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1 Introduction

Consumers can typically purchase products such as TVs or shoes from tens, if not hundreds, of different

online retailers. Since evaluating each retailer and its merchandise is costly, consumers usually only

investigate a small number of websites. Models of consumer search describe how individuals decide

which options to become informed about and which ones to ignore (Stigler 1961, Weitzman 1979).

These models characterize consumer search behavior as an uninterrupted process, with one stopping

decision occurring after the consumer has evaluated all options that are optimal to be inspected.

However, using data on consumers’ entire online browsing histories, we document that search

processes frequently involve breaks (“search gaps”). That is, consumers often obtain information on a

number of options during a session, then take a break from searching, and later resume their search in

a different session (e.g., a day later). Our data come from GfK and capture all web traffic (8 million

clicks) of a panel of 4,600 Dutch consumers during ten weeks in 2018. The data include all clicks in our

focal category – apparel – as well as all other browsing activities that consumers performed during

the same session (e.g., checking emails, visiting Facebook, or using search engines). Importantly,

consumers’ online activities can be linked over time, i.e., across sessions, revealing when consumers

search products versus when they take a break from searching. With these data, we show that search

gaps are prevalent: on average, 43% of consumers take at least one break while searching. Further,

conditional on pausing the search at least once, the average search process contains three gaps.

Such search gaps are ignored by previous consumer search literature for several reasons. First, prior

empirical work often does not observe search gaps because it employs data containing information on

purchases only, survey data with information on purchases and only searched sets, or browsing data

at the session level that cannot be linked across sessions or to an individual consumer (e.g., Seiler 2013;

Honka 2014; Honka and Chintagunta 2017; Ursu 2018). And second, even when data on search gaps

are available, prior literature assumes that sessions are either independent or that they can be grouped

together as part of a (gap-free) larger search (e.g., Chen and Yao 2017, De los Santos and Koulayev

2017; Ursu, Wang, and Chintagunta 2020).1 We provide empirical evidence that search sessions are not

independent in our empirical context. Rather, later sessions are a continuation of a search started in

earlier sessions.
1Another way of interpreting the decision to ignore search gaps is to say that prior work has assumed that only the last stopping

decision is relevant.
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Assuming away search gaps is innocuous if the reason for such gaps is unrelated to consumer

search decisions, e.g., work emails or planned offline activities. However, there are several reasons to

expect that search gaps are – to a large extent – conscious consumer decisions. For example, search

gaps may occur when consumers expect prices or product features to change over time and thus think

that they may benefit from delaying their search. A second potential reason is shopping fatigue: the

more options a consumer searches, the higher her search costs per option due to fatigue; taking a break

reduces these costs and enables the consumer to resume her search at a later time.2

Using model-free evidence, we show that search gaps are largely conscious consumer decisions and

that fatigue is a main driver of search gaps in our data. To demonstrate the first point, we investigate

what consumers do during search gaps. We find that approximately 90% of consumers engage in other

online activities after ceasing their apparel search during a session. Such activities are often leisure

activities (e.g., visiting social networking websites), suggesting that consumers had more uncommitted

time during which they could have continued searching apparel products, but that they chose not to do

so. Also, we find that consumers often resume their apparel search within a session when interrupted

by an email notification, further supporting the idea that search gaps are a consumer’s choice.

Next, we provide three pieces of evidence in support of the notion that search gaps are related to

fatigue. First, we proxy for fatigue using consumer demographics and website characteristics. We

show that consumers who are older and who visit websites that are slower to load or are harder to read

have generally more search gaps. Second, we show that the more websites a consumer has searched

and the more time she has spent searching since the last break, the higher her likelihood of a search

gap. Finally, we present empirical evidence against several alternative explanations for the occurrence

of search gaps: (i) expecting future changes in prices or other product features, (ii) having a limited

budget of time, (iii) forgetting previously obtained information, and (iv) indecision.

We then develop a model of sequential search that endogenizes search gaps. More specifically, we

extend the Weitzman (1979) sequential search model in two directions. First, we allow consumers to

not only decide which products to search and in what order, but also when to search them: now or

after a break. Second, motivated by our empirical evidence, we allow the decision of when to search a

product to be influenced by fatigue. To this end, we model search costs as having two components:

a baseline level and a component that depends on the number of options searched after the latest

2The following quote illustrates shopping fatigue: “Car shopping is exhausting and confusing. With every search online, I have to
drink a sip of wine.” (http://business.time.com/consumer-fatigue-shopping-has-never-been-easier-or-as-mentally-exhausting/).
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break. This means that the cost of gathering product information after taking a break is equal to the

baseline search cost level, while subsequent searches involve paying a higher search cost per option

due to the fatigue that accumulated from previous searches within the same session. Note that these

two components affect consumer decisions differently. For example, higher fatigue levels increase

the number of gaps, while higher baseline search costs (indirectly) decrease the number of gaps by

reducing the number of searched options.

The model we develop captures search gaps, but – in contrast to the Weitzman (1979) problem – no

longer has an index policy solution. This is the case because, in our model, the optimization problems

of different options interact for two reasons: (i) due to the increasing nature of search costs, i.e.,

searching an alternative increases search costs for all so far unsearched alternatives, and (ii) due to the

choice of when to search an option, i.e., choosing to take a break resets search costs for all unsearched

options. This interaction of optimization problems of different options violates the assumption in

Weitzman (1979) that searching an option does not affect the payoffs from any other option, leading to

a failure of the index policy solution. However, we show that under a set of fairly general conditions

that are met in our empirical context (e.g., high fatigue given the observed prevalence of search gaps),

as well as in simulations with more than 1,000,000 parameter combinations, the optimal search order

in our problem coincides with the one in Weitzman (1979). Using this result, we then describe a

consumer’s optimal search rules for the entire set of decisions she makes in a model with search gaps:

(i) which alternatives to search, (ii) when to search an alternative, and (iii) whether to continue to

search or to stop. These optimal search rules are characterized by a set of four reservation utilities

rather than one reservation utility as in Weitzman (1979).

We estimate our model and quantify consumer preferences, baseline search costs, and search

fatigue parameters in the two largest apparel subcategories, “shirts, tops, & blouses” and “shoes.”

Our empirical results are consistent across both apparel subcategories. We treat all browsing on a

retailer’s website, such as hm.com or nike.com, as one search and recover consumers’ utilities for the

ten most popular websites in each subcategory.3 We find that consumers are loyal to websites they

have frequently visited before. More importantly, we show that fatigue has a large effect on search

decisions, equivalent to increasing baseline search costs at least tenfold with every searched option. In

3Note that, in contrast to most literature studying online consumer search behavior, we examine consumer search of online retailers
(websites) and not individual products in our empirical application. We do so because we expect consumers to be more likely to choose
which websites to search, rather than which products to search, since the latter are often unknown to consumers and are discovered only
after they navigate through a number of subpages on a website.
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contrast, the baseline search cost estimate is relatively small. However, estimating the model using

the canonical Weitzman (1979) framework leads to an overestimate of the baseline search cost. The

Weitzman (1979) model ignores search gaps and assumes search costs are independent of the number

of previously searched options. Thus, when estimated on the same data as a model in which fatigue

affects search costs, the Weitzman (1979) model rationalizes the same number of searched options by

inflating baseline search costs. We also show that an adapted version of the Weitzman (1979) model

that ignores search gaps, but models fatigue (i.e., search costs are an increasing function of the number

of previously searched options) also overestimates baseline search costs, albeit less, and underestimates

the effect of fatigue. This occurs because ignoring the fact that fatigue causes consumers to take a

break from searching (not only increases search costs) leads to the mistaken impression that fatigue

has a relatively smaller impact on consumer decisions.

Finally, we measure the impact of consumer fatigue and search gaps on market outcomes via

counterfactuals. First, we quantify the effects of fatigue on searches and purchases, and compare

them to those of baseline search costs. Decreasing fatigue by 50% increases the number of searched

websites by 1− 4%, increases transactions by 0.5− 1.2%, and lowers search gaps by 11− 22%. The

effects of a fatigue reduction are larger than the effects of a baseline search cost reduction of the same

magnitude. Furthermore, while all websites suffer from high fatigue levels, larger and more popular

website are less negatively affected than smaller and less popular websites. And second, we investigate

the consequences of consumers not being able to reduce their fatigue levels via search gaps. Such

a situation might occur when consumers face challenging times such as the Covid-19 pandemic or

when consumers are constantly being stimulated by (tiring) marketing activities. We find that not

being able to reset fatigue during a break leads to a significant reduction in the number of products

consumers search and purchase: searches decrease by approximately 20% and purchases by more

than 6%. Most importantly, larger and more popular websites are hurt less in such a situation. In other

words, consumers become more likely to buy from larger and more familiar websites. These findings

emphasize the importance of search gaps for competition and brand value.

The contribution of this paper is two-fold. First, we document the presence of search gaps during

consumers’ search processes and propose the first model of consumer search that accounts for such

search gaps. To the best of our knowledge, we are also the first to model consumer search fatigue
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before a purchase.4 And second, search gaps reveal that consumers might be stopping their search

due to a high fatigue level rather than a low match value with a brand. Identifying and targeting such

consumers might be profitable for companies since these consumers are still active in the market and

thus more likely to resume searching and ultimately purchase (Schmittlein, Morrison, and Colombo

1987). The observation that consumers may stop searching because of a high fatigue level also has

implications for firms’ pricing decisions. Prior work on ordered search has found that firms’ optimal

pricing decisions depend on the order in which they are searched (e.g., Arbatskaya 2007; Armstrong,

Vickers, and Zhou 2009; Petrikaite 2018). However, these results no longer necessarily hold when

consumers can take search breaks.5

The rest of the paper is organized as follows. In the next section, we discuss relevant prior work.

In Section 3, we introduce our data and in the following section, we provide model-free evidence for

search gaps being conscious decisions and related to fatigue. We develop our theoretical model in

Section 5. In Section 6, we describe our empirical model, estimation procedure, and identification.

In the following section, we present our results, while, in Section 8, we provide a description of two

counterfactual exercises. We conclude in the last section.

2 Relevant Literature

This paper is primarily related to three strands of the literature: (i) the theoretical consumer search

literature, (ii) empirical work using individual-level search data to quantify consumer preferences and

search costs, and (iii) prior work on choice deferral. We describe and delineate our paper vis-à-vis

extant research.

We contribute to theoretical work on consumer search in two main ways. First, we develop a new

model of consumer search, adding to a rich literature that generally follows one of two frameworks:

either the sequential search model of Weitzman (1979) or the simultaneous search model by Stigler

(1961). In both these frameworks, consumers inspect products consecutively until they decide to

stop searching, a decision which occurs once before determining whether to purchase. For example,

4Carlin and Ederer (2019) develop a model of search fatigue in which fatigue affects consumers across purchases rather than before a
purchase, which is our focus.

5For example, Armstrong, Vickers, and Zhou (2009) show that the non-prominent firm can infer that the consumer searching it obtained
a low match value at the prominent firm. In this case, the non-prominent firm will face a relatively more inelastic demand for its product,
allowing it to charge a higher price than the prominent firm in equilibrium. This inference is weakened when the consumer has the option
to visit the non-prominent firm after a search gap, since such a decision may be motivated by the low search cost after the break, rather
than a low match with the prominent firm. Thus, observing when the consumer searches an option (before or after a search gap), not only
whether she searches, may help companies’ pricing strategies.
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in Weitzman (1979)’s sequential search model, the consumer searches options as long as the benefit

from search exceeds the cost. When this relation no longer holds, search ceases and the consumer

determines whether to purchase. Similarly, in Stigler (1961)’s simultaneous search model, there is one

stopping decision: after searching the set of options for which the expected benefit exceeds the search

cost, the consumer stops and decides whether to buy one of the searched products. Thus – in contrast

to our model – neither framework can be used to study search gaps, which involve multiple stopping

decisions.

The only exception is a model for homogenous goods developed by Morgan and Manning (1985).

The authors demonstrate that, under very general conditions, neither simultaneous nor sequential

search is optimal, but rather a combination of the two is, i.e., a process during which the consumer

searches sets of options sequentially. Morgan and Manning (1985)’s model can give rise to search

gaps since consumers may choose sets of options to search at every occasion and take breaks between

sets. However, since their theory was developed for homogenous goods, i.e., all products are ex ante

identical, it can explain how consumers choose the number of options to search in every set, but not

the identity of those options. Therefore, to the best of our knowledge, no prior theoretical work exists

that can account for search gaps when consumers search among heterogenous goods, i.e., also choose

which products to search. Our model fills this gap in the literature.

Second, we contribute to the theoretical consumer search literature through our definition of

search costs. Most prior work assumes that search cost per product are independent of the number

of products searched.6 To the best of our knowledge, there are only a few exceptions. Stiglitz (1987)

studies the effect of convex search costs on competition and the equilibrium number of firms in the

market. The author links this effect to the increasing scarcity of time and money that intensifies as

the consumer continues searching, but does not consider the effect of resetting these costs on search

decisions. Levav et al. (2010) show experimentally that participants who need to customize a product

(a suit or a car) are more likely to choose the default option when first presented with options that have

many rather than few attributes. The authors argue that this result can be partially explained by convex

costs of evaluating attributes, as demonstrated by literature in psychology and economics modeling

self-control as a muscle that requires more effort on future rather than identical early stimulation

(Ozdenoren, Salant, and Silverman 2012; Vohs et al. 2008).

6For a review of theoretical work on consumer search, see Baye, Morgan, and Scholten (2006) and Anderson and Renault (2018).
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Carlin and Ederer (2019) develop a model of search fatigue in which fatigue affects search decisions

across purchase trips, i.e., the more products the consumer searched before the previous purchase,

the higher her search costs are when searching towards the next purchase decision. In contrast, in

our paper, we focus on the effect of fatigue on search decisions before a given purchase, i.e., the more

the consumer searches before the current purchase, the higher her search costs.7 Also, in Carlin and

Ederer (2019) the goal is to study the effect of search fatigue on firm pricing decisions in equilibrium,

while we take our model to data and quantify the effect of fatigue on consumer decisions. Most closely

related to our paper, Ursu and Dzyabura (2020) posit that search costs increase linearly in the number

of alternatives searched and affect current search and purchase decisions, modeling choices which

we also make. However, the presence of increasing search costs is not sufficient for the occurrence of

search gaps. More precisely, such search costs may explain why the consumer stops searching, but not

why she restarts. For consumers to be willing to resume their search, search costs must also decrease

during a gap (if the consumer’s utility from the available options remains unchanged). To the best of

our knowledge, no prior work on consumer search suggests this possibility. Instead, prior economics

work on education finds that taking a break from academic classes to perform physical exercises, helps

students to recover from cognitive fatigue and to perform better academically (Bednar and Rouse

2019). We posit that a similar mechanism may drive search fatigue.

Our paper is also related to empirical work quantifying preference and search cost parameters using

individual-level data on consumers’ search activities (e.g., De los Santos, Hortaçsu, and Wildenbeest

2012; Koulayev 2014; Chen and Yao 2017; Honka and Chintagunta 2017; Honka, Hortaçsu, and

Vitorino 2017; De los Santos and Koulayev 2017; Dong et al. 2020; Yavorsky, Honka, and Chen 2021).8

Most of this work assumes that search costs per product are independent of the number of products

searched. The exception is Koulayev (2014) who estimates higher search costs for products searched

later, providing empirical support for the assumption of increasing search costs. Furthermore, this

stream of the literature rests on the theoretical models of Weitzman (1979) and Stigler (1961) and

assumes that consumers search options consecutively and stop searching only once. Although some

prior work recognizes the fact that consumers search in sessions (e.g., consumers learn across sessions

in Wu et al. 2015), it does not explicitly model consumers’ decisions to stop and resume searching

7A concept that may seem similar to fatigue is that of obfuscation (e.g., Ellison and Ellison 2009, Ellison and Wolitzky 2012). However,
the difference is that by obfuscating the consumer, firms increase their (baseline) search costs and the cost of making successive searches. As
such, our model and predicted behavior differ from those observed in a model with search obfuscation.

8For a review of empirical work on consumer search, see Honka, Hortascu, and Wildenbeest (2019).
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several times, and is thus not accounting for the presence of search gaps.

Finally, our paper relates to the literature on choice deferral. Work in consumer behavior shows

that choice difficulty increases the probability of the consumer choosing none of the options and thus

delaying her choice (Dhar 1997; Novemsky et al. 2007). In the context of a search model, we view

this finding as broadly suggesting that search gaps are more likely as search difficulty increases, a

result which is in line with our empirical patterns. More closely related is the work of Greenleaf

and Lehmann (1995) that identifies several possible reasons for consumers delaying the decision to

purchase a product such as the absence of time to devote to the task or the expectation of future

price decreases. Although not described in the context of consumer search, these reasons could also

influence search decisions. We contribute to this literature by developing a model of consumer search

in which consumers may stop and restart searching, thereby formalizing the idea of delay in the

context of search.

3 Data

3.1 Data Sources

Our primary data come from GfK, Germany’s largest market research company. GfK recruits and

maintains an online panel of representative consumers for whom online browsing data are collected

via a browser extension. This browser extension is installed on the panelists’ devices (PC, smartphone,

tablet) and records all their online activities. GfK groups all clicks which are not interrupted by a time

period of inactivity longer than 30 minutes (the industry standard) into “sessions.” The data are at the

exact URL level clicked by a consumer and also contain the time of each click, the visited website, and

consumer demographics (e.g., age, gender). Furthermore, GfK classifies clicks into activities such as

email, social networking, apparel, search engine use, banking, or gaming. And finally, GfK codes the

transaction funnel identifying website visits, product views, basket additions, checkouts, and order

confirmations.

Our data contain the complete PC browsing histories of online panel members from the Netherlands

from February 15, 2018, until May 1, 2018 (ten weeks), for sessions during which they made at least one

click to an apparel website. In other words, our data are conditional on an apparel click (not conditional

on a purchase) occurring during a session, but show all visited websites (including non-apparel
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websites) during such sessions. We chose to focus on products in the apparel category for two reasons:

first, this category is frequently visited by consumers, allowing us to observe multiple search actions.

And second, we were able to scrape product information for the URLs in the GfK data because they

are stable over time and are generally not personalized to individual consumers.9 While choosing a

category such as travel would allow us to observe enough search activity, we would not be able to

scrape product information since this information changes frequently and is often personalized. On

the other hand, a durable goods category only contains searches from a small number of consumers

and would restrict our analysis given our relatively short observation window.

We augmented the GfK data in several ways. First, we scraped product information from 44 of the

top 50 apparel websites. These 44 websites account for more than 57% of all apparel clicks, a large

percentage given the 1,046 unique apparel websites in our data. This data collection stage occurred

within one month of the last day of our observation period to prevent changes on the webpages. The

product information we obtained includes price (current and any promotions), page title, brand name,

product name, product color, reviews, star rating, number of photos, product description, shipping

information, speed score of the website, word counts, and page readability.10 Second, we identified

the purchased product as the last product searched before engaging in transaction related clicks (e.g.,

adding to cart, checking out, confirming an order) on the same website. Using this information, we

defined a “spell” as all search sessions conducted by a consumer before a purchase (or before the

end of our observation period if no purchase occurred). Next, we use URLs, page titles, and the

scraped information (e.g., product description) to identify nine product subcategories (e.g., “shoes” or

“accessories”) that the consumer searched. Finally, we define a “search gap” as the break a consumer

takes between subsequent search sessions. Figure 1 provides an example of a search process, defining

the concepts we use in this paper. Detailed information about the data collection, classification, and

cleaning steps are provided in Web Appendix A.

=========================

Insert Figure 1 about here
=========================

9Cavallo (2017) finds that 92% of apparel prices are the same online and offline within a chain, suggesting little personalization to
individual consumers’ visits.

10We obtain website speed score information from Google (https://developers.google.com). The website speed score is the page loading
speed with values ranging from 0 to 100. Google PageSpeed Insights considers 0−49 as slow, 50−89 as medium, and greater than 90 as fast
speed. We obtained other website features such as word counts, number of images, and readability from https://urlprofiler.com/.
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3.2 Data Description

Our data contain 7,877,551 observations with 428,651 apparel clicks. We observe searches made by

4,622 consumers in 5,665 spells and 40,735 sessions across nine distinct apparel subcategories. There

are a total of 3,036 products purchased in the apparel category, with 76% of spells containing no

purchased product, 11% of spells containing one purchased product, and 13% of spells containing at

least two purchased products. 65% of consumers are female; the average (median) age is 48 (49) with a

large standard deviation of 16. Click duration is, on average, half a minute and is slightly longer for

apparel than non-apparel clicks (0.54 versus 0.50 minutes, respectively).

