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REDUCING CONCAVE PROGRAMS WITH SOME LINEAR
CONSTRAINTS*

ARTHUR M. GEOFFRIONt}

Abstract. The problem of maximizing a concave function over a general convex
set subject to linear inequality constraints is reduced to a finite sequence of sub-
problems involving linear equality constraints. This reduction can be expected to be
computationally useful when there are but a few constraints, or when at most a few
constraints are binding at the optimal solution of the original problem, or when prior
(though possibly fallible) information is available concerning which constraints are
likely to be binding. For quadratic programs the procedure specializes to an improved
version of the Theil-van de Panne method. Computational considerations and experi-
ence are discussed, and a graphical example is given. The theory and viewpoint
developed herein provide the foundation for related reduction procedures that may
prove computationally useful even for large problems in the absence of a priori
information.

1. Introduction. Consider the problem:
(P) Maximize,cx f(z) subject to azx + b; = O, 1 € M,

where f is strictly concave on the convex set X C E" and M is a finite set
of linear constraint indices.! Assume that (P) admits an optimal solution
a*. It will be shown that (P) can be reduced to a finite sequence of sub-
problems of the form:

(Ps) Maximize,cx f(z) subject to ax + b; = 0, 1 €8,

where S & M. When a subproblem (Pg) arises that is infeasible, one con-
siders instead the following subproblem:

(Ls’) Maximize,cx ajz + b; subject to ax + b; = 0, 1 €8 — 7,

where ? is a certain index in S, a feasible z is available, and the (linear)
maximand is bounded above by 0. We assume the attainment of the con-
strained suprema of the subproblems that actually arise in the course of
the reduction. To execute the reduction numerically, one requires means
for achieving these suprema and finding the associated generalized La-
grange multipliers, which are known to exist (see §3).

It is easy to show by means of the Kuhn-Tucker-Karlin saddle point
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1966.

t Western Management Science Institute, University of California, Los Angeles,
California 90024. This work was supported partially by the Office of Naval Research
under Task NR 047-041, Contract Nonr 233(75), and by the Western Management
Science Institute under a grant from the Ford Foundation.

! Any nonlinear constraints must be incorporated into the definition of X.
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654 ARTHUR M. GEOFFRION

characterization of (P) and (Pg) (see §3) that there exists a collection O
of optimal subsets of M with the property that 2°= 2*and «* = 0, S € o.
Here 2° is the optimal solution of (Ps) and %’ is an associated vector of
generalized Lagrange multipliers. For example, the set

B=1{i€ M:az* + b; = 0}

of binding constraints at z* is in ©, and every set in © is a subset of B.
We shall give rules for generating a sequence (S°, S', - --), based on the
solutions of the corresponding subproblems, so that this sequence reaches
O in a finite number of steps, thereby leading to the optimal solution of
(P). 8° can be any subset of M such that (Pg) is feasible, and each trial
set will differ from one of its predecessors by exactly one index.

Reducing (P) to a finite sequence of subproblems can be advantageous,
obviously, when the subproblems can be solved more readily than (P) and
when not too many need be solved. The difference between (P) and (Ps)
is that (Ps) involves only linear equality constraints extracted from M, and
is therefore a “less constrained” problem than (P). When X is “‘simple’”’—
as when it comprises all of E”, or a linear manifold, or the nonnegative
orthant—(Ps) may be amenable to analytical solution by calculus or by
simple but effective search procedures [7] that are frustrated by ordinary
linear inequality constraints. When X is not “simple”, it is at least possible
to eliminate some variables by substituting out the equations. And whether
or not X is simple, if M is populous but B is sparse, then a sparse S° will
lead to subproblems having many fewer constraints than (P).

As will be developed in the final subsection, the present version of the
reduction procedure is ultra-conservative. The result is that although
termination occurs within a finite number of subproblems, the number of
subproblems depends crucially on the choice of the initial subproblem
(P4o)—approximately exponentially on the distance (according to the sym-
metric difference metric) from 8° to O, in fact. For computational effective-
ness, therefore, 8° must be chosen to differ from some set in © by at most
a half-dozen indices or so. When (P) has only a handful of constraints
(or more, if it is known that a relatively small proportion of them are
binding at z*), then 8° = & probably satisfies this condition. Otherwise,
prior (although possibly fallible) information must be available regarding
which of the constraints are likely to be in B. Fortunately such information
is frequently available when (P) is familiar or amenable to insight on the
part of the analyst, or when it has been solved for slightly different values
of the coefficients as in sensitivity analysis applications.

