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STRICTLY CONCAVE PARAMETRIC PROGRAMMING,
PART II: ADDITIONAL THEORY AND
COMPUTATIONAL CONSIDERATIONS*

ARTHUR M. GEOFFRIONY}
Unaversity of California, Los Angeles

The theory presented in Part I of this paper led to a Basic Parametric
Procedure for a broad class of strictly concave parametric programs. In this
part, additional theory is developed that facilitates efficient computational
implementation. An illustrative graphical example is given, and some exten-
sions are indicated.

1. Introduction

Part I of this paper presented and justified a Basic Parametric Procedure for
solving concave parametric programs of the form:

(Pa) Maximize afi(z) + (1 — a)fe(z)
subject to gi(z) 20, ¢=1,---,m,

for each « in the unit interval, where the functions are concave and satisfy
certain regularity conditions and a solution of (Pe) is available for some value
of a. The importance of (Pca) derives from the fact that it enables the computa-
tion of tradeoff curves between two criterion functions and the fact that it pro-
vides, by a simple device, a deformation method for ordinary (non-parametric)
concave programming.

In this part we present additional theory that facilitates the development of
efficient computational algorithms based on the Basic Parametric Procedure.
Although an effort has been made to keep the discussion relatively self-contained
by informally reviewing certain essential definitions and results, the reader
should refer to Part I [3] for details. Even so, full details of several of the proofs
areZto be found only in [2].

1.1 Informal Review

The Lagrangian conditions associated with (Pa) for fixed o when equality is
required for a distinguished subset S(S C {1, - -+ , m}) of constraints are:

(=8)a  Vuf(z;a) + 2iuVegi(z) =0
gi(z) =0, 21¢8; u; =0, 128,

* Received June 1965 and revised June 1966.
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where f(2; ) denotes afi(z) + (1 — a)fa(z), V the gradient operator, and 0
the null vector when appropriate. Let (z°(a), #°(a)) denote a solution of the
equations (=S8)a. From the well-known results of Kuhn and Tucker, it follows
that 2°(a) solves (Pa) if gi(z°(e)) = 0, i 2 S, and u:°(a) = 0,7 ¢ S; in which
case we write (2°(a), u*(a)) = (z*(a), v*(«)) and say that S is valid. The
Basic Parametric Procedure of Part I is designed to solve (Pa) on [0, 1] by
maintaining the identity of a valid subset of constraints as « traverses the unit
interval, the continuity properties of (Pa) being exploited in an essential way.
The values of « at which the identity of a valid set changes are called ‘“points
of change”.

The Basic Parametric Procedure can be paraphrased as follows (we arbitrarily
take 0 as the initial value of ) :

Step 1: By any convenient method, find the optimal solution and dual vari-
ables (2*(0), 4*(0)) of (P0). Set o’ = 0, S equal to any set valid at @« = 0
(e.g., 8 = {i:u*(0) > 0}), and (z, u)° = (2*(0), »*(0)).

Step 2: Solve (=8)a as « increases above o’ for its unique continuous solu-
tion satlsfymg the left end-pomt condition (z* (a ), u*(a")) = (z, u)°, namely
(z*(), u*(a)), until either « = 1 or a point &’ is encountered to the right of
which S is no longer valid. In the first case, terminate; in the second case, set
(z, u)’ = (z*(a’), u*(")) and go to Step 3.

Step 3: Among all sets valid at o', find (by enumeration, if necessary) one
which is valid to the right of «’. Call it §'. Set * = o', § = §’, and return to
Step 2.

The Basic Theorem asserts, assuming four conditions hold, that this procedure
is well-defined, that (2°(a), ¥*(a)) = (z*(a), ©*(e)) on [, a] at each execu-
tion of Step 2, and that Step 3 will be executed only a finite number of times
before a terminal state is reached. Condition 1 requires the analyticity of all
functions and the concavity of the constraint functions, Condition 2 the non-
emptiness and boundedness of the feasible region X of (Pa), Condition 3 the
local strict concavity (negative definite hessians) of the f; on X, and Condition
4 the linear independence of the gradients of the binding constraints at z*(a)
for each « ¢ [0, 1]. These conditions are assumed throughout this part as well.

