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Abstract

We present a model of competitive positioning and pricing of new products in a multisegmented market that is useful not

only for new entrants, but also for brand managers of incumbents to assess the potential threats inherent in existing market

structures. We do this for a multisegmented market in which the ideal point for each segment is located in a multidimensional

discrete-attribute space with fixed demands at a given point in time. Firms launch new products sequentially at positions in this

attribute space, incurring fixed and variable costs, and then decide on their product prices. Each firm acts to maximize its profit.

We allow free entry, regardless of whether or not an entry location is occupied by an incumbent, and the position and price of a

firm’s product determine its market share. The number of firms that can make a profit in the market is determined endogenously,

and the model determines the number of survivors. Free and endogenous entry removes from the brand manager the need to

evaluate millions of potential entry threats from combinations of new products and possible positions. Instead, the methods

developed here determine a much smaller set of threats that need to be considered. We adopt from the facility-location literature

another equilibrium concept, the stable set, and relate it to the Nash equilibrium. Location decisions are stable, if, and only if,

the entrants make a profit (viability) and the non-entrants cannot find any location such that their profit after entry is non-

negative (survival). We design a heuristic algorithm based on genetic algorithms to empirically obtain the Nash equilibrium.

The illustration involves the prospect of new brands attempting to enter the established liquid detergent market. Using

aggregated share data from heavy user and light user segments, we model the segment-level market share as a function of

distance from segment-specific ideal points, with segment-specific price sensitivities. We use segment-level shares to locate

heavy and light user ideal points in a product-positioning space derived from Consumer Reports ratings of the real brands. The

results show that the only open position for successful entry matches the effectiveness of Tide (the market leader) in removing

stains, and lowers costs (and price) by sacrificing on the other attribute in the space. The reduced price appeals to the heavy user

segment, leading to profitable entry. This position for entry remains profitable even if Tide opportunistically relocates.
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1. Introduction

Consumers do not wash more clothes just because a

new brand of laundry detergent comes on the market.

Successful new-product entry into mature categories

typically does not expand market size, nor is it likely to

reduce the costs faced by existing brands. Conse-

quently, successful entry can have major implications

for the profits of existing brands in the category.

Knowing the vulnerable positions where a new brand

or brands could attack a mature market is highly useful

for possible new entrants, as well as for existing brands

seeking to defend their positions. We need to look no

further than these obvious reasons to understand why

new-product positioning and pricing problems have

received great attention from academia and industry.

Concerning product positioning, psychometric

models using a multidimensional scaling procedure

(MDS) have produced an extensive literature (c.f.,

Cooper, 1983, Green & Krieger, 1989 and Green &

Srinivasan, 1978, 1990 for overviews of these

models). However, this research stream does not

address the competitive issues in new-product posi-

tioning and pricing. The first paper on the competitive

product-positioning problem is generally thought to

be the early work by Hotelling (1929), who consid-

ered product positioning on a line where consumers

are distributed uniformly. Many authors use this

linear-market assumption (e.g., Eaton & Lipsey,

1975; Economides, 1984; D’Aspremont, Gabszewicz,

& Thisse 1979; De Palma, Ginsberg, Papageorgiou, &

Thisse 1985, and Shaked & Sutton, 1982).1

The literature on product pricing and competitive

positioning in a multidimensional space is not very

extensive (Carpenter, 1989; Choi, DeSarbo, & Harker,

1990, 1992; Hadjinicola, 1999; Hauser, 1988; Hauser

& Shugan, 1983; Lane, 1980). While these game-

theoretic models are rigorous and provide a theoretical

background for psychometric models, most of them

are too restrictive in their model specifications to be

used in real decision making. Carpenter (1989)

analyzes only duopolistic competition in a single

market (single ideal point). Lane (1980) analyzes the

sequential-entry problem under oligopolistic competi-

tion, but assumes a single market segment and
1 For a more complete survey of spatial-competition models in a

linear market, see Eiselt and Laporte (1989).
identical cost structures of firms. Hauser and Shugan

(1983) and Hauser (1988) address defensive market-

ing strategy when a firm faces an attack by a new

competitive product. In the Defender model, consum-

ers are distributed on a bper-dollarQ multiattribute

space when few, if any, attributes can be measured on

the required ratio scale. Hadjinicola (1999) presents a

product-position and pricing model, including econo-

mies of scale effects, but the number of ideal points is

still limited to one.

The model presented by Choi et al. (1990, 1992,

hereafter CDH) is more realistic than the game-

theoretic models discussed above. They addressed

oligopolistic spatial and price competition in a multi-

segmented market, where single brand producers

maximize their profits. They describe consumer

choice behavior using a multinomial-logit (MNL)

model—a realistic extension (compared to linear

models of choice) we wish to preserve. However,

we are very critical of their choices in the positioning

game. In CDH, the analyst or manager predetermines

the number of entrants in the market and their

positions. We feel entry must be free (rather than a

fixed number of entrants) and endogenous (i.e.,

determined by the competitive model, rather than

exogenously specified) to have practical value as

explained below. Also in CDH, a firm of interest,

entering last, selects a position, while other firms,

having entered already, respond only with the price.

They consider only variable costs, while we believe

both fixed and variable costs should be considered.

To understand the practical necessity of consider-

ing free and endogenous entry, rather than predeter-

mined entry, first consider the problem of a manager

for an incumbent brand trying to assess the threats to

that existing brand’s earnings. In the simple example

reported later, incumbent brands have positions on a

4-by-4 grid. A single new entrant could take any of 16

positions each of which, under exogenous entry,

would have to be evaluated by a manager or analyst

for the potential threat. While this would be tedious,

even with a well-calibrated market–response model,

consider what happens with six potential entrants. The

manager would have to evaluate over 16-million

potential threats. By understanding and accepting the

model’s structure and assumptions, the manager

obtains an analytical result that greatly reduces the

number of defensive scenarios that need to be



2 By assuming each firm launches a single product, we are

simplifying the model. In mature markets, some firms have multiple

existing products and still could introduce a multiplicity of new

products. The extension of the current framework to models that

reflect multiple-product firms is a challenging task that is left to

future development.
3 This free-entry approach was also used by Lane, 1980, but with

the oversimplifying assumptions of homogeneous costs across

products and uniformly distributed customer demand.
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considered. To be practical for brand management,

models of competitive entry and positioning must

incorporate free and endogenous entry.

In this paper, we present a two-stage model of

competitive positioning and pricing of new-products

in a multisegmented market. In our model, free entry

is assumed so that firms launch their product as long

as they make a profit. For this, sequential entry is

assumed, since the simultaneous-entry game for a

pure Nash equilibrium has never been solved in the

product-positioning case. We show, however, that the

traditional criticism of the sequential-entry game (i.e.,

that it is subject to first-mover advantages) does not

apply in important cases. Fixed costs (R&D, produc-

tion, advertisement, and channel-setup cost) play an

important role, and the number of firms that can

survive in the long run is obtained endogenously. We

also solve the problem numerically in the first stage.

We implement a genetic algorithm on the discrete

attribute space using stable sets (Dobson & Karmar-

kar, 1987) to identify the set of viable and survivable

entrants. The numerical results allow us to check the

number of firms in the market, their equilibrium

position and price, and first-mover advantage.

In summary, we present the following results in

this paper:

! In the first stage, we establish the relationships

between Nash equilibrium and another equilibrium

concept, the stable set developed by Dobson and

Karmarkar (1987) for facility-location problems.

They define location decisions as stable, if, and

only if, the entrants make a profit (viability) and

the non-entrants cannot find any location such that

their profit after entry is non-negative (survival).

This concept can be directly applied to the product-

positioning problem, and we show that the stable

set always includes the Nash equilibrium in our

problem.

! In the second stage, we show the sufficient

conditions for the existence and uniqueness of

Nash equilibrium. The sufficient condition for the

uniqueness is not addressed by Choi et al. (1990).

! Finally, based on the result of first and second

stages, we introduce a genetic algorithm to obtain

an equilibrium solution. Then, we illustrate the

method, using real data from a liquid detergent

market.
This paper is organized as follows: in Section 2, we

formulate the two-stage model. We first analyze the

pricing problem, and then address the positioning

problem. In Section 3, we discuss the computation

of equilibria and present an application of our

approach to the liquid detergent market. Section 4

concludes.
2. Problem formulation

We formulate a two-stage game-theoretic model

for new-product positioning and pricing. In each

stage, firms respond to the action of their competitors

in order to maximize their profits. In the first stage,

firms decide to enter a market by selecting product

positions. By assigning an arbitrary position to

indicate the bno entryQ decision (e.g., location b0Q),
we include the entry decision in the positioning

decision. The attribute space is discrete and repre-

sented by a multidimensional grid. Each firm

launches a single new product in this discrete

attribute space.2 Variable and fixed costs, which

depend on product positions, are incurred in this

stage (i.e., the levels of the attributes reflected in the

product position determine the fixed and variable

costs). These kinds of attribute grids and their

associated costs are appropriate in the design phase

for new products or the reformulation phase for

existing products. In such phases, the consumer

preferences are typically mapped on to the physical

dimensions of the products to aid understanding of the

tradeoffs between features and costs. We assume that

each firm introduces its product sequentially and

launches its product as long as the fixed cost of

launching a product is less than the gross contribution

earned from producing the product. Therefore, the

number of products (or firms) in the market is

determined endogenously in our model.3
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Fig. 1. Conceptual framework of the competitive product-positioning model.

4 General marketing process follows market segmentation, target

market selection, and product positioning (Sarvary, 2000). In our

approach, we assume that market segmentation is given, and that the

target market and position are jointly determined in the model.

H. Rhim, L.G. Cooper / Intern. J. of Research in Marketing 22 (2005) 159–182162
In the second stage, firms decide on the prices for

their products. Pricing decisions are made simulta-

neously. In this stage, the number of products and their

positions are given, because pricing is a relatively

short-term and flexible decision. This approach has

been used in several papers (cf., Lane, 1980; Moorthy,

1988; Prescott & Visscher, 1977) (Fig. 1).