The theory and viewpoint developed herein leads to a number of closely
related but less conservative reduction procedures. There is reason to
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believe that some of these will better tolerate a poor choice of the initial
subproblem.

In the next section we present the procedure in detail. A proof of con-
vergence is given in §3. Section 4 hosts a graphical example, and §5 applies
the procedure to quadratic programming and demonstrates a relation to
an algorithm of Theil and van de Panne. The concluding section includes a
discussion of the assumptions and how they can be weakened, some com-
putational considerations, and a report on preliminary computational
experience.

2. The reduction procedure. Fig. 1 gives details for the reduction of
(P) to a finite sequence of subproblems of the form (Ps) or (Lg’).
A formal definition of (2%, u°) at Step la is:

f(z) + ;uis(aﬂ" + bs)
= f(xs) + Zs:uis(aixs + b) = f(xs) + ;ui(ams + b))

forallz € X and u;, s € S. A similar definition holds for (£°, 2°) at Step
1b. Note that when X is polyhedral, (Ls’) is a linear program and 2° is
then the optimal dual vector.

At any given time, 8§ comprises the current generation of trial sets. The
zeroth generation is comprised of S° alone, the first generation of all sets
of the form S = 8° & ¢ for some ¢ € T, and so on. The symbol S =+ ¢
denotes S U t when ¢ ¢ S and S — ¢ otherwise. Thus if S is a trial set in
the kth generation (k = 1), then S = 8’ & ¢ for some trial set S in the
(k — 1)st generation and ¢ in Tss . The set S’ is called the immediate lineal
predecessor of S, and either S € S’ or S D §'. Clearly S is a lineal prede-
cessor of every trial set at every generation. See the example in §4.

A few remarks that may be helpful in achieving efficient computational
implementation are in order.

Remark 1. When S’ is chosen so that 8° € B (eg., S = z),
then termination will be hastened by redefining Ts at Step la as
{{ € M — 8:aa® 4+ b; < 0} and by ignoring any trial sets that arise for
which (Pg) is infeasible. Note that this completely eliminates the need for
u® and Step 1b. The justification for this change is evident from Lemma, 1
below. Evidently S° = & is a propitious choice in complete ignorance of
B. Similarly, if S° can be chosen so that S8° D B (remember that (Pgo)
must be feasible), it is advantageous to redefine Ts at Step la as
{¢ € 8:u;" < 0}. In this case, Steps 4 and 1b can be eliminated and Step 3
can return control directly to Step 1a.

Remark 2. Let X be a linear manifold represented by the linearly inde-
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0.
Let S° be any set such
that (Pgo) is feasible.
Put ;J and S equal to S°
1a. 1b.
Let (xS uS) be a saddle~ Let (%S z5) be a saddle=
point associated with (Ps). point associated with (Lé),
Put Tg = {ieS-’ u$<0}U where j is the last index
1
dded t lineal
{ieM—S: aix5+bi < 0} added to a linea
predecessor of S.

Put Tg= {ieS: 2§ <0}

Terminate If ,J has not been exhausted,
replace S by next set in J
Otherwise, replace d by
{s’:s'=s%t for some
Sef and tsTs}, and
put S equal to the first
set in d

4.

Yes “ (Pg) feasible? \' No

F16. 1. The reduction procedure?

pendent constraints azx 4+ b; = 0,45 € N, where NN M = & (N =&
is permissible). Then if we take S’ to be “independent” in the sense that
the collection {a; : ¢ € N U 8% is linearly independent, it can be shown
that the procedure has the following properties:

(a) at Step 1a, N U § is always independent;

(b) at Step 1b, 2° is the unique solution to the equations

a; + Z 2:Q; = 0.
NUS—j

This result simplifies the implementation of Step 1.

Remark 3. At Step 2, {¢ € M — S:aa® + b; < 0} = & is necessary and
Ts = & is sufficient for 2° = z*. Under various natural additional hy-

2 See the text of §2 for clarification and some suggestions for efficient computa-
tional implementation.
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potheses, Ts = & is both necessary and sufficient. When f is differentiable
in some neighborhood of z° and X is determined by differentiable concave
inequality (= 0) constraints, z° = z* if and only if there exist multipliers
u® that satisfy the linear (in u°) first order differential conditions for (P)
at z°.