In section 2, we ameliorate the enumeration seemingly required at Step 3.
Section 3 hosts an illustrative graphical example. In section 4, we demonstrate
the applicability of Newton’s method in the appropriate sense for solving (= S8)a
as a varies in Steps 2 and 3, and discuss several aspects of computational imple-
mentation. Finally, extensions concerning linear equality constraints, non-
strictly concave f;, and more general parametric programs are briefly noted.

2. Improvement of Step 3

Step 3 of the Basic Parametric Procedure involves a certain amount of trial
and error—at a point of change o’ < 1, different subsets of constraints that
are valid at o’ must be tried until one is found that is valid to the right of «’.
By [3, Cor. 1.2], a subset S is valid at « if and only if A € S8 C Ba, where
Aa = {i:ui*(a) > 0} and Ba = {7: g:(z*(«)) = 0}. Under our conditions, the
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constraints of Ba' — A« can be shown to be degenerate in the sense that they
are redundant and yet satisfied exactly at 2*(a’). Thus, up to 2° trials could be
necessary, where & is the number of degenerate constraints. In most problems,
k will be very small at each point of change, and hence the trial and error nature
of Step 3 as it now stands is not unsatisfactory. When k is large, however,
enumeration may be onerous. Faced with this possibility, one may follow two
main courses of inquiry. One may attempt to construct methods of perturbing
(Pa) so as to ensure that Ba — Aa consists of only one or two constraints at
each point of change (¢f. [6, p. 125] and [9, p. 156]). Alternatively, one may
attempt to devise rules for deciding in what order the trials should be made so
as to tend to keep the number of erroneous trials small. We choose to follow the
second course of inquiry, because (a) this type of investigation is conspicuously
lacking at present (for an exception in the context of a related problem see [8]),
and (b) the second course of inquiry must be undertaken before the need for
perturbation can be established.

We begin by establishing some terminology. Suppose that Step 2 has ended
with the point of change o' < 1. Let &'+ be a point between o’ and the next
largest point of change. If S is valid at o’ but not at '+, the unique continuous
solution of (= 8)a satisfying the left end-point value (z*(a'), u*(a’)) violates
either the condition g;(z) = 0, 7 £ S, or the condition u; = 0, 7 ¢ S, or possibly
both, as o increases above o'. In other words, S “causes an alarm” as a in-
creases’ above o’. A violation of the condition g;(z) = 0, ¢ £ S, is called a feasi-
bility alarm, while a violation of the condition u; = 0, 7 ¢ 8§, is called an opti-
mality alarm. By continuity, the set of feasibility alarms must be contained in
Ba' — 8, and the set of optimality alarms must be contained in the set S — Ad';
hence, all alarms are from Ba' — Ad’. Since 8 is not valid at &'+, by [3, Cor.
1.2] either {8 — Ba'+} # ¢ or {Aa’+ — S} # ¢. The set S — Ba'+ will be
called the excess of S at o'+, and Aa’+ — S will be called the deficiency of S
at o' +. Clearly, the smallest change in S which will result in a set which is
valid at o'+ is to delete its excess and add its deficiency. The number of con-
straint indices of {Aa'4+ — S} U {S — Bd'+} is therefore a measure of the
minimum distance,” which we denote by d(S), between S and the collection of
all sets which are valid at o’ +.

An obvious conjecture (and one with some foundation [2, p. 97]) is that the
feasibility alarms coincide with the deficiency, and that the optimality alarms
coincide with the excess of S at o'4. If this were so, then by deleting the con-
straints which yield optimality alarms and adding those which yield feasibility
alarms, one could obtain from S a set which is valid at o'+. Unfortunately,
this conjecture of perfect coincidence is not necessarily true, as can easily be

1 Since 25(a) and uS(a) are, under our assumptions, analytic functions, thereis an ¢ > 0
such that each component of (g(z3(a)), uS(«)) has constant sign on (¢, &’ + ¢). It is in
this sense that we define the alarms caused by S ‘‘as a increases above a'.”’