The market share of each product is determined by

the positions and prices. In our model, we use a

probabilistic market share model. Neoclassical econ-

omists have postulated that a consumer’s choice

process is deterministic. However, according to

Anderson, de Palma, and Thisse (1992), fluctuations

are inherent in the process of evaluating alternatives

and one cannot identify all aspects that affect the

choice process even if the choice process is determin-

istic. In this sense, probabilistic models are more

realistic and practical than deterministic models. It is

noteworthy that deterministic models are extreme

cases of probabilistic market share models.

We utilize the multinomial-logit (MNL) model as a

probabilistic market share model. This model has been

used extensively in the marketing literature. Anderson

et al. (1992) emphasized that the following features

make the MNL model useful: First, the MNL model is

easy to deal with mathematically and sometimes

results in closed-form solutions. Second, the MNL

model has a solid theoretical background. It is not

only derived from the Luce choice axiom (1959) and

random-utility models such as Yellott (1977), but also

regarded as a special form of attraction model by Bell,

Keeney, and Little (1975). Third, the MNL model has

been successfully used to estimate the demand in

numerous industries.
We assume that consumers are grouped into several

market segments.4 The assumption of the multi-

segmented market is important in decision-making

although a single-segment market has been assumed

for mathematical tractability in many of the compet-

itive product positioning models (Carpenter, 1989;

Lane, 1980). For example, Cooper and Nakanishi

(1988) showed the possible inconsistency between

market shares and individual choice probabilities

when individual choice probabilities and purchase

frequencies are both heterogeneous. These authors

suggested that, in such a case, one should segment the

market and analyze each segment separately in order

to escape an aggregation problem (i.e., the parameters

estimated for the combined data would fail to reflect

the proper sensitivity of either segment to the

marketing instruments). Based on this structure, we

begin our analysis of the pricing of products.

2.1. Second stage: pricing game

In this subsection, sufficient conditions for the

existence and uniqueness of Nash equilibrium are

obtained. An algorithm to identify the equilibrium is

discussed. We first define the following notation:

N* The number of firms or products launched

N The number of potential products to be
launched, which is large enough that NzN*,
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Na The dimension of the product-attribute space,

M The number of market segments

i The index for products, i=1,. . ., N
j The index for market segments, j =1,. . ., M
Dj The demand of market segment j

MSx(i)j The market share of product i in market
segment j
x(i) The position of the ith product that is
launched in the product-attribute space,

x(i)= (x(i)1,. . ., x(i)Na), x(i)= (0, . . ., 0) if firm
does not launch any product; X =(x(1), x(N))
sj The ideal position of market segment j in the
product-attribute space, sj = (sj1,. . ., sjNa),
S =(s1, . . ., sM)
px(i) The price of product i, p =( px(1),. . ., px(N*))
cx(i) The variable cost of product i, a function of
its position x(i)
fx(i) The fixed cost of product i, a function of its
position x(i)
dx(i)j The distance between product i and the ideal
point for segment j in the attribute space
pi The net profit of the product i; if the productP

is launched, pi = [ p x ( i )�c x ( i )] jD j

MSx(i)j� fx(i); otherwise, pi=0
z(k1,. . ., kNa) The occupancy or number of products
at the point (k1,. . ., kNa) of attribute space
Z The occupancy vector of z(k1,. . ., kNa)’s for

all (k1,. . ., kNa). The vector showing the

number of products positioned at each point

in the attribute space.
Although the MNL model can be derived in

several ways, we assume that market share is derived

from the axioms of Bell et al. (1975). Then the market

share of product i in market segment j is,

MSx ið Þj ¼
Ax ið ÞjXN T

k¼1

Ax kð Þj þ A0j

for all i; j ð1Þ

where Ax(i)j is attraction of market segment j toward

product i, and A0j is bno purchaseQ option. Thus,

market share is simply the ratio of the attraction of a

product over that of all products and no-purchase

option. In the MNL model, Ax(i)j is assumed to be an

exponential function as follows:

Ax ið Þj ¼ exp � dx ið Þj � cjpx ið Þ
� �
where cj (N0) is a price sensitivity. If A0j =0, every

customer is forced to chose one of the brands

regardless of price. In many cases, A0j is assumed to

be A0juexp[0]=1 to assign status-quo utility of zero

(see Besanko, Gupta, & Jain, 1998; Choi et al., 1990).

The attraction is determined by distance from a

segment’s ideal point and price, which have forms

of ideal-point models and vector models, respectively.

These two types are compatible with each other,

because the vector model is hierarchically nested

within the ideal-point model and an empirical test can

assess which form is more appropriate. Any reason-

able distance measure can be used for distance dx(i)j,

although we need to specify a form of the distance

measure for the parameter estimation. As shown later,

we use a weighted, squared Euclidean distance.

Since firms make positioning decisions in the first

stage, the distances dx(i)j are known numbers in the

second stage. For known parameter values and

distances, firms set the price to maximize their profits,

which is expressed as:

pi ¼ px ið Þ � cx ið Þ
� � X

j

DjMSx ið Þj � fx ið Þ:

A Nash equilibrium in the second stage is defined as a

set of prices such that no firm can benefit from a

unilateral change in its price decisions. Thus, a Nash

equilibrium is obtained by a set of px(i) (i =1,. . ., N*)

such that Bpi/Bpx(i)=0, or

px ið Þ ¼ cx ið Þ þ

XM
j¼1

DjMSx ið Þj

XM
j¼1

Dj � BMSx ið Þj=Bpx ið Þ
� � ð2Þ

Since 0VMSx(i)jV1,

BMSx ið Þj=Bpx ið Þ ¼ � cjMSx ið Þj 1�MSx ið Þj
� �

V 0: ð3Þ

Eq. (3) shows that the price px(i) is bounded below

by the variable cost cx(i). That is, firms set prices no

less than their variable costs. Choi et al. (1990)

showed that px(i) is bounded above in a non-

segmented market. We show the similar result for

the multisegmented market in the following lemma.

Lemma 1. px(i) bl. See Appendix A for the proof.

This lemma implies that firms have no incentive to

increase the price up to infinity and therefore the price
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is bounded above. Thus, we assume that firms set

prices on the closed interval [cx(i), rpx(i)], where the

reservation price rpx(i) is a reasonable upper bound of

price that the customers (buyers) have toward product i.

Pure-strategy Nash equilibria exist in the second

stage if the following conditions are satisfied: (i) the

strategy spaces of the prices px(i) are nonempty,

compact–convex subsets of Euclidean space; and (ii)

the payoff functions pi are continuous and quasi-

concave in prices px(i) (see Fudenberg & Tirole, 1992).

Although it is obvious that strategy spaces are non-

empty, compact, convex, and the payoff functions are

continuous, the profit functions pi are not generally

quasi-concave in a multisegmented market. However,

the profit functions are quasi-concave under the

condition of the following lemma, and therefore there

exist pure-strategy Nash equilibria.

Lemma 2. If cjV2 / (rpx(i)�cx(i)) for all products i

and market segments j, then there exist pure-strategy

Nash equilibria for the second stage. See Appendix A

for the proof.

A similar condition was proven and discussed by

Choi et al. (1990). Although the condition of Lemma

2 guarantees the existence of the Nash equilibria, it

does not guarantee the uniqueness. Anderson et al.

(1992) proved the existence and uniqueness of the

Nash equilibrium only for a single-segment market.

We provide a sufficient condition for the unique Nash

equilibrium in the following proposition.

Proposition 1. If cjV1 / (rpx(i)�cx(i)) for all i and

market segment j, then there exists a unique pure-

strategy Nash equilibrium for the second stage. See

Appendix A for the proof.

Sufficient conditions were not provided in Choi et

al. (1990). However, uniqueness is essential not only

for the first stage, but also for computation of price

equilibrium. We identify price equilibrium with the

diagonalization algorithm of the variational inequality

suggested by Choi et al. (1990). They showed that

solving this problem with the diagonalization algo-

rithm is equivalent to solving the following problem:

max
pk
x ið Þ

p pkx ið Þjpk�1
�x ið Þ

� �
for each i; ð4Þ

where pi
k is the price of product i at kth iteration. The

variational inequality problem is to find a vector x* in
a closed convex subset K of Rm for a given function F

such that

y� xTð ÞTF xTð Þz 0 for 8yaK

To solve this problem, Pang and Chan (1982)

developed a diagonalization (or nonlinear Jacobi)

method. They also proved the method converges.

Applying the algorithm to our problem involves

solving the following equation:

XN T

i¼1

�jpx ið Þp px ið ÞT ; p̄p�x ið Þ

� �
px ið Þ � px ið ÞT
� �

z0; 8px ið ÞaX;

where X is a feasible set for prices and p̄�x(i) is

other firm’s fixed prices. Choi et al. (1990) showed

that solving this equation is equivalent to solving

Eq (4). This representation is very simple and fits in

well with the definition of Nash equilibrium. The

uniqueness condition of Proposition 1 guarantees

convergence. The algorithm to obtain the Nash

equilibrium for the second stage is described in

Appendix A.

2.2. First stage: positioning game

In this subsection, we define Nash equilibria for

product positioning. We discuss stable sets introduced

by Dobson and Karmarkar (1987), and show the

relationship between these two equilibria.

We suppose that the attribute space is discrete and

represented by a multidimensional grid. We allow

multiple products to be positioned at the same point

in the attribute space. In this stage, each firm either

enters the market by selecting a product position or

stays out of the market. Without loss of generality,

we assume that firms launch their product according

to the ascending order of an index i. Firms act as a

profit maximizer, so that they launch their products

as long as they make profits. The profit function of

the product i in the first stage is defined as

pi(X)=pi(X, p*(X)); that is, the firm producing

product i positions the product considering the

equilibrium price of the second stage. The profit

function pi can be represented as a function of the

position variable only if the equilibrium price is

unique. Thus, our developments throughout this

paper assume the sufficient condition of Proposition

1 is satisfied.



