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W e consider the anesthesiologist staff planning problem for operating services departments in large multi-specialty
hospitals without limit on anesthesiologist supply, where the planner makes monthly and daily decisions to mini-

mize total costs. Each month the staff planner decides the number of anesthesiologists on regular duty and an on-call con-
sideration list for each day of the following month. In addition, each day, the staff planner decides how many on-call
anesthesiologists to call for the following day. Total costs consist of explicit and implicit costs. Explicit costs include the
costs of calling an anesthesiologist and overtime costs. These costs are specified by the organization. Implicit costs encom-
pass costs of not calling an on-call anesthesiologist and under-utilizing an anesthesiologist, and these have to be deduced
from past decisions. We model the staff planning problem as a two-stage integer stochastic dynamic program. We
develop structural properties of this model and use them in a sample average approximation algorithm constructed to
solve this problem. We also develop a procedure to estimate the implicit costs, which are included in this model. Using
data from the operating services department at the UCLA Ronald Reagan Medical Center, our model shows the potential
to reduce overall costs by 16%. We provide managerial insights related to the relative scale of these costs, hiring decisions
by service, sensitivity to cost parameters, and improvements in the prediction of the booked time durations.
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1. Introduction

Healthcare expenditures in the United States are
expected to rise to 20% of GDP by 2027 (Sisko et al.
2019). Evidence suggests that a significant portion of
this expenditure is wasted because of operational
inefficiencies at healthcare sites such as hospitals,
which constitute around 32% of healthcare expendi-
tures in the United States (Smith et al. 2012). In hospi-
tals, the total labor expenditure can exceed 50% of
operating costs and may be up to 90% of variable
costs (Healthcare Insights 2014). Thus, efficient
deployment of labor becomes one of the primary
methods of cost control at hospitals.
There are several challenges in managing labor at a

hospital. First, there is uncertainty in the demand for
services. Second, the skill set of staff is often special-
ized and not easily substitutable. Finally, because of
the characteristics of health services, tactics such as
production smoothing cannot be employed effec-
tively. Hospitals make efficient use of labor through
staffing that can be made flexible in volume by calling
additional employees, use of floating resources, and

overtime (Kesavan et al. 2014). Such volume flexibil-
ity can help reduce costs at hospitals by reacting to
changes as information about the future workload
become available (Bard and Purnomo 2005). Volume
flexibility in hospitals has been used in staff planning
for nurses and physicians (Brunner et al. 2009).
Overtime is a key feature in achieving volume flexi-

bility. However, some researchers associate excessive
overtime of clinical staff with lower patient safety
(Rogers et al. 2004), higher employee burnout (Stimpfel
et al. 2012), and deteriorating employee health
(Trinkoff et al. 2006). Thus, to reduce reliance on over-
time, staff planners often use additional employees
who can be called on short notice. The use of this con-
tingency labor supply reduces the number of over-
time hours. However, depending on the staffing
policy, this may give rise to additional administrative
costs. These consist of both explicit and implicit costs.
Explicit costs represent the actual monetary payment
made and recorded for an activity. Such costs could
include overtime compensation and extra payments
made to staff who report for work on short notice. In
contrast, an implicit cost is not recorded but instead
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implied. Implicit costs could include the opportunity
cost to the organization associated with staff idle time
and the inconvenience to employees whose schedules
change on short notice.
Traditionally, staff planning at hospitals has been a

manual process. While evidence suggests that the use
of analytic, data-driven, model-based systems would
be beneficial from a cost perspective (Healthcare
Insights 2014), implementing such systems for labor
scheduling has been challenging. Some staff planning
systems have not been successful at large retail orga-
nizations like Starbucks (Kantor 2015). The principal
challenge in implementing model-based staff plan-
ning systems is minimizing overall costs by incorpo-
rating the explicit and implicit human costs of the
employees. Not incorporating all the human costs
would likely lead to failure in acceptance and imple-
mentation of these systems (Bernstein et al. 2014).
In this study, we provide an approach to estimate

the implicit costs in staff planning. Subsequently, we
use explicit and implicit costs in an optimization
model for anesthesiologist staff planning at the UCLA
Ronald Reagan Medical Center (RRMC).

1.1. Problem Description
The UCLA RRMC is a large multi-specialty hospital
that consistently ranks among the best five hospitals
in the United States (http://health.usnews.com/health-
care/best-hospitals/articles/best-hospitals-honor-roll-
and-overview). The operating services department of
the UCLA RRMC is responsible for staffing physician
anesthesiologists to surgical services at the hospital.
The focus of our work is the staff planning of physi-
cian anesthesiologists at this department of the UCLA
RRMC.
The operating services department manages the

surgery suite at the UCLA RRMC. Surgeons across all
services in this hospital perform around 27,000 sur-
geries annually across 2700 unique surgery types. The
UCLA RRMC classifies the anesthesia required for
these surgeries into four services: Cardiothoracic,
General, Neuro, and Pediatric. The staff planning for
anesthesiologists consists of two stages: monthly and
daily decisions. We give details of these decisions
below.

• Monthly decisions: By the 20th of each month,
depending on the teaching and vacation com-
mitments of anesthesiologists, the staff planner
knows the availability of anesthesiologists for
each day of the upcoming month. Once anes-
thesiologists have provided their availability,
they can be scheduled across all these days.
Based on this availability and the historical
data of surgical workload, the planner prepares
the staffing plan for each service for each day

of the following month. This plan consists of
dividing the anesthesiologists available each
day of the following month into two groups:
those who would be available on regular duty
and those on a reserve list, called the on-call
consideration list. Anesthesiologists on the on-
call consideration list are informed the day
before the surgery if their services are required
the next day. In this case, they are paid an
additional $1000 for the entire day. However, if
they are not needed, they are not paid this
additional amount. Thus, being on the on-call
consideration list and not being called is not
desirable for the employees. The planner man-
ages the number of employees on the on-call
consideration list so that this does not occur
frequently.

• Daily decisions: The day before the surgery, the
planner schedules the total number of elective
procedures to be performed the next day and
finalizes the anesthesiologists’ booked hours.
Based on this information, a certain number of
anesthesiologists of each service from the on-
call consideration list are informed that they
would be working the next day. The number
of anesthesiologists actually called and the
number of anesthesiologists on regular duty
determines the total available work hours.
When the actual surgical hours are realized,
the costs of overtime or idle time are realized.

The staff planner has to balance four costs when
making the monthly and daily decisions involved in
the staffing plan. These include:

1. The explicit cost of calling anesthesiologists
from the on-call consideration list. This is the
additional payment made to the anesthesiolo-
gists for coming on short notice. At the UCLA
RRMC, this was $1000 per day.

2. The implicit cost of having anesthesiologists on
the on-call consideration list but not calling
them. This is the inconvenience cost of keeping
an anesthesiologist on hold for a day and not
compensating him or her. Anesthesiologists on
the on-call consideration list have to alter their
schedule outside work such that they have to
stay within an acceptable distance from the
hospital. Therefore, there is an inconvenience
in being placed on the on-call list (Olmstead
et al. 2014). At UCLA RRMC, the physicians
are only compensated if they are called. There-
fore, the inconvenience cost of being on the on-
call list is implicit.

However, physicians expect that sometimes
they might be placed on-call and not get called.
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Therefore, we assume that being on-call but
not getting called has a cost only after a
threshold.

3. On the day of the surgery, each anesthesiolo-
gist on regular duty works an eight-hour shift.
If a surgery in progress is incomplete at the
end of the shift, there are no hand-offs, and the
anesthesiologist continues to accrue overtime.
At the UCLA RRMC, such overtime is compen-
sated at $180 per hour.

4. If the total number of work hours of available
anesthesiologists is greater than the total real-
ized hours of surgery, there will be idle time.
The operating services department seeks to
keep idle time low, and thus, there is an
implicit cost of idle time.

In Table 1, we present the summary statistics of the
number of anesthesiologists on regular duty, those on
the on-call consideration list, and those who actually
get called. This table shows that, on average, 17.48
anesthesiologists work on regular duty; 6.89 are on the
on-call list, out of which 2.77 are called. Furthermore,
there is considerable variation in staffing levels across
services. This is primarily because of the demand
characteristics of the services. General anesthesia ser-
vices require a greater proportion of on-call anesthesi-
ologists than other services. This is because the
coefficient of variation of daily demand for general
anesthesia services is larger than that of other services.
In 2014, the UCLA RRMC instituted an electronic

health system (http://careconnect.uclahealth.org/
about-careconnect). The management at the operat-
ing services department was keen on using the data
from this system to develop an analytical model-
based approach to staff planning that incorporated
all the relevant costs. Implementing such an

analytical model to address staff planning could pose
similar challenges, as described in Kantor (2015), and
Bernstein et al. (2014) if UCLA RRMC does not incor-
porate implicit human costs of staffing. Therefore, we
take a two-part approach to staff planning at this
hospital. In the first part, we model the staff planning
as a two-stage integer stochastic dynamic program.
The first stage captures the monthly decisions, while
the second stage includes the daily decisions
involved in staff planning. We then develop an algo-
rithm to solve this model to provide the monthly and
daily anesthesiologist staffing plan across each ser-
vice for given cost parameters. In the second part, we
develop a procedure to estimate the implicit costs.
These include the inconvenience costs of scheduling
anesthesiologists on the on-call consideration list but
not calling them and the implicit cost of idle time.
Subsequently, we use these estimated costs to dem-
onstrate the total cost savings from using the optimi-
zation model.