2 Let the distance between a set C and a set D, where C and D are both sets of integers,

be defined as the number of elements in the symmetric difference set {C — D} U {D — C}.
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demonstrated by counterexamples.” What can be shown, however, is that at
least one of the alarms given during a failure is from the deficiency or excess at
o+ of the trial set. After proving this fact, we use it to derive an ordering of
trials at Step 3.

2.1 A Theorem

In the following, we refer to (2°(«), u°(a)) in an interval about a point of
change o’ at which § is valid. From Theorems 2 and 3 of [3], it is clear that by
making such an interval suitably small we may assume that (z°(a), u°()) is
uniquely defined and continuous there.

Lemma 4.1: Let o' € [0, 1] be a point of change; let S be valid at o', and
assume that Conditions 1 through 4 hold. Then there exists a convex set X' D X
and an open interval containing « such that, for each fixed value of « in this
interval, 2°(a) is the optimal solution of

I

Maximizezx: f(z; ) subjectto gi(z) =0, ie{S — Sta}
g%(x) = O; te S+a7
where STa € {i e S:u’(a) = 0}.

The proof [2, p. 100] of this technical lemma is omitted. An easy proof can,
however, be constructed from the Kuhn-Tucker Theorem when all constraints
are linear; in this case, X’ may be taken to be E", and (=8)a are necessary
and sufficient conditions for a maximum of f(z; &) subject to g.(z) = 0,7 ¢ S.

Theorem 4: Let o & [0, 1] be a point of change; let S be valid at o', and as-
sume that Conditions 1 through 4 hold.

There exists an open interval containing o’ such that, for each fixed value of
a in this interval, if S is not valid at « then either

g:«(z°(a)) <0 for some ¢ ¢ {Aa — S} or
ui"(e) <0 for some ¢ ¢ {8 — Ba}, or both.

Proof: 1t is sufficient to show that the theorem holds on the interval men-
tioned in Lemma 4.1. We suppose the conclusion to be false and derive the
contradiction (z°(a), *(a)) = (z*(a), u*(a)).

Assume that the conclusion is false for some fixed value of « in the interval
mentioned in Lemma 4.1. Then u;*(a) = 0, 4 & {S — Ba}, and applying Lemma

4.1 with S*a = {8 — Ba} one may assert the existence of a convex set X' D X

such that °(«) is an optimal solution of

" Maximize,x» f(z; @) subjectto g.(z) =0, ie {Ba S}
gi«(z) = 0, i1¢{S — Badj.

Using the supposition gi(z°(a)) = 0, ¢ ¢ {Aa — 8}, it follows that z°(a) is

3In [2, Appendix B] counterexamples are presented for one of the simplest classes of
problems subsumed under the present theory: f; and f: diagonally quadratic and the con-
straints linear. Although there are some ‘‘contrived’’ aspects to these counterexamples,
the fact that they exist for such a simple class of problems seems to render it unlikely that
perfect coincidence should obtain for more general classes of problems.
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feasible in
Maximizezx f(z; @) subjectto gi(z) = 0, 1 e {Ba N S}

(2) .
gi(z) =20, ie{S — Ba} U{da — S}.

Since the feasible region of (2) is included in that of (1), °(a) must be an op-
timal solution of (2).

It follows from the fact that (z*(a), u*(a)) satisfies (=Aa)a that 2*(a) is
optimal in

(3) Maximizez.x: f(z; «) subject to g.(z) = 0, 1 ¢ Aa.

Since the feasible region of (2) is included in that of (3), and since z*(a) is
feasible in (2), ¥ () must be optimal in (2). That is, both z*(a) and z°(a)
are optimal in (2); thus, f(z*(a); ) = f(2°(a); ). Now the optimality of
z°(a) for (3) follows from its feasibility for (3). Because of the strict con-
cavity of f(z; @), (3) must have a unique optimal solution; therefore, z%(x) =
¥ (). This implies, by Condition 4, that w$(e) = u* ().