We summarize session characteristics in Table 1. Activity in each session is extensive: on average,

consumers make 190 clicks on 30 websites and spend more than one hour online. In contrast, apparel

search in a session is more modest: the average consumer makes 11 apparel clicks, spends about five

minutes searching, and visits one apparel subcategory. The most popular activities in our data are

email, social networking, and apparel. Together they account for more than 33% of all clicks. The most

popular websites are google.com, live.com, and facebook.com.

=========================

Insert Table 1 about here
=========================

Table 2 lists the top apparel websites in terms of their searches and transactions. Zalando is the

most popular apparel website in our data and among online retailers in the Netherlands.11 More

precisely, Zalando has more than 22% of transactions in our data (15% of apparel clicks), followed by

H&M with 13% of transactions (10% of apparel clicks). The two most commonly purchased apparel

subcategories are “shirts, tops, & blouses” and “shoes.” In Table 3, we additionally display the most

popular websites searched and purchased in each of these two subcategories. Once again we note the

overall popularity of Zalando, as well as C&A and H&M in the “shirts, tops, & blouses” subcategory,

and of Schuurman Shoenen and Van Haren in the “shoes” subcategory. Finally, the subcategory

“jackets & vests” is the most expensive one with an average transaction price of 60AC, while “children’s

clothes,” the cheapest subcategory, has an average transaction price of less than 20AC.

=========================

Insert Tables 2 and 3 about here
=========================

In Table 4, we demonstrate that search gaps are very prevalent in our data. More specifically,

across all nine apparel subcategories, on average, 43% of search spells contain at least one search gap.

11For details, see https://ecommercenews.eu/top-10-online-stores-in-the-netherlands/.
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Conditional on a spell having at least one search gap, the average number of search gaps is three per

spell. The median length of a search gap (number of days between search sessions) is less than four

days, with 25% of search gaps lasting less than one day.12 Therefore, we focus on studying why search

gaps occur and how they can be understood from the lens of a search model.13 Spells range from 7

to 17 days, on average, depending on the subcategory.14 In comparison, the average time between

spells (for the approximately 30% of consumers who have more than one spell during our observation

period) is longer, typically lasting about two weeks.

=========================

Insert Table 4 about here
=========================

To summarize, we find that search gaps occur frequently both across consumers and across apparel

subcategories. In the next section, we delve deeper and attempt to relate search gaps to fatigue.

4 Search Sessions, Search Gaps, Fatigue, and Alternative Explanations

In this section, we first provide evidence that search sessions are not independent, i.e., that later search

sessions are a continuation of a search started in earlier sessions, and that search gaps are conscious

consumer decisions, i.e., that consumers choose when to take a break. We then show empirically that

these decisions are affected by fatigue. And finally, we present evidence against possible alternative

explanations for the occurrence of search gaps.

4.1 Empirical Evidence Showing that Search Sessions are not Independent

Here, we show several pieces of evidence in support of later search sessions being a continuation of a

search started in earlier sessions, i.e., of sessions not being independent.

First, across all apparel subcategories, 71% of spells do not contain any website revisits, 26% of

spells contain revisits without a purchase, and 3% of spells contain revisits with a purchase (for

statistics on each subcategory separately, see Table B-1 in Web Appendix B). The empirical pattern

that 71% of spells do not contain any revisits supports the idea that sessions are not independent, as

consumers continue their search by visiting new websites and obtaining new information in the same

12The average length of a search gaps is approximately one week, skewed by a small number of longer gaps (less than 10%).
13We also observe when a consumer takes a break within a search session. 31% of search sessions contain such gaps which, on average

(median), only last 3.73 (0.27) minutes. Because such gaps are less prevalent and are unlikely to lead to a change in fatigue due to their short
duration, we analyze search gaps across sessions.

14The average spell length may be lower than the average search gap length because only a fraction of spells contain gaps.
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apparel subcategory. Further, even when consumers revisit the same website (e.g., Nike.com), they

typically look at new products in the same subcategory (Nike Air sneakers rather than Nike Pegasus

sneakers) they did not see on the previous visit. In fact, only 5.3% of spells contain revisits to the

same product page. And lastly, conditional on ending in a purchase, 68% of spells do not contain

a revisit and 32% of spells contain a revisit. Taken together, these data patterns suggest that search

across sessions is connected.

Second, in Figure B-1 in Web Appendix B, we plot prices of searched products within a spell relative

to the price of the purchased product (for converting spells) for all nine apparel subcategories.15 We

find that, across most apparel subcategories, products searched closer to the end of the spell contain

searched prices that are more similar to the price of the purchased product than products searched

earlier in the spell. Although consumers likely do not search solely to learn prices in the apparel

category, this convergence in searched prices further supports the idea that searches across sessions

are not independent. Finally, we study the degree to which products searched in the same subcategory

are similar. Within each apparel subcategory, there are natural subdivisions. For example, we divide

searches within the “shirts, tops, & blouses” subcategory into searches for “short sleeve shirts” and

“long sleeve shirts”, and searches in the “shoes” subcategory into separate searches for “sneakers,”

“sandals,” “boots,” and “heels.”16 Looking at these subdivisions, we find that, on average, 36% of

spells contain at least one search gap, with as many as 48% of search spells for “sneakers” containing

at least one search gap. In other words, we find that consumers frequently continue their search for

very similar products after a break, suggesting that search sessions are not independent.

4.2 Empirical Evidence Showing That Search Gaps are Conscious Decisions

There are several pieces of evidence in our data pointing to search gaps being conscious decisions, i.e.,

occurring as a result of a decision by the consumer to delay her search. First, we find that consumers’

online activity rarely ends when their search in the apparel category ceases. More specifically, only

13% of sessions end with an apparel click. Furthermore, the two most popular activities after the last

apparel click are email and social networking, accounting for more than 23% of all clicks. These two

15To show this, we split searches within a spell into deciles, and compute the percentage price difference in the products searched in
decile n relative to the price of the purchased product. Deciles are computed following the method in Bronnenberg, Kim, and Mela (2016):
d(n,Ni) = ceil

( 10(n−r(0,1))
Ni−1

)
, where r(0,1) is a draw from a uniform distribution on the interval (0,1), n denotes the search under consideration,

and Ni denotes the total number of searches performed in spell i.
16These classifications account for at least two thirds of all searches within each subcategory.
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activities remain the most popular ones even when restricting the data to clicks in the evenings (6pm

to midnight) or on weekends, increasing the chances of them capturing leisure activities. These data

patterns suggest that consumers had more time available to allocate to online activities, but that they

chose not to spend more time searching for apparel.

Second, although we do not observe what consumers do during search gaps across sessions, we

observe what they do when pausing their search within a session. Here again, we find that email is

the most popular activity with 16% of clicks, followed by social networking with 6% of clicks.

And lastly, we observe when a notification announcing that an email was received interrupts

the apparel search and how consumers react to this event. Receiving such a notification is arguably

exogenous to the consumer search for apparel products. We find that 91% of consumers who get a

notification while searching in the apparel category return to searching apparel in the same session.

In other words, consumers do not pause their search in response to an email notification, i.e., take

a search gap. Taken together, these data patterns suggest that search gaps are a result of conscious

decisions made by consumers.

4.3 Empirical Evidence for Fatigue Affecting Search Gaps

Here, we aim to link fatigue and search gaps. Doing so is challenging because we do not directly

observe a consumer’s fatigue level and thus cannot directly relate it to the decision to take a break

versus to continue searching without a break. An ideal experiment would manipulate consumers’

fatigue levels (e.g., by making some websites slower to load or by increasing the amount of information

available) and directly test whether fatigue affects search gaps. In what follows, we seek to mimic this

experiment and test the relation between fatigue and search gaps using observational data.

First, we consider two proxies for fatigue: consumer demographics and website characteristics.

We then check whether these fatigue proxies are related to the number of gaps a consumer makes

while searching. We define our dependent variable as the logarithm of the number of search gaps

in a spell (plus one) and present the results in columns (i) and (ii) in Table 5. Column (i) shows the

results for “shirts, tops, and blouses” and column (ii) shows the results for “shoes,” the two most

commonly purchased apparel subcategories in our data. All regressions control for the number of

searches consumers perform since consumers who search longer generally also have more search gaps.
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=========================

Insert Table 5 about here
=========================

We find that older consumers have more search gaps in a spell. There is an abundance of medical

research supporting the idea that mental processing abilities are affected by age, with observed declines

in conceptual reasoning, memory, processing speed, and attention to stimuli in older individuals

(Harada, Love, and Triebel 2013). These changes in mental abilities can affect decision-making

processes in marketing-relevant contexts (Peters 2010; Carpenter and Yoon 2011). For example, older

consumers have been shown to make better decisions when presented with fewer options (Tanius et al.

2009; Abaluck and Gruber 2013). Also, research shows that older consumers are more likely to use

heuristics, to search for a shorter amount of time, and to build smaller consideration sets to reduce

cognitive effort (Kim et al. 2005; Lambert-Pandraud, Laurent, and Lapersonne 2005). Motivated by

this evidence, we consider age as a possible proxy of a consumer’s proneness to fatigue and find age

to have a positive effect on search gaps.17 Furthermore, consumers who visit websites that are slower

to load (lower speed score) and harder to read (higher readability/SMOG index) also have more search

gaps.18 Assuming that these variables are suitable proxies for consumer fatigue, our results show that

higher fatigue levels lead to more search gaps.

Second, we check whether the number of options searched after the last gap affects the probability

of a gap. If more search increases fatigue levels, then the more websites the consumer searches after

the latest break, the higher the probability of a search gap. We consider two measures of the number

of searches performed: (i) the cumulative number of websites searched since the previous gap and

(ii) the total number of minutes spent searching since the previous gap. The results are displayed in

columns (iii) to (vi) in Table 5. Consistent with our hypothesized relation between fatigue and search

gaps, we find that the more websites a consumer searched after the latest break or the more time she

spent searching, the more likely it is that she takes a break.

17For consistency with the empirical setup in Section 7, we also estimated the regressions in Table 5 with an indicator for age greater
than or equal to 50. The results are very similar to those shown in Table 5: the age coefficient in subcategory 1 (2) is significant and equal to
0.1349 (0.3169) with a standard error of 0.0284 (0.0333). The results are available from the authors upon request.

18Page readability is measured in terms of its SMOG index, which computes the number of years of education needed to understand
a piece of text. Therefore, a larger SMOG index means a less readable text. More information about the SMOG index can be found at
https://en.wikipedia.org/wiki/SMOG.
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4.4 Empirical Evidence Against Alternative Mechanisms

In what follows, we briefly discuss several potential alternative explanations for the occurrence of

search gaps. Our goal is not to rule out all alternative explanations. Indeed, multiple reasons may

affect the occurrence of search gaps. Rather, our goal is to provide empirical evidence against some

of the most common alternatives. Modeling the relation between search gaps and factors other than

fatigue is left for future research.

One alternative explanation for search gaps is that consumers may delay their search because they

expect prices to decrease or other product features to improve. This reason is particularly pertinent in

a category such as travel, in which airfare and hotel prices change very frequently and dynamically

in response to changes in demand and the available supply of options. However, in the apparel

category, price and product feature changes are less frequent. More precisely, product features change

mostly every season and there are only two major seasons annually (Fall/Winter, running from July to

December, and Spring/Summer, running from January to June),19 while prices typically change around

holidays or at the end of each season when products go on sale.20 Our observation period (February

15 to May 1) falls within a single season and does not overlap with any major sales periods.21 Further,

the median search gap in our data is shorter than four days. Therefore, it is unlikely that search gaps

occur because consumers expect prices or other product features to change in our empirical setting.

A second alternative explanation is that consumers resume their search to obtain additional

information about the same products or because they forgot the information they gathered previously.

Note that these behaviors occur even absent gaps, i.e., they may occur even if the consumer does not

take any breaks during her search. Both these decisions involve revisits of previously searched options

(see, e.g., Ursu, Wang, and Chintagunta 2020; Dang, Ursu, and Chintagunta 2020). However, in our

data, most spells do not contain any website revisits (71%) and product page revisits account for only

5.3% of all clicks, with most of these product page revisits (72%) occurring within a session rather than

across sessions. Therefore, revisits cannot explain search gap behavior.

Third, search gaps may occur because consumers only have a predetermined budget of time

19For more details, see https://www.leaf.tv/articles/when-do-fashion-seasons-start/.
20Spring/summer goods usually go on sale in June and July and Fall/Winter goods usually go on sale in January after the winter holidays

(see https://money.usnews.com/shopping-holidays-the-best-days-to-shop-this-year, https://www.thebalance.com/comprehensive-guide-to-
seasonal-sales, or for the Netherlands https://www.amsterdamsights.com/shopping/sales-period).

21The exception is Easter, which occurred on April 1, 2018. However, comparing transactions one week before and one week after Easter
shows no significant difference in prices (difference= 0.02, t = 1.32).
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available to allocate to searching during the current session.22 We present three pieces of evidence

against this alternative explanation. First, as previously noted, only 13% of sessions end with an

apparel click and apparel searches are typically followed by leisure activities. This observation suggests

that most consumers had more uncommitted time available, but chose not to devote it to additional

apparel searches. Second, we plot the length of a search session in minutes in Figure 2(a). If consumers

had a predetermined budget of time for shopping for apparel, we would expect to see spikes at, e.g.,

30 or 60 minutes. However, we do not observe such a pattern in Figure 2(a). Third, in Figure 2(b), we

plot the second of the last apparel click in a search session (0 seconds represents any full hour during a

day, 1,800 seconds represents any half hour during a day, etc.). If consumers had a predetermined

budget of time for shopping for apparel until, e.g., the beginning of a meeting, we would expect to

see spikes at, e.g., 0 or 1,800 seconds since meetings tend to start at those times. However, we do not

observe such a data pattern in Figure 2(b). To summarize, we find no evidence that consumers had a

predetermined budget of time to search for apparel products.
=========================

Insert Figure 2 about here
=========================

And finally, we also consider the possibility that search gaps occur when consumers are undecided

about which product(s) to buy or whether to make a purchase at all. Although we do not observe

consumers’ levels of indecision, website and especially product page revisits represent behavior that

is consistent with indecision: consumers may revisit websites and product pages to gather more

information about a product and to resolve their indecision. However, as also discussed in Section 4.1,

71% of the spells do not contain any website revisits. Even when consumers revisit the same website,

they typically look at new products in the same subcategory they did not see on the previous visit. In

fact, only 5.3% of spells contain revisits to the same product page. Such data patterns are inconsistent

with indecision. Further, we hypothesize that searching for (i) products with more features and (ii)

more expensive products makes purchasing a more challenging decision, and thus may more often

lead to indecision. If this hypothesis is correct, we should observe more search gaps in subcategories in

which products have more features and are more expensive relative to subcategories in which products

have fewer features and are cheaper.23 Using the statistics from Table 4, we find little difference in the
22Note that this reason may also involve changing search costs over time, but it differs from fatigue because of the predetermined nature

of a budget of time.
23We view “underwear,” “children’s clothing,” and “accessories” as subcategories with simpler products (fewer features) and “shirts,

tops, and blouses,” “shoes,” “pants and jeans,” and “dresses and skirts” as subcategories with more complex products (more features).
Looking at prices, the three most expensive subcategories are “jackets and vests,” “shoes,” and “dresses and skirts;” the three least expensive
subcategories are “children’s clothes,” “accessories,” and “shirts, tops, and blouses.”
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percent of spells with at least one search gap or in the number of search gaps in these subcategories

when comparing (i) products with fewer and more features and (ii) more expensive and less expensive

products. And lastly, we consider another indicator of consumers’ indecision: cart additions followed

by search gaps. When consumers are undecided about whether to make a purchase, they may add a

product to their cart, and then abandon it by taking a break from searching. However, we find that

only 3% of search gaps occur immediately after a cart addition and that most cart additions happen in

the last session of a spell (53%). Together, these data patterns do not support the notion that indecision

is the main factor driving search gap decisions.

In sum, we showed that search gaps are mostly driven by fatigue and not by expectations, a

limited budget of time, forgetting or indecision in our empirical context. Next, we develop a model of

sequential search that endogenizes search gaps due to fatigue.

5 Model

5.1 Setup

A consumer seeks to purchase from option j = 1, . . . , J or to choose the outside option of not purchasing

(denoted by j = 0).24 The consumer knows the utility distributions F j (·), but has to search to learn the

actual utility of a product u j, i.e., u j is an independent draw from the continuous distribution function

F j (·). Search occurs sequentially. Let S denote the set of searched options, while S̄ denotes the set

of options still available for search. The best option among the searched ones is denoted by y, i.e.,

y = max j∈S∪{0} u j. Consumer choices depend on the state variables S̄ and y.

We extend the framework developed by Weitzman (1979) to account for search gaps. This involves

making two modifications. First, we allow the consumer not only to decide which option to search,

but also when to search it: now or after taking a break. To this end, we define a new (additional) state

variable, t ≥ 0, which tracks the number of options searched after the last break, implying |S| ≥ t. If the

consumer decides to continue searching, she can either search an option j immediately at t or after

taking a break, which resets t to zero.25

24We omit consumer i subscripts in what follows, but our model should be understood as applying to every single consumer.
25Many factors (e.g., advertising) may influence a consumer’s decision of when to resume her search. However, modeling a consumer’s

choice of search gap length is beyond the scope of this paper and we assume that we observe the consumer searching again after t was
reset to zero. Consistent with this modeling choice, a preliminary analysis shows that longer gaps do not correlate with the number of
searches performed in the next session. This finding suggests that only a short amount of time is needed to reset search costs, making it not
paramount to model search gap length. The analysis is available from the authors upon request.
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And second, we allow search cost per option to increase with the number of searched options.26

Following Ursu and Dzyabura (2020), search costs are given by

c j = c j0 +αt (1)

where c j0 are baseline search costs and t captures the number of searches without a break. Recall that

t = 0 after the consumer takes a break or before she searches any options. The first component c j0

captures the cost of searching j regardless of the number of other options searched. It depends on

characteristics of that option, e.g., a website’s prominence among results in a search engine ranking.

The second component depends on t and represents the consumer’s fatigue from searching, i.e., is due

to the number of previously searched options. For simplicity, we assume that the difference in cost

between subsequent searches is constant, i.e., it costs an additional α > 0 for the consumer to search

option j after having searched t other options. This functional form implies that the cost of the first

search and that of searching an option after taking a break equal c j0, while other searches involve

paying a higher cost per option.

Given the state variables
(
S̄, t, y

)
, at each search occasion, the problem solved by the consumer is

given by

V
(
S̄, t, y

)
= max

stop, continue

{
y, max

j∈S̄
Φ j

(
S̄, t, y

)}
, (2)

where V
(
∅, t, y

)
= y. The search value Φ j

(
S̄, t, y

)
is defined as

Φ j
(
S̄, t, y

)
= max

now, later

{
−c j0−αt + W j

(
S̄, t + 1, y

)
, β

[
−c j0 + W j

(
S̄,1, y

)]}
, (3)

with 0 < β < 1 being the discount factor if the consumer decides to search later. Furthermore, the

continuation value W j
(
S̄, t + 1, y

)
is given by

W j
(
S̄, t + 1, y

)
= V

(
S̄\ j, t + 1, y

)
F j

(
y
)
+

∫
∞

y
V

(
S̄\ j, t + 1,u

)
dF j (u) . (4)

The interpretation of the value function in equation (2) is as follows: given a set of options available

for search S̄, a number t of options searched after the latest break, and a best option observed so far y,

the consumer makes three decisions. First, she decides whether to stop or to continue searching. If she

26An alternative model would be to let search costs be a function of the elapsed time since the prior break. We leave such a model to
future research. Instead and consistent with most of the literature that considers increasing search costs (e.g., Stiglitz 1987, Carlin and Ederer
2019, Ursu and Dzyabura 2020), we let search costs be a function of the number of searched options and note the similarity between these
approaches (i.e., greater elapsed time is a direct consequence of additional searches).
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stops searching, she gets a payoff y which represents the option of buying the alternative with the

highest utility revealed among those searched or of choosing the outside option of not purchasing.