1.2. Literature Review
The staff planning problem we consider in this study
is related to three streams of literature. The first is in
staff planning for services, particularly for operating
rooms. The second stream is based on two-stage sto-
chastic dynamic programming models. The third is
associated with the estimation of operational
parameters.
Several papers model the stages of staff planning at

service organizations as a dynamic optimization
problem. Wild and Schneewei (1993) provide a model
for staff planning for the long term, medium term,
and short term when volume flexibility is available in
the form of contingent workers. Pinker and Larson
(2003) provide a model for flexible workforce man-
agement in environments with uncertainty in the
demand for labor. In the context of staff planning at
hospitals, Dexter et al. (2005) provide a framework
for tactical decision-making when allocating operat-
ing room time approximately one year in advance.
The decisions that are a part of this time frame
include hiring additional staff and building new oper-
ating rooms. Slaugh et al. (2018) provide results
around managing on-call pool of nursing staff to pro-
vide last minute staffing for nurse absences. He et al.
(2012) analyze decision-making for nurse staffing as
more information becomes available about the work-
load on the day of the surgery. Through numerical
analysis, they identify that deferring staffing deci-
sions until the time procedure type information is
available could help hospitals save up to 49% of staff-
ing costs. While hospitals would like to defer staffing
decisions as late as possible, this often leaves staff
without final schedules until shortly before the day of
the surgery. This uncertainty in schedules is not

Table 1 Summary Statistics for Historical Anesthesiologist Planning
by Service

Service Staff type Average Max Min SD

Cardiothoracic Regular 4.93 10 0 1.63
On-call consideration 1.18 6 0 1.04
On-call actually called 0.45 5 0 0.74

General Regular 8.65 16 0 2.58
On-call consideration 4.61 7 0 1.76
On-call actually called 1.85 10 0 1.85

Neuro Regular 2.72 6 0 0.85
On-call consideration 0.72 4 0 0.77
On-call actually called 0.30 3 0 0.56

Pediatric Regular 1.69 6 0 0.76
On-call consideration 0.53 4 0 0.73
On-call actually called 0.24 4 0 0.47

Total Regular 17.48 26 0 3.12
On-call consideration 6.89 11 0 2.07
On-call actually called 2.77 9 0 1.32
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desirable from a staff perspective. Thus, the UCLA
RRMC, like several other service organizations, miti-
gates this problem by using a base level of staff who
know they will be required on a given day and a
reserve (on-call) list. Anesthesiologists on the on-call
list will know if they need to come in only the previ-
ous day. McIntosh et al. (2006) state that this refine-
ment of service-specific staffing, months before the
day of the surgery, has a high degree of influence on
staff satisfaction at hospitals. Xie and Zenios (2015)
analyze the nursing staff planning problem within a
time frame of a few months and propose a dynamic
staffing policy, with adjustments to staffing levels as
information on different types of surgeries arrives
sequentially. They find that a threshold policy (analo-
gous to a base stock policy) is optimal.
The staff planning problem at the UCLA RRMC is a

two-stage integer stochastic dynamic program. When
we remove the integrality requirement, this problem
reduces to a two-stage stochastic dynamic program.
Such problems have been extensively studied (Birge
1985). When applied in the retail context, this is
known as a two-stage newsvendor problem. Gurnani
and Tang (1999) characterize the optimal solution to
this problem at a retailer that has two instances to
order a seasonal product. Fisher et al. (2001) propose
a heuristic solution to solve the two-stage newsven-
dor problem in an application at a catalog retailer.
Recently, such two-stage models have also been used
in agro-business (Bansal and Nagarajan 2017). In con-
trast, integrality requirements in our problem are
essential because we consider staff planning and, as
shown in Table 1, the average number of anesthesiol-
ogists deployed in each service on a given day is
small. Recent theoretical work on integer stochastic
dynamic programs includes Kong et al. (2013) and
Sun et al. (2015). Easton (2014) considers a two-stage
problem to manage workforce allocation by incorpo-
rating the joint variability of attendance and demand.
Kim and Mehrotra (2015) consider a two-stage nurse
staffing and scheduling problem. In the first stage,
they find the initial staffing levels and schedules, and
in the second stage, they adjust staffing levels after
demand is observed. To solve this problem, they
employ a two-stage stochastic integer program. Their
modeling approach differs from our work in two key
aspects. First, they assume no uncertainty in the sec-
ond stage, so staffing adjustments are made in this
period under known demand. Second, the feasible set
of second-stage staffing patterns is constant and does
not depend on the first-stage decision. In contrast, our
application context required that we consider uncer-
tainty in both stages, and the second-stage problem
depends on the first-stage decision. These aspects sig-
nificantly complicate the solution method. In addi-
tion, in their numerical analysis, they assume that the

cost of idle time was zero. This was an important
parameter in our setting, and we apply a data-driven
approach to estimate the idle time cost of the
anesthesiologists.
Literature related to dynamic optimization-based

staff planning assumes that all the appropriate costs
are known. As we described before, this is often not
the case since there are several implicit costs in staff
planning. Dexter and O’Neill (2001) discuss the
importance of implicit costs in creating a staffing plan
for anesthesiologists. Therefore, for an optimization
model to be useful, these implicit costs must be esti-
mated and included. In the econometric literature,
Rust (1987) and Aguirregabiria (1999) discuss struc-
tural estimation of the costs involved in dynamic
problems.
In the operations management literature, Allon et al.

(2011) use a structural estimation approach to estimate
the impact of waiting time performance on market
share in the fast-food industry. Deshpande and Arikan
(2012) estimate how airline schedules affect flight
delays. Structural estimation of operational parameters
has also been used in the call center industry by Aksin
et al. (2017) to estimate customer preferences. In terms
of the application context, our paper is closest to Oli-
vares et al. (2008), who model the operating room time
allocation problem as a newsvendor problem. They
then employ a structural estimation approach to assess
the relative costs of idle time and overtime for operat-
ing rooms. However, all these papers use the estimates
created from structural estimation primarily for
descriptive purposes, and they are not linked with an
optimization model. This link is of significant impor-
tance in our application context. Furthermore, struc-
tural estimation assumes that the decision-maker
makes optimal decisions and therefore does not cap-
ture the errors made by the decision-maker in the deci-
sion process. To overcome this, in our estimation
procedure, we use an approach similar to Su (2008) ho
assume that the decision-maker is bounded rational.
This implies that decision-makers are not perfect opti-
mizers and make errors resulting from both insufficient
information and cognitive limitations.

1.3. Contributions and Managerial Insights
Our paper makes the following contributions. First,
we develop a two-stage integer stochastic dynamic
programming model for medium- and short-term
planning for anesthesiologists while incorporating
implicit costs, demand uncertainty, and multiple ser-
vices. To the best of our knowledge, this is the first
paper to consider this approach in the healthcare
industry. Second, this study develops a procedure to
estimate implicit cost parameters used in the model.
This provides a framework for creating staff planning
models that overcome the shortcomings of dynamic
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optimization models in situations where some cost
parameters may be implicit, as is often the case in ser-
vice organizations. Third, we provide structural
results and develop a general method for solving
two-stage integer stochastic dynamic programs,
which can also be used in other applications. Fourth,
we test our model with real data at the operating ser-
vices department at the UCLA RRMC and demon-
strate cost savings from such an estimation and
optimization approach.
We draw several managerial insights from this

work. These include:

1. The implicit cost of not calling an anesthesiolo-
gist on the call list is significantly more expen-
sive than actually calling the anesthesiologist.

2. The implicit costs of idle time are substantially
higher than the costs of overtime. This suggests
that it is important to have a data-based under-
standing of implicit costs to make effective
staff planning decisions.

3. It may be efficient to have more anesthesiolo-
gists on the on-call consideration list, as long
as we carefully choose the days that require an
on-call list.

4. A good understanding of demand variability
and differences in costs can reduce overall
staffing costs across specialties.

The remainder of the study is organized as fol-
lows. In section 2, we provide the formulation of the
model and describe the variables, parameters, objec-
tives, and constraints. We also provide the structural
properties of the model and describe its solution
method. In section 3, we describe the data and meth-
odology for the estimation of demand for anesthesia
services based on historical data. In section 4, we
present the procedure to estimate the implicit cost
parameters. In section 5, we describe the results of
the computational analysis. In section 6, we summa-
rize our work, provide managerial insights, describe
the limitations of our study, and suggest future
research directions.

2. Model

We start by presenting a model formulation of the
staff planning problem. To provide a precise defini-
tion of the model, let S be the set of services {Cardio-
thoracic, General, Neuro, Pediatric}, and let T be the set
of days in a given month. We define the following
variables, which are optimized:

xst: Number of anesthesiologists of service s∈ S
placed on regular duty on day t∈T.

yst: Number of anesthesiologists of service s∈ S
placed on the on-call consideration list on day t∈T.
zst: Number of anesthesiologists of service s∈ S called
from the on-call list for day t∈T.