H. Rhim, L.G. Cooper / Intern. J. of Research in Marketing 22 (2005) 159–182 165
A pure-strategy Nash equilibrium for the product

positioning is defined in the usual manner (i.e., no

firm can be better off by unilateral change of its

product position). That is, product position X* is a

pure-strategy Nash equilibrium (PNE(P)) in the first

stage, if and only if pi(x(i)*, �x(i)*)zpi(x(i),

�x(i)*) for all x(i) and i, where �x(i) is the strategy

profile of the firms except firm i.

We assume that each firm has perfect information

about its predecessors’ decisions and launches its

product with complete information about the fol-

lowers’ strategy set and pricing equilibrium. Thus, the

equilibrium obtained is a subgame-perfect Nash

equilibrium (see Selten, 1975). The equilibrium is

obtained by backward induction and the existence is

guaranteed (see Kuhn, 1953).

While the Nash equilibrium is the most frequently

used solution concept for competition models, other

solution concepts have been used depending on the

context of the other problems (see Ghosh & Harche,

1993). One of the other solution concepts is stable

sets—introduced by Dobson and Karmarkar (1987)

for facility-location problems. Location decisions are

defined to be stable, if, and only if, the entrants make

a profit (viability) and the non-entrants cannot find

any location such that their profit after entry is non-

negative (survival). Dobson and Karmarkar (1987)

define several variants of stable sets according to the

context of the problem. These variants include

independently or jointly viable, strong or weak

survival, and restricted or unrestricted entry. Entry is

restricted if a competitor can open only one location.

Strong survival implies the case that the firm of

concern makes more profit than the competitors, while

weak survival means non-negative profit. Also inde-

pendence implies a location makes profit independ-

ently with respect to the set of open locations. The

stable set used in this current effort, according to their

definition, has the properties of weak survival,

restricted entry, and independent viability (so-called

WRI). This solution concept is general enough to be

applied to our problem. Under this solution concept,

the entry sequence of the firms does not matter—firms

are indistinguishable in this aspect. Thus, the decision

variable under this solution concept is the number of

products at each point of the attribute space (repre-

sented by occupancy vector Z), rather than the

position of each product. For the formal definition
of stable sets, we categorize firms into two sets:

entrants (E) and non-entrants (NE). Then the defi-

nition of stable sets is as follows:

Definition 1 (Stable sets (SS) in the first stage).

Occupancy vector Z is an element of a stable set, if

and only if:

i) piz0 for all iaE (viability), and

ii) pi b0 for all iaNE, if they launch their product

after the entry of firms of set E (survival).

Before we investigate the relationship between

Nash equilibria and stable sets, we define a bpre-
assigned gameQ (P01). In this game, firms have

positions pre-assigned at what would be the best

position for their products, if they were to decide to

enter. But all firmsmust simultaneously decide whether

or not to enter. In this game, the decision of each firm

can be represented by a binary value: 0 if a firm decides

not to enter; 1 if a firm decides to enter. Then we can

show that the set of PNE(P) is a subset of stable set and

that the set of PNE(P01) is equivalent to the stable set.

These two conditions are formalized in Proposition 2.

Proposition 2. (i) SSsPNE(P); (ii) SS=PNE(P01).

The proof is provided in Appendix A.

Proposition 2 provides us with a different way to

understand Nash equilibria in product-positioning

games. The proposition indicates that the Nash

equilibria must satisfy viability and survival condi-

tions; otherwise, firms have incentives to change their

actions. For example, if the profit of an entrant is

negative, which is a violation of viability, then the

entrant will move out of the industry. So, in

equilibrium all entrants are profitable (i.e., viable). If

a non-entrant could make a profit by launching its

product, counter to the survival condition, then the

firm would enter the industry. Thus, in equilibrium, no

non-entrant can find a position that is profitable (i.e.,

the survival condition holds). These results explain

why the later entrants are blockaded, even though

multiple products at each position are not prohibited.

Our prime motivation for proving Proposition 2 is

that it gives us an efficient way to produce a pure-

strategy Nash equilibrium for the sequential-entry

game (PNE(P)) by narrowing the search of game tree.

First, it provides the maximum number of firms in an

industry for the free-entry model so that the depth of



Table 1

Cost and demand parameters

bjh c j Dj cx(i) fx(i) rpx(i

0.5 0.5 50 0.1 190 3.91
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the game tree is determined a priori. Once the depth of

the game tree is restricted, one needs only to look at

the branches generated by the stable set rather than the

whole game tree. An example is given later in Fig. 3.

This restricted search implies that players may foresee

the ends, but only the limited ends. The algorithm

may be sketched as follows:

Algorithm 1 (A1). Design of the algorithm to identify

PNE(P):

Step1. Obtain elements of the stable set.

Step2. Find PNE(P) among the elements of the

stable set.

Implementation of the algorithm is introduced in

detail in Appendix B. In the next example, we explain

briefly the idea of the algorithm (A1). Also we show

that first-mover advantage may not be guaranteed.

Example 1. In a real situation, technical constraints or

high fixed costs may make certain combinations of

attributes impossible or impractical to formulate. To

illustrate the entry and positioning game in such cases,

we suppose that three potential product positions and

ideal points are located in a circular form in a two-

dimensional attribute space as shown in Fig. 2.

Attraction Ax(i)j is assumed to be an exponential

function as follows:

Ax ið Þj ¼ exp �
X2
h¼1

bjh x ið Þh � mjh

� �2 � cjPx ið Þ

" #

where, h: the index for attributes, h =1,2, mjh: the

ideal point of market segment j in hth attribute
Attribute 1

Attribute 2

1 2 3 4 5

1

2

3

4

5

1 2

3

Potential product positions

1

2

3

Ideal points

Fig. 2. A case with three market segments and potential positions.

5 The algorithm can determine the maximum number of entrants

that can take any particular position in the attribute space, given tha

no other positions are occupied. Since an occupant at any other

position would have non-negative demand, we can show that this

maximum cannot be exceeded if other positions are occupied. Give

an upper bound for the number of entrants at any position

enumeration entails listing all possible combinations of entrants

and the positions they could take, up to the maximum. This is a

large, but finite number of candidates for evaluation as potentia

stable sets for the Nash Equilibrium process.
)

dimension, bjh: the distance sensitivity of market

segment j in hth attribute dimension, cj: the price

sensitivity of market segment j, cj N0.
The distance metric is assumed to be a weighted,

squared Euclidean distance (c.f., Carroll, 1980). For

simplicity, we suppose A0j=0. In this preliminary

example, costs and demand parameters are assumed to

be the same for each product and given in Table 1.

Thus, differences in demand are generated only from

products taking different positions in the attribute

space.

In this example, occupancy vectors are generated

by enumeration.5 Table 2 shows a stable set and

corresponding payoffs, identified from the occupancy

vectors. The stable set limits the number of products

to two, so that we can construct a game tree to identify

PNE(P), as in Fig. 3. The branches are strategy

profiles of the entrants in the first stage. The numbers

at the end of the leaves are payoffs of entrants

launching their products. PNE(P) is identified by

restricted backward induction. For instance, the

second entrant selects the best strategy by comparing

the payoffs. Then, the game is reduced to a profit-

maximization problem of the first entrant. Since

selecting position 3 is the best strategy for the first

entrant, [3,1] is identified as PNE( P). In this

procedure, the relationship established in Proposition

3 enables us to limit depth of the game tree (two

entrants) and to restrict the search only to the solid

branches. The size of the tree to be searched is

reduced by more than 25% in this example.

Note in Fig. 3 that the profit of the first entrant is

less than the second entrant. Ghosh and Buchanan
t

,

l



Table 2

Occupancy–payoff table on the attribute space in Fig. 2

Occupancy vector

(Z (1,2), Z (5,2), Z (3,5))

pZ (1,2) pZ (5,2) pZ (3,5)

(1,1,0) 7.29 184.21 0

(1,0,1) 179.87 0 11.63

(0,1,1) 0 4.58 186.92

(2,0,0) 95.75 0 0

(0,2,0) 0 95.75 0

(0,0,2) 0 0 95.75
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(1988) called this phenomenon (i.e., that the first

mover is not better off than the follower) the bfirst-
entry paradox.Q They discuss the first-entry paradox

with a duopolistic-location model in a linear market,

and address the relationship between the first-entry

paradox and the non-existence of a Nash equilibrium

for the simultaneous-entry game. Rhim, Ho, and

Karmarkar (2003) generalized this result by dealing

with an oligopolistic model on a network. The same

result can be constructed for the product-positioning

game. Before we present the result, we define a

bsimultaneous-entry gameQ (PS). This game is

different from the sequential-entry game P only in

that firms decide on entry (and positioning) simulta-

neously in the first stage. Pricing games in the

second stage of PS and P are identical. Then, the

result on the first-mover advantage in the product-
0

1

2

3

0

1

2

3

3

0

1

2

(381.5, 0)

(4.58, 186.92)

Product 1 Product 2

(95.75, 95.75)
(7.29, 184.21)

(179.87, 11.63)

(0,381.5)

(0, 381.5)
(0, 381.5)

(0, 0)

(381.5,0)

(381.5,0)

(95.75, 95.75)

(95.75, 95.75)

(184.21,7.29)

(11.63,179.87)

(186.92, 4.58)

3

0

1

2

3

0

1

2

Fig. 3. Game tree for restricted backward induction.
positioning game is as follows (the proof appears in

Appendix A).

Proposition 3. In the sequential entry game P, first-

mover advantage is ensured if PNE of PS exists and

PNE(P)oPNE(PS).

In the product-positioning game, we deal only with

the sequential-entry game partly because the simulta-

neous-game solution has never been shown to exist.

Our sequential solution could be considered more

robust if we could demonstrate that the first mover is

not always in the advantaged position. Proposition 3

is demonstrated as follows: Nash equilibria of the

simultaneous-positioning game for the problem set in

Example 1 may be identified by a two-dimensional

payoff matrix as shown in Fig. 4. However, this figure

shows that a pure-strategy Nash equilibrium does not

exist, and thus the first-mover advantage in the

sequential-positioning game may not be guaranteed.

