The SML Language for Structured Modeling: Levels 3 and 4

Arthur M. Geoffrion

Operations Research, Vol. 40, No. 1 (Jan. - Feb., 1992), 58-75.

Stable URL:
http://links jstor.org/sici?sici=0030-364X%28199201%2F02%2940%3 A1%3C58%3 ATSLFSM%3E2.0.CO%3B2-L

Operations Research is currently published by INFORMS.

Your use of the JSTOR archive indicates your acceptance of JSTOR’s Terms and Conditions of Use, available at
http://www.jstor.org/about/terms.html. JSTOR’s Terms and Conditions of Use provides, in part, that unless you
have obtained prior permission, you may not download an entire issue of a journal or multiple copies of articles, and
you may use content in the JSTOR archive only for your personal, non-commercial use.

Please contact the publisher regarding any further use of this work. Publisher contact information may be obtained at
http://www jstor.org/journals/informs.html.

Each copy of any part of a JSTOR transmission must contain the same copyright notice that appears on the screen or
printed page of such transmission.

JSTOR is an independent not-for-profit organization dedicated to creating and preserving a digital archive of
scholarly journals. For more information regarding JSTOR, please contact support@jstor.org.

http://www.jstor.org/
Tue Aug 24 10:06:19 2004

THE SML LANGUAGE FOR STRUCTURED MODELING:
LEVELS 3 AND 4

ARTHUR M. GEOFFRION

University of California, Los Angeles, California
(Received November 1990; revision received April 1991; accepted May 1991)

This is the second of two articles on the principal features of SML, a language for expressing structured models. The
prior article covered levels 1 and 2. The present article covers the remaining levels, with special attention to the
characteristics of SML that, collectively, make it unique. The intended audience includes evaluators of other modeling
languages, designers of modeling languages and systems, and those following the development of structured modeling.

he companion paper (Geoffrion 1992) explained

SML’s place in the structured modeling approach
to modeling and modeling environment design,
presented the main features of Levels 1 and 2 SML
via a series of simple examples, and described six
characteristics of SML that we believe are particularly
noteworthy. That article is an essential prerequisite
for the present one.

This article undertakes a similar mission for SML’s
Levels 3 and 4. As before, there is considerable atten-
tion to the “notable characteristics” of SML that we
believe are of interest to evaluators and designers of
modeling languages and systems.

One section is devoted to each of Levels 3 and 4. A
concluding section describes four SML characteristics
not mentioned earlier.

We continue to use ITALIC CAPITALS for the
names of all examples.

It warrants emphasis that the informal, example-
oriented sketch of SML given in this article and its
companion are only superficial introductions to SML.
Readers who wish to obtain a proper understanding
of SML need to study Geoffrion (1990c), which is
freely available from the author.

1. LEVEL 3 SML: STRUCTURED MODELING
WITH SIMPLE INDEXING

Level 3 adds simple indexing structures, namely sets
and Cartesian products. No longer is it true that each
genus consists of exactly one element. Indexing struc-
tures make it possible for a Schema to achieve the
often crucial property of “dimension independence”
and thereby be very small by comparison with a

complete model instance. This property—which
means roughly that the size of a Schema is indepen-
dent of the amount of instantiating data—and its
significance are explained in Geoffrion (1990d). The
addition of simple indexing has major implications
for SML, as we shall see; it is responsible for essentially
all of the many new language features which make
their appearance at Level 3.

The introduction to Sections 1 and 2 of the prior
article listed the core concepts and associated con-
structs of structured modeling that were pertinent to
SML Levels 1 and 2. No additional concepts or con-
structs need to be added for Level 3 (or 4).

Lest the reader wonder why we choose not to add
the core concept of generic similarity, the reason is
that it can be shown that generic similarity holds
automatically as a by-product of SML notation at
Levels 3 and 4 (Geoffrion 1990a). Generic similarity
holds vacuously at Levels 1 and 2 because there is
only one element per genus. Similarly, we choose not
to add the model schema concept because every SML
Schema necessarily corresponds to one.