Next, we define the following parameters or inputs:

nst: The number of anesthesiologists of service s
available for day t∈T.
h: The regular hours of work done per day by an
anesthesiologist (hours).
co: Overtime cost of anesthesiologists ($/hour).
cu: Idle time cost of anesthesiologists ($/hour).
cq: Cost of calling an anesthesiologist from the on-

call list ($/day).
c0q: Cost of keeping an anesthesiologist on the on-call

list but not calling ($/day).
τ: Threshold parameter (anesthesiologist per day).
Bst: The distribution of anesthesia hours booked for
service s∈S for day t.
~Bst: Realization of Bst.
Dst: The distribution of anesthesia hours used for
service s∈S at the end of day t
~Dst: Realization of Dst.
fðDstjBstÞ, FðDstjBstÞ: the marginal density and distri-
bution of Dst given Bst respectively.

Furthermore, for conciseness, let:

aþ ¼ maxð0, aÞ.
dae ¼ minfn∈jn ≥ ag.
bac ¼ maxfn∈jn ≤ ag.
c ¼ ðco, cu, cq, c0qÞ.

The staff planning model is a two-stage, integer sto-
chastic dynamic program. The first stage consists of
the Monthly Staff Planning Problem (MSPP), which
determines the number of anesthesiologists on regu-
lar duty and the on-call list for each day of the given
month across each service. The second stage consists
of the Daily Staffing Planning Problem for service s in
time period t (DSPPst). This determines how many
anesthesiologists to call from the on-call list for ser-
vice s for day t. We next describe each of these prob-
lems in detail.
In the MSPP, the planner makes staffing decisions

before the beginning of the given month. Thus, at this
point, the planners are only aware of the historical dis-
tribution of Bst and the total number of anesthesiolo-
gists available for each day of this month (nst). For each
service on each day of the upcoming month, the plan-
ners decide the number of anesthesiologists who
should be present for regular duty (xst) and the number
of anesthesiologists who should be a part of the on-call
consideration list (yst). TheMSPP is formulated as:
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ðMSPPÞ Vðn, cÞ
¼ min ∑

s∈S,t∈T
fEBst

½Wstðxst, yst;c, Bst, nstÞ�g, (1)

xst þ yst ≤ nst 8s∈ S, t∈T, (2)

xst, yst ∈þ
0 8s∈S, t∈T: (3)

The objective (1) represents the total expected
monthly costs. This is the sum of expectation of
Wstðxst, yst; c, Bst, nstÞ over Bst, where the total expec-

tation of the future cost is carried over to the begin-
ning of the horizon when the decision is made.
Here, Wstðxst, yst; c, Bst, nstÞ represents the cost of ser-

vice s on day t and depends on the decisions xst and
yst, cost parameters c, the number of available anes-

thesiologists nst, and the booked time Bst. The exact
form of Wstðxst, yst; c, Bst, nstÞ will be defined in the

DSPPst. Constraint (2) enforces the total allocation of
anesthesiologists for each service, and each time
period cannot be greater than the total availability
of anesthesiologists on that day and for that service.
Constraint (3) ensures that the decision variables are
non-negative integers.
Next, we describe the second-stage problem,

DSPPst, which considers the daily decision of call-
ing in additional anesthesiologists from the on-
call consideration list to support the surgical
schedule for the next day. At this point, the plan-
ner is aware of the total booked hours of surger-
ies for each service (Bst). Using this information
and knowledge of the conditional distribution of
the actual realization of surgery duration
( f ½DstjBst�), the planner decides to call in a certain
number of additional anesthesiologists from the
on-call consideration list (zst). Each of these anes-
thesiologists will be paid an additional amount
(cq). On the day of surgery, the actual surgical

duration of each surgery is realized, which deter-
mines the total workload for each service (Dst).
Depending on the total available labor hours of
each service (hðxst þ ystÞ), the overtime and idle

time costs will be realized. The DSPPst is formu-
lated as:

DSPPst

Wðxst, yst; c, Bst, nstÞ ¼ min
n

cqzst þ c0qðyst � zst � τÞþ
h i

þ EDstjBst
co ~Dst � h xst þ zstð Þ� �þh

þ cu h xst þ zstð Þ � ~Dst

� �þio
, (4)

zst ≤ yst, (5)

zst ∈þ
0 : (6)

The objective (4) of the DSPPst consists of four
terms. The first term, cqzst, is the cost of extra pay-

ments made to the anesthesiologists who are called
from the on-call consideration list. The second term,

c0qðyst � zst � τÞþ, is the inconvenience cost of not call-

ing anesthesiologists from the on-call consideration
list. As we described in section 1.1, these costs are
incurred only if the total number of anesthesiologists
not called from the on-call list ðyst � zstÞ is greater than
threshold τ. The third term coð~Dst � hðxst þ zstÞÞþ is the
overtime pay when the demand realized is greater
than the total workload available for service s. The

fourth term, cuðhðxst þ zstÞ � ~DstÞþ is the cost of idle
time when the demand falls short of total avail-
able work hours. For these costs, the expectation is
taken over the conditional distribution of Dst. Note
that the third and fourth terms together are the
expected costs of the day of surgery and are simi-
lar to the well-known newsvendor cost (Nahmias
and Cheng 2009). Constraint (5) restricts the addi-
tional number of anesthesiologists who can be
called to those who are on the on-call consider-
ation list, which is set in the first stage. Constraint
(6) restricts the decision variable zst to be a posi-
tive integer.
It is important to note that the staff planning model

(consisting of the MSPP and the DSPPst) is an aggre-
gate planning model over a monthly horizon. Thus,
we consider overtime from an aggregate perspective
and ignore the bin-packing problem of scheduling
surgeries and the problem of assigning anesthesiolo-
gists to individual surgeries. Olivares et al. (2008) and
He et al. (2012) used similar approaches in aggregat-
ing workload by services in an operating room con-
text. In addition, we assume overtime costs are
computed on a daily basis when the workload
exceeds 8 hours in a day. This was the case in our
application and was also consistent with California
law (https://www.shrm.org/ResourcesAndTools/
tools-and-samples/how-to-guides/Pages/californiaho
wtocalculatedailyandweeklyovertimeincalifornia.aspx).
Alternatively, even in states where daily overtime is
not mandated by state law, daily overtime for phy-
sicians is often covered by employment contracts,
and individual anesthesia group practices may have
contracts that cover daily overtime costs (Dexter
and O’Neill 2001). Furthermore, computing over-
time on a daily basis is common in the literature
(Dexter et al. 1999, Dexter and Traub 2002, Olivares
et al. 2008). However, our approach is general and
can be easily extended to other settings. For exam-
ple, if overtime is calculated on a weekly basis
when the weekly workload exceeds 40 hours, we
would solve the second-stage problem for a week
instead of a day.
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Finally, we assume that the available pool of anesthe-
siologists is so large that individuals can reliably set up
appointments far in advance and confidently know that
there will be enough total people available that those
appointments can be made. In addition, we assume that
there are a large number of anesthesiologists who are
willing to be available on-call and paid only if needed.
These assumptions seem reasonable in our setting,
where we consider a hospital in a large urban environ-
ment. This is analogous to models to even workload on
surgical wards by adjusting the master surgical sched-
ule. Such models generally assume an unlimited num-
ber of hospital beds (Fügener et al. 2016). However, if
we need to configure our model to a finite number of
anesthesiologists, we would appropriately reduce the
value of the parameter nst representing the number of
anesthesiologists available for service s on day t. This, in
turn, would require adjustment of the higher-level block
schedule specifying the number of surgeries that can be
performed for each specialty on a given day.

2.1. Structural Properties
In this section, we derive structural properties of the
model that can be used to develop its solution
method. Let UðzstÞ denote the objective function of the
DSPPst, where UðzstÞ is given as:

UðzstÞ ¼ cqzst þ c0qðyst � zst � τÞþ
h in

þEDstjBst
cu ~Dst � h xst þ zstð Þ� �þh

þ co h xst þ zstð Þ � ~Dst

� �þio
: (7)

The first proposition provides the optimal solution
for the daily staff planning problem (DSPPst).

PROPOSITION 1. If the distribution of DstjBst is stochasti-
cally increasing in Bst, then the optimal solution for
DSPPst is given by z�stðxst, yst;BstÞ:

z�stðxst, yst; BstÞ ¼
dẑste if U dẑsteð Þ ≤ U bẑstcð Þ
bẑstc otherwise,

�
(8)

where,

where, κðcÞ ¼ cohþc0q�cq
hðcuþcoÞ and κ1ðcÞ ¼ c0h�cq

hðcuþcoÞ.

