω) that are the predicted SAM saliencies in
the L and R halves of an image ω.56

In RI, attention creates a set of latent “signals” γ (ω) from
a mapping π : 	 → �(
) (Caplin and Dean 2015; Caplin, Dean,
and Leahy 2019). In the fruit example, γ (ω) could be the sub-
jective belief probability of image ω after all the learning pro-
cesses. The “rationality” in RI comes from the assumption that
the signal structure is chosen to maximize a gross decision value
minus a cost of attention. The key term in the decision value is
max a∈A

∑
ω∈	γ (ω)u(a, ω). Because the saliencies SL(ω), SR(ω) do

not enter the utility function u(a, ω) and do not provide informa-
tion about the optimal action a∗(ω), an RI agent should ignore
them.57 However, the results from the fruit experiment show that
stimulus-driven salience can interfere with goal-directed RI and
moves decisions away from RI optimality.

VII.C. Dynamic Channeled Inattention and Bayesian Surprise

Some economic models seek to understand the dynamic ef-
fects of limited attention. This is different than our use of pre-
dicted salience to understand static choices.

Schwartzstein (2014) studies a problem of forecasting a bi-
nary variable y that depends on x and a subjectively encoded
variable z. When z is expected to be important enough in forecast-
ing y, with an expected value above a “busyness” threshold b, z is
accurately encoded. Otherwise, z is ignored, and if z is ignored, no
missing value is imputed.

Gagnon-Bartsch, Rabin, and Schwartzstein (2018) proposed
a similar idea of channeled attention during learning in which
people do not always recognize the results of their inattention.
For example, a person who often forgets to take her medicines but
does not have a strong prior belief that she might forget, does not

56. To be clear, the fruits experiment is not an ideal proper test of RI. To do
so would require controlling the set 	 more carefully and assuming, measuring,
or inducing a prior belief that salience and induced value are uncorrelated, which
was not done.

57. It would be useful to figure out precisely how to integrate the effect of
stimulus-driven salience into RI, to explain examples like the fruits experiment.
Li (2020, 81) provides a saliency-sensitive state separation that can explain the
saliency effect in simple choices.
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notice or keep track of her forgetting. She won’t pay for a reminder
technology. They refer to these missed data as “statistical goril-
las” (from the famous attention-blindness experiment of Simons
and Chabris 1999). They derive dynamic conditions under which
statistical gorillas will be noticed or not.

In dynamic image sequences, such as movies, one property
of images that is known (from eye-tracking) to grab attention
strongly is called Bayesian surprise. This concept begins with a
prior belief over “models” in model space M. Itti and Baldi (2009)
used an example in which a person turns on her TV, not knowing
what channel was last watched and will pop up first. M is the set
of possible TV channels. P(D|M) are the likelihoods of perceptual
data D conditional on a model M (a TV channel). For example,
if blonde women are more common on M = {Fox News} than
other channels, then P(blonde women|{Fox News}) > P(blonde
women|M).

“Surprise” for a given (D, M) combination is defined as
S(D, M) ≡ log P(M)

P(M|D) .
58 A person might be greatly surprised, for

example, by seeing a blonde woman on the sports channel ESPN if
P(ESPN) � P(ESPN|blonde woman). The ratio P(ESPN)

P(ESPN|blonde woman)
and its logarithm will then be much greater than one, mea-
suring how surprising that data-model combination is. Expe-
rienced surprise from data D, averaged over model posteriors,
is a measure of overall experienced surprise from perceptual
data D:

∑

M

P(M|D)S(D, M).