Non-existence of a Nash equilibrium can happen

when potential product positions and ideal points have

a special pattern, giving entrants incentive to deviate

from the current decision. In the example, if player 1

selects position 1, player 2 chooses position 2. Then

player 1 will move to position 3, which will make

player 2 move to position 1. Thus, the two players will

hop around the positions endlessly, precluding an

equilibrium for the simultaneous game. This phenom-

enon was called bdancingQ by Teitz (1968). Labbé and

Hakimi (1991) also observed this in the context of

facility location. In our example, when dancing

happens, being the first mover is less advantageous

than being the follower.

If the simultaneous game, given this grid and these

entrants, produces bdancing,Q then in the sequential-

entry game with the same grid and entrants, the

second mover has the advantage. This finding makes

our analysis of the sequential-entry game more robust

since the equilibrium for the sequential-entry game is

still solvable (while the equilibrium for simultaneous-
Player II
1 2 3 

Player I 1 (95.75, 95.75) (7.29, 184.21) (179.87, 11.63)
2 (184.21, 7.29) (95.75, 95.75) (4.58, 186.92)
3 (11.63, 179.87) (186.92, 4.58) (95.75, 95.75)

Fig. 4. Two-dimensional payoff matrix of simultaneous-positioning

game.



Representation
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entry game is not), and first-mover advantages are not

automatic.
Initialization

Breeding

Reproduction
Crossover
Mutation

Heuristic Solutions

Fitness test

Review

Step 2

if Converge

else

Parameter Setting

Step 1

Fig. 5. Flow of genetic algorithms for Step 1 of (A1).
3. Computation with example

In this section, we present an overview of a

heuristic algorithm based on using genetic algorithms

to converge on a stable set, and using an approach

adapted from Selten (1975) for estimating the

subgame-perfect Nash equilibrium. The details of

some specific steps in the genetic algorithm are

presented in Appendix B. Using this combined

heuristic algorithm, we solve an example constructed

from a real data set on a liquid detergent market.

The genetic-algorithm aids us by converging on a

stable set. The stable set tells us which positions in the

attribute space are occupied and how many products

occupy each position. But it does not tell us which

products fill these slots. Which products go into the

occupied slots and the prices for those products result

from the computation of subgame-perfect Nash

equilibria. Obtaining subgame-perfect Nash equilibria

with real data is very time consuming and sometimes

intractable. 6 Enumeration is one possibility for iden-

tifying which products go where, if the size of the

problem is small. However, if the attributes are

measured by a fine scale, or if the dimensionality of

attribute space is greater than two, enumeration may

not be practical. In this case, we need to use search

algorithms such as genetic algorithms. This approach

agrees with the real decision-making process where

firms figure out the industry structure with only

bounded rationality and select the best-possible posi-

tion based on it.

Rhim (1997) presents the implementation of the

genetic algorithms for a competitive facility-location

problem on a network addressed by Rhim et al.

(2003). Since the discrete attribute space can be

transformed to a network, the first step of the product-

positioning problem is analogous to that of the

facility-location problem. Thus, the algorithm devel-

oped for the facility-location problem is directly

applicable to our problem. The general procedure of

genetic algorithms is provided in Fig. 5.
6 Identifying subgame-perfect Nash equilibria was proven to be a

hard problem (NP-complete) by Gilboa and Zemel (1989).
3.1. Representation

Deciding the encoding scheme of decision varia-

bles is critical to the performance of genetic algo-

rithms. Since the goal of Step 1 is to obtain a stable

set, the decision variable is the number of products at

each point of attribute space (summarized by the

occupancy vector Z), which may take on non-negative

integer values. Thus, we follow a non-binary repre-

sentation scheme, which we believe to be more

intuitive and realistic than a binary occupancy vector.

So the individuals being bred by this genetic

algorithm are occupancy vectors. The chromosomes

controlling the breeding specify how many products

are located at each position in the attribute space.

These chromosomes are evaluated for their fitness,

reproduced, crossed, and mutated in accord with

parameters and fitness functions discussed below.

3.2. Parameter setting

A genetic algorithm uses a set of parameters that

determine the size of the population and the proba-

bility that each breeding operations is exercised.



7 If X is a collection of objects denoted generically by x, then a

fuzzy set A in X is a set of ordered pairs: A={(x, lA(x))jxaX}.

lA(x) is called the membership function or grade of membership of

x in A which maps X to the membership space M. WhenM contains

only the two points 0 and 1, A is non-fuzzy and lA(x) is identical to

the characteristic function of a non-fuzzy set. (Zimmermann, 1991)
8 Results on the competitive facility-location problem can be

directly used to understand the performance of our algorithm for the

product-positioning problem, since the second-stage algorithms fo

facility-location and product-positioning models generate exac

solutions.
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Population size is regarded to be the most critical

parameter, since improper population size leads to

either premature convergence and/or ineffective

search. We implemented a genetic algorithm with

varying population size, as recommended by Arabas,

Michalewicz, and Mulawka (1994). This method

introduces the concept of bageQ and blifetimeQ for a
chromosome. bAgeQ is defined as the number of

generations since the birth of a chromosome, and

blifetimeQ is defined as maximum number of gener-

ations that a chromosome can survive. A chromosome

with higher fitness can survive more generations than

the one with lower fitness. Thus, the population size is

more controlled by a natural-selection mechanism

than if it is fixed. Most of the other parameters (e.g.,

reproduction, crossover, and mutation) for genetic

algorithms are set by trial and error. We used the

values of parameters Rhim (1997) tested for a

competitive facility-location problem that was very

similar to the present context.

3.3. Initialization

The initial population is generated by a probabil-

istic add/drop heuristic (see details in Appendix B).

3.4. Breeding

The initial population evolves through reproduc-

tion, crossover, and mutation operations. Reproduction

involves selecting a set of occupancy vectors to mate

based on the current population. Since the varying-

population method is used, selections are influenced

by an aging process. Lifetime in the aging process is

determined by the fitness test described below. The

crossover and mutation operations generate new

occupancy vectors in the next generation of the

reproduced population. Crossover is a binary operator

combining two occupancy vectors, while mutation is a

unitary operator providing diversity to populations.

New crossover operators (geographical crossover and

projection crossover) are implemented to utilize the

spatial structure. Details are provided in Appendix B.

3.5. Fitness test

Evolution is directed by a fitness test. Genetic

algorithms seek a balance between population diver-
sity and selective pressure. While breeding operators

generate diversity among the population, fitness

guides the breeding process through the aging

process. Occupancy vectors having higher fitness are

likely to have longer lifetime. Unlike optimization

problems, identifying stable sets is a yes-or-no type

question rather than a more-or-less type one. Thus, we

define fitness of an occupancy vector to stable sets

applying the membership-function (or grade of

membership) concept of fuzzy-set theory.7

3.6. Review

The convergence of the evolution process is tested

by checking the size of the stable set. For example, if

the size of the stable set does not increase for a certain

number of cycles, the first step is stopped and the

restricted backward induction explained in Example 1

is started in Step 2.

The program was developed using object-oriented-

programming concepts (i.e., Visual C+). Compared

with the second stage, computation of the first stage

remains a difficult one. Rhim (1997) tested perform-

ance of the algorithm on the competitive facility-

location problem.8 Cases with five to seven demand–

supply co-location nodes in a linear form are tested

(Fig. 6). For each number of nodes, samples of size 10

are randomly generated. Each problem set is solved

using both enumeration method and genetic algo-

rithms and results are compared in Table 3. Percen-

tages of stable sets identified by the GA and

percentages of proper Pure Nash equilibria compared

with complete sets found by enumeration are

recorded. Stable-set hit-rate decreases as the number

of nodes increases. The PNE hit-rate increases in this

range, but we conjecture this rate will also decrease on

average as the number of nodes increases.
.

r

t
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Fig. 6. Linear market case.
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In the following example, we present the applica-

tion of the model to a real problem using a set of data

from a liquid detergent market.

Example 2. For the proposed model, we require a set

of data containing market shares for each segment,

prices, product-attribute data, and costs. Market share

and price data are drawn from A. C. Nielsen Company

scanner-panel data in Sioux Falls, South Dakota for the

period of 1986–1987 (64 weeks). During this period,

12 major brands explain 83.8% of total demand. In

these data, a single company owns several brands. For

example, Procter & Gamble own Cheer, Tide, Era,

Solo, and Bold. However, we assume that these brands

compete with each other in the eyes of the consumers.

Market share for each brand is generated week by

week. Prices are averaged over stores every week.

Product-attribute data for liquid detergents sold in

1986 are obtained from Consumer Reports (1987).

Total demand is obtained from Wilkinson (1990) and

Ainsworth (1995). Wilkinson (1990) estimated the

1989 detergent market at $3 billion and expected that

the split between powder and liquids would remain

60% to 40%. Ainsworth (1995) reported that the U.S

market for household cleaning products was basically

flat with growing rate less than 1% per year. Thus, we

estimate the liquid detergent market in 1988 as worth

$1.2 billion (40% of $3 billion).

We segment the market according to individual-

household purchase volume for the whole period.

Cooper and Nakanishi (1988) show that market shares

may be replaced by individual choice probabilities in

case of homogeneous purchase frequencies and

homogeneous choice probabilities. By differentiating

heavy users and light users, aggregation problems can

be minimized. Therefore, based on the purchase
Table 3

Exactness of genetic algorithm

No. of nodes SS identified PNE obtained

5 85.58% 60.00%

6 80.82% 70.00%

7 75.29% 80.00%
volume during the period, we divide the market into

two equally populated segments: heavy and light

users.9 In our data, heavy users explain 86.7% of the

total demand. Thus, the heavy half should get more

attention than the 80/20-rule suggests. Considering 12

major brands’ shares (83.8%), heavy users’ share

(86.7%), average retail price over products ($3.57),

and the share of non-purchase option (19.3%), total

demand of heavy and light users are 244.2 and 37.5

million units, respectively.