2.2 Rules for Determining the Order of Trials

Suppose that Step 2 has ended with the point of change o' < 1. Designate
the set of alarms which are given by S° (the set used during Step 2) as « in-
creases above o’ by T. Applying Theorem 4 at o', we know that at least one of
the alarms is from the excess or deficiency of S’ at o’+. Unfortunately, we do
not know which one. A logical way of proceeding at Step 3 is to modify S° by
one constraint at a time for each constraint in T, i.e., try the sets 8° =4 7 for
each 7 & T, where the symbol S° == ¢ means 8° U4 if ¢ 2 8’ and 8° — ¢if ¢ & S°.
This notation is designed to avoid having to distinguish between feasibility and
optimality alarms. In other words, add the constraints which were feasibility
alarms to S° and delete constraints which were optimality alarms from S° one
at a time until each alarm has been heeded individually. Note that S° = <,
i e T, is valid at o' since all alarms caused by a set which is valid at o’ must be
from Ba' — Ad.

When T has been exhausted by this first generation of trials, at least one trial
set, say S° & 7, is one unit of distance closer to a valid set at o +.
If d(S°) = 1, then 8° = 4, is valid at o'+ (it yields no alarms), and Step 3
has been successfully completed. If d(S8°) > 1 then d(S° = %) = d(8°) — 1> 0,
and a second generation of trials is necessary. At each first generation trial, let
T; denote the alarms due to S° & 4, i ¢ T. At the second generation one should
try 8 & ¢ + j for each ¢ ¢ T and all j ¢ T;. The symbol 8° = 7 & j means
(8 g Ujifje 8 = iand {8 & 4} — jif j e S° = 4. Applying Theorem 4
at o’ with 8§ = §° =& 4, we see that at least one of the alarms due to S° = 4o
is from the excess or deficiency of 8° = 4 at o'+, but we do not know which
one. Hence at least one of the sets 8° =& 4 == 7, j ¢ T4, , is one unit of distance
closer to a set which is valid at o'+. Designate one such set by 8° = 4y = jo.
If d(S°) = 2, then 8° 3 4 = jo is valid at &'+ (it yields no alarms), and Step



364 ARTHUR M. GEOFFRION

3 has been successfully completed. If d(S°) > 2, then d(8° =% 4 == 7o) =
d(8") — 2 > 0, and a third generation of trials is necessary.

The third generation of trials is constructed in a manner analogous to the
preceding generations, and so on for the higher order generations. If, at any
trial, a set is encountered which has been tried before, it may, of course, be
discarded.

At each generation the distance from some trial set, and perhaps from several,
to the collection of all sets which are valid at a'+ is decreased by one unit. Since
d(8°) is finite (it is bounded by the number of constraints in Ba' — A¢’ minus
the number of constraints in Ba'4 — Aa’+), after a finite number of genera-
tions of trials a set which is valid at a’+4 will be obtained—after exactly d(S°)
generations, in fact, The nearest valid set is, it will be recalled, S° plus its defi-
ciency at o'+ minus its excess at o’+4. In the author’s experience d(S°) is
usually very small, so that only a few trials are apt to be required.

Since the only modification of Step 3 being suggested here is a more complete
specification of the order in which the trial sets are to be considered, and since
this order has been shown to lead to a successful completion of Step 3, the asser-
tions of the Basic Theorem still apply to the Basic Parametric Procedure with
Step 3 modified as above.

2.3 An Alternative Ordering of Trials

The above rules for determining the order of trials at Step 3 have the advan-
tage, when d(89) is small (as is usually the case), of leading quite directly to the
valid set nearest S°. The disadvantage, however, is that they are cumbersome
to program for a digital computer. This consideration, plus the fact that d(S°)
can be relatively large when there are more than a half-dozen or so degenerate
constraints at a point of change, has led the author to favor the use in this situ-
ation of a Markovian rather than deterministic scheme for ordering the trials:
heed an alarm at random to determine the next trial set. This rule is very easy
to program and is more economical in terms of computer storage. By a basic
property of finite Markov chains it can easily be shown from Th. 4 that the num-
ber of trials before success will be finite with probability 1, and by an argument
similar to the one in [4], one expects the average number of trials to be quite
small. This expectation has been borne out in computational experience.