Second, if she decides to continue searching, she has to make two decisions (simultaneously): (i) which

option j to search among those not yet searched and (ii) whether to search the chosen option now

(at t) or after a break. Φ j
(
S̄, t, y

)
denotes the value of choosing to search option j from S̄. Searching j

immediately involves paying a relatively high search cost due to t. In contrast, choosing to search j

after a break involves paying a lower search cost, but discounting the continuation value at a rate β. If

the consumer decides to search j after taking a break, she receives no utility in the current time period

and t resets to zero. In this model, a higher level of fatigue α encourages more search gaps, making

the value of searching an option now less desirable. The continuation value W j
(
S̄, t + 1, y

)
defined

in equation (4) is given by the probability of revealing a utility u lower than y by searching j, and

thus continuing the process with the same best option y, and by the probability of revealing a utility

u higher than y, and thus continuing the process with u. We assume that −c j + W j
(
S̄,1, y

)
≥ 0,∀ j ∈ J.

Search for options for which this inequality does not hold is postponed indefinitely. It follows that

Φ j
(
S̄,0, y

)
= −c j0 + W j

(
S̄,1, y

)
.

If t did not affect search decisions, i.e., if α = 0 and t were not a state variable, then our problem

would coincide with the Weitzman (1979) problem, in which V
(
S̄, y

)
=

{
y, max j∈S̄ −c j0 + W j

(
y
)}

. A

consumer’s optimal search strategy in the Weitzman (1979) problem can be described as an index

policy: for each option j, compute an index, i.e., a reservation utility, and proceed to search options in

a decreasing order of these indices until all options have been searched or any unsearched options

have an index lower than the best observed utility among those searched. The index of option

j is the unique solution z j to c j0 = W j

(
z j

)
− z j, where the continuation value W j

(
y
)

simplifies to

W j
(
y
)

= yF j
(
y
)
+
∫
∞

y udF j (u) since the one-step ahead policy is optimal (for more details, see Weitzman

1979). In this paper, we extend the Weitzman (1979) framework to account for search gaps and

consumer fatigue. This also requires proposing a new solution to the problem we presented above

since, as we describe in the next two subsections, it does not have an index policy solution.

5.2 Indexability and Related Problems

To the best of our knowledge, no index policy solution to the general problem presented in equation

(2) exists. To understand why this is the case, consider the following examples of simpler versions of
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our model: if gaps happen exogenously (i.e., the consumer does not choose whether to search now or

later) and if search costs are constant, our problem coincides with the Weitzman (1979) problem and

an optimal index policy exists. However, if gaps happen exogenously but search cost increase with

the number of searches, the problem above does not coincide with the Weitzman (1979) problem. In

particular, it is not indexable because the optimization problems of different options interact: although

utility draws are independent across options, searching an option increases the search costs for all

so far unsearched options. This means that the assumption in Weitzman (1979) that searching an

option does not affect the payoffs of any other option is violated, leading to a failure of the index

policy solution. Therefore, one reason why no index policy solution exists in the general version of our

problem is the increasing nature of search costs.

In addition, in our problem, consumers decide not only which options to search, but also when to

search them (now or later), adding an extra layer of decision-making not present in the Weitzman

(1979) model (or most other search models in the literature). This feature makes our model resemble a

bandit superprocess (BSP), a generalization of a multi-armed bandit problem (itself a generalization of

the Weitzman 1979 problem). In BSP, a decision maker not only chooses which of a set of independent

arms/processes to play in each time period, but also chooses from a number of actions for each

arm/process conditional on playing (Gittins, Glazebrook, and Weber 2011).27 Similarly, in our problem,

a consumer chooses not only which products to search, but also when to search them (now or later).

BSPs are generally not indexable because the optimizations for different processes interact: choosing

a certain action for one process can affect the rewards of a different process (Whittle 1980, Brown

and Smith 2013). In our case, choosing to take a break resets search costs for all unsearched options,

meaning that the payoffs from one option are affected by choices related to other options. Thus, this

additional layer of decision-making present in our model also prevents indexability.

5.3 Deriving a Solution

Despite the aforementioned indexability issues, in this subsection, we propose a solution for the entire

set of decisions a consumer makes in our model: (i) which alternatives to search, (ii) when to search an

alternative, and (iii) whether to continue searching. The purchase decision remains the same (purchase

27Our model is not a bandit superprocess because the searchable products are not independent – they are connected through t.
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the product with the largest realized utility among those searched), so we omit it in the following.28

We are able to derive an optimal solution after showing that, under a set of fairly general conditions,

the optimal search order in our problem coincides with the one in Weitzman (1979).

5.3.1 Selection rule

The selection rule determines which option the consumer searches next if she decides to continue

searching. If t did not affect search decisions, then the optimal selection rule would be that described

in Weitzman (1979): search options in decreasing order of their reservation utility. In contrast, when t

affects the search process, the selection rule may vary with t, as we show next.

Theorem 1. The optimal selection rule depends on t.

Proof: To show this, it suffices to provide an example in which the search order is different for two

values of t. Consider any two options, j and k, and compare their search order at t > 0 and t = 0. The

value of searching j or k at t is given by equation (3):

Φ j
(
S̄, t, y

)
= max

now, later

{
−c j0−αt + W j

(
S̄, t + 1, y

)
, β

[
−c j0 + W j

(
S̄,1, y

)]}
= max

now, later

{
a, βA

}
Φk

(
S̄, t, y

)
= max

now, later

{
−ck0−αt + Wk

(
S̄, t + 1, y

)
, β

[
−ck0 + Wk

(
S̄,1, y

)]}
= max

now, later

{
b, βB

}
Suppose that, if t = 0, the consumer prefers searching j before k, i.e.,

Φ j
(
S̄,0, y

)
−Φk

(
S̄,0, y

)
= W j

(
S̄,1, y

)
−Wk

(
S̄,1, y

)
−

(
c j0− ck0

)
= A−B > 0. (5)

We show that this does not necessarily imply that Φ j
(
S̄, t, y

)
−Φk

(
S̄, t, y

)
> 0 for any t > 0, i.e., the search

orders at t = 0 and t > 0 may be different. There are four cases to consider:29

1. Suppose a > βA and b > βB. Then

Φ j
(
S̄, t, y

)
−Φk

(
S̄, t, y

)
= a−b = W j

(
S̄, t + 1, y

)
−Wk

(
S̄, t + 1, y

)
−

(
c j0− ck0

)
.

This difference may be positive or negative.

2. Suppose a > βA and b < βB. Then

28We note that, as in Weitzman (1979), consumers can choose to purchase any of the options they searched previously – before and after
any breaks they might have taken during a search spell.

29We only consider cases for which the expressions in equation (5) hold with inequality since other cases are straightforward to solve
based on these results.
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Φ j
(
S̄, t, y

)
−Φk

(
S̄, t, y

)
= a−βB .

Since A > B, then a > βB, so the search order at t > 0 coincides with that at t = 0.

3. Suppose a < βA and b > βB. Then

Φ j
(
S̄, t, y

)
−Φk

(
S̄, t, y

)
= βA−b = βW j(S̄,1, y)−Wk(S̄, t + 1, y)−βc j0 + ck0 +αt .

This difference may be positive or negative.

4. Suppose a < βA and b < βB. Then

Φ j
(
S̄, t, y

)
−Φk

(
S̄, t, y

)
= βA−βB .

This difference is positive since A > B, so the search order at t > 0 coincides with that at t = 0.

In sum, in cases 2 and 4, the same search order prevails for any t. However, in the other two cases,

such a result is not generally true. �

In Theorem 1 we showed that the selection rule may depend on t. In other words, a consumer

may want to search options in one order at t, but may want to search the same options in a different

order at t′ , t. The following example illustrates this result. Suppose there are two options, j and k, a

consumer could search. Also suppose that, for small values of t, the consumer prefers to search option

j before option k. As t increases, the consumer is more fatigued and thus more likely to want to search

option j after a break than to want to search option j without a break. However, it is possible that the

consumer may still want to search k without a break, implying that she may want to switch her search

order and search option k before option j for larger values of t.

Such a switch does not necessarily have to occur. More precisely, for large t, if the consumer wants

to search j after a break and also wants to search all other options after a break, then the same search

order will prevail for all t. In other words, if the benefit from searching now versus after a break

changes monotonically across options, then the optimal search order will be independent of t. In what

follows, we describe a sufficient condition for the optimal search order in our problem to be the same

for all t.

Condition 1. The difference in continuation values of two options j and k is monotonic if, for any t > 0,

W j
(
S̄, t + 1, y

)
−Wk

(
S̄, t + 1, y

)
≥ W j

(
S̄,1, y

)
−Wk

(
S̄,1, y

)
whenever searching j before k is optimal for t = 0.

In general, if the consumer wants to search j before k for t = 0, then she will want to search these

options in the same order after a break as well (since after a break t resets to zero). Condition 1 ensures
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that the consumer will also want to search j and k in the same order without a break, i.e., for t > 0.

Using Condition 1, we can now show the following.

Theorem 2. Under Condition 1, the optimal search order for t > 0 coincides with the optimal search order for

t = 0.

Proof: This result follows from the proof of Theorem 1. In case 1, it is straightforward to see that this

monotonicity condition is sufficient for the statement to be true. Also, in cases 2 and 4, the same search

order prevails for any t ≥ 0 even absent the monotonicity condition. In case 3, the consumer prefers to

search j after the break (a < βA) and k before a break (b > βB). Under the monotonicity condition, she

will also prefer to search j before k before a break (since a > b and βA−b > 0). Since this holds for any

pair of alternatives and any values of t, our statement follows. �

5.3.2 Evaluating Condition 1

To better understand Condition 1 and to determine the optimal search order in our problem, we need

to characterize the relation between the continuation value, W j(S̄, t + 1, y), and its arguments. This is

challenging because continuation values are recursive functions of all future decisions a consumer will

make (see equation (4)), and thus do not have simple closed form expressions that can be analyzed.

However, as is common in finite horizon dynamic programming problems, we can make progress

using backward induction.

One Option Left to Search

Suppose there is only one unsearched option j left. Also, suppose that t options have been searched

after the latest break and that the best option observed so far is y. Then the consumer solves the

following problem:

V
(
j, t, y

)
= max

{
y, −c j0−αt + W j

(
y
)
, β

[
−c j0 + W j

(
y
)] }

, (6)

where W j
(
y
)
= yF j

(
y
)
+

∫
∞

y udF j (u) since the consumer will stop searching after j. The continuation

value here coincides with the one in Weitzman (1979). Note that W j
(
{ j}, t + 1, y

)
= W j

(
{ j},1, y

)
= W j

(
y
)
,

so the continuation value has a relatively simple expression.
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Two Options Left to Search

Now suppose there are two options left to search, j and k. In this case, the consumer solves the

following problem:

V
(
{ j,k}, t, y

)
=

{
y, Φ j

(
{ j,k}, t, y

)
, Φk

(
{ j,k}, t, y

) }
, (7)

where the value of searching j equals

Φ j
(
{ j,k}, t, y

)
= max

now, later

{
− c j0−αt + W j

(
{ j,k}, t + 1, y

)
, β

[
−c j0 + W j

(
{ j,k},1, y

)] }
. (8)

The continuation value W j
(
{ j,k}, t + 1, y

)
is now given by

W j
(
{ j,k}, t + 1, y

)
= V

(
k, t + 1, y

)
F j

(
y
)
+

∫
∞

y
V (k, t + 1,u)dF j (u) (9)

= max
{

y︸︷︷︸
I

, −ck0−α(t + 1) + Wk
(
y
)︸                      ︷︷                      ︸

II

, β
[
−ck0 + Wk

(
y
)]︸              ︷︷              ︸

III

}
F j

(
y
)

+ max


∫
∞

y
udF j (u)︸         ︷︷         ︸

I’

,

∫
∞

y
[−ck0−α(t + 1) + Wk (u)]dF j (u)︸                                       ︷︷                                       ︸

II’

,

∫
∞

y
β [−ck0 + Wk (u)]dF j (u)︸                             ︷︷                             ︸

III’


,

and the consumer will stop searching after j and k, explaining the presence of Wk (·) above.

We inspect the expression for W j
(
{ j,k}, t + 1, y

)
using three approaches: first, using simula-

tion studies, we use the function derived in equation 9 to directly check when the difference[
W j

(
{ j,k}, t + 1, y

)
−Wk

(
{ j,k}, t + 1, y

)]
−

[
W j

(
{ j,k},1, y

)
−Wk

(
{ j,k},1, y

)]
is non-negative for any two op-

tions j and k, i.e., when Condition 1 holds. Second, we provide additional analytical results on the

generality of Condition 1 by investigating the relation between W j
(
{ j,k}, t + 1, y

)
and W j

(
{ j,k},1, y

)
. And

third, we compare the functional form of the continuation value in our problem to that in Weitzman

(1979) by examining the relation between W j
(
{ j,k}, t + 1, y

)
and W j

(
y
)
. In the following, we present our

main findings. A more detailed discussion with additional analyses and results in available in Web

Appendix C.
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Condition 1 Evaluated for a Wide Range of Parameter Values

We compute the difference
[
W j

(
{ j,k}, t + 1, y

)
−Wk

(
{ j,k}, t + 1, y

)]
−

[
W j

(
{ j,k},1, y

)
−Wk

(
{ j,k},1, y

)]
for any

two options j and k and check when it is non-negative, i.e., when Condition 1 holds. To compute

this difference, we follow prior work (Kim, Albuquerque, and Bronnenberg, 2010, 2017; Honka and

Chintagunta, 2017; Chen and Yao, 2017; Ursu, 2018) and assume that F (·) represents the normal

distribution. More precisely, we consider two options, j and k, with distributions given by N
(
µ j,σ2

j

)
and N

(
µk,σ

2
k

)
. Also consistent with prior work, we parameterize baseline search costs as c j0 = eκ j and

ck0 = eκk . For consistency and to ensure a positive value, we let fatigue equal α= ea. The utility of the best

option observed through search y must exceed the value of the outside option, which, consistent with

the literature, we set to zero (Weitzman, 1979; Kim, Albuquerque, and Bronnenberg, 2010). We then

vary the values of the ten parameters
[
µ j,µk,σ j,σk,κ j,κk,a, y, t,β

]
over a large parameter space, compute

the difference
[
W j

(
S̄, t + 1, y

)
−Wk

(
S̄, t + 1, y

)]
−

[
W j

(
S̄,1, y

)
−Wk

(
S̄,1, y

)]
, and check when Condition 1

is satisfied.

An in-depth description of the simulation studies and detailed results can be found in Section

C.1.4 in Web Appendix C; here, we provide a summary. After evaluating more than 1,000,000

parameter combinations (in three different sets of simulations), both far from and close to the values

we obtain when estimating our model, we find that Condition 1 is satisfied in the vast majority (86%) of

simulations, i.e., the difference [W j
(
S̄, t + 1, y

)
−Wk

(
S̄, t + 1, y

)
]−[W j

(
S̄,1, y

)
−Wk

(
S̄,1, y

)
]≥ 0. Even when

Condition 1 is not satisfied, the difference [W j
(
S̄, t + 1, y

)
−Wk

(
S̄, t + 1, y

)
]− [W j

(
S̄,1, y

)
−Wk

(
S̄,1, y

)
] is

mostly a very small negative number.30 Allowing for very small violations of up to 0.1, Condition 1

holds in more than 93% of simulations.31 Also, Condition 1 is satisfied in all simulations (100%) when

parameter values are close to our coefficient estimates.

Relation between W j
(
{ j,k}, t + 1, y

)
and W j

(
{ j,k},1, y

)
We now turn to analyzing the relation between W j

(
{ j,k}, t + 1, y

)
and W j

(
{ j,k},1, y

)
shown in equation

(9). First, note that W j
(
{ j,k}, t + 1, y

)
≤W j

(
{ j,k},1, y

)
,∀t,∀y, since W j

(
{ j,k}, t + 1, y

)
is weakly decreasing

in t. And second, note that W j
(
{ j,k}, t + 1, y

)
will only depend on t if the consumer chooses to frequently

search options without a break. Mathematically, W j
(
{ j,k}, t + 1, y

)
will only depend on t if the second

30Note that the calculated values of the difference [W j
(
S̄, t + 1, y

)
−Wk

(
S̄, t + 1, y

)
]− [W j

(
S̄,1, y

)
−Wk

(
S̄,1, y

)
] in the simulations range

from -9 to 9.
31We define a very small violation as follows: 0 < [W j

(
S̄, t + 1, y

)
−Wk

(
S̄, t + 1, y

)
]− [W j

(
S̄,1, y

)
−Wk

(
S̄,1, y

)
] ≤ −0.1.
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terms in each maximum expression in equation (9), marked as II and II’, respectively, are larger than

the other two terms, marked as I and III and I’ and III’, respectively.

For example, if fatigue α is small, then the consumer is more likely to search without a break,

implying that W j
(
{ j,k}, t + 1, y

)
will vary with t. Similarly, if the consumer heavily discounts future

searches (small β) or if y is small (e.g., if the consumer is early in her search process), then the consumer

will prefer to search without a break and W j
(
{ j,k}, t + 1, y

)
will vary with t. In contrast, for large values

of α, β or y, the consumer will frequently take breaks from searching and the continuation value

will be independent of t, i.e., W j
(
{ j,k}, t + 1, y

)
= W j

(
{ j,k},1, y

)
. This result also holds in a variety of

other settings. Importantly, we show in Web Appendix C that, for the range of values we obtain

when estimating our model (see Section 7), W j
(
{ j,k}, t + 1, y

)
= W j

(
{ j,k},1, y

)
∀t holds in most cases.

This comes from the fact that search gaps are very prevalent in our data (see Section 3), implying

a large fatigue level and that W j
(
{ j,k}, t + 1, y

)
will not vary with t in most cases.32 Having shown

that W j
(
S̄, t + 1, y

)
= W j

(
S̄,1, y

)
∀t when only one option is left to search (because they both equal

the continuation value in Weitzman (1979), W j
(
y
)
) and when two options are left to search and α, β,

and/or y are large, a straightforward induction proof shows that the same result holds for any set S̄ of

unsearched options (see formal proof in Section C.1.5 in Web Appendix C). If W j
(
S̄, t + 1, y

)
does not

vary with t, then Condition 1 is trivially satisfied.

We illustrate these results using the following simulation exercise. Consider two options, j and k,

with distributions given by N(µ j,σ2
j ) and N(µk,σ

2
k), where µ j = 2, µk = 1, σ2

j = σ2
k = 1. Suppose baseline

search costs equal c j0 = ck0 = e−2 and that consumers discount future searches at the rate β = 0.95.

Consistent with the literature, the utility of the best option observed through search y is at least zero

(Weitzman, 1979; Kim, Albuquerque, and Bronnenberg, 2010). In Figure 3, we show how the value

of W j
(
{ j,k}, t + 1, y

)
varies with t for different levels of fatigue α. For small fatigue levels, e.g., α = e−6

in Figure 3(a), consumers search an option without a break and, as expected, the continuation value

varies with t for relatively small values of y. When y is large, consumers are more likely not to search

and the continuation value will not depend on t.

=========================

Insert Figure 3 about here
=========================

For large fatigue levels, e.g., α = e−1 in Figure 3(b), the continuation value is independent of t, i.e.,

32Note that this result does not require that consumers take breaks after every option searched. Rather, it says that W j
(
{ j,k}, t + 1, y

)
and

W j
(
{ j,k},1, y

)
are good approximations for each other when consumers take frequent breaks.
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W j
(
{ j,k}, t + 1, y

)
= W j

(
{ j,k},1, y

)
∀ t, since consumers need to take frequent breaks because of fatigue.

The same result holds in our empirical application: in our data, search gaps are very prevalent,

implying a large fatigue level and thus that W j
(
{ j,k}, t + 1, y

)
will not vary with t in most cases (for more

details, see Web Appendix C). Note again that the relation W j
(
{ j,k}, t + 1, y

)
= W j

(
{ j,k},1, y

)
does not

only hold when fatigue or y are large. As reported above and in Web Appendix C, in many empirically

relevant cases, W j
(
{ j,k}, t + 1, y

)
and W j

(
{ j,k},1, y

)
are good approximations for each other, implying

that Condition 1 is satisfied.