The rest of this section indicates some of the kinds
of models that Level 3 SML can represent, and dis-
cusses the significance of selected characteristics of
Level 3 SML.

1.1. Level 3 Models

Level 3 SML adds simple indexing to definitional
systems and graphs. It also encompasses several other
important classes of models, including finite predicate
calculus and certain models in mathematical program-
ming. We discuss each of these four model classes. It
should be obvious, and hence, we do not discuss what

Subject classifications: Computers/computer science: modeling language design. Computer/computer science, data bases: semantic data modeling.
Information systems, decision support systems: structured modeling.

Area of review: COMPUTING.

Operations Research
Vol. 40, No. 1, January-February 1992

0030-364X/92/4001-0058 $01.25
© 1992 Operations Research Society of America

indexing can do for spreadsheets, numeric formulas,
and other model classes accessible at Level 2.

1.1.1. Definitional System: DOS GLOSSARY
Revisited, GRADEBOOK

Simple indexing adds partial support for the fifth
desirable definitional system property advocated in
Geoffrion (1989a), namely grouping. But full support
for grouping requires Level 4. We present two
examples.

DOS GLOSSARY Revisited

Grouping can be illustrated in the context of DOS
GLOSSARY (see Section 1.1.1 of the prior article).
For example, the glossary could be turned into what
is essentially a data base by letting FILE be an indexed
set and changing /ce/ to /a/ in the &FILES module.
Here is one possible outcome of such a change, where
interpretations have been omitted for the sake of
brevity:

&FILES
FILEf /pe/
F_NAME (FILE(f) /a/ : String 8
F_EXT (FILEf) /a/ : String 3
F_SIZ (FILEf) /a/ : Integer+
F_DATE (FILEf) /a/ : String

Notice that the index “f” is introduced by the genus
FILE, and that the propagation of this index to
the other genera turns them into attributes of the
individual files.

A maximally joined Elemental Detail Table for
&FILES would be named “FILE” and have this
structure:

File || F_ZNAME F_EXT F_SIZ F_DATE
integer string

identifier || string string
S :
Il

Identifiers could, for example, be sequence numbers
or long names. The number of rows is indefinite. That
the number of files impacts the Elemental Detail
Table, but not the Schema, is the essence of the
concept of “dimension independence” mentioned
earlier.

GRADEBOOK

The second example of a Level 3 definitional system
also has characteristics of a data base, but adds a
simple mathematical calculation. Consider an instruc-
tor’s gradebook for a single course. It contains a list
of students and their majors, a list of items graded

The SML Language: Levels 3 and4 | 59

(e.g., homeworks and exams), grades for all items, and
a final grade for each student based on certain stan-
dard weights for the graded items. Let s index students
and i index the graded items. Then the final grade for
student s, using obvious names for coefficients, can
be written

2 WEIGHT: » GRADE;.

Figure 1 gives a Level 3 Schema representing this
situation. Notice that:

» two paragraphs (STUDENT and ITEM) introduce
a dedicated index (“s” and “i”, respectively) in a
suffix to their name;

Calling Sequence internals offer new options to cope
with the fact that genera can have multiple elements;
a call like STUDENTS refers to exactly one element,
one like WEIGHT refers to all elements of genus
WEIGHT, and one like GRADEs. (notice the dot
in place of the index) refers to all elements of genus
GRADE associated with STUDENTS; see Figure 3
for concrete examples;

« @SUMIi () plays the role of the summation function

usually represented by a Greek sigma.

A completely specified and evaluated model
instance is given by Figure 1 together with the maxi-
mally joined Elemental Detail Tables shown below.