Note that Bayesian surprise does not fit into the stimulus-
driven versus goal-directed dichotomy. It depends on a perceiver’s
prior beliefs, so it is not purely stimulus-driven. But surprise
detection is also highly general and is therefore not typically

58. There is a loose relation between the ratio P(M)
P(M|D) and a concept of rep-

resentativeness as relative likelihood P(D|M1)
P(D|M2) (see Tenenbaum and Griffiths 2001

and Bordalo et al. 2016 for stereotypes, where D is a social type and models M
are groups). The surprise ratio for a particular M is a measure of how unrep-
resentative or anomalous D is, and the summation adds up the total degree of
unrepresentativeness of D for all models M.
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considered a perceptual goal like, say, searching for a familiar
face in a crowd or for a high resale value fruit.59

Bayesian surprise is not used in the types of experiments in
this study because the presented images were not deliberately
linked in a dynamic sequence (as in a movie). However, in typ-
ical experiments, prior perceptual beliefs are induced by short
exposures to each of a large number of images, so that what is
surprising in a subsequent image (relative to those priors) can be
quantified. This could easily be done in the fruits experiment. For
example, if many images in a row included no apples, then in a
new image with an apple, the apple would be Bayesian-surprising
and is predicted to be salient and attract attention.

The Bayesian surprise model is well supported experimen-
tally (Itti and Baldi 2009) and has the advantage that some ana-
lytical results are available for the class of conjugate priors (Baldi
and Itti 2010). Potential economic applications include a sequen-
tial visual presentation of price changes in a time series, or testing
for salience from a new advertising campaign, product design, or
logo change.60

VII.D. Relative Attention m(x)

It is useful to have a simple measure of inattention, as re-
vealed by choices, to compare across domains. A good one is
summarized by Gabaix (2019). Define both rational and behav-
ioral actions, as a function of a perceived normative variable x
(such as a price), by ar(x) = argmaxau(a, x) (rational) and ab(x) =
ar(mx) (behavioral). The behavioral model is assumed to maximize
but underperceives or underweights the true variable value x,

59. Pierre Baldi said in a personal communication by email (6/4/2021) that
“Bayesian surprise is agnostic with respect to any bottom-up or top-down consid-
erations.”

60. Note that there is an apparent opposition between ignoring statistical
gorillas in Gagnon-Bartsch, Rabin, and Schwartzstein (2018) and Bayesian sur-
prise. A gorilla on a basketball court is typically very high in Bayesian surprise and
hence predicted to be quite salient; then why don’t people notice the gorilla? The
answer is that scarce attention is focused on one mentally taxing goal—counting
basketball passes (the instructed goal in the seminal study)—so that a Bayesian-
surprising object is ignored. Magic tricks work the same general way: Skillful
“misdirection” draws attention away from the sneaky sleight of hand (Macknik
et al. 2008; Wiseman and Nakano 2016). In economic settings, Bayesian surprise
and other goal-directed attention will be productive substitutes, a hypothesis that
can be tested by phenomena like timing and reaction to unusual corporate earnings
announcements (e.g., DeHaan, Shevlin, and Thornock 2015).
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shrinking it toward zero to a degree measured by a parameter m
< 1. (A canonical example is paying too little attention to a hid-
den component of price, such as taxes, where m < 1 measures the
degree of tax underweighting.) Gabaix (2019) shows that m(x) can
be recovered from the ratio of marginal effects of the x variable
on actions in different attention treatments, ab

x
ar

x
. His table 1 sum-

marizes numerical estimates from several field experiments and
datasets.

A version of m(x) can also be computed from the fruit ex-
periment data based on an ad hoc assumption. Suppose choice
under time pressure is designated as the “behavioral” condition
and choice with unlimited time is designated as the “rational” con-
dition. The intuition is that in the behavioral condition, stimulus-
driven salience is not fully inhibited (even though it is irrelevant),
which reduces the influence of goal-directed attention (m < 1) to
the induced value x variable. From Table I the marginal effect of
the normative variable (the induced value difference) on choice
accuracy is âb

x = 0.795. The value of âr
x can be computed from

the same regression as in Table I, using data from the unlimited
time treatment. That value turns out to be âr

x = 2.249. The ratio
of the behavioral and rational coefficient estimates is therefore
âb

x
âr

x
= 0.795

2.249 , which is 0.35. This figure is close to the mean m(x) =
0.44 reported in Gabaix (2019) table 1. This numerical exercise
shows how the effect of stimulus-driven salience as a behavioral
condition can be compared numerically to other kinds of limited
attention.