Relation between W j
(
{ j,k}, t + 1, y

)
and W j

(
y
)

The third set of results we derive based on equation (9) concerns the relation between W j
(
{ j,k}, t + 1, y

)
and W j(y), the continuation values in our and in the Weitzman (1979) problem, respectively. First, it

follows from equation (9) that W j
(
{ j,k}, t + 1, y

)
≥ W j

(
y
)
, ∀t,∀y.33

Second, for large (finite) values of y, F j
(
y
)
≈ 1, implying that Wk

(
y
)
≈ y, and thus that the

continuation value can be approximated by W j
(
{ j,k}, t + 1, y

)
≈ max

{
y, −ck0−α(t + 1) + y, β

[
−c j0 + y

]}
=

y since α,β > 0, t ≥ 0, baseline search costs are positive, and y is large and positive. As a result, for large

values of y, the continuation value in our problem coincides with the one in Weitzman (1979). And

third, for small (finite) values of y, F j(y) ≈ 0. In this case, the continuation value can be approximated

by W j
(
{ j,k}, t + 1, y

)
≈ max

{
EF j (u) , −ck0−α (t + 1) +

∫
∞

y Wk (u)dF j (u) , β
[
−c j0 +

∫
∞

y Wk (u)dF j (u)
]}

since

W j
(
y
)
≈ EF j (u) for small values of y (where EF j (u) is the expected value with respect to F j (·)). A

sufficient condition for the continuation value in our problem to coincide with the one in Weitzman

(1979) is that EF j (u) ≥
∫
∞

y Wk (u)dF j (u) ≥ 0.

We illustrate these results using a simulation exercise. Once again, consider two options, j and k,

with distributions given by N
(
µ j,σ2

j

)
and N

(
µk,σ

2
k

)
. In this case, the continuation value in Weitzman is

given by W j
(
y
)

= µ jσ j +
(
y−µ jσ j

)
Φ(m j) +σ2

jφ
(
m j

)
with m j =

y−µ j

σ j
. To compare W j

(
{ j,k}, t + 1, y

)
with

W j
(
y
)
, we fix t = 1 and illustrate one of the largest differences between the two continuation values (recall

that W j
(
{ j,k}, t + 1, y

)
is weakly decreasing in t). Figure 4(a) shows the value of W j

(
{ j,k}, t + 1, y

)
relative

to W j
(
y
)

for µ j = 2, µk = 1, and σ j = σk = 1. As expected, for large values of y, W j
(
{ j,k}, t + 1, y

)
= W j

(
y
)
.

For smaller values of y, we see that W j
(
{ j,k}, t + 1, y

)
≥W j

(
y
)
, but the difference is very small. In Figure

4(b), we change the parameter values to µ j = 1 and µk = 2. For large values of y, W j
(
{ j,k}, t + 1, y

)
33The result follows from the fact that max{a,b,c}+ max{d,e, f } ≥max{a + d,b + e,c + f } for any values

(
a,b,c,d,e, f

)
.
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equals W j
(
y
)
. For smaller values of y, we observe that W j

(
{ j,k}, t + 1, y

)
≥W j

(
y
)

with a slightly higher

difference between the two continuation values.

=========================

Insert Figure 4 about here
=========================

In Section C.1.4 in Web Appendix C, we perform additional simulation exercises varying more of

the parameters of interest and find that the difference between W j
(
{ j,k}, t + 1, y

)
and W j(y) is zero or

very small for the vast majority of parameter values (77% or 98%, respectively).

Our Proposed Selection Rule

Motivated by these results, we make the following assumption:34

Assumption 1. W j
(
S̄, t + 1, y

)
= W j

(
y
)

∀ j ∈ {1, . . . , J}, ∀t ≥ 0 .

Using Assumption 1, we can now characterize the optimal selection rule in our problem.

Theorem 3. Under Assumption 1, the optimal selection rule coincides with the one in Weitzman (1979).

Proof: Under Assumption 1, Condition 1 is trivially satisfied. Consumers search any two options in

the same order for any t ≥ 0. When t = 0, the search candidate is option j∗ = argmax j∈S̄ −c j0 + W j(y),

the same as in Weitzman (1979). �

Theorem 3 describes when the search order in our model coincides with the search order in the

Weitzman (1979) model. To paraphrase, Theorem 3 chronicles when consumers in our model search

options in a decreasing order of reservation utilities as computed in Weitzman (1979), i.e., as the unique

solution z j to c j0 = W j

(
z j

)
− z j. This allows us to state the selection rule for our problem as follows:

Selection rule. Under Assumption 1, if the consumer chooses to search an option at time t, it will be option

j ∈ S̄ with the highest reservation utility z j, where z j is the unique solution to c j0 = W j

(
z j

)
− z j.

5.3.3 Selection and Search Rules

Using the results from the previous section, we now know that the consumer searches the option with

the largest reservation utility, i.e., j∗ = argmax j∈S̄ z j, if she decides to continue searching. Thus we

34Similar assumptions have been made in recent work modeling consumer search decisions (e.g., Hodgson and Lewis 2021).
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can solve the problem in equation (2) in two steps: first, the consumer determines j∗. And second,

she solves equation (2) for j∗ and determines whether to stop searching and whether to search j∗

immediately or after a break. The search problem in the second stage reduces to

V
(
j∗, t, y

)
= max

stop, now, later

{
y, −c j∗0−αt + W j∗

(
y
)
, β

[
−c j∗0 + W j∗

(
y
)]}
. (10)

The next result on the optimal selection and search rules follows directly from equation (10) and

Theorem 3.

Theorem 4. Under Assumption 1, the following selection and search rules are optimal for t > 0:35

1. Selection rule: order options in decreasing order of reservation utilities z j (defined by Weitzman 1979).

2. Search rules: if j is the option with the maximum reservation utility among the options not yet searched

S̄, then given
(
t, y

)
• search j now if c j0 ≤ W j

(
y
)
− y−αt and c j0 ≤ W j

(
y
)
−

αt
1−β ;

• search j later if c j0 ≤ W j
(
y
)
−

y
β and c j0 > W j

(
y
)
−

αt
1−β ;

• stop searching if c j0 > W j
(
y
)
− y−αt and c j0 > W j

(
y
)
−

y
β .

Proof: As shown in Theorem 3, the selection rule above is optimal. The statements describing the

search rules follow directly from equation (10). �

For the product searched first, t = 0 and V
(
S̄,0,u0

)
= max{u0, max j∈S̄ −c j0 +W j (u0)}, so the consumer

chooses between searching the product now or stopping search. Search occurs if the condition that

c j0 ≤W j (u0)−u0 holds for product j with the largest reservation utility.

Using Theorem 4, we can now further characterize the solution to our problem. Recall that

W j
(
y
)

= yF j
(
y
)
+
∫
∞

y udF j (u). Taking appropriate limits, we find that W j (∞) =∞ and W j (−∞) = EF j (·).

Further, we can show that ∂W j (·)/∂y = F j
(
y
)
≥ 0. As such, W j

(
y
)

is a continuous and monotonically

increasing function of y. It follows (as shown by Weitzman 1979) that W j
(
y
)
− y is a continuous and

monotonically decreasing function of y. Therefore, there exists a unique solution z j to the equation

c j0 = W j

(
z j

)
− z j, (11)

35We break ties as follows: the consumer prefers to search now if choosing between any of the three options, and prefers to search later
rather than to stop.
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which represents the reservation utility of an option (Weitzman 1979). Similarly, there exist unique

solutions to each of the inequalities describing the consumer search rules above. More precisely,

because search costs c j0 > 0 and the value of αt is constant in y, while W j
(
y
)
− y is continuous and

monotonically decreasing in y, there exists a unique solution z1
j (t) to the equation

c j0 = W j

(
z1

j (t)
)
− z1

j (t)−αt. (12)

Further, whenever β , 0, there exists a unique solution z2
j to the equation

c j0 = W j

(
z2

j

)
−

z2
j

β
(13)

And finally, whenever β < 1, there exists a unique solution z3
j (t) to the equation

c j0 = W j

(
z3

j (t)
)
−

αt
1−β

. (14)

5.4 Our Proposed Solution

Based on the results derived in the previous subsection, our proposed solution is as follows:

Theorem 5. Under Assumption 1, a consumer’s optimal search strategy for t > 0 is:

1. Selection rule: order options in decreasing order of reservation utilities z j (defined by Weitzman 1979).

2. Search rules: if j is the option with the maximum reservation utility among options not yet searched S̄,

then given
(
t, y

)
• search j now if max

{
z1

j (t) ,z2
j

}
≥ y and z3

j (t) < y ;

• search j later if max
{
z1

j (t) ,z2
j

}
≥ y and z3

j (t) ≥ y ;

• stop searching if z1
j (t) < y and z2

j < y .

3. Choice rule: upon stopping, purchase the option with the largest realized value among those searched,

y = max j∈S u j, or choose the outside option of not purchasing.

Proof: As shown in Theorem 3, the selection rule above is optimal. Also, the choice rule is not

affected by the presence of fatigue, and is therefore optimal as per Weitzman (1979). The search rules

follow directly from equation (10) and Theorem 4. A complete derivation of the specific functions

describing these search rules is presented in Section C.2 in Web Appendix C. �

Note that the consumer searches fewer options for larger values of fatigue, α. To see this, observe

that z1
j (t) decreases in α in equation (12). Therefore, larger fatigue levels (weakly) decrease the number
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of searched options, since the condition that max
{
z1

j (t) ,z2
j

}
≥ y is less likely to hold. Finally, for the

product searched first, we know that t = 0 and search occurs if z1
j (0) = z j ≥ u0 for product j with the

largest reservation utility.

6 Empirical Application

6.1 Empirical Model

We take the theoretical model presented in the previous section to data using the following empirical

specification: we model consumers as searching across websites (e.g., zalando.nl or nike.com).

Specifically, consumer i = 1, . . . ,N seeks to purchase from website j = 1, . . . , J or to choose the outside

option of not purchasing (denoted by j = 0). Consumer i’s utility for website j is given by

ui j = vi j +εi j (15)

= w j +γXi j +ηi j +εi j

where vi j denotes the information the consumer has about a website before searching it, while εi j

denotes the information she searches for. Before searching, the consumer knows individual websites’

values which are denoted by website intercepts w j. In each subcategory, we estimate separate website

intercepts for the 10 most searched websites (accounting for approximately 65% of clicks in each

subcategory) and group all other websites into a composite reference website called “Other.” Although

we scraped prices and other product features from the URLs provided in our data, these features

do not generally vary over time or across consumers in the apparel industry (see also Section 4.4).

Therefore, after controlling for website intercepts, the effects of such features cannot be separately

estimated. Nevertheless, we include two additional controls Xi j in the utility function: (i) the number

of times the consumer has previously searched a given website (across all product subcategories) to

measure her loyalty for and knowledge of a website, and (ii) an indicator for whether the consumer

visited a price discount page to partially capture her price sensitivity.

Next, ηi j is the part of the utility that is observed by the consumer (prior and post search), but

not the researcher (neither prior nor post search). It captures deviations from website features that

the consumer may be aware of before starting her search. Consumers search sequentially to resolve

uncertainty about their match values εi j, i.e., consumers do not observe εi j prior to search but they do

post search. The researchers neither observes εi j prior nor post search. εi j captures everything the
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consumer learns by visiting the website, e.g., available (actual) product styles, sizes, colors, customer

reviews, photos, etc. ηi j and εi j are both standard normally distributed. The outside option does not

require searching and is modeled as ui0 = q0 +ηi0, where q0 is an intercept denoting the value of not

purchasing.

Searching to resolve uncertainty about εi j is costly to consumers. Search costs (per search) are

given by

ci = c0 +αit (16)

= exp(κ0) + exp(λ0 +λ1Agei) t

where c0 are baseline search costs and t ≥ 0 captures the number of searches performed without a

break. To ensure that search costs are positive, we operationalize search costs as exponential functions

(see, e.g., Honka 2014; Chen and Yao 2017; Ursu 2018). Lastly, consistent with our results from Table 5,

we use age as a shifter of fatigue.

6.2 Estimation

We use the search rules from Section 5.3.3 to construct the likelihood of consumers’ search and purchase

decisions. These rules translate into the following restrictions on preferences, search costs, and fatigue

parameters. Suppose a consumer i searched a number of options s of the J websites available and she

chose j after stopping her search (including the outside option). With a slight abuse of notation, order

websites by their reservation utilities and let n denote the website with the nth largest reservation

utility. Also, let tn denote the number of websites the consumer searched since the previous gap and

before searching n.

Since consumers search websites in a decreasing order of their reservation utilities, according to

the selection rule, it must be that

zin ≥
J

max
k=n+1

zik ∀n ∈ {1, . . . , J−1}. (17)

After searching the first website, tn > 0 ∀n > 1 and the search rules describe consumer behavior. For

searched website n we know that

max
{
z1

in (tn) ,z2
in

}
≥

n−1
max
k=0

uik ∀n ∈ {2, . . . ,s}. (18)

For the website searched first (for which t1 = 0), the search rules require that its reservation utility
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exceeds the utility of the outside option, i.e., zi1 ≥ ui0. Since all consumers in our data search at least

once, consistent with prior work (e.g., Honka 2014; Honka and Chintagunta 2017), we assume that the

first search is free. Note that we allow for the possibility of no search in our Monte Carlo simulation in

Section 6.4.

What separates our model from previous work is that we additionally capture a consumer’s

decision of when to search an option (with or without a break). In particular, all websites, except the

one searched first, may be searched with or without a gap. Thus, if n was searched without a break,

i.e., tn = tn+1−1, we know that

z3
in (tn) <

n−1
max
k=0

uik ∀n ∈ {2, . . . ,s}, (19)

while, if n was searched after a break, i.e., if tn , tn+1−1, it must be that

z3
in (tn) ≥

n−1
max
k=0

uik ∀n ∈ {2, . . . ,s}. (20)

For all options m that were not searched, it must be that

z1
im (tm) <

s
max
k=0

uik ∀m ∈ {s + 1, . . . , J}, (21)

z2
im <

s
max
k=0

uik ∀m ∈ {s + 1, . . . , J}. (22)

with tm = ts + 1.

Finally, consistent with the choice rule, if the consumer chooses j (including the outside option), her

utility from this choice exceeds that of all searched websites, i.e.,

ui j =
s

max
k=0

uik ∀ j ∈ {0,1, . . . ,s}. (23)

If the consumer searches using the rules described above, then she makes search, search gap, and

purchase decisions jointly. Thus, the probability of observing a certain outcome for consumer i is

characterized by the joint probability of equations (17)–(23) holding. This probability is given by

Li = Pr ( Selection rulei, Search rulei, Choice rulei ) . (24)

Because consumers make these decisions jointly, the likelihood function does not have a closed-

form solution. We use a simulated maximum likelihood esitmation (SMLE) approach to infer the

parameters of the model. In choosing the simulation method, we follow McFadden (1989), Honka
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(2014), Honka and Chintagunta (2017), Ursu (2018), and Ursu, Wang, and Chintagunta (2020) and use

the logit-smoothed AR simulator. The implementation details are discussed in Web Appendix D.

An advantage of our proposed method lies in its ease of estimation due to its similarity to the

Weitzman (1979) model: consumers search in decreasing order of reservation utilities z j and also

make search and purchase decisions based on threshold values of the best alternative observed so far.

The main difference consists of computing the values of
[
z1

j (t) ,z2
j ,z

3
j (t)

]
in addition to that of z j. We

describe how to compute these values in Web Appendix D.

We estimate our model using data from the two most commonly purchased subcategories in our

data: “shirts, tops, & blouses” and “shoes” to demonstrate that our results are not limited to a specific

subcategory. Details on the construction of the estimation samples are provided in Web Appendix A.

6.3 Identification

The set of model parameters is composed of the utility parameters w j and γ, baseline search cost c0

(parameterized by κ0), search fatigue α (parameterized by λ0 and λ1), and the discount factor β. As is

well-known, the discount factor is typically not identified in dynamic discrete choice models without

further restrictions (Rust 1994; Magnac and Thesmar 2002). This is the case in our model as well. Prior

work either fixes the discount factor to a value close to 1 (e.g., 0.995 per week in Erdem and Keane

1996 and 1 in Kim, Albuquerque, and Bronnenberg 2010) or makes additional model assumptions

and estimates discount factors that are close to 1 (e.g., 0.992 per week in Hotz and Miller 1993 or 0.98

per week in Ackerberg 2003). However, using a series of field studies, Yao et al. (2012) show that

implied discount rates are generally lower, on average 0.9 per week. Since the median search gap

in our data is approximately 4 days long, the 0.9 weekly discount factor reported in Yao et al. (2012)

corresponds to a discount factor of 0.94 for 4 days. Based on this result, we fix the discount factor to

0.95 in our main estimation.36,37 Given these considerations, the set of parameters to be estimated is

θ = (w j,γ,κ0,λ0,λ1).

As is standard in consumer search models, utility parameters are identified from search and

purchase frequencies observed in the data. For example, websites that are searched and purchased

36We evaluate the robustness of our results with respect to the discount factor by re-estimating our model under three alternative
discount factors: 0.85, 0.90, and 0.99. The results are displayed in Table F-2 in Web Appendix F. Utility and baseline search cost parameters
are very similar across all specifications. The fatigue parameter is estimated to be higher for lower values of the discount factor.

37Consumers may also vary in the degree to which they discount future utility. As noted, the discount factor is not identified in our
model. Nevertheless, by estimating our model with discount factors in the range [0.85,0.99], we recover parameter estimates under multiple
discount factors.
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more frequently will have a larger estimated value. Also, variation in the frequencies with which

consumers have previously visited websites and whether they visit price discount pages identify γ.

Similar to prior work, search costs do not affect purchase decisions and are identified from the

number of websites that consumers search. More precisely, the search rules impose an upper and a

lower bound on search cost c0 that must have made it optimal for the consumer to perform a certain

number of searches. These search rules, however, only recover a range of search costs. The level of

search costs is pinned down by the functional form and the distribution of the utility function that

dictate the reservation utility expressions derived in equations (12), (13), and (14).

By observing search gaps, i.e., consumers’ decisions of when to search each website, we can

additionally identify consumer fatigue levels. In other words, conditional on an observed number

of searches, search gaps identify the fatigue parameter λ0. Finally, deviations in search gaps across

consumers attributable to age identify λ1.

6.4 Monte Carlo Simulation

To show that our estimation procedure can recover the model parameters, we perform the following

Monte Carlo simulation exercise. We generate a data set of 5,000 consumers making choices among

five options (one outside option and four websites). Consumers value each website differently. Search

costs have two components: a baseline level of search costs and fatigue. The true values of the utility

and both search cost parameters are similar to those from a preliminary estimation of our model.

For estimation, we follow the steps described in Section 6.2 and use 200 draws from the distribution

of the utility error terms (both ηi j and εi j) for each consumer-website combination. We simulate 50

different data sets using the same true parameters but different seeds for the utility error terms and

repeat the estimation for each data set.

Our Monte Carlo simulation results are displayed in Table 6. In column (i), we present the true

parameters; in column (ii), we show the mean of the estimated parameters across the 50 simulations

and the standard deviation of the mean across these simulations. Our proposed estimation procedure

recovers the model parameters well. In addition, in column (iii), we also report results from the

Weitzman model that ignores search gaps. We obtain these results by estimating the model on the

same data, but assuming no gaps occurred in the data.38 We find that the Weitzman model performs

38See Web Appendix D for details on the Weitzman (1979) model estimation.
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well in recovering the true utility parameters, but overestimates baseline search costs. We discuss the

estimation bias observed here after presenting our estimation results in the next section.39

=========================

Insert Table 6 about here
=========================

7 Results

7.1 Model Estimates

We show the estimation results for the “shirts, tops, & blouses” and “shoes” subcategories in Table 7.