All proofs are provided in the Electronic Com-
panion (EC.1). We describe the expressions for
threshold values for the lognormal distribution
(used to fit the data in the demand estimation
procedure in section 3.2) in the proof of Proposi-
tion 1. This proposition implies that the number
of anesthesiologists who should be called from
the on-call list can be described as a threshold
policy depending on the booked time information
~Bst that is available the day before surgery. If the

booked time is below BL
stðxst, κðcÞÞ, then the num-

ber of anesthesiologists available on regular duty
(xst) would be sufficient. If the booked time is

above BU
stðxstÞ, then all the anesthesiologists on

the on-call consideration list would be required.

For intermediate values of ~Bst, the proposition
above provides for the optimal number of anes-
thesiologists who should be called from the on-
call list.

Let WLPðxst, yst; c, Bst, nstÞ be the linear program-

ming relaxation of DSPPst with the integrality con-
straint (6) relaxed. Then we define theMSPP0 as:

ðMSPP0Þ V 0ðn, cÞ
¼ min ∑

s∈S,t∈T
EBbfst

WLP
st ðxst, yst;c, Bst, nstÞ

� �n o
, (10)

subject to,

ð2Þ, ð3Þ (11)

Since WLPðxst, yst; c, Bst, nstÞ ≤ Wðxst, yst; c, Bst, nstÞ,
V 0ðn, cÞ ≤ Vðn, cÞ. Thus, the MSPP0 is a lower bound
to the MSPP. The next proposition provides a prop-
erty of MSPP0 that will be used in constructing its
solution method.

PROPOSITION 2. The MSPP0 is discretely convex in
ðxst, ystÞ.

ẑst ¼

0 if Bst ≤ BL
stðxst, κðcÞÞ

1

h
F�1
DstjBst

cohþ c0q � cq

hðcu þ coÞ

" #
� xst if BL

stðxst, κðcÞÞ ≤ Bst ≤ BU
st ðxst, yst � τ, κðcÞÞ

yst � τ if BU
st ðxst, yst � τ, κðcÞÞ<Bst ≤ BL

stðxst, κ1ðcÞÞ,
1

h
F�1
DstjBst

coh� cq
hðcu þ coÞ

� �
� xst if BL

stðxst, κ1ðcÞÞ ≤ Bst ≤ BU
st ðxst, yst � τ, κ1ðcÞÞ

yst if Bst >BU
st ðxst, yst � τ, κ1ðcÞÞ,

8>>>>>>>>>>>><
>>>>>>>>>>>>:

(9)
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2.2. Solution Method
Next, we utilize Propositions 1 and 2 to develop a
computationally tractable algorithm to solve the
MSPP. First, we solve the integer convex program
MSPP0. To do so, we approximate the expectation in
MSPP0 by its sample average approximation (SAA)
as:

V 0ðn, cÞ≈ V̂
0ðn, cÞ

¼ min
1

M
∑
M

m¼1

∑
s∈S,t∈T

WLP
st ðxst, yst;c, bmst , nstÞ

" #
(12)

subject to,

ð2Þ, ð3Þ: (13)

As shown in Proposition 2, WLPðxst, yst; c, bmst , nstÞ is a

discretely convex function. Therefore, the sample

average approximation V̂
0ðn, cÞ is also a discretely

convex problem. We solve V̂
0ðn, cÞ by first solving its

integer relaxation, employing the subgradient method
for constrained problems (Boyd and Vandenberghe
2004). As ẑst ¼ 0 is always a feasible solution to

WLPðxst, yst; c, bmst , nstÞ, there will always be a solution

to WLPðxst, yst; c, bmst , nstÞ for every feasible ðxst, ystÞ at

each iteration of the subgradient method. Further-
more, we stop the subgradient method when the cur-
rent solution does not improve the previous best
solution by a pre-specified tolerance. Let this current
solution be ðx�st, y�stÞ with a corresponding objective

value of ð1=MÞ∑M
m¼1∑s∈S;t∈TW

LPðx�st, y�st; c, bmst , nstÞ. This
value is a lower bound to the MSPP. Then, we find
the best nearest feasible integer solution ðx̂st, ŷstÞ,
and its corresponding objective value ð1=MÞ∑M

m¼1

∑s∈S;t∈TWðx̂st, ŷst; c, bmst , nstÞ. This provides a heuristic

solution to the MSPP.
Define ĝðx̂st, ŷstÞ, an estimate of the integrality gap

at ðx̂, ŷstÞ, as:

ĝðx̂st, ŷstÞ ¼
1

M
∑
M

m¼1

∑
s∈S,t∈T

Wðx̂st, ŷst; c, bmst , nstÞ

� 1

M
∑
M

m¼1

∑
s∈S, t∈T

WLPðx�st, y�st; c, bmst , nstÞ:

(14)

The above equation defines the integrality gap as
the difference between the cost of the nearest feasi-
ble integer solution from its optimal continuous
solution, averaged across M realizations of anesthe-
sia hours by service and day. Below, we formalize
the heuristic algorithm based on SAA to solve the
MSPP.
It is apparent from the above algorithm that the

MSPP is decomposable by both service and days.
Thus, we could potentially solve this problem by
more direct methods, such as complete enumeration
of the first-stage variables. However, as discussed in
the literature, these complete enumeration methods
for two-stage stochastic integer programs could be
computationally challenging (Schultz et al. 1998). To
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test this approach in our context, we decomposed the
problems by service and found that solving this prob-
lem across the four services for a given day took about
an hour, and for the whole month, it took about
98 hours or more than 4 days. This seemed computa-
tionally intensive from a practical standpoint. Fur-
thermore, the analysis in sections 5.2 through 5.5
required solving several instances of the MSPP. Thus,
such complete enumeration-based methods preclude
these types of analysis, which were important from a
practical standpoint. In contrast, our algorithm
described above, where ε = 0.05 and M = 500, solved
the entire problem in less than 10 minutes in all the
considered test problem instances and was within 2%
of the costs of the solution obtained by the
enumeration-based approach. We provide more
details in the Electronic Companion (EC.3). Therefore,
it seemed reasonable to employ our solution method
to solve this problem and conduct the associated
analysis.
Finally, it is important to note that the value of the

solution using this method would naturally depend
on the reliability of the cost parameters cq, c0q, co, cu.
While cq and co are known, as these are actual dollar

payments, the hospital makes to the anesthesiologists,
c0q and cu are implicit. Therefore, we develop an esti-

mation procedure to determine these costs. This pro-
cedure first requires estimating the demand
distributions for each anesthesia service. Thus, in the
next section, we describe our methodology to specify
and estimate these distributions.

3. Estimation of Demand Distributions

Estimation of demand distribution for anesthesia ser-
vices consists of two stages. First, we estimate the dis-
tribution for the booked hours for service s and day t

(BstÞ. The realization ~Bst of the distribution are the
booked hours and is known the day before t. To incor-
porate add-ons and cancellations that may incur after
the booked hours are determined and before the end
of day t, we estimate DstjBst. This represents the distri-
bution of daily anesthesia hours used for service s at
the end of day t, conditional on the distribution of
booked hours Bst.

3.1. Estimating Distribution of Booked Hours (Bst)
Surgery requests start coming in sequentially
about six months before the day of surgery. Sub-
sequently, requests for cancellations and add-on
cases keep coming in until one day before the
day of surgery. While these advance bookings
might be informative about the actual realization
of Bst, other hospital departments do not pass on
the information to the operating services

department, as it is subject to change. Only the
final booked hours for each department are sent
by admissions to operating services the day
before the scheduled surgeries. This implies that
no advance information from early bookings is
available when the MSPP is being solved. The
information available is restricted to the day of
the week, the month, and whether an upcoming
day is a holiday. Therefore, we use only these
variables to estimate the distribution of Bst. We
plot the empirical distribution of the booked
hours for each of the services (Bst) in the Elec-
tronic Companion (Figure EC.1).
From Figure EC.1, we can see that for Cardiotho-

racic, Neuro, and Pediatric anesthesia services,
there is a concentration of data at zero. This is
because these services are specialized, and they are
not performed every day of the week. Meanwhile,
general anesthesia service is performed almost
every day, and we do not see such a concentration
of data at zero. Therefore, we used a separate pro-
cedure to estimate the anesthesia required for spe-
cialized and general surgeries. We refer to these as
specialized services and general services. Next, we
describe the procedure to estimate the demand for
these services.