3. A Graphical Example

We shall illustrate the Basic Parametric Procedure and the application of
Theorem 4 for the problem of maximizing, for 0 S a =1, « Zf’=1 —
(@ — )" + 1 — a)2 i1 — (xi — c¢)® subject to aix + b; = 0,
1 =1, ---, 4. For convenience, the discussion is in graphical terms with exten-
sive use being made of the fact that, since the constraints are linear, (=8S)a
comprises the first order conditions for a maximum of the objective function
over Xs = {x:a't + b; = 0, i ¢ S}. From the circularity of the level curves of
this particular objective function, it is evident that this constrained maximum
is precisely the point of X nearest to the unconstrained maximum z(a) =
ac + (1 — a)e.
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l g3 (x)=0

\ " -

¥y 9, (X (a,)) Yy 9, (X)

x*(a,) = X* (@)

9,(X)=0

V92 (x* (@)

Figure 1

Figure 1 is drawn in z-space (n = 2). The loci of g;(z) = 0,2 =1, ---, 4,
the unconstrained maximum z(a), and the constrained maximum z*(a) (the
heavy line) are drawn, as well as certain features pertaining to the points of
change. Light lines representing the projection of z(a) onto the feasible region
are also drawn; in view of the circularity of the level curves of the objective
function for fixed «, these lines are in the direction of the gradient of the objec-
tive function at z*(a). The gradients of the constraints point into the feasible
region.

From (=8)a we see that the dual variables express minus the gradient of
the objective function at 2°(a) as a linear combination of the gradients of the
constraints in 8. The signs of u.°(a)(ieS) are easily determined by visual
inspection of the figures.

At o = 0, the unconstrained maximum (0) is interior to the feasible region.
Thus, the constrained maximum z*(0) equals #(0) and B0 = ¢, which implies
that A0 = ¢ since Ao C Ba for all a. We are obliged to let S8 = ¢,
for the empty set is the only valid set at « = 0. (Recall that S is valid at « if
and only if A € 8 C Ba.) Step 1 is complete. Step 2 requires that we solve
(=¢)a as « increases above 0 until an alarm is given, i.e., until 2*(a) leaves
the feasible region or u.?(c) becomes negative for some 7. The last alternative
(an optimality alarm) cannot occur for S = ¢, for (=¢)a requires u*(a) = 0.
Only the first alternative (a feasibility alarm) can occur. Equations (=¢)a are
easily seen to be the conditions for an unconstrained maximum. Since z(0) is
interior to the feasible region for 0 < o < a1, no alarms are given on [0, ay);
(*(a), v*(@)) = (z%(a), u"(2)) = (2(a), 0) and Aa = Ba = ¢ on [0, a).
At a; the unconstrained maximum happens to be on the boundary of the feasi-
ble region, but beyond oy it violates the first constraint, i.e. (=¢)a leads to a
feasibility alarm for g1 just above a;. Thus, «; is the point of change which
completes Step 2, and (2°(an), u* (1)) = (2% (a), v () = (z(ar), 0),
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Aay = ¢, Bay = {1}. Since a1 < 1, we go to Step 3. By Th.4, the first constraint
must be in the deficiency of S; so we try S = {1} and find that {1} is valid
above a; . Control is now returned to Step 2 with § = {1}.