Remark 4. When a new generation $ of trial sets is being defined at
Step 3, one may, of course, eliminate any sets that appeared in any previous
generation, although it may be inefficient in terms of storage and compari-
son time to attempt to avoid all duplications.

Remark 5. Step 4 can often be essentially by-passed. For example, Step 3
can return directly to Step 1a if the method used there for finding (z°, 4*)
automatically detects infeasibility; in this event, control can just be trans-
ferred to Step 1b. On the other hand, if the method employed at Step 1a
cannot handle infeasibility effectively, then Step 3 must return to Step 1b.
Unless, of course, S happens to be a subset of its immediate lineal prede-
cessor 8" and (Ps) was feasible, in which case Step 3 can return to Step 1a.
If (Ps) is indeed feasible, this will be signalled by the fact that a;z + b;
can be driven to 0 or above in (Ls’); and control can be transferred to
Step 1la. When the method employed at Step la requires a feasible point
to get started, the natural thing to do when z*" is not feasible in (Py) is to
obtain a feasible point (if one exists) via Step 1b and then go to Step la.
In this regard it may be worth noting that a feasible solution to (Lg’) at
Step 1b is always available from the solution to the subproblem associated
with ',

Remark 6. It is often possible to take advantage, when organizing the
computations at Step 1, of the fact that each subproblem differs from one
of its lineal predecessors by exactly one constraint. Solving a sequence of
very similar problems is usually much easier than the same number of
dissimilar problems.

3. Proof of convergence. The saddle point (z°, u°) required at Step la
exists because it has been assumed that (Ps) has an optimal solution when-
ever it is feasible, thanks to the saddle point characterization for such pro-
grams. A similar assertion holds regarding (Ls’), which is always feasible
when encountered at Step 1b. For completeness we quote without proof
the version of the saddle point theorem for concave programs that best
suits our needs (see [5, Theorem 7.1.1. ff.]).

Turorem (Kuhn-Tucker-Karlin). Let F(x) be concave on the convex set
X. Then 2° is an optimal solution of the problem:

Maximize,cx F(x) subject to

am—l—b,-éO, i=1,---,m1,

1) :
ax + b; =0, t=m +1,---,m,
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if and only if there exists an m-vector u° (“‘generalized Lagrange multipliers”)
such that

F(z) + ; u(a:z + b;) < F(2") + ;uf(m" + b;)

=< F(2") + il wi( @z’ + b;)

for all x € X and uw such that u; = 0,7 =1, --- , my.

The pair (2°, 4°) is a saddle point of the Lagrangian associated with (1).

Evidently the reduction procedure is well defined under the assumptions
stated in the Introduction. That termination occurs in a finite number of
steps is a consequence of the following theorem, which in turn follows from
the two lemmas below. We formally define the collection © of optimal sub-
sets of M as the subsets R satisfying { € M: u* > 0} € R
C {i € M:ax™ + b; = 0} for some saddle point (z*, u*) associated with
(P).

TurorEM. Let S be any trial set that could arise in the course of executing
the procedure of Fig. 1. If ° # «*, then S == t is one unit of distance closer
to O than 8 s for at least one element t of Ty .

‘We employ the symmetric difference metric: e.g., d(S, B) = u(S — B)
+ u(B — 8) is the distance from S to B, where u denotes the number of
indices in a finite set. Let d" = min {d(S°, R): R € 0} denote the distance
from 8’ to © (i.e., to the nearest set in ©). The theorem implies that termi-
nation will occur in exactly d’ generations of trials with the discovery of
the optimal set nearest S°. Evidently the phenomenon of degeneracy, which
in the present context can be identified with the existence of more than one
optimal set, can only accelerate termination.

Lemma 1. Let (Ps) be feasible, (x°, u®) an associated saddle point, and R
an arbitrary set in © (e.q., the one nearest to S). If z° = &, then either
a2z’ + b; < O for some i € R — 8 or u® < 0 for somei € S — R, or
possibly both.