For each subcategory, the first two columns display results from our model that accounts for search

gaps, while the third column reports results from the Weitzman model that ignores search gaps.40 The

results indicate that consumers derive positive utility from the outside option, consistent with the

empirical observation that most consumers do not make a purchase. Next, we find that Zalando, the

largest online retailer in the Netherlands, is among the most preferred websites in both subcategories,

together with C&A in the “shirts, tops, & blouses” subcategory and Schurrman Shoenen in the “shoes”

subcategory.41 As expected, previous visits to a website increase a consumer’s utility for that website.

Although we are not able to account for the effect of prices, we show consumers’ price sensitivity by

reporting that consumers who visited the price discount page (e.g., the “sale” or “clearance” page) of a

website derive higher utility.
=========================

Insert Table 7 about here
=========================

The baseline search cost estimate is relatively small compared to the fatigue estimate. To put it

differently, fatigue has a large effect on consumer search decisions, equivalent to increasing baseline

search costs at least tenfold with every searched website. Also, the larger number of search gaps

in the “shoes” subcategory reveals a larger fatigue level (as a proportion of baseline search costs)

for consumers in that subcategory (the ratio of fatigue to baseline search costs is 14 in the “shirts,

tops, & blouses” subcategory and it is 18 in the “shoes” subcategory).42 Finally, consistent with our

reduced-form results in Table 5, older consumers have even larger fatigue costs.
39The difference in the reported log-likelihood values comes from the difference in the likelihood functions and the number of parameters

to be estimated. As detailed in Section 7.3, log-likelihood values may not be reliable measures of model fit.
40We also estimated a version of our model in which we set α = 0 and assume no gaps occurred in the data. The results are very similar

to those from the Weitzman model and available from the authors upon request.
41Recall that utility estimates for the top 10 websites are relative to a reference website comprising all other websites.
42Calculation follows after dividing the fatigue constant by the baseline search cost parameter, e.g., in the first column,

exp(−2.4436)/exp(−5.0740) ≈ 14.
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7.2 Comparison with Weitzman (1979)

By comparing our results to those from the Weitzman (1979) model that ignores search gaps, we

provide insights into the estimation bias that arises when search gaps are ignored.43 In particular, both

our estimation and our simulation results show that the utility parameter estimates are similar in our

and in the Weitzman (1979) model, but that baseline search costs are overestimated in the latter one.44

The intuition behind this difference is as follows: recall that the Weitzman model ignores search gaps

and assumes that search costs are independent of the number of previously searched options. Thus,

when estimated on the same data set as a model in which fatigue affects search costs, the Weitzman

model rationalizes the same number of searched products by inflating baseline search costs.

Although the differences in intercept estimates for a particular website in our and in the Weitzman

(1979) model are small, theoretically the intercepts for a particular website in both models are different.

Whether this difference in intercepts is positive or negative depends on whether a particular website is

predominantly searched before or after search gaps. In our empirical application, the Weitzman (1979)

model provides directionally larger estimates of website intercepts than our model. This finding is

consistent with the observation that many websites are searched after a break in our data.

Our model makes two changes to the Weitzman (1979) framework: (i) allows for search gaps; and

(ii) models the effect of fatigue on search costs. To better isolate the effect of each model change on

parameter estimates, we also estimate a (variation of the) Weitzman (1979) model with increasing

search costs (due to fatigue) but without search gaps, i.e., we only make one change to the Weitzman

(1979) framework. To the best of our knowledge, such a variation of the Weitzman (1979) model has

not been studied by previous literature. As in our model, there is no known optimal search rule.

However, in Web Appendix F, we describe how the solution we developed for our model can be used

to derive an optimal search rule for the Weitzman (1979) model with increasing search costs.

The estimation results are displayed in Table F-1 in Web Appendix F. Not accounting for search

gaps leads to an overestimation of the baseline search cost, although the bias is smaller when at

least fatigue is taken into account. In addition, a Weitzman (1979) model with increasing search cost

underestimates the importance of fatigue compared to a model that accounts for search gaps. The

intuition for this result is as follows: when breaks are allowed, the number of previously searched

43We use the term “bias” to describe the difference in estimates based on our results.
44Note that, if we had estimated the Weitzman (1979) model at the session level rather than at the spell level, similar to some of the

literature that does not observe search gaps (e.g., Ursu 2018), then our results would have shown an even larger difference.
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options is equal or smaller than the number of previously searched options when breaks are not

allowed. Thus, when breaks are not allowed, it appears as if fatigue played a smaller role in the

consumer’s decision to search, since the consumer chooses to continue searching despite a higher

fatigue level, resulting in a smaller fatigue parameter estimate. In contrast, when breaks are allowed,

fatigue causing the consumer to take a break from searching (in addition to increasing search costs)

reveals the larger importance of fatigue.

7.3 Model Fit

Since the likelihood functions are different, we cannot rely on the log-likelihood measures reported in

Table 7 to compare our model to the Weitzman (1979) model. Instead, to understand which model

better captures consumer behavior, we show both predicted consumer decisions in the three areas

(search gaps, searches, and purchases) and calculate the root mean squared error (RMSE). For these

calculations, we use the first set of estimation results reported in Table 7 for each subcategory for our

model and the estimation results for the Weitzman (1979) model. The predictions and RMSE results

are displayed in Table 8.45

=========================

Insert Table 8 about here
=========================

Our model recovers the number of search gaps well, while the Weitzman (1979) model (by

construction) cannot predict any such decisions. When comparing the search shares of each website,

our model more accurately predicts which websites consumers search more frequently. Finally,

although the utility estimates in the two models are very similar, the Weitzman (1979) model better

predicts market shares. In part, this difference also arises from the fact that our model explains three

rather than only two decisions that consumers make.

8 Counterfactuals

8.1 The Impact of Fatigue

In this counterfactual, we measure the impact of fatigue (and thus search gaps) on market outcomes

such as consumer search and purchases and how it compares to the effect of baseline search costs. To

45The RMSEs for the Weitzman (1979) model with increasing search costs are as follows: for “shirts, tops, & blouses,” 58 and 44 for
search and market shares, respectively. For “shoes,” 71 and 52 for search and market shares, respectively. RMSE for search gaps is the same
as in the Weitzman (1979) model.
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accomplish this goal, for each of the two apparel subcategories, we employ our model and coefficient

estimates to simulate consumer decisions regarding searches, search gaps, and purchases in four

scenarios (holding everything else constant): (i) when fatigue is reduced by 50% and 90%;46 and (ii)

when baseline search costs are reduced by 50% and 90%. Consumers’ simulated decisions in these

scenarios are then compared to the current setting in which no such change occurs. To integrate over

the distribution of unobserved utility shocks in the model, we repeat the simulation 50 times and

report the mean results.

We present our findings in Table 9. Columns (i) and (ii) display the effects of fatigue reductions by

50% and 90%, respectively. The effects are similar in both apparel subcategories although they are

larger in the “shoes” subcategory for which we found higher fatigue levels. In particular, we find that

decreasing fatigue by 50% increases the number of searched websites by 1−4%, increases transactions

by 0.5−1.2%, and lowers search gaps by 11−22%. A fatigue reduction by 90% magnifies the effect

sizes by a factor of 3 to 14. For comparison, columns (iii) and (iv) present the effects of baseline search

cost reductions by 50% and 90%, respectively, a policy that most prior work focused on (e.g., Seiler

2013, Honka 2014, Moraga-González, Sándor, and Wildenbeest 2018, Yavorsky, Honka, and Chen 2021).

The effects of baseline search cost reductions are smaller than those of fatigue reductions. Further, in

contrast to the effect of reducing fatigue, decreasing baseline search costs increases search gaps: the

more options the consumer searches, the higher the chances of her taking a break from searching, and

thus the more gaps.

=========================

Insert Table 9 about here
=========================

Next, we investigate whether and how the effects of a fatigue reduction vary across websites.

For this analysis, we utilize our results from the case in which fatigue is decreased by 90% to better

highlight the magnitude of the effects. Our results for both subcategories are displayed in Figure 5.

The websites are ordered based on their predicted search or predicted market shares, respectively

(the rankings are very similar to the ones shown in Table 3). Not surprisingly, all websites benefit

from a reduction in fatigue. However, while the impact on consumer search is relatively equal across

websites (in %), smaller and less popular websites benefit relatively more in terms of transactions than

larger and more popular websites. The reason for this finding is that a reduction in fatigue leads to

46Improvements in website design to increase readability or an increase in a website’s loading speed represent two potential avenues to
reduce consumer fatigue based on the evidence in Table 5.
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additional searches and purchases that would not have occurred for smaller websites if fatigue levels

had been higher.

=========================

Insert Figure 5 about here
=========================

To summarize, we find that fatigue has a large impact on market outcomes such as search and

purchase shares. In our empirical context, the effect of fatigue is larger than the effect of baseline search

cost. And lastly, while all websites suffer from high fatigue levels, larger and more popular website

are less negatively affected than smaller and less popular websites.

8.2 When Breaks Do Not Decrease Fatigue

Although search costs due to fatigue reset after a break in our model, it is not a forgone conclusion that

consumers can always lower their fatigue levels during a break. On the contrary, several recent articles

talk about the consequences of consumers being constantly stimulated by marketing activities47 and

of the Covid-19 pandemic keeping consumer fatigue levels high for a prolonged period.48 In such

cases, an important question is how an inability to decrease fatigue levels affects consumer decisions.

In our second counterfactual, we measure the effects of consumers’ inability to reduce their

fatigue levels via a search gap. Our simulation procedure is similar to the one described for the first

counterfactual; however, the analyzed scenario differs. More precisely, we simulate consumer search

and purchase decisions for the case in which the fatigue level α does not reset to zero during a break.

In this case, consumers always prefer to search now rather than to delay their search, since a delay

only leads to a discounted value of the same expected utility they would get if they searched now.

Therefore, the problem consumers solve in this case reduces to that of deciding whether to search now

or whether to stop. The optimal decision rule follows after inspecting equations 2 and 3 without the

option to search later. In particular, the consumer continues to search website j if z1
j (t) ≥ y and stops

otherwise.

Not being able to reset fatigue during a break leads to a significant reduction in the number of

searched and purchased products: the number of searches decreases by 21% and 23% and purchases

decline by 8% and 6% in the “shirts, tops, and blouses” and “shoes” subcategories, respectively. Both

47This information is available in the following articles: https://hbr.org/to-keep-your-customers-keep-it-simple and
https://www.nytimes.com/do-you-suffer-from-decision-fatigue.

48See, e.g., https://www.delish.com/grocery-shopping-brand-loyalty-reason/, https://hbr.org/how-to-combat-zoom-fatigue, and
https://hbr.org/coping-with-fatigue-fear-and-panic-during-a-crisis.
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of these effects are large, e.g., in comparison to those obtained in the previous counterfactual. We

display the website-specific predictions for both subcategories in Figure 6. The websites are ordered

based on their predicted search or predicted market shares, respectively (the rankings are very similar

to the ones shown in Table 3). Although all websites suffer in this setting, different websites are affected

differently, i.e., the effect is not “neutral.” Consumers not being able to reduce fatigue during breaks

hurts larger and more popular websites less than smaller ones. In other words, website prominence

becomes more important. Consumers prefer to search and choose more often websites they are familiar

with.

=========================

Insert Figure 6 about here
=========================

9 Conclusion

In this paper, we document that consumers frequently decide to take breaks during their search process

and provide model-free evidence that such breaks are related to fatigue. To rationalize such behavior,

we develop a model of sequential search that extends the Weitzman (1979) framework and allows

for search gaps due to fatigue. We quantify the effect of fatigue on consumer search and purchase

decisions and show the possible estimation bias in search costs when search gaps are ignored. Finally,

we illustrate the impact of search gaps and consumer fatigue on market outcomes through a series of

counterfactuals.

There are several limitations and potentially useful extensions to our approach. First, it would

be interesting to explore other drivers of search gaps across a variety of product categories. Our

model can provide a starting point for formalizing the mechanism behind search gaps in such settings.

Second, future work could model the length of search gaps in addition to their occurrence. Third,

fatigue levels from a website visit might depend on the number of investigated products on a website.

We leave such a model extension for future research. And finally, extending our model to account for

brand-specific fatigue could provide another interesting avenue for researchers to explore. We leave

these and other related topics to future research.
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Figures and Tables

Figure 1: Example of a Search Process with Definitions

Figure 2: Duration and End of Apparel Search Sessions
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Figure 3: The Continuation Value W j
(
{ j,k}, t + 1, y

)
for Different Levels of Fatigue

(a) Small Fatigue α = e−6

(β = 0.95, µ j = 2, µk = 1, σ j = σk = 1, c j0 = ck0 = e−2)
(b) Large Fatigue α = e−1

(β = 0.95, µ j = 2, µk = 1, σ j = σk = 1, c j0 = ck0 = e−2)

Figure 4: Comparing Continuation Values W j
(
{ j,k}, t + 1, y

)
and W j

(
y
)

(a) µ j = 2 and µk = 1
(α = e−1, t = 1, β = 0.95, σ j = σk = 1, c j0 = ck0 = e−2)

(b) µ j = 1 and µk = 2
(α = e−1, t = 1, β = 0.95, σ j = σk = 1, c j0 = ck0 = e−2)
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Figure 5: Effects of 90% Fatigue Reduction by Website

(a) Search shares (b) Market shares

Figure 6: Effects of No Breaks by Website

(a) Search shares (b) Market shares

Table 1: Session Characteristics

Mean Median Std. Dev. Min Max

Session: All clicks
Number of clicks 189.07 116.00 250.85 1 9,108
Number of visited websites 29.38 20.00 28.44 1 309
Duration (in minutes) 95.58 64.25 106.11 0 2,043

Session: Apparel clicks
Number of clicks 10.52 3.00 26.34 1 2,407
Number of visited websites 1.73 1.00 1.44 1 29
Duration (in minutes) 5.59 1.03 12.21 0 508
Number of subcategories 1.14 1.00 1.29 0 9
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Table 2: Most Popular Apparel Websites and Product Subcategories

Popular Websites Ranked Subcategories

Ordered by Search share Market share Market share

zalando.nl zalando.nl Shirts, tops, & blouses
hm.com hm.com Shoes
c-and-a.com c-and-a.com Pants & jeans
debijenkorf.nl your-look-for-less.nl Underwear
missetam.nl esprit.nl Dresses & skirts
your-look-for-less.nl debijenkorf.nl Children’s clothes
vente-exclusive.com missetam.nl Jackets & vests
esprit.nl vente-exclusive.com Accessories
vanharen.nl hunkemoller.nl
schuurman-shoenen.nl vanharen.nl

Table 3: Top 10 Websites for the “Shirts, Tops, & Blouses” and “Shoes” Subcategories

“Shirts, tops, & blouses” “Shoes”

Ordered by Search share Market share Search share Market share

c-and-a.com zalando.nl zalando.nl zalando.nl
debijenkorf.nl hm.com schuurman-shoenen.nl vanharen.nl
zalando.nl your-look-for-less.nl vanharen.nl adidas.com
hm.com c-and-a.com adidas.com debijenkorf.nl
aboutyou.com esprit.nl spartoo.nl nelson.nl
esprit.nl peterhahn.nl nike.com nike.com
your-look-for-less.nl aboutyou.com omoda.nl omoda.nl
msmode.nl debijenkorf.nl nelson.nl schuurman-shoenen.nl
peterhahn.nl jbfo.nl debijenkorf.nl spartoo.nl
jbfo.nl msmode.nl ziengs.nl ziengs.nl

Table 4: Search Gaps within Apparel Subcategories

Shirts, Tops,
& Blouses Shoes

Pants
& Jeans

Under-
wear Sweaters

Dresses
& Skirts

Children’s
Clothes

Jackets
& Vests

Acces-
sories

Proportion of spells 0.50 0.56 0.44 0.36 0.37 0.39 0.45 0.38 0.41
with ≥ 1 search gap

Av. number of search gaps 2.88 5.14 2.65 2.22 2.43 2.90 2.77 2.54 2.81
if ≥ 1 search gap

Av. length of search gaps 7.35 5.86 8.02 8.90 8.21 7.24 8.33 7.70 7.75
(in days)

Med. length of search gaps 3.70 2.10 3.23 4.38 3.71 2.98 4.04 3.17 3.77
(in days)

Av. length of spell 10.54 16.91 9.32 7.05 7.38 8.14 10.52 7.38 8.85
(in days)

Av. time between spells 11.52 10.57 12.12 13.80 13.01 13.71 12.84 14.23 14.47
(in days)
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Table 5: Effects of Fatigue Proxies on Search Gaps

Dependent variable:

Number of search gaps in a spella Search gap indicator
(i) (ii) (iii) (iv) (v) (vi)

Subcategory “Shirts, tops, & blouses” “Shoes” “Shirts, tops, & blouses” “Shoes”

Age 0.0035∗∗∗ 0.097∗∗∗ Cumulative number 0.3213∗∗∗ 0.0832∗∗∗

(0.0009) (0.0011) of searched websites (0.0277) (0.0117)
Slower speed scorea 0.0881∗∗∗ 0.0584∗∗∗ Total time spent searching 0.0151∗∗∗ 0.0057∗∗∗

(0.0127) (0.0132) (0.0018) (0.0011)
Readability (SMOG)a 0.0383 0.8334∗∗∗

(0.0629) (0.0692)

Controls
Gender indicator Yes Yes Spell FEs Yes Yes Yes Yes
Number of images Yes Yes Website FEs Yes Yes Yes Yes
Number of words Yes Yes Session with
Number of searches Yes Yes Transactions Indicator Yes Yes Yes Yes

R2 0.10 0.26 0.46 0.30 0.34 0.32
Number of Observations 2,315 2,435 7,102 7,102 15,554 15,554
Standard errors in parentheses.
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001
a Operationalized on a logarithmic scale.

Table 6: Monte Carlo Simulation Results

(i) (ii) (iii)
Our model Weitzman

True values Estimates Std. Dev. Estimates Std. Dev.