Estimation of Bst for Specialized Services. We use
a two-step estimation method to estimate the distribu-
tion of booked anesthesia hours for services such as
Cardiothoracic, Neuro, and Pediatric surgeries. Duan
et al. (1983) and Min and Agresti (2002) provide a
more detailed description. Here, in the first step, the
dependent variable is a binary outcome variable with
Bst ¼ 0, indicating there is no demand for service s on
day t. Conditional on this first-stage binary variable
being false (i.e., Bst > 0), we then estimate the magni-
tude of Bst.
More specifically, in the first step, the binary out-

come variable Bst is modeled by logistic regression.
The specification of this logistic regression is:

logit½PðBstÞ ¼ 0� ¼ αs;0 þ αs;1 �Day of Weekt

þ αs2 �Montht þ αs3 �Holidayt:

(15)

This can be written concisely as:

logit½PðBstÞ ¼ 0� ¼ α0
sht: (16)

In the second part of the estimation procedure, we
estimate the distribution of the magnitude of Bst,
conditional on it being positive. Although the empir-
ical distribution was the best fit, we elected to use a
lognormal specification of the magnitude of Bst to
effectively model conditional distributions. In
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addition, the lognormal distribution was a better fit
in comparison to other distributions such as the
Weibull. Duan et al. (1983), May et al. (2000), and
He et al. (2012) used a lognormal distribution for
surgical services demand. This specification is:

logðBstjBst > 0Þ ¼ βs0 �Day of Weekþ βs1 �Month

þ βs2 �Holidayþ εst (17)

We simplify the above as:

logðBstjBst > 0Þ ¼ β0sht þ εst, (18)

where εst ∼ N ð0, σ2s Þ. Following Duan et al. (1983)
and Min and Agresti (2002), the maximum likeli-
hood of the two-part model is given by:

‘ðαs, βs, σÞ ¼ ‘1ðαsÞ‘ðβs, σÞ, (19)

and

‘2ðβs, σsÞ ¼
Y
Bst>0

σ�1
s ϕ

logðBstÞ � β0sht

σs

	 

: (20)

As the likelihood function is separable in the
parameters, we can estimate αs, βs, and σ by indepen-
dently solving the maximum of the two likelihood
functions, ‘1ðαsÞ and ‘2ðβs, σsÞ.
We summarize the results of the estimation proce-

dure in the Electronic Companion (EC.4). From these
results, we can conclude that the procedure is very
effective in estimating Bst for specialized anesthesia
services at the UCLA RRMC.

Estimation of Bs;t for General Service. We can
observe from Figure EC.1 that the distribution of
booked anesthesia hours for general surgeries is
bimodal. This is because, while general surgeries are
performed on most days, there is a lower demand on
weekends and holidays, while there is higher demand
on regular days. Therefore, we model the distribution
of anesthesia booked for general surgeries as a mix-
ture of two Gaussian distributions. This approach for
modeling bimodal distributions has been suggested
by Allenby et al. (1998) for capturing a wide variety
of heterogeneity in demand distributions. In Gaussian
mixture models, the distribution of the mixture is
given by the weighted sum of the two Gaussian distri-
butions. Thus, the conditional distribution gðBstjhtÞ is
given by:

gðBstjhtÞ ¼ ∑
k∈f1,2g

πkϕkðBstjhtk; βkÞ, (21)

where πk are weights assigned to the two-
component distributions and ϕkðBstjhtk; βkÞ are the
two-component distributions with regression

parameters ht1 and ht2, and coefficients β1 and β2.
We estimate this Gaussian mixture model using the
flexmix package in R (Grün and Leisch 2007).
We summarize the results of the two-component
regressions in the Electronic Companion (EC.4).
Here again, these results show that this is an effec-
tive procedure to estimate Bst for general surgeries
at the UCLA RRMC.

3.2. Estimation of DstjBst

We first used the approach outlined in Dexter
and Epstein (2018) to verify that staff scheduling
did not affect anesthesiologist workload. We pro-
vide more details in the Electronic Companion
(EC.5). We then choose a lognormal specification
for FðDstjBstÞ, as it provides a good fit (as shown
in the Electronic Companion). In addition, the log-
normal specification has been used in the litera-
ture for modeling demand for surgical services
(He et al. 2012, Strum et al. 1997). While the nor-
mal and Weibull distribution worked well in
Strum et al. (1997), we found the lognormal distri-
bution to be a better fit with our data. The specifi-
cation of the regression model for Dst was:

logðDstÞ ¼ γlogðBstÞ þ ξs 8s∈ S, t∈T: (22)

Here, ξs ∼ N ð0, σ02s Þ. We present the results of the
estimation of DstjBst across each service in the Elec-
tronic Companion (EC.6). These results validate the
choice of the lognormal specification to estimate
DstjBst.

4. Estimation Procedure for Implicit
Cost Parameters

To estimate the implicit cost parameters, we adapt the
approach followed in the estimation of discrete choice
models (McFadden 1974, McFadden and Manski
1981). To enable this, we assume that the staff planner
does not know the numerical value of the implicit
costs but is aware of the cost trade-offs when making
staff planning decisions. Therefore, the planner has
subconscious relative weights in mind and uses these
costs imperfectly. We observe the staff planner’s his-
torical daily decisions on how many anesthesiologists
were actually called from the on-call consideration
list. We then employ a maximum likelihood optimiza-
tion to estimate the implicit cost parameters in a man-
ner that best explains the staff planner’s decisions
observed in the data. The estimation procedure for
implicit cost parameters consists of the following
steps:

1. We develop a decision model of the staff
planner.
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2. Based on this decision model, we derive the
likelihood of obtaining the observed data as a
function of the cost parameters.

3. Finally, we estimate the implicit cost parame-
ters, which maximize the likelihood of observ-
ing the data.

We next describe each step in detail.

4.1. Decision Problem of Staff Planner
The literature related to operating room staff planning
shows experimental evidence that operating room
planners demonstrate errors and biases from the opti-
mal solution (Wachtel and Dexter 2010). Therefore,
we model the staff planner as a bounded rational
decision-maker who is not a perfect optimizer but
makes errors owing to the limited availability of infor-
mation or because of cognitive limitations. Further-
more, consistent with quantal choice theory
(McFadden 1976), we assume that when the planner
faces alternative staff planning options, instead of
selecting the optimal staffing plan, he or she selects
better options with higher probability.
The above evidence that the staff planner is a

bounded rational decision-maker precludes the use
of data on the monthly decisions for estimating the
cost parameters. These decisions include the number
of anesthesiologists on regular duty and the number
of anesthesiologists on the on-call consideration list
for each specialty. This is a two-stage stochastic
dynamic problem. Thus, modeling the monthly deci-
sions of the staff planner would require a structural
model of dynamic discrete choices. Estimating param-
eters in dynamic discrete choices requires the
assumption that the decision-maker is a rational
agent. In the literature related to the structural esti-
mation of dynamic discrete choices, this is a stan-
dard assumption and referred to as the rational
expectations assumption (Aguirregabiria and Mira
2010). Because we assume that the staff planner is
not rational but is bounded rational and makes
errors in staff planning, we do not assume rational
expectations, and we exclude the monthly data in
our estimation procedure.
Alternatively, we use data on daily decisions and

the logit choice model to evaluate the probability of
the staff planner selecting a certain number of anes-
thesiologists to call from the on-call consideration list.
The logit model is suitable in our context for two rea-
sons. First, it allows for discrete choices, such as the
number of anesthesiologists. Second, it leads to an
analytically tractable maximum likelihood model.
Our context is similar to Su (2008), who uses the mul-
tinomial logit choice model and provides empirical
evidence that a logit choice model provides a good fit
for a bounded rational newsvendor.

According to the logit choice model, the probabil-

ity of selecting a decision x is proportional to eUðxÞ,
where U(x) is the utility of selecting the decision x
(McFadden 1974). Consequently, if the domain of
decisions is X, the probability of selecting choice x is
given by:

pðxÞ ¼ eUðxÞ

∑x∈Xe
UðxÞ : (23)

Next, we use the above logit choice probability to
derive the likelihood of the staff planner calling a cer-
tain number of anesthesiologists from the on-call con-
sideration list.

4.2. Deriving the Likelihood Function for Staff
Planning Decisions
For conciseness, we represent Uðc, zst, ystBstÞ as fol-

lows:

Uðc, τ, zst, yst, BstÞ ¼ cqzst þ c0qðyst � zst � τÞþ
h in

þ EDstjBst
cu ~Dst � h xst þ zstð Þ� �þh

þ co h xst þ zstð Þ � ~Dst

� �þio
:

(24)

The utility of calling zst anesthesiologists from the
on-call consideration list for a given choice of cost
parameter c, threshold parameter τ, booked time Bst

and yst over all other feasible z0st, is given as the nega-

tive of the cost incurred, or, �Uðc, τ, zst, ystBstÞ. There-
fore, from Equation (23), the probability of choice zst
is:

pstðc, τ, zst, ystBstÞ ¼ expð�Uðc, τ, zst, ystBstÞÞ
∑z0st≤yst

expð�Uðc, τ, z0st, ystBstÞÞ :

(25)

Therefore, the likelihood of observing zst for all s,t
in the data for a given choice of cwill be given by:

LðcÞ ¼ Πs∈SΠt∈Tpstðc, τ, zst, ystBstÞ: (26)

4.3. Determining Costs to Maximize the
Likelihood Function
Maximizing the likelihood function, as described in
Equation (26), is challenging because computing the
likelihood requires the multiplication of |S| × |T| prob-
abilities. The resultant likelihood becomes extremely
small, and we run into floating-point errors when this
function is maximized. In order to mitigate this, it is
common practice to maximize the log-likelihood
(Cameron and Trivedi 2005). Since the logarithm
function is monotonically increasing, the optimal

Rath and Rajaram: Staff Planning for Hospitals
Production and Operations Management 31(3), pp. 1271–1289, © 2021 Production and Operations Management Society 1281



solution will not change. The estimate of c, which
maximizes the log-likelihood, is given by:

ĉ ¼ arg max
c

log LðcÞ: (27)

Using Equation (26), this simplifies to:

ĉ ¼ arg max
c

∑
s∈S,t∈T

logfptðc, τ, zst, ystBstÞg: (28)

We first show that the above optimization problem
is concave in c and then propose an estimation
procedure.