VIII. DISCUSSION AND CONCLUSION

Our study leads to two new conclusions:

i. Stimulus-driven salience can be predicted by an underly-
ing neuro-computational theory (SAM) of which features
of an image or information display most people look at
first. SAM-estimated salience has a small but significant
effect in visualized binary set choices (fruit sets) and in
matrix games. These effects are not always strong be-
cause in both cases stimulus-driven attention competes
with goal-directed attention in a way that SAM the algo-
rithm does not attempt to predict.

ii. In the main set of experiments with location matching
games, salience is a good predictor of which location
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people choose, and how often their choices match (r =
−0.45). In hider-seeker games, a salience-influenced cog-
nitive hierarchy model (and a similar level-k model) can
account for the small but robust seeker’s advantage in
hider-seeker games. Parameters fit to hider-seeker data
can also “portably” predict the salience-choice relation in
matching games, even though the hider-seeker game is
strictly competitive and matching is cooperative.

VIII.A. Where Else in Economics Could Salience Be Useful?

Before proceeding to further visual salience speculation, note
that vision is only one of five senses; other sensory systems have
salience structures, too. Auditory (sound) attention is also driven
by both goal-directed and stimulus-driven processes. One can at-
tend to an important conversation to achieve a social goal while
tuning out background noises at a party. But the stimulus-driven
system will hijack attention if a champagne glass shatters with
a loud crash.61 Research parallel to ours could explore auditory
salience in domains like advertising, business communication, se-
curity analyst earnings calls, open-outcry auctions, negotiations,
and so on.

This last section speculates how an empirical understanding
of stimulus-driven salience might improve other economic studies.

• Behavioral IO: The fruits experiment is a paradigm that
invites thinking and future exploration about the supply-
side response to consumer psychology, a subfield called
behavioral industrial organization (Heidhues and Kőszegi
2018, and others). A central concept in behavioral IO is
whether product attributes are “shrouded” (Gabaix and
Laibson 2006)—that is, deliberately hidden by sellers.
Measuring whether attributes are low in stimulus-driven
salience is one scientific measure of shrouding, which is
perhaps useful for consumer policy regulators. By under-
standing stimulus-driven salience, a retailer could cre-
ate a product display with the goal of maximizing profit

61. A general example is the stimulus-driven salience of human screams
(which have an unpleasant power spectrum quality called “roughness”). Screams
are rated more quickly as fear-inducing, are more accurately localized, and acti-
vate the amygdala and primary auditory cortex more strongly (Arnal et al. 2015).
Kaya and Elhilali (2014) proposed an auditory salience map based on five features
(envelope, harmonicity, spectrogram, bandwidth, and modulation) and tested it.
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margin. High-margin items would be displayed to max-
imize their stimulus-driven salience. An open and inter-
esting question is whether consumers can recognize and
ignore such supply-side salience manipulations.

• Tax and price salience in consumer markets: Price and
value components that are presented to sensory systems,
such as explicit price tags that the eye can see, seem to
receive more decision weight than equivalent components
that need to be imagined and computed. This effect was
first shown for unit-cost price tags by Russo (1977) and
has been shown carefully in many recent studies (Ott
and Andrus 2000; Hossain and Morgan 2006; Min Kim
and Kachersky 2006; Finkelstein 2009; Taubinsky and
Rees-Jones 2017). In principle, SAM could be applied to
visual images of store price tags or e-commerce websites,
as was done in the fruit-valuation study 1, to guess the
visual salience of explicit and hidden prices. These mea-
sures could be compared with salience as measured from
behavior in these papers and as summarized in the m(x)
measure in Gabaix’s (2019) table 1.