In order to estimate demand parameters, we need to

specify a distance metric. We postulate a weighted,

squared Euclidean distance as in Example 1 (Cooper

& Nakanishi, 1983). To introduce price elasticity into

the model, we suppose A0juexp[0]=1. Then, the

market share is expressed as follows:

MStx ið Þj ¼
At
x ið Þj

1þ
PN T

k¼1 A
t
xðkÞj

At
x ið Þj ¼ exp ½� XNa

h¼1

bjh x ið Þh � mjh

� �2 � cjp
t
x ið Þ	; ð5Þ

where t is an index for the week, t =1,. . ., T

Extending the method by Cooper and Nakanishi

(1983), market share can be transformed into the

following linear equations:

log
MStx i1ð Þj
MStx i2ð Þj

¼
XNa
h¼1

bjh x i2ð Þ2h � x i1ð Þ2h
� �

� 2mjh x i2ð Þh
�h

� x i1ð Þh
�i

þ cj p
t
x i2ð Þ � ptx i1ð Þ

h i

¼
XNa
h¼1

bjh1 x i2ð Þ2h � x i1ð Þ2h
� �

þ bjh2 x i2ð Þh
�h

� x i1ð Þh
�i

þ cj p
t
x i2ð Þ � ptx i1ð Þ

h i
ð6Þ

where i1bi2, bjh1=bjh and bjh2=�2bjh mjh. Since the

values of MSx(i)j
t, x(i)h, and ptx(i) are given, we can
9 Although there are many theoretical approaches for market

segmentation, volume segmentation is popular in practice (Cooper,

1993; Haley, 1995). The methods developed here can be used with

any segmentation scheme.



Table 4

Two attributes of liquid detergents

No. Brand name Anti-redeposition Effectiveness

1 All 3 4

2 Arm and Hammer 3 3

3 Bold 1 3

4 Cheer 4 4

5 Dynamo 3 4

6 Era 3 5

7 Fab 1 4

8 Purex 2 5
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estimate parameters bjh, cj, and ideal points mjh in

two stages, using the following equation:

Y t
i1i2j

¼ aj þ
XNa
h¼1

bjh1ATSQi1i2h
þ bjh2ATTRi1i2h

� �
þ cjPR

t
i1i2j

þ eti1i2j; ð7Þ

where

Y t
i1i2j

¼ log
MStx i1ð Þj

MStx i2ð Þj
;

ATSQi1i2h
¼ x i2ð Þ2h � x i1ð Þ2h;

ATTRi1i2h ¼ x i2ð Þh � x i1ð Þh;

PRt
i1i2j

¼ ptx i2ð Þ � ptx i1ð Þ;

aj: an intercept, eti1i2j: the error term.

Eq. (7) can be transformed to the following

equations:

Y t
i1i2j

� Y
P

i1i2j
¼ cj PRt

i1i2j
� PR

PP
i1i2j

� �
þ êeti1i2j ð8Þ

1

T

XT
t¼1

Y t
i1i2j

� cjPR
t
i1i2j

� �
¼ aj þ

XNa
h¼1

bjh1ATSQi1i2h

�
þ bjh2ATTRi1i2h

�
þ ei1i2j

ð9Þ

For each segment, ordinary-least-squares (OLS)

methods are applied.10 At first, price sensitivity cjs
are estimated using Eq. (8), and then distance

sensitivity and ideal-point parameters bjh1, bjh2s are

obtained, using Eq. (9). In order to escape from

possible collinearity problems associated with using

both squared and linear terms ATSQi1i2h
andATTRi1i2h

,

we use deviation scores in estimating hs and restore

the original attribute values when computing ideal

points.

Consumer reports presented nine attributes con-

cerning liquid detergents, excluding cost. Anti-rede-

position is a property of detergents such that, once

removed, dirt and stain do not resettle over the entire

wash-load. Inoue (1996) showed Anti-redeposition to

be highly correlated with another attribute, Whitening,
10 Since the tracking data in this illustration eliminate sampling

errors, OLS estimates should be very similar to GLS estimate (cf.,

Cooper & Nakanishi, 1988, pp. 125–128).
so we only needed one of these two. The other

measures reflected the detergents’ ability to remove

stains caused by dirt, makeup, spaghetti sauce, grape

juice, grass, tea, ink, and motor oil. We formed a

composite index, Effectiveness, reflecting the sum of

the stain-removing capabilities. Factor analysis sup-

ported using two dimensions to capture the nine

attributes (cf. Inoue, 1996). Data on these two

attributes and summary of estimation results are

provided in the following tables (Tables 4 and 5).

Heavy users appear more sensitive to price and

Effectiveness than light users, and the light users are

more sensitive to Anti-redeposition. The value of R2

ranges from 0.09 to 0.11 for Eq. (8) and around 0.29

for Eq. (9). This implies that market share is explained

more by product attributes than price. Since the values

of bjh1s are significant, we have ideal-point models

rather than vector models. Since the values of bjh1s

are negative, the ideal positions of segments are

actually anti-ideal points for both attributes. Attrac-

tiveness increases as products move away from the

anti-ideal points on this discrete grid. The anti-ideal

points of segments, obtained from Eq. (6), are (1.87,

3.00) for light users and (1.60, 3.00) for heavy users.

These points should be located on the axis of Anti-

redeposition, because deviation score for the Effec-

tiveness is anchored around 3 and values of bjh2s are

zero. Positions of existing brands and anti-ideal points

estimated are presented in Fig. 7.

Since costs are not generally open to academic

researchers, we need to estimate them—a challenging

exercise. Horsky and Nelson (1992) estimated varia-

ble costs using the equation derived from joint
9 Solo 3 4

10 Tide 3 6

11 Wisk 3 3

12 Yes 3 5



Table 5

Summary of estimation results with deviation scores

Variable Parameters Light users

(t-value)

Heavy users

(t-value)

Price c j 0.58 (9.13)a 0.72 (19.34)a

R2 0.09 0.11

Intercept a – �0.23 (�1.69)b

Anti-redeposition hjh1 �0.23 (�2.08)a �0.21 (�1.84)b

hjh2 �0.38 (�2.85)a �0.45 (�3.50)a

Effectiveness hjh1 �0.07 (�2.78)a �0.12 (�3.40)a

hjh2 – –

R2 0.29 0.29

a 5% significance level.
b 10% significance level.

Effectiveness

Anti-redeposition

3

4

5

6

1 2 3 4

Cheer(P&G)

Bold(P&G)

Tide(P&G)

All(Uni)
Dynamo(CP)
Solo(P&G)

Fab(CP)

A&H(C&D)
Wisk(Uni)

Era(P&G)
Yes(Dow)

Purex(Dial)

Light User
(1.87, 3.00)

Heavy User
(1.60,3.00)

[0.03]

[0.04]

[0.07]

[0.11]

[0.15]

[0.24]

[0.38]

[0.33][0.09]

[0.53]

[0.85]

[1.37]

[1.17]

[1.89]

[3.03]

[4.87]

[ ]: variable costs : existing brands : anti-ideal points

Fig. 7. Positions of products and markets.
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maximization of the player’s profit functions for

equilibrium. They assumed variable costs are

expressed as a function of product attributes. Berry,

Levinsohn, and Pakes (1995) present various empiri-

cal models and methods to obtain estimates of

demand and cost parameters in oligopolistic markets.

In their base model, variable cost is a log-linear

function of product attributes and estimated by OLS.11

Based on these models, we suppose that variable cost

is a log-linear function of attributes and product-

specific dummy variables as follows:

lncx ið Þ ¼ k0 þ
X2
h¼1

khx ið Þh þ
X

ja 3;7;11f g
djDUMj þ ei

ð10Þ

where khs and dj are the parameters to be estimated

and ei is an error term. DUMjs are dummy variables

for product-specific costs. Dummy variables are

added only for the economy brand of each multi-

product firm, which are Bold, Fab, Wisk. Thus,

DUMj=1 if j= i; otherwise 0. cx(i) is produced from

Eq. (2), assuming the average price is in equilibrium.

Average price is adjusted by subtracting average retail

margin (27.5%), 12 (cf., Saporito, 1988) from the

price. Again, parameters are estimated by OLS.

Results are summarized in Table 6 and estimated

variable costs are provided in Fig. 7.
11 More recent paper by Besanko, Dube, and Gupta (2002)

assumes that variable cost is a function of raw materials and jointly

estimates the function with demand. However, we follow the

approach used in the first two papers for simplicity.
12 This value was produced by averaging margins of hypermarkets,

wholesale clubs, discount stores, and supermarkets.
Fixed costs at non-empty positions are estimated

based on net-profit-to-sales ratios obtained from 10K

report (1987). Since 10K reports do not provide

brand-level data, the estimation based on firm-level

data generates only rough results. Thus, we assume

uniform fixed costs over product positions. Horsky

and Nelson (1992) also estimated a uniform fixed cost

from other reports on automobile industry. In our case,

weighted average of fixed costs by brand’s market

share produces $16.68 million for the fixed costs at

each of the product positions.

A reasonable upper bound of price is obtained by

subtracting retail margin from the transaction prices.

The upper bound is set to $3.91, covering 99% of the

transaction prices. Changing this upper bound to the

maximum observed prices ($6.18) does not alter the

equilibrium result. The empirical data contain 12

brands that already exist in the market and we suppose

that they react only in the second stage. Then we

compute the number of new entrants and their

positions. The results appear in Table 7.

Under the given cost structure, our model indicates

that 19 new entrants can enter the market and

survive.13 They take the extreme position on Effec-

tiveness, but save costs by taking the position on Anti-

redisposition of Bold and Fab. Pursuing both attrib-

utes at the same time is too expensive, considering the

increase in marginal cost. Because of the moderate
13 The number of survivors at this location is a function of fixed

costs as explained at the end of this section.



Table 6

Regression result for cost equation

Variable Parameters Estimates (t-value)

Intercept k0 �6.34 (�3.96)a

Anti-redeposition k1 1.27 (3.54)a

Effectiveness k2 0.47 (2.32)b

Dummy for Bold d3 3.60 (3.63)a

Dummy for Fab d7 3.50 (3.85)a

Dummy for Wisk d11 1.63 (2.76)a

R2 0.77

a 5% significance level.
b 10% significance level.