To execute Step 2 for the second time, we must solve (={1})a as « increases
above a; until an alarm obtains. These equations are the conditions for a maxi-
mum of the objective function subject to the first constraint being exactly satis-
fied. As o increases above a1, 2'(e) moves along the portion of the boundary
determined by the first constraint; since minus the gradient of the objective
function at z'(a) is expressed as u;'(a) times the gradient of g, , it is geomet-
rically clear that u,'(e) grows increasingly positive as o increases. Hence no
alarms are given until a; is passed, when the second constraint begins to be
violated. We have z'(a) = 2*(a), w'(@) = wm*(a) > 0, w'(e) = w (o) = 0,
Aa = Ba = {1} on (a1, az). Since az < 1 is the point of change at which Step
2 is completed, we go to Step 3. By Th. 4, the second constraint must be in the
deficiency of {1} above as . Trying S = {1, 2}, we find that it is valid above o .
Control is returned to Step 2 again, this time with S = {1, 2}.

Step 2 now requires that (= {1, 2})a be solved as « increases above a; until
an alarm occurs. These equations are the conditions for a maximum of the
objective function subject to both the first and second constraints being satis-
fied exactly. Since their intersection determines a unique point, z'*(e) is con-
stant for all a. The projection lines of z(a) onto the feasible region and the
interpretation of the dual variables make it clear that «'*(a) > 0 on (az, as),
ui?(as) = 0, us?(as) > 0, and ui*(e) < 0, us*(a) > 0 for & > o3. In
other words, an optimality alarm occurs for the first constraint just above o3,
so that Step 2 is complete at that point of change. Going to Step 3, we see from
Th. 4 that the first constraint must be in the excess of {1, 2} above a3 . Trying
S = {2}, we find that it is valid above a3 and return to Step 2 with S = {2}.

At Step 2, (={2})a must be solved as a increases above a3 . Reasoning as
before, we see that {2} remains valid on [as, 1). Hence z*(a) = z*(a),
Ao = Ba = {2}, uy'(e) = 0, and us’(a) > 0 on (a3, 1].

This completes the solution of the example. A summary appears in Table 1.

4. Solving (=S)e

In order to implement the Basic Parametric Procedure, it is necessary to
have a method of actually solving (=8)a as a changes parametrically. Only
in certain simple cases is it possible or economical to solve these equations
analytically. Usually, numerical methods must be used. Variants of Newton’s
method [5, 7] can be an efficient means of solving (=8)a on a digital computer
as a changes by small discrete jumps, although a number of other methods are
also suitable for digital (or even analog) computation. We shall content ourselves
with pointing out that not only does Newton’s method apply in the usual sense,
but also that the maximum permissible step size in « is bounded away from zero
uniformly on [0, 1]. This is important in establishing a minimum step size for
repeated applications of Newton’s method.

Under Conditions 1 through 4, it is not difficult to show from standard results
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TABLE 1
Valid Sets Feasibility and Opti- Deficiency and
mality Alarms Due to Excess of S
[ at « S S Just Above « Just Above «
Feasibility Optimality | Deficiency | Excess
T[O,a,) [ iy - - -
[4] {1} None {1} None
a
' {1} None None None None
(aed| 11}
{1} {2} None {2} None
a,
{1,2} None None None None
o | 41,2}
« 1,2} None {1} None {1}
3
{2} None None None None
(@a]]  f2}

on the convergence of Newton’s method [5, p. 136] that for each ay € [0, 1], New-
ton’s method applied to (=8)ao is well-defined and quadratically convergent
to (2% (o), u*(ao)) if S is valid at o and if the starting point is in a sufficiently
small neighborhood of (2*(a), %*(a)). Since (z*(e), w*()) is continuous, by
taking Aa small enough (z*(a0 — Aa), u* (e — Aa)) is such a starting point.
In other words, Newton’s method is applicable point by point. It is not quite
so clear that the size of the ‘“neighborhoods of convergence’” may be taken to
be bounded away from zero uniformly on [0, 1]. Fortunately, it can be shown
from continuity and compactness considerations that the neighborhoods do
not become vanishingly small. The details of the proof [2, Sec. 3.1 of Ch. III,
and App. C.1] are tedious, and are omitted here.

4.1 An Ezemplary Algorithm

Figure 2 is a rudimentary flow chart of one possible implementation of the
Basic Parametric Procedure. Its justification rests on the above remarks, the
Basic Theorem, and the fact that for Aa and e sufficiently small the results of
section 2 apply each time a point of change is encountered.