• Nudges and design: Nudges are changes in design and
choice architecture, which do not drastically change infor-
mation content or incentives, but can make information
processing simpler and improve decisions.62 Many nudge
experiments have been done and are ongoing. But their ef-
fects are often unpredictable (DellaVigna and Linos 2022;
Milkman et al. 2021). Predictions about what nudges
are visually salient might help us understand what has
worked and create better designs. If a financial regulator
is trying to design a form to nudge goal-directed attention
toward particular information, for example, their design
will probably work better if the targeted information also
has stimulus-driven salience (e.g., Hilchey, Osborne, and
Soman 2021).

• Beliefs: Besides influencing choices, visual salience can
influence what information is processed and what be-
liefs result.63 Padilla, Ruginski, and Creem-Regehr (2017)

62. See Goldin (2015); Thaler and Sunstein (2009); and Luo, Soman, and Zhao
(2021).

63. See Padilla et al. (2018); Itti, Koch, and Niebur (1998); and Mackowiak
et al. (2020).
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showed a striking example of an effect of stimulus-
driven salience on beliefs about hurricanes. The National
Hurricane Center currently shows potential geospatial
paths with a cone of uncertainty, a 2-D confidence interval
forecasting a range of areas that a hurricane might con-
ceivably reach. The cone becomes wider, spreading out
geographically, for forecasts projecting more days ahead
(which are typically more uncertain). An alternative visu-
alization is an ensemble plot, which shows many distinct
possible individual paths and does not draw a cone around
them (they are called “spaghetti plots”). Padilla, Rugin-
ski, and Creem-Regehr (2017) apply the Itti, Koch, and
Niebur (1998) algorithm (a precursor to SAM) to these two
different visualizations. The algorithm predicts that cone
plots will focus attention on the center and on the furthest
boundaries of the cone, where the cone is widest. This per-
ception biases actual human judgments of whether the
hurricane will grow in storm size and intensity (e.g., wind
speed) in the future. These subjective beliefs reflect a cog-
nitive mistake: People think the growing size of the cone
predicts that the size of the storms and their intensity will
grow. The ensemble plot has different predicted salience
and a different effect on beliefs. Predicted salience is high-
est at the location where different paths are clustered be-
fore they diverge into different paths. Attention is widely
dispersed over the ending points of the different trajecto-
ries (rather than concentrated at the cone plot boundary).
As a result, judgments about future storm size and inten-
sity are not infected by a size bias (as they are from cone
plots). Thus, the cone plot leads to mistaken beliefs and
the ensemble plot does not. The salience algorithm accu-
rately predicted the direction of that effect. An economic
example of a similar kind is the visualization of regres-
sion discontinuity effects. Korting et al. (2021) show that
axis-scaling, x-axis bin width, and spacing all influence
the perceptions people have about causal effects when
shown different graphs based on the same data. SAM or
other salience algorithms could be applied to these data,
to learn more about how stimulus-driven processes affect
what scientific consumers think a graph is telling them.
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Judd, Tilke, Krista Ehinger, Frédo Durand, and Antonio Torralba, “Learning to
Predict Where Humans Look,” in 2009 IEEE 12th International Conference
on Computer Vision (IEEE, 2009) 2106–2113.

Kaya, Emine Merve, and Mounya Elhilali, “Investigating Bottom-Up Auditory
Attention,” Frontiers in Human Neuroscience, 8 (2014), 327.

Kneeland, Terri, “Identifying Higher-Order Rationality,” Econometrica, 83 (2015),
2065–2079.

Korting, Christina, Carl Lieberman, Jordan Matsudaira, Zhuan Pei, and Yi Shen,
“Visual Inference and Graphical Representation in Regression Discontinuity
Designs,” IZA Discussion Paper No. 14923, 2021.
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