Table 8

Market share, profit, and price of existing brands before entry of

new brands

Position

(anti-red.,

effect.)

No. of

existing

brands

Profit per

brand

(mil. $)

Price

($)

Market share

per brand (%)

(1,3) 1 15.77 1.59 7.40

(1,4) 1 19.33 1.61 8.16

(2,5) 1 24.69 1.82 9.31

(3,3) 2 19.00 1.89 8.11

(3,4) 3 18.10 2.09 7.92

(3,5) 2 22.37 2.42 8.83

(3,6) 1 37.31 2.97 10.64

(4,4) 1 13.13 3.43 6.84
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marginal cost, they set reasonable price ($1.60), and

beat the existing brands with better performance.

Therefore, the best strategy for introducing a new

brand in this market is to take a position of focused

functional quality and reasonable price. But we have

to ask, bHow realistic is this result?Q This result

indicates that a market that is estimated currently to be

profitable for all existing brands (see Table 8 for

current shares and estimated profits) turns it into one

that is profitable only for the new entrants. Each new

entrant grabs a 4.11 share—around twice the share of

incumbent brands after entry. As shown in Table 9,

even if Tide gives up Anti-redeposition and opportun-

istically repositions itself to match the benefits of the

new entrants, Tide and the new entrants survive and

are profitable, while all other brands are not profitable.

Our analysis and simulations describe a market that

Tide leads by providing a substantial tangible benefit,

supported, of course, by the advertising and distribution

clout of Procter & Gamble. To succeed, new entrants in

this market must match Tide on Effectiveness—no easy

task since no current brand achieves this. If this parity
Table 7

Results of new entrants under passive reaction from existing brands

Position

(anti-red.,

effect.)

No. of

existing

brands

No. of

new

entrants

Profit per

brand

(mil. $)

Price

($)

Market

share per

brand (%)

(1,3) 1 0 �10 1.50 1.60

(1,4) 1 0 �9.3 1.51 2.78

(1,6) 0 19 0.63 1.60 4.11

(2,5) 1 0 �8.22 1.70 2.05

(3,3) 2 0 �9.38 1.80 1.77

(3,4) 3 0 �9.57 1.99 1.72

(3,5) 2 0 �8.70 2.31 1.93

(3,6) 1 0 �6.89 2.83 2.37

(4,4) 1 0 �10.57 3.36 1.48
can be achieved, the new entrants become profitable by

offering less Anti-redeposition (the attribute less

desired by the heavy users), but at a lower price, which

appeals to the more price-sensitive heavy users. This

represents a severe threat to the established leader in the

category, and indeed to all incumbent brands. As

indicated above, Tide could profitably reposition and

drop price, but this does not seem like a desirable

alternative for the long-time category leader.

Given this analysis, what should the incumbent

brands do? First, the market leader needs to determine

if patents or trade secrets protect its position on

Effectiveness. Can a new entrant actually achieve a

b6Q on this scale? If not, they are secure. But if Tide is

imitable on Effectiveness, the next step would be to

compare our cost estimates to the ones the manufac-

turers hold privately. If the costs associated with the

(1,6) position are higher than we estimate, the

incumbents may not face as severe a threat as we

have identified. If, on the other hand, the costs are

justified, more extreme measures may be required.

Perhaps launching flanker brands backed by the
Table 9

When the position of tide is moved to (1,6)

Position

(anti-red.,

effect.)

No. of

existing

brands

No. of

new

entrants

Profit per

brand

(mil. $)

Price

($)

Market

share per

brand (%)

(1,3) 1 0 �10.19 1.50 1.56

(1,4) 1 0 �9.48 1.51 1.74

(1,6) 1 19 0.17 1.60 4.01

(2,5) 1 0 �8.44 1.70 2.00

(3,3) 2 0 �9.57 1.79 1.72

(3,4) 3 0 �9.76 1.99 1.68

(3,5) 2 0 �8.91 2.31 1.88

(4,4) 1 0 �7.15 2.83 2.31
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distribution and advertising clout of the market leader

could discourage further entry. Here we can see the

usefulness of extending the modeling framework to

include product line decisions (i.e., multiple products

from a single firm that have coordinated strategies).

Even without such model extensions, this analysis has

identified a threat that needs to be considered in

strategic brand planning.

Finally, we report a sensitivity analysis using our

model. How many new products can be introduced

into the market? Number of products in the market is

determined endogenously in our free-entry model.

With other parameters fixed, increasing fixed costs

works as an entry barrier. Fig. 8 shows that the

number of new products decreases as fixed costs

increase from the original value ($16.68 million). For

each fixed-cost level, the best position for the new

product does not change. This is an important result

that is quite different from Example 1 where dancing

and first-mover disadvantage occur. The stability that

this finding implies makes our finding more practi-

cally important. We conjecture that the stability of the

best position comes from monotone increasing vari-

able costs, uniform fixed costs, and absence of limited

positioning.
4. Conclusion

In this paper, we presented a model for the new-

product-positioning problem with pricing decisions.

Competition is addressed by means of a game-

theoretic approach. Game-theoretic models are usu-

ally based on strong assumptions to obtain analytic
solutions. However, we formulate the problem with an

emphasis on application by combining the essential

requirements for practical applicability (i.e., multiple

segments, multiple positioning attributes, and free and

endogenous entry) and by making more reasonable

assumptions where needed.

In spite of our practical perspective, more research

is needed in this field. If the data cannot satisfy the

sufficient conditions for the existence and uniqueness,

the model fails to obtain equilibrium solutions. In this

case, different modeling approaches such as deter-

ministic models or other market share functions may

be appropriate. Another major assumption is that each

firm can launch only one product. This assumption is

critical, and may not hold in some markets. In such

cases, other approaches such as nested logit models

(Anderson & De Palma, 1992) need to be considered.

In the empirical part, we have added a number of

rough assumptions, especially concerning the esti-

mated cost structure. Horsky and Nelson (1992)

recommend obtaining cost data from design engi-

neers. This is a sound approach, not available to us.

We also know that advertising, co-op advertising,

distribution, merchandising, and other marketing

actions impact the attractiveness of brands. Note these

are not design attributes that would increase the

dimensionality of the attribute space. These are policy

variables that would enter our analysis just as price

does. While not including such instruments limits

somewhat the applicability of our methods, attempting

to expand the methods to include other marketing

actions increases the complexity of the analytical

model enormously, and is beyond the scope of the

present effort. Therefore, we leave all these general-

izations to future research and improvement.

Another limitation concerns the simultaneous

setting of prices in the second stage of the game.

The structure of the game can be thought of as a

traditional two-stage model. All brands position their

brands (sequentially), and then all simultaneously

choose prices. The problem proposed, however, is the

launch of a new brand into an existing market.

Presumably, in such a case, some brands will have

already selected positions and prices in a previous

round of the game. Posing the two-stage game in the

traditional manner limits our findings somewhat. We

hope that future efforts can remove that limitation. A

related limitation concerns our treatment of brands as
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independent competitors (i.e., a firm launches only

one product), despite the fact that four brands are part

of Procter & Gamble and two brands belong to

Unilever. In the empirical literature, brand choice

models typically do not recognize the possible

dependencies that this corporate brand ownership

might imply (e.g., by choosing a nested-logit frame-

work over a conditional-logit model), but this should

be recognized as a limitation of the current work as

well as a limitation of much of the empirical literature.

We could use this framework to analyze brands

entering new markets (i.e., markets with no incum-

bents). To do so, however, would require a very

different approach to demand estimation than the real

market number we employ in the current application.

While conjoint analysis could possibly provide

estimates of demand for new products in new markets,

this too is beyond the scope of the present effort.

We have shown how to extend previous work in

new-product entry and optimal pricing in an existing

multisegmented market-providing a normative, ana-

lytical framework for free and endogenous entry, as

well as empirical methods to apply this framework to

real markets. We hope these efforts facilitate further

work that bridges between normative models and

empirical markets.
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Appendix A

Proof of Lemma 1. Showing that price is bounded

above.

lim
px ið ÞYl

pi ¼ lim
piYl

X
j

Dj

px ið Þ � cx ið Þ
� �

MS�1
x ið Þj

� fx ið Þ

" #

¼
X
j

Dj lim
px ið ÞYl

px ið Þ � cx ið Þ
� �

MS�1
x ið Þj

� fx ið Þ
( px(i)�cx(i))Yl and MSx(i)j
�1Yl as px(i)Yl. By

L’Hospital’s rule,

lim
px ið ÞYl

px ið Þ � cx ið Þ
� �

MS�1
x ið Þj

¼ lim
px ið ÞYl

1

cjMSx ið Þj 1�MSx ið Þjð Þ
MS2

x ið Þj

¼ lim
px ið ÞYl

MSx ið Þj

cj 1�MSx ið Þj
� � ¼ 0

and

lim
px ið ÞYl

pi ¼ � fx ið Þb0

Therefore, the firm has no incentive to increase price

infinitely, which proves the lemma. 5

Proof of Lemma 2. Showing the existence of pure-

strategy Nash equilibria.

Since px(i)a [cx(i), rpx(i)], the pis are continuous,

and quasi-concave. We need to show that pis are, in

fact, concave, which will be the case if their second

derivative is positive.

B
2pi

Bp2
x ið Þ

¼
X
j

Dj 2
BMSx ið Þj
Bpx ið Þ

þ px ið Þ � ci
� � B2MSx ið Þj

Bp2
x ið Þ

" #

¼
X
j

DjcjMSx ið Þj 1�MSx ið Þj
� �

� 2þ px ið Þ
��

� cx ið Þ
�
cj 1� 2MSx ið Þj
� ��

Since Dj cj MSx(i)j(1�MSx(i)j)N0, we need to show

that �2+( px(i)�cx(i)) cj (1�2MSx(i)j)b0 for all j.

� 2þ px ið Þ � cx ið Þ
� �

cj 1� 2MSx ið Þj
� �

b� 2þ px ið Þ
�

� cx ið Þ
�
cj\�2þ px ið Þ � cx ið Þ

� � 2

rpx ið Þ � cx ið Þ

 �
V0

Therefore, pis are concave and there exist pure-

strategy Nash equilibria. 5

Proof of Proposition 1. Showing the uniqueness of

pure-strategy Nash equilibria.