We say “rudimentary” because, in practice, one would want to incorporate
(i) a variable step-size feature in order to accelerate progress between points of
change (assuming that optimal solutions for a coarser grid of values for « is
acceptable), and (ii) partitioning, bordering, and refinement methods for the
inverse matrix required by Newton’s method (see [2, Appendix C] and [1, pp.
99-107]). The latter devices, especially, should be incorporated into any com-
puter routine for this algorithm; without the substantial computational econo-
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Aa 4—-('/,:) for some positive integer «
€ < some small positive number
0 e O J

-

Solve (Py) for its optimal solution x* (o) and
dual variables u*(o) by any convenient method.

L S=—any set valid ot a=o0 (eg,{iu]>o}). J
pid
iterate from (x{ ), u*(a)) to
(xS(a+na),uS(a+Aa)) by Newlon's method.
L T
1s gi(xs(a+Au))2—€, Vi¢s NO
and WW(a+Aa) z-€, Vies ? (s is not valid
L at a+Aa)
YES|(Sis valid-at
a+Aa)
a <+ a+Aa S<—different trial set,
x* (a) =— xSta) chosen according to
\ u* (@) =— uSla) the rules of section 2.
Write
a, x¥ (a), u*(a)
NO YES
Isa=17 Terminate

F1a. 2. Flow chart of a rudimentary computational algorithm

mies they make possible, the number and size of matrix inversions would pre-
clude the use of Newton’s method.
Variants of the algorithm have been programmed for a large digital computer,

with gratifying results. Details of computational experience will be reported
elsewhere.

4.2 Extrapolation

From (=8)a, convenient expressions can easily be derived [2, p. 135] for the
first derivatives of (z°(a), 4°(a)) in terms of the inverse matrix required by
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Newton’s method. These can be used to facilitate the convergence of Newton’s
method, when large step sizes are desired, by extrapolating (2°(a0), u*(a0)) to
a better approximation of (z°(a0 + Aa), u°(a + Aa)).

Although expressions for higher order derivatives can be obtained that permit
(2°(e), u*()) to be approximated to any desired degree of accuracy in an
interval about «o, the use of second and higher order derivatives is probably
computationally onerous.

5. Some Extensions

We briefly consider three extensions.

8.1 Linear Equality Constraints

If (Pa) has L linear equality constraints, Condition 4 may not hold if they
are expressed as L -+ 1 linear inequality constraints. This difficulty is easily
overcome by a simple modification of the Basic Parametric Procedure: always
include the linear equality constraints in S at Step 2 and in the trial sets at Step
3, and ignore any optimality alarms that such constraints may give. If all of
the constraints happened to be linear equalities, Step 3 would disappear entirely.

6.2 Non-Strictly Concave f;

In order to permit one of the f; to be linear or concave but not strictly concave,
it is of interest to observe that if Condition 3 is weakened to assert the local
strict concavity of afi(z) + (1 — a)fz(z) on X only for « in some sub-interval
I of [0, 1], then all of the results of this paper hold for « traversing any closed
interval included by I. In this case, Condition 4 need only hold on 7, of course.

6.3 More General Parametric Problems

With appropriate modifications of the four conditions, it can be shown that
many of the results of this paper apply to any one-dimensional perturbation of

(Pp) Maximize, f(z, p) subjectto g¢(z, p) = 0,

where the parameter p = (p1, -+ , pi) varies over a convex set P in E*, f(z, p)
is continuous in (z, p) and strictly concave in z for each p e P, and g¢:(z, p)
(¢ =1,---, m) is concave in (z, p). By a one-dimensional perturbation of
(Pp), we mean a parametric problem of the form

Maximize, f(z,p + a(p” — p’)) subject to g(z, p’ + a(p” — p)) = 0

for each value of « ¢ [0, 1], where p’, p” ¢ P.
Evidently, (Pp) is general enough to include many of the parametric prob-
lems of interest in sensitivity analysis of concave programming problems.
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