STUDENT

STUDENT || INTERP MAJOR
Mary || Mary Jones Business
John || John Smith OR
ITEM

ITEM || INTERP WEIGHT
HWI || first assignment 0.20
HW2 || second assignment 0.20
EXAM || final exam 0.60
GRADE

STUDENT ITEM /I GRADE
Mary HW1 Il 84
Mary HW2 [l 100
Mary EXAM [l 87
John HWI || 75
John HW2 I 80
John EXAM |l 85
FINALGRADE

STUDENT 1 FINALGRADE
Mary | 89

John | 82

Let us examine the model instance shown here for
evidence of the five desirable definitional system

60 / GEOFFRION

&STUDENT_STUFF

STUDENTs /pe/ Therc is a list of STUDENTS taking class xxx.

MAJOR (STUDENTs) /a/ : String Each STUDENT has a MAJOR field.

&ITEM_STUFF

ITEMi /pe/ There is a list of graded ITEMS for class xxx.

WEIGHT (ITEMi) /a/ : 0 <= Real <= 1 Each ITEM counts with a certain

fractional WEIGHT.

&GRADE_STUFF

GRADE (STUDENTs, ITEMi) /a/ : 0 <= Real <= 100 Each STUDENT
receives a certain percentage GRADE for each ITEM.

FINALGRADE

(GRADEs., WEIGHT) /f/ :; @SUMi

(WEIGHTi *

GRADEsi) Each STUDENT reccives a FINAL GRADE cqual to the WEIGHTed average

of thc GRADES.

Figure 1. Level 3 Schema for GRADEBOOK.

properties advocated in Geoffrion (1989a). This will
clarify the applicability of definitional system ideas to
models that are conventionally viewed as data bases
or mathematical models. Since there are 18 elements
(2 students plus 2 majors plus 3 items plus 3 weights
plus 6 grades plus 2 final grades), there are 18 “defi-
nitions.” They are correlated because all definitional
dependencies are explicit via the calling sequences.
They are acyclic because, as is evident from the
Schema, all elements can be arranged in a sequence
so that there are no forward references (calls). They
are classified into types: primitive entity, attribute,
and function (there happen to be no compound entity
or test type definitions). They are grouped into six
clusters because there are six indexed genera. Finally,
they are organized in a hierarchical manner because
the Schema has three modules within the root module.

Note that indices allow access to individual ele-
ments. For example:

STUDENTSs stands for a typical (the sth)
student;

STUDENT[Mary] stands for student Mary Jones;

GRADE[John,HW1] stands for student John
Smith’s grade on the first
assignment,

Moreover, by substituting specific values for indices
or tuples of indices, one may access any row of any
Elemental Detail Table.

As pointed out in the prior article, the Level 2 nodes
and arcs of a graph may now have subnodes and
subarcs. This means that a genus graph no longer

needs to coincide with its element graph, but can be a
condensation of it in the graph-theoretic sense (as
explained in Geoffrion 1989a).

The genus graph of GRADEBOOK, shown in
Figure 2, is a condensation of the element graph,
shown in Figure 3 for the model instance given above.

1.1.2. Graph Models With Data or Formula
Attributes: MARKOV

A Markov chain can be represented by a graph in
Level 2 SML, as in Section 2.1.2 of the prior article
for RUSSIAN ROULETTE. But only Markov chains
over a particular set of states, or at least over a definite
number of states, can be represented at Level 2. There
is no way to make the number of states indefinite at
Level 2 because that requires the dimension indepen-
dence property introduced by Level 3. It is necessary
to index the set of states, and that is what we do here.

The Schema in Figure 4 represents any stationary,
first-order finite state Markov chain in which all tran-
sitions are viewed as being possible (perhaps with zero
probability). The ability to deal with truly impossible

FINALGRADE
MAJOR GRADE WEIGHT
STUDENT ITEM

Figure 2. Genus Graph for GRADEBOOK.