Utility
Website 1 -1.0 -0.91 (0.03) -0.93 (0.02)
Website 2 -0.5 -0.48 (0.03) -0.48 (0.03)
Website 3 -0.3 -0.30 (0.04) -0.29 (0.02)
Outside option 0.5 0.54 (0.03) 0.23 (0.04)

Search cost (exp)
Baseline -3.5 -3.53 (0.12) -2.18 (0.04)
Fatigue -3.0 -2.67 (0.03)

Log-likelihood -19,299 -17,939
Number of Observations 25,000 25,000
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Table 7: Estimation Results

(i) (ii)
“Shirts, tops, & blouses” “Shoes”

Accounting for
search gaps

Ignoring
search gaps

Accounting for
search gaps

Ignoring
search gaps

Our model Our model Weitzman Our model Our model Weitzman

Utility Utility
aboutyou.com -1.4368∗∗∗ -1.3084∗∗∗ -1.4061∗∗∗ adidas.com -1.3895∗∗∗ -1.3979∗∗∗ -1.2570∗∗∗

(0.0440) (0.0337) (0.0463) (0.0507) (0.0259) (0.0423)
c-and-a.com -0.8623∗∗∗ -0.7662∗∗∗ -0.8250∗∗∗ debijenkorf.nl -1.9646∗∗∗ -2.1189∗∗∗ -1.8366∗∗∗

(0.0372) (0.0288) (0.0397) (0.0625) (0.0467) (0.0513)
debijenkorf.nl -1.0226∗∗∗ -1.3782∗∗∗ -1.0022∗∗∗ nelson.nl -1.9438∗∗∗ -1.8941∗∗∗ -1.7978∗∗∗

(0.0375) (0.0406) (0.0408) (0.0578) (0.0416) (0.0532)
esprit.nl -1.7118∗∗∗ -1.7419∗∗∗ -1.6847∗∗∗ nike.com -1.5095∗∗∗ -1.5162∗∗∗ -1.3740∗∗∗

(0.0496) (0.0459) (0.0517) (0.0540) (0.0285) (0.0433)
hm.com -1.3601∗∗∗ -1.3584∗∗∗ -1.3119∗∗∗ omoda.nl -1.8658∗∗∗ -1.8540∗∗∗ -1.7174∗∗∗

(0.0412) (0.0373) (0.0444) (0.0581) (0.0373) (0.0491)
jbfo.nl -2.6664∗∗∗ -2.4721∗∗∗ -2.7581∗∗∗ schuurman-shoenen.nl -1.1034∗∗∗ -1.0502∗∗∗ -0.9748∗∗∗

(0.1448) (0.1261) (0.1455) (0.0500) (0.0211) (0.0373)
msmode.nl -2.0188∗∗∗ -1.9307∗∗∗ -2.0093∗∗∗ spartoo.nl -1.4858∗∗∗ -1.4437∗∗∗ -1.3663∗∗∗

(0.0653) (0.0573) (0.0638) (0.0514) (0.0269) (0.0419)
peterhahn.nl -2.1520∗∗∗ -2.0599∗∗∗ -2.1132∗∗∗ vanharen.nl -1.2167∗∗∗ -1.2168∗∗∗ -1.0641∗∗∗

(0.0816) (0.0708) (0.0776) (0.0466) (0.0242) (0.0392)
your-look-for-less.nl -1.7526∗∗∗ -1.6579∗∗∗ -1.7228∗∗∗ zalando.nl -0.8434∗∗∗ -0.9784∗∗∗ -0.6502∗∗∗

(0.0501) (0.0416) (0.0512) (0.0442) (0.0218) (0.0344)
zalando.nl -1.0483∗∗∗ -1.1357∗∗∗ -0.9856∗∗∗ ziengs.nl -2.0965 ∗∗∗ -2.1204∗∗∗ -1.9532∗∗∗

(0.0381) (0.0325) (0.0410) (0.0722) (0.0546) (0.0578)
Number of previous 0.1407∗∗∗ Number of previous 0.1849 ∗∗∗

website visits (0.0109) website visits (0.0168)
Visit to a 1.3058∗∗∗ Visit to a 0.9307∗∗∗

price discount page (0.0411) price discount page (0.0442)
Outside option 1.5823∗∗∗ 1.4050∗∗∗ 1.9583∗∗∗ Outside option 1.3288∗∗∗ 1.2714∗∗∗ 2.1653∗∗∗

(0.0304) (0.0194) (0.0512) (0.0334) (0.0185) (0.0558)

Search cost (exp) Search cost (exp)
Baseline -5.0740∗∗∗ -4.8991∗∗∗ -3.1639∗∗∗ Baseline -5.5267∗∗∗ -5.6355∗∗∗ -4.2142∗∗∗

(0.3024) (0.2507) (0.1066) (0.2950) (0.2290) (0.1354)
Fatigue constant -2.4436∗∗∗ -2.4793∗∗∗ Fatigue constant -2.6379∗∗∗ -2.6422∗∗∗

(0.0243) (0.0164) (0.0395) (0.0207)
Fatigue age (≥ 50) 0.3337∗∗∗ Fatigue age (≥ 50) 0.1131∗∗∗

(0.0268) (0.0265)

Number of Observations 27,924 27,600 27,924 27,756 27,264 27,756
LL -9,356 -8,643 -8,642 -12,179 -11,671 -10,985
Standard errors in parentheses.
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001
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Table 8: Model Fit Comparison

(i) (ii)
“Shirts, tops, & blouses” “Shoes”

Data Our model Weitzman Data Our model Weitzman

RMSE
Number of search gaps 242 763 44 1,368
Website search shares 39 52 76 80
Website market shares 71 45 105 49

Data and Predictions
Number of search gaps 763 1005 N/A 1,368 1,412 N/A
Number of searches 3,334 3,346 3,049 4,254 3,784 3,725
Number of purchases 309 717 529 248 873 486

Table 9: Effects of Fatigue and Search Cost Reductions

(i) (ii) (iii) (iv)
Fatigue reduction by Search cost reduction by
50% 90% 50% 90%

“Shirts, tops, & blouses”
Percent change

Number of searches 1.33 18.54 2.02 3.66
Number of purchases 0.53 4.51 0.37 0.65
Number of search gaps -11.53 -64.37 6.62 11.76

“Shoes”
Percent change

Number of searches 4.12 28.18 1.32 1.98
Number of purchases 1.20 4.99 0.18 0.28
Number of search gaps -22.46 -66.97 3.44 5.13
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Web Appendix A: Construction of the Final Data Sample

The raw data contain information on the user (including demographics such as age and gender),

session, and time of the click, as well as the website name and the entire URL address of the visited

website. Furthermore, GfK coded the transaction funnel, identifying a website visit, a product view, a

basket addition, a checkout, or an order confirmation.

Data Augmentation: Scraping

Using the full URLs, we attempted to scrape the top 50 apparel websites (ranked by the number of

clicks) and were successful in scraping 44 of them. We were able to scrape information from the

most popular websites, such as Zalando and H&M, obtaining product information from the top

websites accounting for more than 57% of all apparel clicks. This data collection stage occurred

within one month of the last observation day in our sample to prevent changes in the web pages.

The information we gathered by scraping contains: price, price promotion (if any), page title, brand

name, product name, and, if available, product color, reviews, star rating, number of photos, product

description, shipping information, speed score of the website (page loading speed), as well as word

counts, sentiment on the page, and reading ease.

Data Classification: List, Product, and Other Pages

Although GfK coded the transaction funnel, we performed an additional step in classifying clicks

into list, product, or other pages, to ensure that we correctly identify the product (if any) that was

purchased. An example of a list page is “https://www.adidas.com/us/women-originals-shoes”, where

consumers can see a list of shoes along with a photo, the product name and its price. If a consumer

clicks on a product in this list, she navigates to that product’s page. An example of such a product page

is “https://www.adidas.com/us/adidas-sleek-shoes/EE4723.html” for a consumer who clicked on the

product “adidas sleek shoes” on the list page. The product page contains more detailed information

about the product, such as a product description, additional photos, reviews, etc. Of the 428,651

apparel clicks in our data, 172,536 clicks are on list pages and 93,463 clicks are on product pages. We

labeled the remaining clicks as “others” to represent clicks to the homepage of a website, account

pages, or any transaction-related pages, such as the cart page.

To categorize clicks into either product, list, or other pages, we performed the following steps.
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First, during data scraping, we identified list and product pages by examining whether there was any

product information available on the page and, if so, how many products were available on the page.

Second, we used the following rules:

• ‘Other’ pages:

1. Pages labeled as ‘Add to Basket’, ‘Start Checkout’ and ‘Order Confirmation’ by GfK

2. The homepage of a website such as ‘www.zara.com’

• ‘Product’ page:

1. Pages labeled as ‘Product View’ by GfK

2. Pages from which we can scrape a single product’s information

3. URLs that contains product SKU or product IDs (rules differ for each website)

4. URLs with specific keywords such as ‘product-view’ or ‘shop-by-item’

• ‘List’ page:

1. Pages from which we can scrape information on multiple products

2. Pages that display search results, e.g., ‘https://www.adidas.com/us/search?q=redshoes’

3. URLs with specific keywords that indicate their function as a list page, such as ‘shop-per-
categorie’, ‘page=’, or ‘category=’

4. URLs with specific keywords that indicate the sorting or filtering function available on the
page, such as ‘price max=’, ‘productsoort’, ‘pagenumber’ or ‘filter=’

We further categorized URLs labeled as ‘others’ by manually checking them and hired an RA to

independently manually check our categorization.

Data Classification: Product Categories

To identify the searched product category, we used URLs, page titles, and the scraped information

(e.g., product description) to search for keywords identifying nine broad categories (as defined on

the most popular website in our data, Zalando): accessories, children’s, dresses & skirts, jackets &

vests, pants & jeans, shirts & tops and blouses, shoes, sweater and underwear. The keywords used to

identify the product categories include but are not limited to:

• accessories: ‘accesso’, ‘sjaal’, ‘lippen’, ‘earr’, ‘necklace’, ‘jewelry’, ‘bracelet’, ‘bag’, ‘eastpak’,
‘hals’, ‘banden’

– with exception of: ‘brand’, ‘bracelet’, ‘braad’, ‘brax’, ‘dirk’, ‘brace’, ‘overnachtingen’,
‘aangebrachte’

• children’s: ‘jongens’, ‘kinder’, ‘meisjes’, ‘baby’, ‘tiener’, ‘kids’, ‘boys’ ‘girls’

• dresses & skirts: ‘roecke’, ‘jurken’, ‘dress’, ‘jumpsuit’, ‘jurkje’, ‘jurk’, ‘rok’
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• jackets & vests: ‘trench’, ‘jack’, ‘fleece’, ‘blazer’, ‘mantel’, ‘coat’, ‘parka’, ‘tussenjas’, ‘winterjas’,
‘jas’

• pants & jeans: ‘hosen’, ‘broek’, ‘jogger’, ‘tights’, ‘shorts’, ‘sweatpant’, ‘pants’, ‘pantalon’, ‘leggin’,
‘trouser’, ‘tregging’, ‘jegging’

– with exception of: ‘brand’, ‘bracelet’, ‘braad’, ‘brax’, ‘dirk’, ‘brace’, ‘overnachtingen’,
‘aangebrachte’

• shirts, tops & blouses: ‘top’, ‘hemden’, ‘langarm’, ‘kurzarm’, ‘blusen’, ‘shirt’, ‘singlet’, ‘blouse’,
‘blouson’, ‘polo-’, ‘-polo’, ‘polos’, ‘longsleeve’, ‘overhemd’, ‘onderhemd’

– with exception of: ‘topseller’, ‘topic’, ‘topbox’, ‘topgear’, ‘topdeals’, ‘topper’, ‘topman’,
‘sniztop’, ‘marc-c-polo’, ‘topcom’, ‘topbloemen’, ‘laptop’

• shoes: ‘schuhe’, ‘stiefel’, ‘schoen’, ‘shoe’, ‘sneaker’, ‘sandal’, ‘birkenstock’, ‘fitflop’, ‘teva’,
‘footwear’, ‘e-walk’, ‘ecco’, ‘gabor’, ‘instappe’, ‘pumps’

– with exception of domain names that contain the word ’shoe’

• sweater: ‘parka’, ‘hoodie’, ‘poncho’, ‘westen’, ‘trui’, ‘capuchon’, ‘pullover’, ‘tuniek’, ‘vest’,
‘cardigan’, ‘sweater’, ‘jumper’

• underwear: ‘thong’, ‘nightwear’, ‘bra’, ‘lingerie’, ‘sleep’, ‘swim’, ‘badpak’, ‘ondergoed’, ‘under-
wear’, ‘panties’, ‘sock’, ‘sok’, ‘bustier’, ‘push-up’, ‘boxer’, ‘badmode’, ‘bikini’, ‘tanga’, ‘tankini’

Data Classification: Activities

GfK classifies clicks into activities such as ‘apparel,’ ‘social networking,’ or ‘web search.’ We used this

classification as well as the following rules to further identify the type of online activity the consumer

engaged in. This process resulted in ten categories.

1. Apparel:

• GfK’s classification as ‘Fashion’

2. Search engine:

• GfK’s classification as ‘Web Search’

• URLs that contain the keyword ‘search’ when the website visited is Google, Yahoo or Bing.

• URLs where the website is ‘ask.com’

3. Email

• GfK’s classification as ’Communication’

• URLs that contain keywords ‘mail.google’, ‘outlook’, and ‘webmail’.

• URLs that contain the keyword ‘mail’ when the visited website is Google, Yahoo or Bing

• URLs that contain the keyword ‘messenger’ when the visited website is Yahoo

4. Social Networking

• GfK’s classification as ’Social Networking’
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• The visited website is one of the 5 major social media platforms: facebook, pinterest, twitter,
instagram, linkedin

5. Banking

• GfK’s classification as ’Money Management’

• The visited website is or contains ‘rabobank.nl’, ‘abnamro.nl’, ‘bank’, ‘achmea’ or ‘vanlan-
schot’

6. Cashback

• The visited website is one of: ‘geldrace.nl’, ‘geldkoffer.info’, ‘geldwolf.info’, ‘zinngeld.nl’,
‘mailbeurs.nl’, ‘extraeuro.nl’, ‘centmail.nl’, ‘cashhier.nl’, ‘spaar4cash.nl’, ‘snelverdienen.nl’,
‘ipay.nl’, ‘spaaractief.nl’, ‘nucash.nl’, ‘myflavours.nl’, ‘directverdiend.nl’, ‘dieselmail.nl’,
‘spaar4cash.nl’, ‘dutcheuro.nl’, ‘extraeuro.nl’, ‘cashparadijs.nl’, ‘sneleuro.nl’, ‘myclics.nl’,
‘spaar-voor-euries.nl’, ‘jiggy.nl’, ‘qlics.nl’, ‘quidco’

7. Surveys

• The visited website is one of: ‘gfk.com’, ‘ssisurveys.com’, ‘focusvision.com’, ‘opinion-
bar.com’, ‘globaltestmarket.com’

8. Media

• GfK’s classification as ‘Media Broadcasting’ or ‘Media On-Demand’

• URLs that contain the keyword ‘tvgids’

9. Google exclude

• URLs from ‘google.com’ that are not classified as search engine or email related (this
includes Google Drive, Maps, etc.)

10. Gaming

• GfK’s classification as ‘Gaming’

• URLs containing the keywords: ‘casino’, ‘game’, ‘unibet’, ‘nederlandseloterij.nl’

Data Cleaning: Removing Non-search Activity

The raw data contains 9,531,448 observations. To obtain the final data set, we removed observations in

the following cases:

• Consumers use a web browser to open local files on their computers rather than browse the
Internet

• A new tab is opened but no webpage is visited on that tab

• Consumers open web browsers’ extensions

• Any URL that does not contain ’ttp’

• Duplicates at the session-time level: the same URL is clicked more than once at the same time or
two different URLs are clicked at the same time. In both cases, we only kept a record of the first
click
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• Spells during which sessions overlap in time (one instance)

• Spells with a transaction but no clicks on product pages observed (in these rare cases, websites
likely offer the option of adding a product to the cart directly from the list page)

• Spells with a transaction and observed product clicks but no product added to the cart

• Spells that end within the first week of our observation period, i.e., before February 23rd, 2018,
since it is likely that these observations are left truncated

These changes resulted in a data set with 7,877,551 observations. In addition, among the apparel

clicks (437,659 observations), we dropped sessions and their corresponding spells that only contained

clicks that were unrelated to product search activity, such as clicks to log in or out of an account, to

track a shipment, to find a store location, to access customer service, to manage a subscription or to

create a password. Of the original 437,659 observations, we were left with 428,651 observations.

Estimation Samples

We constructed our estimation samples as follows. We focused on the two most commonly purchased

product subcategories in our data: “shirts, tops, & blouses” and “shoes.” We removed search revisits

(i.e., revisits to the same website beyond the first visit that are unrelated to the actions required to make

a purchase, such as logging into an account) from the sample (approximately 30% of observations).

To address concerns about right truncation, we removed spells that did not end in a transaction and

that had a search session within the last two days of our observation period.49 We focused on spells

with at most one transaction (more than 99.3% of spells) and we removed spells with clicks that might

have occurred after the consumer saw an ad on social media, email, newsletter or through retargeting

(fewer than 20% of spells).50 For each subcategory, we determined the top 10 most searched websites

(accounting for approximately 65% of clicks in each subcategory), for which we estimate website

intercepts. All other websites were grouped together into a composite website which we call “Other.”

The resulting estimation samples have 27,924 observations and 2,327 spells in the “shirts, tops,

49Recall that we addressed left truncation concerns by removing spells that ended within the first week of our observation period. To
further address potential concerns about left and right truncation, we also conducted a robustness check in which we dropped spells (i) that
contained searches within the first week of our observation period and (ii) that did not end in a transaction but had a search session within
the last week of our observation period. The estimation results are shown in Table F-4 in Web Appendix F and are very similar to those from
our main specification (see Table 7), with slightly higher search costs since removing spells performed in two of the 10 weeks in our data
selects consumers with fewer searches. Note that in the first apparel subcategory, two of the top 10 websites are different than in our main
sample, given the significant drop in search spells.

50Note that ads may encourage consumer to start a new search session, but cannot explain why consumers stopped their search in a
previous session, and therefore cannot explain search gaps. More robustness checks estimating our model on spells without any ad clicks
can be found in Web Appendix F.
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& blouses” subcategory, and 27,756 observations and 2,313 spells in the “shoes” subcategory.51

Consumers made 309 and 248 transactions in each subcategory, respectively. Further, there are 763 and

1,368 search gaps in each subcategory, respectively, with 586 and 818 spells with at least one search gap.

51To ensure that we capture all searches performed in a subcategory, we attribute searches that do not have a subcategory labeling but
that occur in between searches labeled as a given subcategory, to that subcategory.
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Web Appendix B: Supporting Data Patterns

Figure B-1: Price Convergence across Apparel Subcategories
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(c) Pants & Jeans
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(d) Underwear
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(f) Dresses & Skirts
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(g) Children’s Clothes
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(h) Jackets & Vests
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(i) Accessories

Table B-1: Revisit Patterns

Shirts, Tops,
& Blouses Shoes

Pants
& Jeans

Under-
wear Sweaters

Dresses
& Skirts

Children’s
Clothes

Jackets
& Vests

Acces-
sories

Spells with No Revisits 0.67 0.57 0.69 0.77 0.75 0.75 0.69 0.75 0.73
Spells with Revisits & No Purchase 0.28 0.38 0.28 0.20 0.22 0.23 0.28 0.23 0.26
Spells with Revisits & Purchases 0.05 0.05 0.04 0.03 0.03 0.03 0.03 0.02 0.01

Conditional on Purchasing
% of Spells with Revisits 0.34 0.39 0.29 0.23 0.34 0.25 0.42 0.24 0.34
Notes: Percentages for the first three rows in each column may not add up to 1 due to rounding.
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Web Appendix C: Formal Details on Model Solution

C.1. Supplementary Analyses for Section 5.3

We have two goals in this section: (i) to provide a more formal theoretical treatment of the analysis

performed in Section 5.3 for the specific empirical application of our model; and (ii) to perform more

simulations to investigate the generality of the results in Section 5.3. More specifically, we show

that, for a large range of parameter values, our results in Section 5.3 related to Condition 1 and the

continuation value are robust.

C.1.1. Formal Analysis for Empirical Application

In Section 5.3, we showed that, for the general case when W j(y) = yF j(y) +
∫
∞

y udF j(u), as y grows

large, W j(y) approaches y, while for small values of y, W j(y) approaches EF j(u). In this subsection, we

aim to make this analysis more concrete by imposing the distributional constraints of our empirical

application and thereby showing additional results. In our empirical application, we assume utilities

are normally distributed with N(µ j,σ2
j ). In this case, the continuation value W j(y) can be expressed as

W j(y) = µ jσ j + (y−µ jσ j)Φ(m j) +σ2
jφ(m j), (C1)

where m j =
y−µ j

σ j
, and Φ(·) and φ(·) are the cdf and the pdf of the standard normal distribution. In what

follows, we assume σ j = 1 (as in our empirical application).

So far, we have been able to characterize the behavior of W j(y) for large and small values of y.

Here, we will make the statements “large” and “small” more precise. To achieve this goal, we first

ask: for what values of y is W j(y) = µ j? It is obvious that m jΦ(m j) +φ(m j) = 0 only if both Φ(·) = 0

and φ(·) = 0. Noticing that, e.g., −2Φ(−2) +φ(−2) = 0.0085 and −3Φ(−3) +φ(−3) = 3.8215e− 04, we

find that W j(y) ≈ µ j for y−µ j < −3. Second, we ask: for what values of y is W j(y) = y? This is

equivalent to asking for what values of m j is m jΦ(m j) +φ(m j)−m j = 0. Once again, we notice that

3Φ(3) +φ(3)−3 = 3.8215e−04, suggesting that W j(y) ≈ y for y−µ j > 3. Finally, we rely on the function

W j(y) = µ j + (y−µ j)Φ(m j) +φ(m j) for y−µ j ∈ (−3,3).