Lemma 2. Let (Ps) be feasible, ax® + b; < 0, (Psy;) infeasible, and R
an arbitrary set in ©. Then 8 — R # & and z;° < 0 for some i therein,
where the z;° are generalized Lagrange multipliers associated with the problem:

Mazimize,cx ax + bj subject to ax + b; = 0, ¢ € 8. Let 2, < 0. If
(Psyj-i,) is not feasible, then {S U j — 4} — R # & and 285 < 0 for
some i therein. Let 23, < 0. If (Psyj—iy—i,) 18 mot feasible, then
(SUj— 4 — 4 —R # & and 25" < 0 for some i therein. And
s0 on.

Proof of Lemma 1. Suppose to the contrary that (i) ax® + b; = 0 for
i € R — 8, and (ii) w® = 0 for 4 € 8§ — R. Then, defining
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u’ = 0,7 € R — 8, we see that («*, «°) is also a saddle point associated
with the problem:
Maximize,cx f(z) subject to

a¢x+bi=0, zESﬂR,
Let (z*, «*) be a saddle point associated with (P) and R. It follows that
(z*, u) is a saddle point for (2), where ' is defined by extraction from u*
in the obvious way. Since both #° and z* are optimal in (2), and (2) must
have a unique optimal solution in view of the strict concavity of f, we have
the contradiction z° = z*.

Proof of Lemma 2. When (P;) is feasible, az® 4+ b; < 0, and (Psy;)
infeasible, the problem:

Maximize,cx ajx + b; subject to ax + b; = O, 1 € 8§,

is feasible (z° satisfies the constraints) and its objective function is bounded
above by 0. Let (£°, 2°) be a saddle point associated with this problem.
Now,

(2)

ag® 4+ b; = —ai(&° — 2%) + (af® + b))

< —ai(£8° — 2%)

= —(a® + b;) + (an” + b))

= —l(ag” + b)) + 22 (aa" 4+ b)) + (an™ + b))

- Z 28(ax® + b)) = — 2 285aa™ + by).
8 S—R

o
IIA

We have used the left-hand inequality of the saddle point definition for
(£°,72°) at 2*. Thus we have 0 < —) s rz(az”™ + b;). We conclude
S — R # & and 2° < 0 for some 7 therein. This proves the first part of
the lemma. The remaining parts are proved by repetition of this argument.

4. An example. The example of Fig. 2 is designed to illustrate the
operation of the procedure of Fig. 1. For convenience, we present a graphi-
cal, rather than numerical, example in two dimensions (n = 2). We take
f(z) to be the Euclidean distance from « to a fixed point o, and X = E”.
Hence (Ps) yields as its solution z° the orthogonal projection of o onto
the manifold {z: @ + b; = 0,¢ € 8}, and the multipliers u;’ are the repre-
sentation of —V f(z°) in terms of the gradients a;, ¢ € S. Loci of the four
constraints are drawn and labeled with constraint indices; their gradients
are also drawn in at selected points. The feasible region is hatched and z*
is marked by a heavy dot. For convenience of discussion we call
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X

)/ N
1 .
(o)
Fia. 2. A two-dimensional graphical example of the reduction procedure

{1 € 8:2° < 0} or{i € 8: u® < 0} the set of optimality alarms, and
{1 € M — 8:a2’® + b; < 0} the set of feasibility alarms.

Let the initial trial set be arbitrarily chosen as, say, 8° = {3, 4. S’ is
easily seen to yield a feasibility alarm for z = 1 and optimality alarms for
7 = 3 and 4. Hence the first generation trial sets are {3, 4, 1}, {4}, and {3}.
Now {4} yields only one alarm, an optimality alarm for 7 = 4; {3} also
yields one alarm, a feasibility alarm for 7 = 1; and {3, 4, 1} leads to an in-
feasible subproblem. Solving the dual constraints z;a; + 2. + a1 = 0 of
(Lisa1)) for their unique solution, one obtains optimality alarms for both
7 = 3 and 4. Hence the second generation trial sets are &f; {3, 1}; {4, 1}
and {3, 1}. We find that & yields feasibility alarms for ¢ = 1, 2, and 3;
that {4, 1} yields optimality alarms for ¢ = 1 and 4; and that {1, 3} yields
no alarms at all. Hence {1, 3} is optimal and the computations terminate.