The SML Language. Levels 3 and4 [61

FINALGRADE FINALGRADE
// A 1
MAJOR MAJOR GRADE GRADE GRADE GRADE GRADE GRADE WEIGHT WEIGHT WEIGHT
[Mary] [John] [Mary, HW1] [Mary, HW2] [Mary, EXAM] [John, HW1] [John, HW2] [John, EXAM] [HW1] [HW2] [EXAM]
0
STUDENT STUDENT ITEM ITEM ITEM
[Mary] [John] (HW1] [(HW2] [EXAM]

Figure 3. Element Graph for GRADEBOOK.

transitions by dropping them from genus TRAN,
rather than by assigning them zero probability, awaits
Level 4.

A valid set of associated, maximally joined Elemen-
tal Detail Tables is as follows. The data are designed
to make the resulting model instance coincide with
RUSSIAN ROULETTE.

STATE
STATE I

ALIVE I
DEAD 1

TRAN
STATE"1

ALIVE
ALIVE
DEAD
DEAD

T:CHECK
STATE I

ALIVE I
DEAD I

STATE2 I

ALIVE I 5/6
DEAD I 1/6
DEAD I 1
ALIVE I 0

PTRAN

T:CHECK

#TRUE
#TRUE

1.1.3. Mathematical Programming With Dense
Indexing: DENSE TRANSPORTATION

Level 3 accommodates most mathematical program-
ming models with simple indexing structures, namely
sets and full Cartesian products.

We choose a very familiar example: the classical
transportation model found in all introductory

MS/OR texts. DENSE TRANSPORTATION assumes
that all conceivable plant-to-customer transportation
links exist (see Figure 5). Models in which some links
do not exist must await Level 4 SML.

The associated, maximally joined Elemental Detail
Tables have the following structure (the same structure
as in Figure 11 of Geoffrion 1987):

Table Name Column Names

PLANT PLANT || INTERP SUP
CUST CUST || INTERP DEM

LINK PLANT CUST || FLOW COST
$ I'$

T:SUP PLANT || T:SUP

T:DEM CUST || T:-DEM

1.1.4. Predicate Calculus Modeling:
SET COVERING

Predicate calculus models are conspicuous by their
absence in traditional operations research modeling.
One reason for this is that much the same effect often
can be achieved by integer programming models with
0-1 variables. The ability of 0-1 variables to repre-
sent logical model features is one of the principal
reasons for the great practical importance of integer
programming,.

To illustrate, consider the well known set covering
problem. Let a set .S be given with elements indexed
by i, together with some candidate subsets of S indexed
by j. Let 4 be a matrix of 0-1 coefficients, such that
Ay is 1 or 0 according to whether or not element i is

62 / GEOFFRION

STATE i,j /pe/ Thercis a list of STATES.

TRAN (STATEi, STATEj) /ce/ Direcct TRANSITION is conceivable from STATEI to

STATE;.

PTRAN (TRANij) /a/ : Real+ <= 1
PROBABILITY for cach conccivable TRANSITION.

T:CHECK (PTRANi.) /t/ ; @SUMJj (PTRANij) = 1

There is a known TRANSITION

For cach STATE, there is

a CHECK on whether the outbound TRANSITION PROBABILITIES add to unity.

Figure 4. Level 3 SML Schema for MARKOYV.

in subset j, and let ¢; be the cost associated with subset
j if it is selected. Furthermore, let X be a vector of
0-1 variables with the interpretation that X; is 1
or 0 according to whether or not subset j is selected.
Then the problem of finding a minimal cost cover
of S can be stated as the 0-1 integer linear program-
ming problem

Minimize Y ;¢ X;
X=0,1

subject to Y ;4;X; = 1 for all i.

&SDATA SOURCE DATA

Note that the ith constraint can be interpreted as
saying that the ith element of .S must be in at least
one of the selected subsets.

Figure 6 shows one way in which the underlying
model can be represented in Level 3 SML. Note
that the summand in the rule of function element
TOTCOST uses the @IF Function, whose first
argument is a logical-valued expression that deter-
mines whether it returns as its value, its second or its
third argument. Note also that the rule for the test
genus COVER makes use of index-supporting ver-
sions of the universal quantifier and the existential

PLANTi /pe/ There is a list of PLANTS.