Since the profit function pi is concave, if cjV2/
(rpx(i)�cx(i)), there exists a unique best-reply price

px(i)
br ( p�x(i)), where p�x(i) =px(1) . . . px(i� 1), px(i + 1)

. . . px (N )). A sufficient condition for a unique

equilibrium is that the best-reply function is a

contraction (Friedman, 1986): that is,X
kpi

jBpbrx ið Þ=Bpx kð Þjb1 for all i: ð11Þ
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From Bpi/Bpx(i) =0 and the implicit-function theorem,

B
2pi

Bpx ið ÞBpx kð Þ
þ B

2pi

Bp2
x ið Þ

d
Bpx ið Þ
Bpx kð Þ

¼ 0; or

Bpbr
x ið Þ

Bpx kð Þ
¼ �

B
2pi=Bpx ið ÞBpx kð Þ

B2pi=B
2
x ið Þ

 !

If cjV1 / (rpx(i)�cx(i)), then B
2pi /Bpx(i)

2b0, and

B
2pi

Bpx ið ÞBpx kð Þ
¼
X
j

DjcjMSx ið ÞjMSx kð Þj 1þ px ið Þ
��

� cx ið Þ
�
cj 2MSx ið Þj � 1
� ��

N
X
j

Djcj

�MSx ið ÞjMSx kð Þj 1� px ið Þ � cx ið Þ
� �

cj
� �

z
X
j

DjcjMSx ið ÞjMSx kð Þj

"
1� rpx ið Þ

�

� cx ið Þ
�
d

1

rpx ið Þ � cx ið Þ
� �

#
¼ 0

Thus, Eq. (11) is equivalent to

X
kpi

B
2pi=Bpx ið ÞBpx kð Þ

� �
� B2pi=Bp

2
x ið Þ

� � b1 for all i; or

X
kp1

B
2pi

Bpx ið ÞBpx kð Þ
b� B

2pi

Bp2
x ið Þ

for all i ð12Þ

Since

X
kp1

B
2pi

Bpx ið ÞBpx kð Þ
¼
X
j

DjcjMSx ið Þj 1þ px ið Þ � cx ið Þ
� ��

� cj 2MSx ið Þj � 1
� ��½X

kpi

MSx kð Þj	
and

� B
2pi

Bp2
x ið Þ

¼
X
j

DjcjMSij 2þ px ið Þ � cx ið Þ
� �

cj
�

� 2MSx ið Þj � 1
�� �

1�MSx ið Þj
� �

;

Eq. (12) holds, which proves the uniqueness. 5

Proof of Proposition 2. Showing (i) a proof that the

pure-strategy Nash equilibrium is a subset of the
stable set, and (ii) that the stable set equals the pure-

strategy Nash equilibrium for the bpre-assignedQ
game.

(i) SSsPNE(P).

Suppose that there exists X* such that X*gSS.

Then, it induces two cases such that X* is not viable,

or viable but not stable in the survival.

Case 1: X* is not viable. It implies that there exists

a product i such that xx(i)* p 0, and

pi xx ið ÞT ; x�x ið ÞT
� �

b0:

Since

pi 0; x�x ið ÞT
� �

¼ 0Npi xx ið ÞT ; x�x ið ÞT
� �

;

X*=(xx(i)* , x�x(i)* ) is not PNE(P).

Case 2: X* is viable, but not stable in the survival.

It implies that there exists a firm i such that xx(i)* =0,

and

pi xx ið Þ;x�x ið ÞT
� �

zpi xx ið ÞT ; x�x ið ÞT
� �

Thus, X*=(xx(i)* , x�x(i)* ) is not PNE(P).

Therefore, in both cases, X* cannot be PNE(P).

(ii) SS=PNE(P01).

(a) SSoPNE(P01): For the proof, we define new

variables yr such that yi=1 if the firm enters the

market at a pre-assigned position or yi =0. Let

Y=( y1,. . ., yN). Suppose that there exists Y* such

that Y*gPNE(P01). Then there exists a firm i such

that

pr yi; y�i
T

� �
Npr yiT; y�i

T
� �

ð13Þ

Since yi* can have only two values, we examine the

following two cases.

Case 1: yi*=0, yi=1. Then Eq. (13) implies that

Y*=( yi*, y�i* ) is not stable in the sense of survival.

Case 2: yi*=1, yi =0. From Eq. (13), pr(0,

y�i* )=0Npr(1, y�i* ). Thus, Y*= ( yi*, y�i* ) is not

viable.

Therefore, in both case, Y*=( yi*, y�i* ) does not

belong to SS.

(b) SSsPNE(P01): The proof is similar to that

of (i). 5
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Proof of Proposition 3. Showing sufficient condi-

tions for the first-mover advantage.

Let X =(x(1),. . .x(N*)) be a PNE of P. Suppose

that there exists a firm r such that pr bpr +1. For a

given x(1)�x(r�1), the game tree for backward

induction is reduced to a two-person game (firm r and

r +1), since they can foresee equilibria of the

subgames starting from firm (r +1)’s decision node.

Suppose that firm r can relocate its facility after firm

(r +1)’s location decision, but does not want to. Then

firm r should have selected firm (r +1)’s site in its

initial decision. Therefore, the firm must relocate its

facility, which is contradictory to PNE( P )o
PNE(PS). 5

Algorithm for the second stage. Determining the

price equilibrium for products after entrance.

Step 0: px(i)
0 pcx(i) for all i.

Step 1: kpk +1; maxpk
x ið Þ

p pk
x ið Þjpk�1

x ið Þ

� �
for all i,

using Eq. (2).

Step 2: If jpx(i)k �px(i)
k�1jb e for all i, stop; otherwise,

return to Step 1.
Appendix B

This appendix provides further detail on the

heuristic algorithm used in the endogenous determi-

nation of number of new entrants, location of new

entrants, and the empirical estimation of the pure Nash

equilibrium. A genetic algorithm is used in the first

step of the algorithm to generate and ultimately

converge on a stable set. The second step finds the

subgame-perfect Nash equilibrium on the generated

stable set (see Fig. 5).

B.1. Representation

The individuals being bred by this genetic

algorithm are occupancy vectors. The chromosomes

controlling the breeding specify how many products

are located at each position in the attribute space.

These chromosomes are evaluated for their fitness,

reproduced, crossed, and mutated in accord with

parameters and fitness functions discussed previously

in Section 3, except for the concept of lifetime

discussed below.
B.2. Parameter setting

The lifetime of a chromosome (introduced by

Arabas et al., 1994) should increase when it is more

fit compared to other chromosomes:

lt ið Þ ¼ min MinLT þ MaxLT�MinLTð Þ
2



!
f it ið Þ
avgfit

;MaxLT

�
ð14Þ

where lt(i): lifetime of chromosome i, i =1,. . ., Nc;

MinLT: minimum lifetime of chromosomes; MaxLT:

maximum lifetime of chromosomes; fit(i): fitness of

chromosome i, i=1,. . ., Nc; avgfit: average fitness of

chromosomes.

B.3. Initialization

The initial population of chromosomes specifying

occupancy vectors is generated by a probabilistic add/

drop heuristic. This heuristic is a variant of conven-

tional add/drop heuristics for facility-location prob-

lems. In conventional add/drop heuristics, the site that

a facility is to be added to or dropped from is selected

by a deterministic criterion (c.f., Francis, McGinnis, &

White, 1992). In our heuristic, the position where the

product is to be added is selected from a probability

distribution generated from some deterministic cri-

teria. The details are as follows:

B.3.1. Add/drop heuristic for initialization

Step 0: Z =(0,. . .0).
Step 1: (1) For each position j, obtain profit pj

when only one product exists at position j. (2)

Produce probability pj ¼
pc
jP
k
pc
k

, where c is a weight

coefficient.

Step 2: If pj =0 for all j, stop; otherwise go to

Step 3.

Step 3: (1) Select a position s according to a

probability distribution ( p1,. . ., pL). (2) If p(zs+1)b0,
ps=0 and go to Step 2; else zspzs+1.

Step 4: If some positions are not viable, drop the

products one by one from less profitable positions

until all positions are viable:

Go to Step 2 of the add/drop heuristic.

To maintain diversity within the initial population,

we produce several selection probabilities using
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BEFORE CROSSOVER AFTER CROSSOVER

Z1 = (1,2,1,2,1,2,1,2) Z1' = (1,2,2,1,1,1,2,2)
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Z2 = (2,1,2,1,2,1,2,1) Z2' = (2,1,1,2,2,2,1,1)

Fig. 10. Geographic crossover.
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various coefficients: c =0 for random selection; c =1

for greedy selection; c =1/2 for mixed selection.

B.4. Breeding

In this stage, new populations of occupancy

vectors are generated from a parent population. For

breeding, the following operators are used:

(1) Reproduction:

In reproduction, we randomly select a set of

chromosomes (i.e., an occupancy vector) from the

current population using a reproduction-rate parame-

ter (See Table 11). In standard genetic algorithms,

reproduction is used as a selection mechanism for the

next generation such that the chromosomes with high

fitness have a better chance to be selected for the next

generation than those with low fitness. In our

algorithm, selections are made naturally through an

aging process that incorporates fitness, described in

Eq. (14). Thus, reproduction is performed only to

prepare a set for other operations such as crossover

and mutation by random selection.

(2) Crossovers:

Crossover is a binary operator combining two

chromosomes. The basic idea of crossover is that the

best solutions can be constructed from the best partial

solutions of previous trials (Goldberg, 1989). This

operation is performed on the reproduced set of

chromosomes with a certain probability (or crossover

rate). The values for the crossover probabilities are

listed in Table 11.