PROPOSITION 3. logLðcÞ is concave in c.

In light of Proposition 3, a local solution of a non-
linear solver would be the global optimum. We use
the nonlinear solver NLOPT (https://nlopt.
readthedocs.io/en/latest/) with a Python program-
ming interface to solve the maximum likelihood prob-
lem for a given dataset. For computational stability,
during the nonlinear optimization, we normalize cq
to 1. We also employ a nonparametric bootstrap anal-
ysis for our estimation procedure. The bootstrap anal-
ysis allows us to compute an approximation of the
confidence interval of the cost estimates. To perform
bootstrap analysis, we follow the procedure described
in (Greene 2000). We take J samples with replacement
from our dataset. We compute the cost estimates for
each sample by solving Equation (28) for the sampled
dataset. Thus, we have J cost estimates fĉ1, . . ., ĉJg.
The mean of the cost estimates is given by, �c ¼ 1

J ∑ jĉJ,

and we use the 2.5th and 97.5th percentile of these
cost estimates to obtain the 95% confidence interval of
the estimates. In our estimation so far, we assumed
that the threshold τ was fixed. To find the best value
of τ, we first calculated �τ ¼ maxs;tfyst � zztg. We then

repeat the estimation procedure for implicit costs for
different values of τ between 0 and �τ. Finally, we
choose τ as the value that maximizes the log-
likelihood function defined in Equation (28). Here, we
found τ = 1 maximizes the log-likelihood. This means
that one anesthesiologist per specialty incurs no cost
per day for being on call but not actually called. We
report the associated values of the implicit costs in
Table 2. Note that the cost estimates are scaled so that

cq ¼ 1. Additionally, we performed sensitivity analy-

sis around the value of τ = 1 by computing the out-of-
sample root mean square error for each associated
implicit cost parameter. We summarize this analysis
in the Electronic Companion (EC.7), and validates
τ = 1 to be the best fit for the data.
We observe in Table 2 that the estimated cost of not

calling an anesthesiologist on the on-call consider-
ation list is 1.63 times the cost of actually calling the
anesthesiologist. This seems plausible, as the anesthe-
siologist loses not only the additional income from
being on-call but potentially forgoes the opportunity
to make income from other sources during that day.
Dexter and O’Neill (2001) discuss the impact of these
implicit costs of on-call staffing, but such costs have
not been quantified in the literature thus far. Incorpo-
rating such implicit costs is important because not
including them would lead to a longer on-call consid-
eration list. While maintaining a longer on-call con-
sideration list may provide the staff planner the
flexibility to react to updated information without
incurring supplemental financial expenses at the hos-
pital, this would lead to more anesthesiologists being
on the on-call list but not getting called. Olmstead
et al. (2014) discuss the inconvenience to employees
from being on the on-call list. This inconvenience
could potentially lead to higher employee dissatisfac-
tion (Gander et al. 2007). This, in turn, can lead to
increased employee turnover, which could be detri-
mental to the hospital.
When we scale cq to 1, the corresponding value of

the explicit costs of overtime co ¼ 0:18. This implies
that the idle cost of an anesthesiologist is 1.55 times
the overtime cost. This result is consistent with
Olivares et al. (2008), who found that the cost of OR
idle time was observed to be 60% higher than the cost
of OR overtime. Our study demonstrates that a simi-
lar effect is in place for managing on-call anesthesiolo-
gists. Furthermore, given that the overtime cost is
$180 per hour, the implicit cost of idle time is
$180 × 1.55 = $280/hour. Since the cost of idle time
should be consistent with the hourly cost of regular
time, we used these costs to compute the annual cost
of an anesthesiologist based on our estimate. The
anesthesiologists at the operating service department
work seventeen 8-hour shifts per month. This implies
the annual cost should be $280/hour × 8 hours/shift ×
17 shifts/month × 12 months/year = $456,960/year. At
the UCLA RRMC, this includes an overhead rate of
30% of salary to account for health and retirement
benefits. This implies an annual salary of $456,960/
1.3 = $351,507, which is close to the median anesthesi-
ologist salary of $433,000 at the UCLA Medical Center
and $392,000 nationwide (https://www.medscape.
com/slideshow/2019-compensation-anesthesiologist-

Table 2 Maximum Likelihood Estimates of Implicit Cost Parameters

Cost
parameters

Maximum likelihood
estimate*

95% Confidence intervals
(Bootstrap)

c 0q 1.63 (1.42, 1.83)

cu 0.28 (0.12, 0.34)

Note: *Values scaled such that cq ¼ 1.
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6011324). This shows that the staff planner has a
good sense of these costs and also validates the
implicit cost of idle time estimated by our
methodology.
To better understand how the estimates of implicit

costs changed with factors such as the data time
frame, day of the week, and service, we conducted
additional analyses, summarized in the Electronic
Companion (EC.8–EC.10). From this analysis, we can
conclude that the implicit costs were quite stable and
did not vary significantly with these factors. This
shows that the operating services department made
consistent staffing decisions, and no service was pre-
ferred over the other. This is very desirable from the
perspective of staff morale.
Finally, the staff planner’s problem can be broadly

considered as a newsvendor problem, with overstock
costs corresponding to the implicit costs of not calling
an anesthesiologist from the on-call list and the costs
of idle capacity. Similarly, the understock costs will
be the costs of calling an anesthesiologist from the on-
call list and overtime costs. Studies have shown that
decision-makers exhibit systematic biases (Bostian
et al. 2008, Ho et al. 2010, Schweitzer and Cachon
2000) whenever there are such newsvendor trade-offs
between overstock and understock costs. One such
common and well-studied bias is anchoring decisions
on mean demand. This means that instead of ordering
the optimal expected profit-maximizing quantity,
decision-makers order a quantity between the optimal
quantity and the quantity required to meet the mean
demand (Bostian et al. 2008). Wachtel and Dexter
(2010) also discuss a situation in which staff planners
for anesthesiologists demonstrate anchoring on mean
demand. As described in the Electronic Companion
(EC.11), using the approach in Bostian et al. (2008),
we also found evidence to indicate that the staff plan-
ner’s decisions could be driven by a mean anchoring
bias. Quantal choice theory has been used to explain
the mean anchoring bias in several applications in
operations management (Chen and Song 2019).
Therefore, this provides more validation to represent
the staff planner’s decisions using quantal choice
theory.

5. Computational Analysis

In this section, we first perform computational
analysis to validate the performance of the estima-
tion procedure described in section 4. Then we
show the benefits of using the solution method
described in section 2.2 over current practice. We
also use our model to evaluate the impact of
changes in costs, booked time variability, and the
impact of hiring more anesthesiologists for particu-
lar services.

5.1. Validation of Estimated Cost Parameters
In order to validate the cost estimation procedure,
we demonstrate that our model can accurately pre-
dict the decisions of the staff planner using the
estimated costs. We follow a 10-fold cross-
validation procedure to quantify the prediction
accuracy of our model. Kohavi (1995) provide a
detailed discussion of the advantages of using
k-fold models for cross-validation. They propose
k = 10 for discrete models such as the multinomial
logit. In a 10-fold cross-validation approach, we
divide our dataset Δ into 10 mutually exclusive
subsets (folds) fΔ1, . . ., Δ10g of approximately
equal size. We then use the estimation procedure
(described in section 4) ten times. Each time, the
cost parameters are estimated using dataset ΔnΔi.
Let these estimated parameters be ĉi. Next, given
these estimates, we use Equation (25) to compute
the predicted choice probability p̂stðĉi, zst, yst, BstÞ
for each feasible zst for the dataset Δi. Then,
because the staff planner’s choice is modeled as a
multinomial logit, the predicted decision of the
staff planner will be the decision that has the high-
est predicted probability. Thus, the predicted deci-
sions for the test dataset Δi will be:

ẑist ¼ arg max
zst

fp̂stðĉi, zst, yst, BstÞg

8ðs, tÞ∈Δi8i∈ f1, 2, . . ., 10g: (29)

We compute the root mean square error (RMSE) of

the above predicted decisions ẑist with respect to the

actual historical decisions of the staff planner ~zist for
each of the 10 datasets Δi. Then, we compute the aver-
age RMSE across the 10 sets of predictions as:

RMSE ¼ 1

10
∑
10

i¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑ðs;tÞ∈Δi

ð~zist � ẑistÞ
2

jΔij

vuut
: (30)

We also compute the accuracy of the model as the
percentage of times the model predicted the correct

decision. If ẑist ¼ ~zist, we denote Iẑist¼~zist ¼ 1. Therefore,

the accuracy for the dataset Δi is acci ¼
1

jΔij∑s;t∈Δi
Iẑist¼~zist . The average of the accuracy across

the 10-folds would be �acc ¼ 1
10∑

10
i¼1acci. We found that

the estimation procedure is able to exactly predict zst
about 49% of the time. In addition, the error in predic-
tion accuracy was also small, with the average RMSE
around 0.48. We also calculated the mean average
percentage error between the prediction and staff
planner’s decisions for the overtime and idle time
hours. The results are summarized in the Electronic
Companion (EC.12) and show the predicted and
actual decisions are close.
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We also modeled the staff planner’s decision to
determine the number of anesthesiologists called
from the on-call list ðzstÞ as a linear regression of the
observable characteristics, such as the number of
anesthesiologists on regular duty ðxstÞ, the number of
anesthesiologists on the on-call list ðystÞ, and the total

booked hours for surgery ðBstÞ. Estimating opera-
tional parameters assuming a linear managerial deci-
sion rule has been applied previously in Foreman
et al. (2010). The results, summarized in the Electronic
Companion (EC.13), show that the average RMSE for
the linear fit is 0.89. The logit choice model is a better
fit to model the staff planner’s decisions because it
better captures the nonlinear dependence of zst on yst,
xst, and Bst. This, in turn, provides validity for the
implicit cost estimation procedure described in
section 4.