SUP (PLANTi) /a/ : Real+ Every PLANT has a SUPPLY CAPACITY.

&CDATA CUSTOMER DATA

CUSTj /pe/ There is a list of CUSTOMERS.

DEM (CUSTj) /a/ : Real+ Every CUSTOMER has a nonncgative DEMAND.

&TDATA TRANSPORTATION DATA

LINK (PLANTi, CUSTj) /ce/ Thereis a transportation LINK from cach PLANT

to cach CUSTOMER.

FLOW (LINKij) /va/ : Real+ Every LINK has a nonnegative transportation

FLOW.

COST (LINKij) /a/ Every LINK has a UNIT FLOW COST.

$ (COST, FLOW) /f/ ; @SUMi SUMj (COSTij * FLOWij)

TOTAL COST associated with all FLOWS.

T:SUP (FLOWi., 8UPi) /t/ ; @SUMj (FLOWij) <= SUPi

There is a

Is the total

FLOW leaving a PLANT lcss than or cqual to its SUPPLY CAPACITY? This is called the SUPPLY

TEST.

T:DEM (FLOW.j, DEMj) /t/ :; @SUMi (FLOWij) = DEMj

Is the total FLOW

arriving at a CUSTOMER ecxactly cqual to its DEMAND? This is called thc DEMAND TEST.

Figure 5. Level 3 SML Schema for DENSE TRANSPORTATION.

Mi /pe/ Therc is a sct of ELEMENTS.

The SML Language: Levels 3 and4 | 63

Nj (M) /ce/ There is a collection of SUBSETS of ELEMENTS.

C (Nj) /a/ Each SUBSET has a COST.

A (Mi,
SUBSET.

Nj) sa/

X (Nj) /va/ :

TOTCOST (C, X) /f/ :
associated with the CHOICE of SUBSETS.
COVER (A, X)

/t/ : @IANDi

@sUMj (QIF (Xj, C3,

(RIORj

Logical Each ELEMENT cither is or is not a MEMBER of cach

Logical Each SUBSET may or may not bc CHOSEN.

0)) Thereis a TOTAL COST

(@AND (Aij, X3j))) A particular

CHOICE of SUBSETS COVERS all ELEMENTS if and only if cvery ELEMENT is in at lcast one

SUBSET that is CHOSEN.

Figure 6. Level 3 Schema for SET COVERING.

quantifier; @IANDi () has the effect of Vi, and
@IORj () has the effect of 3j.

In terms of the Figure 6 Schema, the problem of
finding the minimal cost cover of S can be stated:

Minimize TOTCOST
X

subject to COVER = #TRUE.

We submit that it is inherently advantageous to
state logical model features in logical form, rather
than to convert them to ordinary algebraic form
involving 0-1 quantities. The reasons are those stated
early in Section 2.2 of the prior article, for the con-
version of logical model features to algebraic form is
well known to involve modeling tricks with undesir-
able side effects. If conversion to an integer linear
programming model with some 0-1 variables is an
appropriate step to gain access to a solver that would
be useful, then conversion and deconversion should
be done automatically to the extent that this is possible
(cf. McKinnon and Williams 1989).

It turns out that Level 3 SML can represent
any predicate calculus model with a finite number
of formulas over a finite universe. Appendix J of
Geoffrion (1990c) presents four additional models
of this type and explains how, in general, finite
predicate calculus models can be represented in
Level 3 SML.

1.2. Notable SML Characteristics Apparent at
Level 3

We discuss three notable characteristics of SML that
first become apparent at Level 3.

Separation of General Structure and
Instantiating Data

General structure refers to a class of model instances
that includes nearly all the instances of possible inter-
est. Each model instance can be represented as a
particular general structure together with particular
instantiating data.