Given these results, we now return to describing the continuation value W j(S̄, t + 1, y). From
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equation (9), we know that

W j
(
{ j,k}, t + 1, y

)
= max

{
y, −ck0−α(t + 1) + Wk

(
y
)
, β

[
−ck0 + Wk

(
y
)]}

F j
(
y
)

(C2)

+ max
{∫

∞

y
udF j (u) ,

∫
∞

y
[−ck0−α(t + 1) + Wk (u)]dF j (u) ,

∫
∞

y

{
β [−ck0 + Wk (u)]

}
dF j (u)

}
≤ max

{
yF j

(
y
)
+

∫
∞

y
udF j (u) , −ck0−α(t + 1) + M j(y), β

[
−ck0 + M j(y)

]}
= max

{
W j

(
y
)
, −ck0−α(t + 1) + M j(y), β

[
−ck0 + M j(y)

]}
where M j(y) = Wk

(
y
)
F j

(
y
)
+

∫
∞

y Wk (u)dF j (u). The inequality follows from the fact that max{a,b,c}+

max{d,e, f } ≥max{a + d,b + e,c + f } for any values (a,b,c,d,e, f ). Using the expression for W j(y) from

equation (C1) above, we can further simplify W j
(
{ j,k}, t + 1, y

)
. Given the complexity of the expression

for W j
(
{ j,k}, t + 1, y

)
, we next turn to additional simulation results to describe its relation to W j(y).

C.1.2. Simulations for Empirical Application – Relating W j
(
{ j,k}, t + 1, y

)
and W j(y)

In Section 5.3, we showed the relation between W j
(
{ j,k}, t + 1, y

)
and W j(y) for two cases: (ii) µ j = 2,

µk = 1, σ j = σk = 1, c j0 = ck0 = e−2, α = e−1, β = 0.95, and t = 1; and (ii) µ j = 1, µk = 2, and all other

parameters equal to the ones in case (i). Here, we describe the relation between W j
(
{ j,k}, t + 1, y

)
and

W j(y) for the parameter values we obtain in the estimation (see Section 7). For simplicity, we consider

results from the case in which only website intercepts affect consumer utility (first column for each

subcategory in Table 7). All website intercepts across the two apparel subcategories lie in the range

(−0.86,−2.66), but most lie in the range (−1.0,−1.4). In our simulation, we compare W j
(
{ j,k}, t + 1, y

)
and

W j(y) for two sets of mean utilities for two websites, j and k: (i) common values (µ j = −1.0,µk = −1.4)

and (ii) extreme values (µ j = −0.86,µk = −2.66). In the estimation, utility error terms are standard

normally distributed, so we set σ j = σk = 1 in our simulation. Baseline search costs are approximately

c0 = e−5 and fatigue is α = e−2.5. The utility of the best option observed through search y must exceed the

value of the outside option, which, consistent with the literature, we assume is at least zero (Weitzman,

1979; Kim, Albuquerque, and Bronnenberg, 2010). Finally, as in Section 5.3, we set β = 0.95 and t = 1

(to obtain the largest possible difference between W j
(
{ j,k}, t + 1, y

)
and W j(y), since for larger values of

t our results will continue to hold).

The results are shown in Figure C-1. In Figure C-1(a), we present results for the case of common

values (µ j = −1,µk = −1.4). The graph on the left presents the difference between W j
(
{ j,k}, t + 1, y

)
60



and W j(y) for different values of y, while the graph on the right shows the difference between

Wk
(
{ j,k}, t + 1, y

)
and Wk(y). In both cases, the difference is relatively small, allowing us to conclude

that the continuation value in our problem is very close to the one in the Weitzman (1979) model for

most of the relevant parameter values in our estimation. Similar conclusions are derived from Figure

C-1(b).

Figure C-1: Comparing Continuation Values for Parameter Estimates Obtained in Empirical
Application

(a) Case (i): Common values obtained in estimation
(α = e−2.5, β = 0.95, µ j = −1, µk = −1.4, σ j = σk = 1, c j0 = ck0 = e−5, t = 1)

(b) Case (ii): Extreme values obtained in estimation
(α = e−2.5, β = 0.95, µ j = −0.86, µk = −2.66, σ j = σk = 1, c j0 = ck0 = e−5, t = 1)
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C.1.3. Simulations for Empirical Application – Relating W j
(
{ j,k}, t + 1, y

)
and W j

(
{ j,k},1, y

)
We follow the same steps outlined above to perform another simulation illustrating W j

(
{ j,k}, t + 1, y

)
using the parameter values we obtain when estimating our model (see Section 7) and the functional

form for W j
(
{ j,k}, t + 1, y

)
we derived in equation 9. Our results in Figure C-2 below confirm that

W j
(
{ j,k}, t + 1, y

)
is independent of t for the parameter estimates we obtain in our empirical application.

Figure C-2: The Continuation Value W j
(
{ j,k}, t + 1, y

)
for Parameter Estimates Obtained in Empirical

Application

(a) Case (i): Common values obtained in estimation
(α = e−2.5, β = 0.95, µ j = −1, µk = −1.4, σ j = σk = 1, c j0 = ck0 = e−5)

(b) Case (ii): Extreme values obtained in estimation
(α = e−2.5, β = 0.95, µ j = −0.86, µk = −2.66, σ j = σk = 1, c j0 = ck0 = e−5)
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C.1.4. Evaluating Condition 1 and Assumption 1 for a Wide Range of Parameter Values

The previous two subsections in this web appendix and Section 5.3 in the paper provided evidence

that the continuation values in our problem coincide or are very similar to the ones in the Weitzman

model for parameter estimates close to those we obtain in our empirical application. These results

were used to support the notion that Condition 1 and Assumption 1 are satisfied in our empirical

application. Here, we evaluate how often Condition 1 and Assumption 1 are satisfied for parameter

values far beyond those we obtain with our data.

Condition 1: We evaluate the relation that formally defines Condition 1, W j
(
{ j,k}, t + 1, y

)
−

Wk
(
{ j,k}, t + 1, y

)
≥ W j

(
{ j,k},1, y

)
−Wk

(
{ j,k},1, y

)
, for any two options j and k and for a large set

of parameter values. To do so, we write it as a difference, i.e.,
[
W j

(
{ j,k}, t + 1, y

)
−Wk

(
{ j,k}, t + 1, y

)]
−[

W j
(
{ j,k},1, y

)
−Wk

(
{ j,k},1, y

)]
, and check when this difference is non-negative. We use the functional

form for W j
(
{ j,k}, t + 1, y

)
we derived in equation 9 to precisely compute this difference and thus

determine when Condition 1 is satisfied. Also, we maintain the same normality assumptions on the

utility distribution as prior work, N
(
µ j,σ2

j

)
and N

(
µk,σ

2
k

)
(Kim, Albuquerque, and Bronnenberg, 2010,

2017; Honka and Chintagunta, 2017; Chen and Yao, 2017; Ursu, 2018).

We implement three sets of simulations. In the first set, we consider a large range of values with

larger increments. More precisely, set 1 is described as follows:

• Set 1: “Vary All Values”: 1,056,000 parameter combinations

– Vary mean utility parameters, µ j and µk, in the range [−10,10] in increments of 5, resulting
in the values (−10,−5,0,5,10)

– Vary search cost parameters, c j = exp(κ j) and ck = exp(κk), for values of κ j (κk) in the range
[−6,0] in increments of 2, resulting in the values (−6,−4,−2,0)

– Vary fatigue parameter, α = exp(a) for values of a in the range [−6,0] in increments of 2,
resulting in the values (−6,−4,−2,0)

– Vary the uncertainty parameter, σ, in the range [0.5,1.5] in increments of 0.5, resulting in the
values (0.5,1,1.5)

– Vary the discount factor, β, in the range [0.8,1] in increments of 0.05, resulting in the values
(0.8,0.85,0.9,0.95,1)

– Vary t, in the range [1,10] in increments of 3, resulting in the values (1,4,7,10)

– Vary the utility of the best option observed though search, y, in the range [0,10] in increments
of 1, resulting in the values (0,1,2,3,4,5,6,7,8,9,10)
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The next two sets consider a narrower set of parameter values, but with smaller increments, each

focusing on a subset of the cases from set 1. In set 2, we vary utility and uncertainty parameters,

as well as the discount factor. In set 3, we display results for parameter values close to the values

estimated in our empirical application.

• Set 2: “Vary Utility, Uncertainty, and Discount Factor”: 53,900 parameter combinations

– Vary mean utility parameters, µ j and µk, in the range [−3,3] in increments of 1, resulting in
the values (−3,−2,−1,0,1,2,3)

– Vary the uncertainty parameter, σ, in the range [0.5,1.5] in increments of 0.25, resulting in
the values (0.5,0.75,1,1.25,1.5)

– Vary the discount factor, β, in the range [0.8,1] in increments of 0.05, resulting in the values
(0.8,0.85,0.9,0.95,1)

– Vary t, in the range [1,10] in increments of 3, resulting in the values (1,4,7,10)

– Vary the utility of the best option observed though search, y, in the range [0,10] in increments
of 1, resulting in the values (0,1,2,3,4,5,6,7,8,9,10)

– Set c j = exp(−5), ck = exp(−5), and α = exp(−2.5)

• Set 3: “Values Close to Estimates”: 550 parameter combinations

– Vary the discount factor, β, in the range [0.8,1] in increments of 0.05, resulting in the values
(0.8,0.85,0.9,0.95,1)

– Vary t, in the range [1,10] in increments of 1, resulting in the values (1,2,3,4,5,6,7,8,9,10)

– Vary the utility of the best option observed though search, y, in the range [0,10] in increments
of 1, resulting in the values (0,1,2,3,4,5,6,7,8,9,10)

– Set µ j = −1, µk = −4, c j = exp(−5), ck = exp(−5), α = exp(−2.5), and σ = 1

We display our results in two different ways. First, we summarize our results for the three sets of

simulations in Table C-1. We find that Condition 1 is satisfied in the vast majority of simulations and

for wide as well as narrow ranges of the parameter space. For example, in set 1, 86% of the more than

1,000,000 parameter combinations indicate that Condition 1 is satisfied. Further, Condition 1 is satisfied

for 92% of the parameter combinations in set 2 and 100% of those in set 3. Even when Condition 1 is

not satisfied, the difference
[
W j

(
S̄, t + 1, y

)
−Wk

(
S̄, t + 1, y

)]
−

[
W j

(
S̄,1, y

)
−Wk

(
S̄,1, y

)]
is mostly a very

small negative number.52 Allowing for very small violations of up to 0.1, Condition 1 holds in more

than 93% of simulations in set 1,53 supporting the notion that the value
[
W j

(
S̄, t + 1, y

)
−Wk

(
S̄, t + 1, y

)]
is a good approximation for the value

[
W j

(
S̄,1, y

)
−Wk

(
S̄,1, y

)]
.

52Note that the calculated values of the difference
[
W j

(
S̄, t + 1, y

)
−Wk

(
S̄, t + 1, y

)]
−

[
W j

(
S̄,1, y

)
−Wk

(
S̄,1, y

)]
in the simulations range

from -9 to 9.
53We define a very small violation as follows: 0 <

[
W j

(
S̄, t + 1, y

)
−Wk

(
S̄, t + 1, y

)]
−

[
W j

(
S̄,1, y

)
−Wk

(
S̄,1, y

)]
≤ −0.1.
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Table C-1: Simulation Studies to Evaluate Condition 1

(i) (ii) (iii)

Num. of Parameter
Combinations

Percent of Simulations
in which Condition 1 is Satisfied

Percent of Simulations
in which Condition 1 Holds

Allowing for Violations up to 0.1

Set 1: “Vary All Values” 1,056,000 85.80 93.19
Set 2: “Vary Utility, Uncertainty,
and Discount Factor” 53,900 92.32 96.32
Set 3: “Values Close to Estimates” 550 100.00 100.00

And second, we also display the results for simulation set 2 using heat maps in Figure C-3. Set 1

considers more than 1,000,000 parameter value combinations, and is thus too large to be displayed in a

heat map, while set 3 shows no variation since Condition 1 is satisfied for all parameter combinations.

For set 2, we plot the heat map first as a function of y (Figure C-3(a)), and then as a function of the

discount factor β (Figure C-3(b)) to emphasize the impact of the values of these two parameters on

the validity of Condition 1. The blue base color indicates a value of zero, lighter colors indicate

positive values, and darker colors indicate negative values. In the vast majority of simulations, the

difference
[
W j

(
S̄, t + 1, y

)
−Wk

(
S̄, t + 1, y

)]
−

[
W j

(
S̄,1, y

)
−Wk

(
S̄,1, y

)]
is zero or positive, meaning that

Condition 1 is satisfied. Only a small proportion of parameter values leads to a failure of Condition

1. Even if Condition 1 fails, the violations are mostly very close to zero. In Figure C-3(a), we show

that larger values of y make it more likely that Condition 1 holds (for a discussion of why this is the

case, see Section 5.3.2 in the paper). In Figure C-3(b), we show that larger values of the discount

factor β (consistent with our empirical application in which the search gap length is usually short,

approximately 4 days) also make it more likely that Condition 1 holds.
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Figure C-3: Evaluating Condition 1 Using Heat Maps

(a) Case 1 - As Function of y

(b) Case 2 - As Function of β
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Table C-2: Parameter Values and their Implications for Condition 1

Condition 1 more likely
to hold when

α large
β large
σ small
t small
y large

To better understand which parameter values lead to a failure of Condition 1, we investigated

the results more closely. Most failures of Condition 1 (61% of failures in set 1) happen when the

uncertainty parameter σ takes on values that are different from 1. Since this parameter is hard to pin

down empirically (indeed it is commonly normalized to 1 in empirical consumer search models, see

discussion in Yavorsky, Honka, and Chen 2021), we consider the fact that Condition 1 holds in the vast

majority of simulations when σ = 1 as encouraging. In the remaining simulations, larger values of t,

large differences between mean utilities and search costs, as well as small fatigue levels are also more

likely to lead to a failure of Condition 1. We summarize the main relations in Table C-2. However, once

more, our main result highlights the fact that Condition 1 holds for the vast majority of considered

parameter values, values that are beyond those obtained with our data.

Assumption 1: We use a similar approach to the one described above to evaluate when Assumption

1 is satisfied. To do so, we compute the difference between the continuation value in our model,

W j
(
S̄, t + 1, y

)
, and the continuation value in Weitzman, W j

(
y
)
. Using the parameter value combinations

from set 1 above, we find that Assumption 1 exactly holds, i.e., W j
(
S̄, t + 1, y

)
= W j

(
y
)
, in 77% of

the simulations. When Assumption 1 is not satisfied with equality, the difference between the two

continuation values is nearly always very small:54 in 98% of cases, the difference in continuation

values is smaller than 0.1, i.e.,
∣∣∣ W j

(
S̄, t + 1, y

)
−W j

(
y
) ∣∣∣ ≤ 0.1. Given that Assumption 1 is made to aid

our empirical specification, we judge these results as encouraging.

C.1.5. Proof by Induction – Relating W j
(
S̄, t + 1, y

)
and W j

(
S̄,1, y

)
for any S̄

In Section 5.3, we showed that W j
(
S̄, t + 1, y

)
= W j

(
S̄,1, y

)
when only one option is left to search.

Suppose the same holds when n > 1 options are left to search. For simplicity, denote the set

of n options left to search by S̄n. To complete the induction proof, we need to show that, if

54Note that the calculated values of the difference W j
(
S̄, t + 1, y

)
−W j

(
y
)

in the simulations range from -17 to 17.
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W j
(
S̄1, t + 1, y

)
= W j

(
S̄1,1, y

)
,∀t ≥ 0 and W j

(
S̄n, t + 1, y

)
= W j

(
S̄n,1, y

)
,∀t ≥ 0 (by the induction hypothe-

sis), then W j
(
S̄n+1, t + 1, y

)
= W j

(
S̄n+1,1, y

)
,∀t ≥ 0 will also hold. From Section 5.3, we know that this

statement will not always hold, but that it will hold under fairly general conditions (that are met in

our empirical application), such as a high fatigue level. Thus, our goal is to show that this statement

holds under those same conditions. Using equation 9, we can write W j
(
S̄n+1, t + 1, y

)
as

W j
(
S̄n+1, t + 1, y

)
= V

(
S̄n, t + 1, y

)
F j

(
y
)
+

∫
∞

y
V

(
S̄n, t + 1,u

)
dF j (u) (C3)

= max
{

y, max
k∈S̄n

{
max

{
−ck0−α(t + 1) + Wk

(
S̄n, t + 2, y

)
, β

[
−ck0 + Wk

(
S̄n,1, y

)]}}}
F j

(
y
)

+ max
∫ ∞

y
udF j (u) , max

k∈S̄n

max
∫ ∞

y
[−ck0−α(t + 1) + Wk

(
S̄n, t + 2,u

)
]dF j (u) ,

∫
∞

y
β
[
−ck0 + Wk

(
S̄n,1,u

)]
dF j (u)

 ,
where for simplicity we let S̄n+1 \ j = S̄n. Since by the induction hypothesis, W j

(
S̄n, t + 1, y

)
=

W j
(
S̄n,1, y

)
,∀t ≥ 0, it clear that, if α, β and/or y are large, then W j

(
S̄n+1, t + 1, y

)
will not depend

on t, and thus it will equal W j
(
S̄n+1,1, y

)
(using a similar argument as we did for the case where n = 2

in Section 5.3). This is the same condition we observed when looking at two options left to search.

Thus, our statement follows.

C.2. Deriving the Search Rules of our Proposed Solution in Theorem 5

Here, we derive the specific functions characterizing the search rules in Theorem 5. Suppose j is the

alternative with the maximum reservation utility among alternatives not yet searched S̄. Then given(
t, y

)
, the consumer will

• search j now if max
{
z1

j (t) ,z2
j

}
≥ y and z3

j (t) < y ;

• search j later if max
{
z1

j (t) ,z2
j

}
≥ y and z3

j (t) ≥ y ;

• stop searching if z1
j (t) < y and z2

j < y .

The expressions defining (z1
j ,z

2
j ,z

3
j ) were derived in equations (12, 13, 14). For ease of exposition,

we replicate them here:

c j0 = W j

(
z1

j (t)
)
− z1

j (t)−αt; (C4)

c j0 = W j

(
z2

j

)
−

z2
j

β
;

c j0 = W j

(
z3

j (t)
)
−

αt
1−β

.
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We know from Theorem 4 and the results derived in Section 5.3.3 that the consumer will

• search j now if c j0 ≤ W j
(
y
)
− y−αt︸           ︷︷           ︸
A

and c j0 ≤ W j
(
y
)
−

αt
1−β︸          ︷︷          ︸

B

;

• search j later if c j0 ≤ W j
(
y
)
−

y
β︸       ︷︷       ︸

D

and c j0 > W j
(
y
)
−

αt
1−β︸          ︷︷          ︸

B

;

• stop searching if c j0 > W j
(
y
)
− y−αt︸           ︷︷           ︸
A

and c j0 > W j
(
y
)
−

y
β︸      ︷︷      ︸

D

.

To simplify exposition, we denote the three terms that search cost c j0 is compared to by A, B, and D.

Note that c j0 > A if y > z1
j (based on equation C4 and the monotonicity results of the function W j(·)

derived in Section 5.3.3). Similarly, c j0 >D if y > z2
j , and c j0 < B if y > z3

j .

We proceed by enumerating all possible relations between c j0 and A, B, and D, and demonstrate

that they imply the relations we need to show.

1. c j0 > A, c j0 > B, c j0 >D

2. c j0 > A, c j0 ≤ B, c j0 >D

3. c j0 > A, c j0 > B, c j0 ≤D

4. c j0 ≤ A, c j0 > B, c j0 ≤D

5. c j0 ≤ A, c j0 ≤ B, c j0 >D

6. c j0 ≤ A, c j0 ≤ B, c j0 ≤D

7. c j0 > A, c j0 ≤ B, c j0 <D

8. c j0 ≤ A, c j0 > B, c j0 ≤D

In cases 1 and 2, it is immediately clear that the consumer will want to stop searching, since

conditions c j0 >A and c j0 >D are satisfied. These conditions are equivalent to stating that the consumer

will stop searching when z1
j (t) < y and z2

j < y, as required.

In cases 3 and 4, the consumer will decide to search j after a break, since conditions c j0 > B and

c j0 ≤ D are satisfied. Note that the consumer will want to search j later regardless of the relation
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between c j0 and A. This results in the equivalent statement that the consumer will search j later

whenever the conditions max
{
z1

j (t) ,z2
j

}
≥ y and z3

j (t) ≥ y hold, as we needed to show (inequalities

follow from our tie-breaking rules, defined in footnote 35). Similarly, in cases 5 and 6, we can show that

the consumer will want to search j now because conditions c j0 ≤ A and c j0 ≤ B hold. These conditions

are equivalent to those we need to show, i.e., that the consumer will search j now if max
{
z1

j (t) ,z2
j

}
≥ y

and z3
j (t) < y.