5.2. Comparison of Decisions and Costs with
Current Practice
The current planning process to make these decisions
uses an experience-based practitioner’s heuristic.
Such heuristics have been reported in the literature
(Cardoen et al. 2010, Dexter and O’Neill 2001, Rath
et al. 2017). At the hospital, we studied the practi-
tioner’s heuristic comprises of two stages. In the first
stage, the practitioner makes monthly decisions by
first calculating the mean and standard deviation of
daily demand for a service on a given day. They do
this done by using historical data for each day of a
week in a given month. As per the practitioner’s heu-
ristic, the anesthesiologists on regular duty (~xst) are
used to meet the mean daily demand. The anesthesi-
ologists on the on-call list (~yst) are chosen to cover

three standard deviations of the daily demand.
Together, (~xst, ~yst) constitute the decisions in the first

stage of staff planning. In the second stage, once book-
ing information for the day of surgery is available, the
staff planner decides to call a certain number (~zst) of
anesthesiologists from the on-call list previously
decided. We model this second stage decision-
making process in detail in section 4.1.
The practitioner’s decision-making is sub-optimal

for the following reasons. The first-stage decision-
making does not consider the costs of these decisions
and does not effectively incorporate uncertainty or
the second-stage problem. In the second stage, as dis-
cussed in section 4.1, the practitioner is modeled as a
bounded rational newsvendor who makes sub-
optimal decisions.
We use the estimated implicit costs to fully specify

the MSPP and DSPPst. We can now compute the total
costs of using a model-based solution and compare
this to the cost incurred by current practice. When cal-
culating the cost benefits of using the model-based

solution described in section 2.2 with respect to the
staff planner’s actual decisions, we first define the ex-
post cost of a decision ðxst, yst, zstÞ as:

Uðxst, yst, zstÞ ¼ cqzst þ c0qðyst � zst � τÞþ
h in

þ cu ~Dst � h xst þ zstð Þ� �þh
þ co h xst þ zstð Þ � ~Dst

� �þio
(31)

Here, Uðxst, yst, zstÞ is the cost when decisions

ðxst, yst, zstÞ are taken for day t, and the actual

realization of the total durations of surgeries of

service s is ~Dst.
Let ðxmst , ymst , zmstÞ be the decisions computed by the

model-based solution procedure described in section
2.2 and ð~xst, ~yst, ~zstÞ are the actual decisions of the staff
planner. We employ Uðxst, yst, zstÞ to compare the ben-

efits of the model-based solutions to the actual deci-
sions of the staff planner by calculating the
percentage relative cost improvement as:

δst ¼ 100%� jUðxmst , ymst , zmstÞ � Uð~xst, ~yst, ~zstÞj
Uð~xst, ~yst, ~zstÞ

: (32)

We report the average cost improvement by service
and overall average cost improvement in Table 3.
This table shows the average cost savings using the
model-based solution on historical data is 16.49%. In
addition, we observe that the model-based solution
improves costs across all the services. But, we note
that there is a significant difference in cost savings
across services. We found that this was due to the dif-
ferences in the scale of the forecast errors between the
booked anesthesiology hours (Bst) and the used anes-
thesiology hours (Dst) between services. When these
errors were small, the cost savings between the practi-
tioner’s heuristic and our methods were small. How-
ever, when these errors were large, the cost savings
were much higher, as our methods were more suited
to deal with such errors. We provide more details in
the Electronic Companion (EC.14). We also developed
two benchmark models to better assess the perfor-
mance of the model-based solution. These are

Table 3 Daily Average Percent Cost Saving of Model Based Solution
Over Current Practice

Service
Daily average cost saving

(%)
95% Confidence

interval

Cardiothoracic 8.59 (6.76, 10.03)
General 15.02 (12.43, 19.02)
Neuro 28.88 (21.88, 34.27)
Pediatric 18.98 (15.76, 21.4)
Average 16.49 (14.87, 19.03)

Rath and Rajaram: Staff Planning for Hospitals
1284 Production and Operations Management 31(3), pp. 1271–1289, © 2021 Production and Operations Management Society



summarized in the Electronic Companion (EC.15).
The first benchmark model considers only explicit
costs and constraints to ensure that that the number
of on-call positions is lower than historical averages
and the call-in rate is higher than historical averages.
The second benchmark model also considers only
explicit costs and a cost for schedule variability. As
shown in Table 4, the costs of the model-based solu-
tion significantly improved upon both these models
reaffirming the value of our approach.
To better understand the reasons for this

improvement, we compared the model-based solu-
tion with the benchmark models and the staff
planner’s plan in more detail. We summarize the
results in Table 5 and show that the model-based
solution has the lowest average daily overtime
and idle time. This is because the algorithm
employed to solve the MSPP optimally chooses xst
and yst to minimize total expected costs. More
specifically, since regular staffing has lower costs
than on-call staffing, the model-based solution and
the benchmark solutions have higher regular staff
(xst) and lower on-call staff (yst) than current prac-

tice. This is also shown on Table 5. Also, observe
from this table that, on average, the model-based
solution uses more anesthesiologists from the on-
call consideration list. While this allows for greater
flexibility to react to the uncertainty in the booked
time ðBstÞ, there are costs to having more flexibil-
ity. However, the model-based solution still man-
ages to reduce overall costs because it creates an
on-call consideration list for fewer days.

Additionally, we assessed the impact of the solu-
tions provided by current practice, the better perform-
ing second benchmark model, and the model based
heuristic on the anesthesiologist population at an
individual level. To do so, we computed p, the aver-
age fraction of time an anesthesiologist is called in
after being on the on-call list using the algorithm
described in the Electronic Companion (EC.16). We
summarize the results in Table 6. We then calculated
C(p), the coefficient of variation of pi across all the i
anesthesiologists. This will represent a measure vari-
ability in outcomes (for example, the variability in
call/no-call) across the anesthesiologist population.
We shows these results in Table 7. These tables show
that the performance of the model-based solution is
very comparable to the benchmark model in terms of
variability in the fraction of time called, and both of
them outperform current practice, providing a more
stable and less variable schedule at the individual
level. This is important to verify before the implemen-
tation of any model-based aggregate staffing plan.
We also analyzed the solution of the model-based

heuristic by service the percentage of days when there
were no on-call consideration lists and when physi-
cians were not called. These results are summarized
in the Electronic Companion (EC.17). The results here
show services that have the least reduction in the
coefficient of variation when we update the demand
distribution of used anesthesiology hours will get the
least benefit from using an on-call staffing plan. Thus,
it will be beneficial to staff these services using regu-
lar shifts.

Table 5 Comparison of Staffing Plan of Current Practice, Benchmark
Models, and the Model-Based Heuristic

Current
practice

Benchmark
Model 1

Benchmark
Model 2

Model
based
solution

Average daily overtime
(hours)

67.76 83.24 76.85 51.43

Average daily idle time
(hours)

29.3 30.48 29.35 24.71

Average number of
anesthesiologists on
regular duty

17.48 20.85 18.79 18.46

Average number of
anesthesiologists on
on-call consideration
list

6.89 1.04 1.77 5.91

Average number of
anesthesiologists
called

2.77 0.586 0.973 3.22

Average number of
anesthesiologists not
called

4.12 0.299 0.671 2.69

Percentage of days
with no on-call
consideration list

31.35 7.85 4.86 56.22

Table 4 Breakdown of Cost Improvement for Current Practice,
Benchmark Models, and Model-based Heuristic

Current
practice

Benchmark
Model 1

Benchmark
Model 2

Model
based
solution

Average cost of
overtime

12,197 14,984 13,833 9257

Average cost of
calling
anesthesiologists

2770 586 973 3220

Average explicit
costs

14,967 15,570 14,806 12,477

Average cost of
not calling
anesthesiologists

6716 486 671 4385

Average idle costs 8204 12,854 12,381 6919
Average implicit
cost

14,920 13,340 13,052 11,304

Total average cost 29,886 28,910 27,858 23,781
Average annual
total cost

10,639,558 10,291,960 9,917,448 8,466,000

% daily average
cost savings
from current
practice

— 2.61% 5.48% 16.49%
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Finally, for this model to be accepted by the anes-
thesiologists, it is important it captures the implicit
costs considered by the staff planner, and these costs
have to be consistent with past practice. Our maxi-
mum likelihood procedure estimates these costs from
the past decisions of the staff planner. This provides
reassurance to the anesthesiologists that we have not
only captured implicit costs but have estimated their
value based on past decisions that were acceptable to
them. In addition, the optimization approach more
precisely balances the implicit and explicit costs,
which leads to lower total costs. As noted above, com-
pared to past practice, our model reduces total costs
on average by 16.49%. Here, the reduction in explicit
cost was 11.19%. In addition, the reduction in implicit
cost was 35.12%, which was greater than the percent-
age reduction in total costs. Thus, the model-based
solution should be at least as acceptable as the solu-
tion provided by the staff planner.