A diagrammatic summary of the trials is given in Fig. 3. Of course,
0 = {1, 3} by inspection of Fig. 2, so that an optimal set has indeed been
found. Note that d({3, 4}, {1, 38}) = 2, and that an optimal set was found
in two generations.

6. Application to quadratic programming. The strictly concave quadratic
programming problem can be written as follows:
Maximize, 1z‘Cx + c'z subject to

(QP) a,x-l—b@gO, i:l,...,ml’
aix+bi=0) i=ml+1;"';m’

where C is negative definite. A convenient choice for (P) is to put X
={z€Eax+b;=01i=m~+1,---,m}, f(z) = 12'Cx + c'z, and
M = {1, ---,m}. If (QP) is feasible, then the assumptions stated in the
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{3,4} Zeroth Generation
{1,3,4} {4} {3} First Generation
{1,4} {1,3} ¢ ’ {1,3} Second Generation
(OPTIMAL) (OPTIMAL)

Fic. 3. Summary of the sequence of trial sets for the graphical example

Introduction are satisfied, for the constrained suprema of (P) and of the
feasible (Ps) are achieved due to the well-known fact that a concave
quadratic polynomial bounded above on a convex polyhedron achieves its
constrained supremum. A saddle point (z°, u°) associated with any feasible
(Ps) can be found by solving the equivalent linear system (the Lagrange
multiplier equations)

Cr + ¢+ 2w +
8

m

V,0; = 0,
i=my+

=m1+1
a,-x—l—b,-=0, ’iESU{ml'{‘l’"';m};

and (Ls’) is a linear program. If some of the inequalities are simple non-
negativity constraints, these can either (a) be left in M, with resulting
simplifications in the Lagrange multiplier equations, or (b) be included in
X, at the expense of introducing a nonlinear “complementary slackness”
requirement in the otherwise linear system that is now equivalent to finding
a saddle point associated with (Pg).

Remarks 2, 3, 5 and 6 of §2 are particularly applicable here, as are par-
titioning and bordering methods for maintaining the relevant matrix
inverses from subproblem to subproblem.

If 8 = & and Remark 1 of §2 is applied, the algorithm of Theil and
van de Panne [6] is recovered and is seen to be valid even in the absence
of their antidegeneracy assumption.® Our prerogative to begin with S° = &
can make the difference between the computational practicality and im-
practicality of this approach when prior information is available.

6. Discussion.
6.1. Discussion of the assumptions and extensions. We required f to be
strictly concave in order to have the computational and theoretical advan-

3 Boot [1] has rederived their algorithm using the Kuhn-Tucker conditions, but he
also resorts to an antidegeneracy assumption.
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tages of uniqueness in the optimal solutions of (P) and (Ps) and (2). It
can be shown that a nonstrictly concave f can be accommodated, when it
fails to provide the necessary uniqueness, by modifying Step 2 to determine
whether some optimal solution of (Ps) also solves (P), and Step la to
include {z € S: u® = 0} in Ts.

Concerning the attainment of the constrained suprema, we note that if
X is compact and f is continuous on its boundary (by concavity, f is auto-
matically continuous on the interior of X), there is no question about at-
tainment in (P), (Ps) or (Ls’) when they are feasible. It can also be shown
that these suprema are attained if X is closed and f achieves its supremum
over X, for then, by strict concavity, attention can be restricted to a com-
pact subset of X. Certain types of nonattained suprema can, however, be
accommodated by an appropriate modification of Step 1a; for example, the
situation in which (Ps) has an unbounded optimal value. In this case z°
would not exist, and it can be shown that one should put 75 equal to the
indices of the constraints that are violated by any sequence (z’) feasible
in (Pg) for which (f(z")) — «. Discretion can be employed in choosing
the sequence (x”), of course, in an effort to make T small.

Regarding the availability of means for solving the subproblems, one
must resort to the extensive literature on optimization and mathematical
programming (see, for example, Graves and Wolfe [3], Hadley [4], and
Wilde [7]). The differentiability conditions of Remark 3 in §2 are required
by many of the optimization methods that might be used to solve (Pg).
Such methods often produce u° as an automatic by-product of the dis-
covery of z°; but when this is not the case, 4° can be found as the solution
to the first order differential conditions for an optimum of (Ps), which
comprise a linear system once z° is known. A similar remark holds for (Ls’).