Finally, cases 7 and 8 involve contradictions and thus do not impact the search rules we derived.

Consider first case 7. If c j0 > A and c j0 ≤ B, it follows that A < B. Plugging in for the values of A and B

and simplifying, we obtain the condition y
β >

αt
1−β . Also, if c j0 > A and c j0 ≤D, then after simplification,

we obtain the condition y
β <

αt
1−β , which contradicts the previous statement. A similar contradiction can

be derived in case 8 as well. Here, the fact that c j0 ≤ A and c j0 > B implies that y
β <

αt
1−β . However, the

fact that c j0 ≤ A and c j0 >D implies that y
β >

αt
1−β , which is a contradiction. We conclude that cases 7

and 8 cannot occur, so we do not need to consider them in describing consumers’ optimal search rules.
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Web Appendix D: Estimation Details

D.1. Our Model

The estimation using the logit-smoothed AR simulator involves the following steps:

1. Make d = {1, . . . ,D} draws of ηi j and εi j for each consumer-website combination and calculate

utility ud
ij.

2. Compute
[
zd

j , z1d
j (t) , z2d

j , z3d
j (t)

]
3. Calculate the following expressions for each draw d:

(a) νd
1 = zd

in−maxJ
k=n+1 zd

ik ∀n ∈ {1, . . . , J−1}

(b) νd
2 = zd

i1−ud
i0

(c) νd
3 = max

{
z1d

in (tn) ,z2d
in

}
−maxn−1

k=0 ud
ik ∀n ∈ {2, . . . ,s}

(d) νd
4 = maxn−1

k=0 ud
ik− z3d

in (tn) if tn = tn+1−1 ∀n ∈ {2, . . . ,s}

(e) νd
5 = z3d

in (tn)−maxn−1
k=0 ud

ik if tn , tn+1−1 ∀n ∈ {2, . . . ,s}

(f) νd
6 = z1d

im (tm)−maxs
k=0 ud

ik ∀m ∈ {s + 1, . . . , J}

(g) νd
7 = z2d

im−maxs
k=0 ud

ik ∀m ∈ {s + 1, . . . , J}

(h) νd
8 = ud

ij−maxs
k=0 ud

ik ∀ j ∈ {0,1, . . . ,s}

4. Compute Vd = 1
1+Md for each draw d, where

Md = e−ν
d
1/ρ1 + e−ν

d
2/ρ2 + (e−ν

d
3/ρ3 + e−ν

d
4/ρ3) + (e−ν

d
3/ρ4 + e−ν

d
5/ρ4) + (e−ν

d
6/ρ5 + e−ν

d
7/ρ5) + e−ν

d
8/ρ6 , (D1)

where the terms in parentheses represent the values of searching now, searching later, and

of stopping, respectively, and where ρk are scaling parameters, chosen using Monte Carlo

simulations (Honka 2014; Ursu 2018; Ursu, Wang, and Chintagunta 2020).

5. The average of Vd over the D draws and over consumers and websites gives the simulated

likelihood function.

Similar to Ursu, Wang, and Chintagunta (2020), we use different scaling values ρk for each

for the decisions consumers make. Using our Monte Carlo simulation that closely resembles

the estimation data, we determined that the following scaling parameters recover the data well:

ρ = [−10,−3,−3,−10,−10,−5]. Therefore, we estimate our model with the same set of scaling values.

We also notice that estimating the model with all scaling parameters set to −3 also recovers the

parameters well.55

55The analysis is available from the authors upon request.
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D.2. Weitzman (1979) Model

In the Weitzman (1979) model, consumers search products in decreasing order of their reservation

utilities and stop searching when the best observed utility so far exceeds the reservation utility of any

unsearched option. The estimation procedure using the logit-smoothed AR simulator follows that in

Honka and Chintagunta (2017) and Ursu (2018) and involves the following steps:

1. Make d = {1, . . . ,D} draws of ηi j and εi j for each consumer-website combination and calculate

utility ud
ij.

2. Compute zd
j .

3. Calculate the following expressions for each draw d:

(a) νd
1 = zd

in−maxJ
k=n+1 zd

ik ∀n ∈ {1, . . . , J−1}

(b) νd
2 = zd

in−maxn−1
k=0 ud

ik ∀n ∈ {1, . . . ,s}

(c) νd
3 = maxs

k=0 ud
ik− zd

im ∀m ∈ {s + 1, . . . , J}

(d) νd
4 = ud

ij−maxs
k=0 ud

ik ∀ j ∈ {0,1, . . . ,s}

4. Compute Vd = 1
1+Md for each draw d, where

Md =

4∑
k=1

e−ν
d
k/ρk , (D2)

where ρk are scaling parameters, chosen using Monte Carlo simulations (Honka 2014; Ursu 2018;

Ursu, Wang, and Chintagunta 2020).

5. The average of Vd over the D draws and over consumers and websites gives the simulated

likelihood function.

To ensure consistency across the estimation of the two models, we use the same scaling parameters,

adjusted for the fact that, in the Weitzman model, the likelihood function is made up of only

four components (rather than eight as in our model). The set of scaling parameters is given by

ρ = [−10,−3,−3,−5].
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Web Appendix E: Calculating Reservation Utilities

An advantage of our proposed method lies in its ease of estimation due to its similarity to the Weitzman

(1979) model: consumers search in decreasing order of reservation utilities z j and also make search

and purchase decisions based on threshold values of the best alternative observed so far. The main

difference consists of computing the values of
[
z1

j (t) ,z2
j ,z

3
j (t)

]
in addition to that of z j. We start by

describing the method developed in Kim, Albuquerque, and Bronnenberg (2010) to compute z j. Then

we describe our method to compute
[
z1

j (·) ,z2
j ,z

3
j (·)

]
.

Recall that W j
(
y
)

= yF j
(
y
)
+

∫
∞

y udF j (u) and that the reservation utility z j is the solution to

c j0 = W j

(
z j

)
− z j (see equation (11)). From Kim, Albuquerque, and Bronnenberg (2010), we know that,

under the assumption that ε j is standard normally distributed,

B
(
m j

)
= W j

(
z j

)
− z j = φ

(
m j

)
+ m jΦ

(
m j

)
−m j

with m j = z j−µ j, and φ(·) and Φ(·) representing the pdf and the cdf of the standard normal distribution.

Given that a unique solution to c j0 = B
(
m j

)
exists (see Weitzman 1979 or our discussion in Section

5.3.3), one can invert the relation, solve for m j, and then compute z j from the relation z j = m j +µ j.

Following prior work, we create a look-up table relating c j0 to m j according to function B
(
m j

)
, which

we can use to solve for z j for any search cost value.

To compute z1
j (t), we use a similar method. Recall that z1

j (t) is the solution to c j0 +αt = W j

(
z1

j (t)
)
−

z1
j (t) (see equation (12)). Since the additional term affecting search costs is constant in j, we can

similarly create a look-up table relating c j0 +αt to m1
j (t) according to the function B

(
m1

j (t)
)

for the

observed value of t (same function B (·) as above), and then solve for z1
j (t) from z1

j (t) = m1
j (t) +µ j.

To compute
[
z2

j ,z
3
j (t)

]
, we use a different method. Note that W j (z) = φ (m) + mΦ (m) + µ for

m = z−µ if W j (z)− z = φ (m) + mΦ (m)−m. Next, recall that z2
j is the solution to c j0 = W j

(
z2

j

)
−

z2
j

β =

φ
(
z2

j −µ j

)
+
(
z2

j −µ j

)
Φ

(
z2

j −µ j

)
+µ j−

z2
j

β . To solve for z2
j , we create a look-up table relating c j0 and µ j to

values of z2
j by (numerically) solving the stated equation for all relevant values of c j0 and µ j.

To solve for z3
j (t), we use a similar approach. From equation (14), we know z3

j (t) is the solution to

c j0 = W j

(
z3

j (t)
)
−

αt
1−β , which can be rewritten as c j0 + αt

1−β = φ
(
z3

j (t)−µ j

)
+

(
z3

j (t)−µ j

)
Φ

(
z3

j (t)−µ j

)
+µ j.

Using a look-up table relating c j0 + αt
1−β and µ j to values of z3

j (t), after (numerically) solving the stated

equation, we can compute z3
j (t).
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Web Appendix F: Robustness Checks

F.1. Weitzman (1979) Model with Increasing Search Cost

Our model makes two changes to the Weitzman (1979) framework: (i) allows for search gaps; and (ii)

models the effect of fatigue on search costs. To better isolate the effect of each change on parameter

estimates, we also estimate a variation of the Weitzman (1979) model with increasing search costs

(due to fatigue) but without search gaps, i.e., we only make one change to the Weitzman (1979)

framework. Technically, this involves removing the option to search after the break from equation

(3), but continuing to assume that fatigue affects search costs. To the best of our knowledge, this

variation of the Weitzman (1979) model has not been studied by previous literature. As in our problem,

there is no known optimal search rule. However, the solution we developed for our model can be

used to derive an optimal search rule for this variation of the Weitzman (1979) model. Using the

arguments we made in Section 5.3.1, the consumer searches products in the same order as in the

original Weitzman (1979) model, i.e., in decreasing order of their reservation utilities z j. And, the

consumer stops searching when she encounters a product j for which z1
j (t) is smaller than the best

option searched so far, and continues searching j otherwise.
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Table F-1: Estimation Results for Weitzman Model with Increasing Search Costs

(i) (ii)
“Shirts, tops, & blouses” “Shoes”

Adapted Weitzman Adapted Weitzman

Utility Utility
aboutyou.com -1.3920∗∗∗ adidas.com -1.2832∗∗∗

(0.0465) (0.0408)
c-and-a.com -0.8181∗∗∗ debijenkorf.nl -1.8562∗∗∗

(0.0400) (0.0488)
debijenkorf.nl -0.9952∗∗∗ nelson.nl -1.8205∗∗∗

(0.0410) (0.0493)
esprit.nl -1.6627∗∗∗ nike.com -1.3993∗∗∗

(0.0519) (0.0415)
hm.com -1.3008∗∗∗ omoda.nl -1.7360∗∗∗

(0.0447) (0.0467)
jbfo.nl -2.7536∗∗∗ schuurman-shoenen.nl -0.9964∗∗∗

(0.1486) (0.0360)
msmode.nl -2.0303∗∗∗ spartoo.nl -1.3912∗∗∗

(0.0643) (0.0402)
peterhahn.nl -2.1501∗∗∗ vanharen.nl -1.0869∗∗∗

(0.0787) (0.0378)
your-look-for-less.nl -1.7080∗∗∗ zalando.nl -0.6744∗∗∗

(0.0514) (0.0329)
zalando.nl -0.9790∗∗∗ ziengs.nl -1.9833∗∗∗

(0.0412) (0.0556)
Outside option 1.9572∗∗∗ Outside option 2.1079∗∗∗

(0.0475) (0.0481)

Search cost (exp) Search cost (exp)
Baseline -3.8829∗∗∗ Baseline -4.3036∗∗∗

(0.0043) (0.0823)
Number of previous searches -3.9986∗∗∗ Number of previous searches -7.7467∗∗∗

(0.0229) (1.0988)

Number of Observations 27,924 27,756
LL -8,644 -10,990
Standard errors in parentheses.
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001
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F.2. Empirical Results with Different Discount Factors

Table F-2: Empirical Results with Different Discount Factors

(i) (ii)
“Shirts, tops, & blouses” “Shoes”

β = 0.85 β = 0.90 β = 0.99 β = 0.85 β = 0.90 β = 0.99

Utility Utility
aboutyou.com -1.4088∗∗∗ -1.4264∗∗∗ -1.3887∗∗∗ adidas.com -1.3909∗∗∗ -1.4067∗∗∗ -1.3528∗∗∗

(0.0495) (0.0452) (0.0463) (0.0518) (0.0523) (0.0388)
c-and-a.com -0.8514∗∗∗ -0.8654∗∗∗ -0.8284∗∗∗ debijenkorf.nl -2.0139∗∗∗ -2.0119∗∗∗ -1.9721∗∗∗

(0.0442) (0.0393) (0.0411) (0.0629) (0.0635) (0.0508)
debijenkorf.nl -1.0103∗∗∗ -1.0263∗∗∗ -0.9881∗∗∗ nelson.nl -1.9855∗∗∗ -1.9857∗∗∗ -1.9520∗∗∗

(0.0439) (0.0395) (0.0419) (0.0601) (0.0581) (0.0503)
esprit.nl -1.6930∗∗∗ -1.7031∗∗∗ -1.6738∗∗∗ nike.com -1.5078∗∗∗ -1.5281∗∗∗ -1.4749∗∗∗

(0.0531) (0.0516) (0.0521) (0.0557) (0.0525) (0.0383)
hm.com -1.3300∗∗∗ -1.3484∗∗∗ -1.3119∗∗∗ omoda.nl -1.8981∗∗∗ -1.9050∗∗∗ -1.8739∗∗∗

(0.0462) (0.0427) (0.0456) (0.0585) (0.0579) (0.0433)
jbfo.nl -2.7833∗∗∗ -2.7816∗∗∗ -2.8667∗∗∗ schuurman-shoenen.nl -1.1165∗∗∗ -1.1262∗∗∗ -1.0827∗∗∗

(0.1673) (0.1582) (0.1785) (0.0502) (0.0493) (0.0349)
msmode.nl -2.0313∗∗∗ -2.0354∗∗∗ -1.9701∗∗∗ spartoo.nl -1.4880∗∗∗ -1.4976∗∗∗ -1.4437∗∗∗

(0.0695) (0.0656) (0.0656) (0.0516) (0.0502) (0.0383)
peterhahn.nl -2.1860∗∗∗ -2.1891∗∗∗ -2.1192∗∗∗ vanharen.nl -1.2211∗∗∗ -1.2346∗∗∗ -1.1910∗∗∗

(0.0828) (0.0820) (0.0834) (0.0470) (0.0484) (0.0348)
your-look-for-less.nl -1.7387∗∗∗ -1.7456∗∗∗ -1.7039∗∗∗ zalando.nl -0.8560∗∗∗ -0.8707∗∗∗ -0.8300∗∗∗

(0.0538) (0.0502) (0.0535) (0.0437) (0.0428) (0.0311)
zalando.nl -1.0287∗∗∗ -1.0445∗∗∗ -1.0062∗∗∗ ziengs.nl -2.1824∗∗∗ -2.1667∗∗∗ -2.1361∗∗∗

(0.0447) (0.0400) (0.0416) (0.0679) (0.0711) (0.0534)
Outside option 1.5751∗∗∗ 1.5634∗∗∗ 1.8672∗∗∗ Outside option 1.2884∗∗∗ 1.2679∗∗∗ 1.6514∗∗∗

(0.0379) (0.0344) (0.0255) (0.0356) (0.0366) (0.0234)

Search cost (exp) Search cost (exp)
Baseline -5.1029∗∗∗ -4.9558∗∗∗ -4.8938∗∗∗ Baseline -5.3588∗∗∗ -5.0183∗∗∗ -5.7978∗∗∗

(0.4244) (0.3286) (0.0198) (0.2261) (0.2267) (0.0433)
Fatigue constant -1.3755∗∗∗ -1.7889∗∗∗ -3.8558∗∗∗ Fatigue constant -1.6268∗∗∗ -2.0332∗∗∗ -4.0541∗∗∗

(0.0407) (0.0342) (0.0057) (0.0522) (0.0512) (0.0189)

Number of Observations 27,924 27,924 27,924 27,756 27,756 27,756
LL -9,331 -9,333 -9,393 -12,147 -12,157 -12,278
Standard errors in parentheses.
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001
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F.3. Spells without Ads

Ads may encourage consumers to start a new search session, but cannot explain why consumers

stopped their search in a previous session, and therefore cannot explain search gaps.56 Nevertheless,

in our main estimation sample, we removed spells with clicks on social media, email, newsletter or

retargeting ads. Here we re-estimate our model on data without any clicks on advertisements (except

those occurring on search engines which are initiated by a consumer query). As expected, in the

resulting data we see a considerable number of search gaps (322 in subcategory 1, 300 in subcategory

2, for 1,645 and 1,261 spells, respectively). Our results are robust to this change.

Table F-3: Estimation results on spells with no clicks on advertisements

(i) (ii)
“Shirts, tops, & blouses” “Shoes”

Utility Utility
aboutyou.com -2.0508∗∗∗ adidas.com -1.4470∗∗∗

(0.0725) (0.0581)
c-and-a.com -1.0616∗∗∗ debijenkorf.nl -1.6096∗∗∗

(0.0479) (0.0655)
debijenkorf.nl -1.7544∗∗∗ nelson.nl -1.6456∗∗∗

(0.0586) (0.0621)
esprit.nl -1.7026∗∗∗ nike.com -1.4520∗∗∗

(0.0576) (0.0592)
hm.com -1.3115∗∗∗ omoda.nl -1.5864∗∗∗

(0.0485) (0.0650)
jbfo.nl -2.6900∗∗∗ schuurman-shoenen.nl -1.6438∗∗∗

(0.1663) (0.0636)
msmode.nl -2.0443∗∗∗ spartoo.nl -2.1941∗∗∗

(0.0683) (0.1106)
peterhahn.nl -2.1122∗∗∗ vanharen.nl -1.2640∗∗∗

(0.0876) (0.0526)
your-look-for-less.nl -1.7283∗∗∗ zalando.nl -0.4356∗∗∗

(0.0552) (0.0434)
zalando.nl -1.0406∗∗∗ ziengs.nl -1.7926∗∗∗

(0.0469) (0.0750)
Outside option 1.6364∗∗∗ Outside option -1.6035∗∗∗

(0.0255) (0.0310)

Search cost (exp) Search cost (exp)
Baseline -4.5373∗∗∗ Baseline -4.4997∗∗∗

(0.0899) (0.1901)
Fatigue constant -2.5503∗∗∗ Fatigue constant -2.7705∗∗∗

(0.0122) (0.0309)

Number of Observations 19,740 15,132
LL -5,628 -5,400
Standard errors in parentheses.
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

56Ursu, Simonov, and An (2021) provide a more in-depth analysis of the relation between online ads and search behavior.
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F.4. Accounting for Left and Right Truncation

Table F-4: Estimation Results when Accounting for Truncation

(i) (ii)
“Shirts, tops, & blouses” “Shoes”

Utility Utility
aboutyou.com -1.5193∗∗∗ adidas.com -1.3502∗∗∗

(0.0793) (0.0504)
c-and-a.com -0.8584∗∗∗ debijenkorf.nl -1.7209∗∗∗

(0.0544) (0.0608)
debijenkorf.nl -1.2452∗∗∗ nelson.nl -1.7053∗∗∗

(0.0587) (0.0605)
esprit.nl -1.5623∗∗∗ nike.com -1.5013∗∗∗

(0.0673) (0.0508)
hm.com -1.1676∗∗∗ omoda.nl -1.6281∗∗∗

(0.0586) (0.0578)
jbfo.nl -2.7509∗∗∗ schuurman-shoenen.nl -1.3517∗∗∗

(0.6523) (0.0523)
missetam.nl -1.6608∗∗∗ spartoo.nl -1.5692∗∗∗

(0.0722) (0.0561)
ullapopken.nl -1.8274∗∗∗ vanharen.nl -1.1056∗∗∗

(0.0777) (0.0472)
your-look-for-less.nl -1.6001∗∗∗ zalando.nl -0.5207∗∗∗

(0.0750) (0.0347)
zalando.nl -0.9018∗∗∗ ziengs.nl -1.8203∗∗∗

(0.0497) (0.0677)
Outside option 1.6461∗∗∗ Outside option 1.5173∗∗∗

(0.0289) (0.0203)

Search cost (exp) Search cost (exp)
Baseline -4.1789∗∗∗ Baseline -4.6790∗∗∗

(0.0894) (0.1101)
Fatigue constant -2.5000∗∗∗ Fatigue constant -2.7427∗∗∗

(0.0143) (0.0172)

Number of Observations 15,696 14,268
LL -5,008 -5,544
Standard errors in parentheses.
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001
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