5.3. Impact of Changes in Cost
Anesthesiologists are among the most expensive labor
categories in the United States, and the mean annual
wage has undergone an increase of 14% between 2016
and 2017 (Bureau of Labor Statistics 2018). Increases
in salaries imply a proportional increase in on-call (cq)

and overtime payments (co). Our model-based solu-
tion allows us to evaluate the impact of these cost
increases. In Figure 1, we plot the impact of the
change in on-call and overtime costs. From this figure,
as expected, we can see that the total cost increases
with the on-call and overtime costs. However, we can
also observe that on a percentage basis, the overall
cost is more sensitive to changes in the overtime cost
than the on-call cost. This is because overtime costs

are incurred on more days than on-call costs. Thus, a
percentage change in overtime cost leads to a greater
relative change in the overall cost. We also observed
how the solution changed when we ran the model for
lower values of cq shown in Figure 1. Here we found

that with decreasing cq, the optimal solution decreases

the number of anesthesiologists on regular duty ðxstÞ
while increasing the number of anesthesiologists on
the on-call consideration list ðystÞ and the number of

anesthesiologists actually called ðzstÞ. We also found
that the rate of increase in zst was higher than the rate
of increase in yst. Conversely, when we ran the model

for higher values of cq, xst increased, while yst and zst
decreased. Detailed results are provided in the Elec-
tronic Companion (EC.18).
We also considered the impact of changes in c0q, the

cost of not calling an anesthesiologist from the on-call
list on overall costs. These results are also presented
in Figure 1 and show that overall costs are least sensi-
tive to these costs. This is because for these costs to
incur, an on-call list needs to be generated. As indi-
cated in Table 4, this does not happen on 56% of the
days. Even when this list is generated, one needs to
exceed a threshold τ of anesthesiologists not-called
from the on-call list before these costs are accrued.
We also performed additional analysis to under-

stand the impact of cross-training anesthesiologists,
changing the variability of booked time ðBstÞ, and
changing the number of available anesthesiologist by
service ðnstÞ. We describe these in detail in sections
EC.19, EC.20, and EC.21 in the Electronic Companion.

6. Conclusions

In this study, we consider the anesthesiologist staffing
problem typically found in large multi-specialty

−40 −30 −20 −10 0 10 20 30 40

−20

−15

−10

−5

0

5

10

15

20

% change in cost parameter

%
ch

an
ge

in
ov

er
al

l
co

st

Not-called cost (c′
q)

On-call cost (cq)
Overtime Cost (co)

Figure 1 Impact of Change in Cost ParametersTable 6 p for Current Practice, Benchmark Model 2, and Model-Based
Solution

Service
p in current
practice

p in Benchmark
Model 2

p in Model-based
solution

Cardiothoracic 0.378 0.285 0.340
General 0.410 0.914 0.894
Neuro 0.435 0.418 0.333
Pediatric 0.450 0.324 0.384
Average 0.410 0.730 0.684

Table 7 C(p) for Current Practice, Benchmark Model 2, and Model-
Based Solution

Service
C(p) in current

practice

C(p) in
Benchmark
Model 2

C(p) in model-
based solution

Cardiothoracic 0.312 0.256 0.273
General 0.420 0.149 0.157
Neuro 0.214 0.105 0.180
Pediatric 0.118 0.074 0.104
Average 0.349 0.134 0.166
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hospitals with no limit on the supply of anesthesiolo-
gists. Furthermore, these anesthesiologists are willing
to be available on-call and paid only if needed, learn-
ing the previous day. In this problem, the planner
makes monthly and daily staffing decisions about the
number of anesthesiologists across each service to
minimize overall costs. We model the staff planning
problem as a two-stage integer stochastic dynamic
program, provide its structural properties, and use
this to develop a sample average approximation-
based algorithm to solve this problem.
While some of the cost components of this model are

explicitly known, other cost components are implicit.
We assume that the staff planner is aware of the trade-
offs between explicit and implicit costs but is not a per-
fect optimizer and makes errors in decisions. To cap-
ture this, we develop a decision model of a bounded
rational staff planner. Using this decision model and
available historical data of decisions taken by the staff
planner, we estimate the implicit costs. This leads to a
fully specified model of staff planning. We then com-
pare the costs of the model-based solution with the
costs resulting from the historical decisions of the staff
planner. Based on this analysis, we find that our
approach can potentially save around 16% in costs,
which translates to a total of about $2.17 million on an
annual basis in explicit and implicit costs.
In addition, the estimated costs and the optimiza-

tion model have generated several managerial
insights. First, the cost of not calling an anesthesiolo-
gist on the call list is significantly more expensive
than actually calling the anesthesiologist. This implies
that staff planners need to effectively incorporate
these costs when constructing on-call lists. Second,
the costs of idle time are substantially higher than the
costs of overtime. Thus, it is important for staff plan-
ners to consider this aspect when determining how
many anesthesiologists they need to call from regular
duty. Together, the first two insights suggest that it is
important to have a data-based understanding of
implicit costs in order to make effective staff planning
decisions. Third, average daily idle time and overtime
costs can be reduced by ensuring that the optimal
number of total anesthesiologists are available on the
day of the surgery. Furthermore, it may be efficient to
have more anesthesiologists on the on-call consider-
ation list, as long as the days requiring an on-call list
are chosen carefully. The model-based approach out-
performs the current practice as it makes these deci-
sions more effectively. Fourth, our analysis
summarized in the Electronic Companion (EC.20)
showed that a small reduction in demand variability
could considerably reduce costs. Such variance reduc-
tion could be achieved by earlier and more timely
sharing of demand information between other hospi-
tal departments and operating services. Fifth, we

show in the Electronic Companion (EC.21) that the
marginal benefits of hiring across specialties are nota-
bly different. A good understanding of these differ-
ences using a data-driven analytical model can
reduce overall staffing costs.
Our study has the following limitations. First, it is

possible that there is some unobserved heterogeneity
across individual anesthesiologists, depending on
seniority or other factors. Some anesthesiologists may
bear a higher cost of not getting called or have costlier
idle time. While it is possible to incorporate this het-
erogeneity and estimate the different costs across the
individual anesthesiologists, we were restricted by
our lack of data availability at the individual anesthe-
siologist level. Second, in the current staffing plan,
schedulers adjust the monthly plan only once, and
they do this the day before the surgery. However, it
may be possible to update the staff planning when
each elective procedure is booked. This has been sug-
gested by Tiwari et al. (2014) and Xie and Zenios
(2015). In such a dynamic schedule updating frame-
work, there will also be implicit costs. Our procedure
can potentially be extended to evaluate these implicit
costs. However, we could not to perform this analysis
because the UCLA RRMC only recorded the booking
data when it was finalized, the day before the proce-
dures. Third, this work does not consider the next
stage that determines the work schedules for each
individual anesthesiologist either for a week or month
and deciding which particular anesthesiologist will
be scheduled to work on regular duty or placed on
the on-call list. This could necessitate changes in the
aggregate schedule provided by the model. In such
situations, the model solution could overestimate the
true cost savings. Finally, our analysis on the impact
of hiring anesthesiologists by service is restricted to
the costs considered in the model. However, there
could be additional costs of hiring anesthesiologists,
such as recruitment costs, bonuses, and on-boarding
costs. Furthermore, the decision to hire anesthesiolo-
gists specialized in certain services would depend on
the hospital’s longer-term strategy of attracting
demand for certain kinds of procedures or hiring fac-
ulty physicians of certain services to meet teaching
requirements at the medical school. Since we did not
have information on these aspects and the additional
costs, we were unable to conduct a more comprehen-
sive and longer-term analysis to determine the right
sizing of the anesthesiology staff by service.
This study opens up several opportunities for

future research. First, we could extend this frame-
work to other industries outside of healthcare. While
this study adds to the evidence that idle time is con-
sidered more expensive in the healthcare context, it is
not obvious whether that is true for other industries
like retail, call centers, and airlines that have
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overtime, on-call, and idle-time costs. Second, as
described above, we can extend our framework to the
context of dynamic staff planning, where staff plan-
ning has more than two stages. However, this will
require significant modifications to the model and
solution procedure.
In conclusion, we believe that the methods pre-

sented in this study provide an effective way to esti-
mate implicit costs and to conduct optimized staff
planning.
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