Three kinds of crossovers are considered: generic,

geographic, and projection. A generic crossover is

an operator that is independent of problem specifi-

cations. As a generic crossover, we use a two-point

crossover. Suppose that L=5, and Z1, Z2 are

selected chromosomes for generic crossover as in

Fig. 9. The separators are placed at random. Then

new chromosomes produced by the generic cross-

overs are Z1V, Z2V.
BEFORE CROSSOVER AFTER CROSSOVER

Z1 = (1,2|1,2|1) Z1' = (1,2,2,1,1) 
⇒

Z2 = (2,1|2,1|2) Z2' = (2,1,1,2,2) 

Fig. 9. Generic crossover.
The geographical crossover is a problem-specific

operator, introduced by Karmarkar and Saxena (1993)

for the facility-location problem on a network. Geo-

graphical crossover has attempted to preserve facili-

ties around a site; that is, it randomly selects a site and

maintains the facilities within a randomly determined

distance. For example, suppose that in Fig. 10, node 6

is selected as the site to perform the geographical

crossover and the distance is determined to be 2.

Then, nodes 3, 4, and 7 including node 6 are

preserved in the chromosomes Z1, Z2, and therefore

the resulting chromosomes are like Z1V and Z2V. This

network-based crossover can be applied to an attribute

space. Each product position in an attribute space is

regarded as a node in a network.

Finally, we present a new crossover, the projection

crossover. This crossover is similar to the generic

crossover except that the mating chromosome is a

zero vector. Thus, this operation mimics a drop

heuristic. An example is provided in Fig. 11.



⇒

BEFORE CROSSOVER

Z1 = (1,2|1,2|1)

Z2 = (2,1|2,1|2)

AFTER CROSSOVER

Z1'= (1,2,0,0,1)

Z2'= (0,0,2,1,0)

Fig. 11. Projection crossover.
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The crossover selected from the three is determined

by certain probabilities. The probabilities are found by

trial and error, as are the other parameters.

(3) Mutation:

Mutation is a unary operator that provides diversity

to populations. We design two mutation operators

following the add/drop heuristic as follows (these

operators are selected at random).

Mutation 1:

Step 1: Select a chromosome and a bit within the

chromosome according to a mutation rate.

Step 2: Increase the number of products at the

selected position by one.

Step 3: Drop products in other positions if they are

not viable.

Step 4: Stop if addition of one more products to the

selected bit returns negative profit to the product of

the bit; otherwise, go to step 2 of Mutation 1.

Mutation 2:

Step 1: Select a chromosome and a bit within the

chromosome according to the mutation rate.

Step 2: Increase the number of products up to the

maximum assuming that other positions are empty.

Step 3: Drop non-viable facilities one by one if

they exist.

B.5. Fitness test

Since elements of a set can be described by several

characteristics, membership needs to be represented

by several objectives. Thus, we utilize a multi-

objective function for membership. One objective is

survival and the other objective is the number of

firms:

(1) Survival

Stability is defined by two conditions: viability and

survival. Firms first require viability when they enter

the industry. The survival condition is satisfied after

the last entry of firms. Thus, we always maintain

viability condition as a constraint during the evolution

process and use the survival condition as one

objective of the membership function. The first
objective function of chromosome i, f1(i) is defined

as follows:

f1 ið Þ ¼

XL
i¼1

zj

zmax
j z1; . . . ; zj�1; zjþ1; . . . ; zL
� �

L
ð15Þ

where L: number of potential positions; zj: number of

firms at position j; zj
max (.): maximum number of firms

that position j can accommodate when z1,. . ., zj�1,

zj+1,. . ., zL are given.

In Eq. (15), the objective function is defined as the

average closeness of a chromosome to the maximum

number of firms that sites can accommodate. The

survival objective is to maximize this function.

However, calculating zj
max (.) for every occupancy

vector is time consuming. In order to save the

computing time, we use zj
cur as a proxy for zj

max,

where zj
cur=max {zj(i)j occupancy vector i belongs to

the stable set} for all positions j.

(2) Number of Firms

The survival objective has a tendency to generate

chromosomes that contain a large number of firms by

giving high scores to these chromosomes. However,

there may exist chromosomes that contain small

numbers of firms. Thus, the second objective is

maximizing the inverse of the number of firms

divided by the average number of firms. The objective

function of chromosome i, f2(i) is defined as follows:

f2 ið Þ ¼

XNc

k¼1

N kð Þ=Nc

N ið Þ ð16Þ

where N(i) is the number of firms of chromosome i.

(3) Overall fitness

From the two objectives, we define the overall

fitness of a chromosome i, fit(i) as follows:

fit ið Þ ¼ f ið ÞXNc
k¼1

f kð Þ
ð17Þ

and

f ið Þ ¼ af1 ið Þ þ 1� að Þf2 ið Þ ð18Þ
where 0VaV1.

B.6. Review

In our overall heuristic algorithm, three cycles

exist: Cycle I is a single generation; Cycle II consists



Table 10

A list of parameter values tested

Parameters Values

Initial population size 20, 30, 40, 50

Crossover rate 0.1, 0.2,. . ., 0.9

Mutation rate 0.2,. . ., 0.9

Reproduction rate 0.1, 0.2,. . ., 0.5
Removal rate of a member

of the stable set

0, 0.1, 0.2,. . ., 0.5

Probability for three crossovers

(generic, geographic, projection)

(1,0,0), (0,1,0), (0,0,1),

(1/3,1/3,1/3), (2/5,1/5,1/5),

(1/5,2/5,1/5), (1/5,1/5,2/5)

Weight for the first objective of

fitness function a
0, 0.3, 0.5, 0.7, 1, (0.1,0.4),

(0.3,0.7), (0.6,0.9)

Table 11

Selected parameters

Initial population size 50

Crossover rate 0.7

Mutation rate 0.5

H. Rhim, L.G. Cooper / Intern. J. of Research in Marketing 22 (2005) 159–182180
of generating populations, transferring identified

stable chromosomes from the population to a pool

for the stable set, and removing part of stable

chromosomes in the population;14 Cycle III consists

of several Cycle IIs and the second step in which we

obtain an equilibrium from the identified stable set.

The stable set is sorted in lexicographical order in

order to prevent the existence of multiple copies of the

same chromosome. We remove part of chromosomes

at the end of Cycle II with certain probability

(removal rate) to increase the diversity of population

and prevent premature convergence of the evolution

process.

We review the heuristic system to test the

convergence of the evolution process. Reviews

can be made at the end of Cycle II or Cycle III.

If the system is reviewed at the end of Cycle II,

the convergence is tested by checking the size of

the stable set—the normal convergence test for

ending the genetic algorithm. For example, if the

size of the stable set does not increase for a certain

number of cycles, we stop the first step and

proceed to obtaining the equilibrium in the second

step. On the other hand, if the system is reviewed

at the end of Cycle III, we observe the obtained

equilibrium, and stop if the obtained equilibrium

does not change for a certain number of cycles. In

this application, we reviewed at the end of Cycle

II because of the substantial computing time at the

second step.
14 The genetic algorithm is involved in Cycles I and II.
B.7. Second step

In this step, we find a Nash equilibrium using the

stable set identified by the genetic algorithm. Suppose

we identified a stable set (SS) in the first step. The

stable set (list of occupancy vectors satisfying

viability and survival conditions) limits the search

on the game tree. (See Fig. 3.) The game tree is

searched by backtracking (depth-first) approach.

Searching is implemented recursively (i.e., the sub-

routine calls itself). Suppose SSA is a subset of SS that

is maintained to trace the possibility of branching.

Initially, SS=SSA. For instance, for kth product,

position j can be branched only when SSA has at

least a single occupancy vector such that zj N0. In this

case, after branching into position j, zj’s are reduced

by 1, and now decision is for k +1th product. If zj has

a negative value, the corresponding occupancy vector

is removed from SSA until search returns to kth

product. Let Nmax be the maximum number of

products obtained from SS. Using SSA and Nmax,

we describe the sketch of the algorithm as follows:

B.7.1. Algorithm for restricted backward induction

Subroutine TreeSearch (suppose we are at the

branch of position j of the kth product)

If (size of SSA=1), then assign positions to k +1 to

Nmaxth products in the decreasing order of profits.

Else if (size of SSAN1) and (k =Nmax), then

compare the profit of leaf j with those of other

branched leaves of kth product.

Else if (size of SSAN1) and (k bNmax), then (for all

possible position l’s of SSA)

{zlp zl�1 for all occupancy vectors of SSA;

If (zl b0) then remove the occupancy vector

from SSA;

Call TreeSearch(node l, k +1th product);
Reproduction rate 0.4

Removal rate 0.1

Crossover Distribution (1/5,1,5,2/5)

Weight for the first objective of fitness function a (0.3,0.7)
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Update optimal choice of kth product;

Recover zl and SSA;}

B.8. Parameter set

The parameters are selected by trial and error. The

selection criteria we use are the average size of the

stable set over a time period AS(T), and the size of

stable set at the end of the run, S(T). Both measures are

normalized by the size of the true stable set as follows:

AS Tð Þ ¼

XT
t¼1

Sizet=SizeTð Þ

T
ð19Þ

S Tð Þ ¼ SizeT

SizeT
ð20Þ

where Sizet: the size of the stable set obtained at time t,

t =1,. . .T; Size*: the size of true stable set.

Cycle I (i.e., a single generation) is used as a time

unit for this measure. Size* is obtained by enumer-

ation. In order to consider both average and final

performance, we select the first and second best

parameters in AS(T) as candidates, and then select the

better parameter in S(T) between those candidates.

As an experiment, we use the homogeneous-cost,

linear-market model presented in Fig. 6 (facility-

location problem). Total run time T is set to 150. A list

of parameter values tested is provided in Table 10.

For some parameters, we include extreme proba-

bilities such as 0 or 1. The zero probability for the

removal rate is to test whether this operator is essential

or not. The extreme distribution for the three crossovers

is to test which operator works best. The extreme values

for the weights in the fitness function are to determine

whether the multiobjective approach is necessary in our

problem. We also include the strategy that the weights

of fitness function vary according to the uniform

distribution during the run. For example, (0.3, 0.7)

represents the case that the weight for the first objective

a follows the uniform distribution U[0.3, 0.7]. The

selected parameters are summarized in Table 11.
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