6.2. Numerical stability. It is a computational fact of life that ordinarily
one can obtain only arbitrarily close approximations to (z°, u°) or 2° in
finite time. What are the implications for the present approach? Fortu-
nately, the convergence of the procedure is quite unlikely to be disrupted
by moderate random errors in z°, 4%, or 2°. This is due to the extremely
conservative and “locally exhaustive” nature of the scheme used to direct
the sequence of trial sets. Note also that only the signs of u.°, az® + b;,
and z;° are used. It follows that there is a strictly positive tolerance on the
accuracy required of z°, 4° and 2° for every “computational” T's to include
the true Ts, and, therefore, for convergence to be assured (although it
could be prolonged by a proliferation of unnecessary trial sets). The effect
due to inaccuracies of 2° on Step 2 cannot be discussed until its mechanism
is specified, although one would expect that Step 2 would employ a mecha-
nism that could recognize a good approximate solution to (P) as such.
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TaBLE 1

Summary of computational results for three quadratic test problems (estimates
are based on the assumption that no redundant trial sets are discarded)’

Estimated Average Number of Subproblems to be Solved before Termination
do

Problem 1 (20 X 9) Problem 2 (10 X 15) Problem 3 (50 X 25)
1 2.3 2.1 2.0
2 4.8 5.6 4.0
3 19 20 15.3
4 87 75 79
5 452 301 448
6 2,824 1,442 3,718
7 15,300 9,500 43,100

6.3. Computational experience. Preliminary computational experience
has been acquired with three quadratic test problems. Test problems 1 and 3
were adapted from problems of practical origin that were kindly made
available to the author by Leola Cutler. They were 20 X 9.(20 variables
and 9 constraints) and 50 X 25, respectively. Test problem 2, 10 X 15,
was methodically generated from a random number table. Based on this
experience, estimates of the average number of subproblems that must be
solved before termination were derived for each problem for d° < 7.¢ They
are presented in Table 1. Each average is over all possible initial sets with
a given value of d°, and it should be noted that the estimates are based on
the assumption that no test is made on a newly generated trial set to see
whether it has been tried before and can therefore be discarded. To what
extent this assumption inflates the estimates over the true averages when
redundant trial sets are discarded is not clear, although obviously the num-
ber of subproblems could not exceed 2™ (e.g., 512 in the first problem) in
this case. Even when redundant trial sets are excluded, however, it is
doubtful that the average number of required subproblems would increase
with d° at less than an exponential rate over the range of interest.

Computing time on the IBM 7094 was well below one second per sub-
problem for all three problems.

If this experience is any guide, and we suspect that it may be, the present
version of the reduction procedure can be recommended only for applica-
tions in which a set of truly restrictive constraints can be identified a priori
with fewer than about six errors.

The reason why a poor choice of the initial subproblem leads to such an

4 Recall that d° is the distance from the initial set S° to the nearest optimal set.



664 ARTHUR M. GEOFFRION

inefficient reduction seems clear enough: Step 3 is extremely conservative
in the way it determines the order of trial subproblems. The motive for a
conservative strategy is due to the fact that the phrase “at least one” in
the theorem of §3 cannot, in general, be strengthened to ‘“all” or even
“most”. In the author’s experience, however, typically £ or more of the
elements in Ts are in the symmetric difference set {S — R} U {R — S},
where R is the nearest optimal set! This empirical observation suggests that
a less conservative version of Step 3 might lead to an efficient reduction
even for the poorest choices for S°. One of the least conservative versions
of Step 3 imaginable would be simply: S «— 8 == ¢ for some randomly chosen
element ¢ of T's . Storage would be negligible, and although eventual termi-
nation can be assured only with probability 1, the expected number of sub-
problems to be solved before termination may well be quite reasonable even
for poor choices of S°. This strategy will be investigated more fully in
another paper [2].

Additional evidence for the desirability, when a “good” choice of S° is
improbable, of less conservative versions of Step 3 stems from the following
observation. The primal and dual simplex methods for linear programming
can be very naturally described as specializations of the procedure of Fig. 1
(modified as indicated in §6.1 so as to apply to linear programs, of course)
that utilize certain very simple versions of Step 3. This observation also
suggests that algorithms for concave programming based on the reduction
procedure of this paper can be viewed as generalizations of the simplex
method.
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