In SML, the Schema is the main means for repre-
senting general structure, while Elemental Detail
Tables are the main means for representing instan-
tiating data. Clearly the two are strictly separated.
Moreover, notice that Elemental Detail Tables do not
repeat any significant amount of information from
the Schema.

Not all modeling languages separate general struc-
ture and instantiating data so strictly. For example,
DEMOS (Wishbow and Henrion 1987), GAMS
(Brooke, Kendrick and Meeraus 1988), IFPS (Plane
1986), LINDO (Schrage 1991), and spreadsheet lan-
guages do not. Merging general structure and instan-
tiating data may work well for small models, but this
becomes undesirable as models become larger or more
complex.

The importance of separation rests on the impor-
tance of general structure as a natural focus for most
practical modeling work. The ability of a modeling
language to achieve a sharp representation of a partic-
ular general structure, without contamination by
instantiating data, confers many benefits. These
include reusability, communicability, conciseness, sta-
bility, error avoidance, and dimensional flexibility.
These ideas have been detailed elsewhere (see pp. 2-3
of Geoffrion 1990d, pp. 549 and 563 of Geoffrion
1987, and Geoffrion 1989b for the reuse of SML
Schemas for purposes of model integration).

64 / GEOFFRION

If general structure and instantiating data can be
separated sufficiently, then it should be possible to use
a modern data base system to manage the data. This
point has been recognized in recent years by a number
of authors including Biirger (1982), whose design for
a linear programming system is one of the best-
integrated in terms of an algebraic modeling language
together with a supporting relational data base system
for data manipulation. A telling quote follows:

In MLD, model solutions are obtained by binding a data
module to a model module and executing it. This mecha-
nism makes it easy to use the same data with different
models, or to solve a model with different data. The binding
between a class of models and a class of data modules is
defined by a so-called execution module. The concept of an
execution module has some interesting implications for an
applied environment: model and execution module can be
prepared by an ‘expert,” while data preparation, model exe-
cution, and analysis of the model results then can be carried
out by a ‘client.’

To put one of Biirger’s points a bit differently, one
could say that general structure and instantiating data
are developed and used for different purposes, often
by people with vastly different backgrounds; to mix
them is to inhibit efficient divisions of labor and to
promote confusion.

The general structure versus instantiating data dis-
tinction has analogues in neighboring fields. In the
data base management field, where it has been uni-
versally followed for perhaps two decades, it is usually
referred to as “scheme vs. instance” or “intension vs.
extension.” In the field of computer programming, an
analogous distinction underlies this quote from the
guest editor of a special issue of Computer (Hong
1986):

In early programs, data and code were often intermixed.
Modern-day programs generally have clearer separation
between data and program constructs.

This same point is a strong theme in Davis (1986).

Exploitation of Parallel Structure

Geoffrion (1989a) explains (p. 33) why grouping is a
desirable property for definitional systems. The rea-
sons extend in an obvious way to modeling languages,
and are compelling. For example, when several parts
of a model have much in common, understanding
any one of them can be nearly the same as understand-
ing all of them. This makes it advantageous to treat
them as a group, notationally as well as conceptually.

Indexing structures based on sets and relations are

the principal means by which parallel structure has
been exploited notationally by modeling languages.
This topic is treated at length in Geoffrion (1990d),
which includes a detailed, example-based treatment
of SML’s extensive support for indexing structures.
The need to provide such support supplies much of
the motivation for Levels 3 and 4 of SML.

Predetermined Relational Data Table Structure

The design for all of a Schema’s Elemental Detail
Tables is uniquely determined (up to optional joining)
by rules set forth in Geoffrion (1990a). Thus, the
modeler is spared the work (and associated opportu-
nities for error) of designing tables or other data
structures to hold instantiating data. The result is
always a set of relations in the sense of relational
algebra, with the columns to the left of the vertical
double line serving as a key. Moreover, Neustadter
(1990) shows that, under mild conditions, these tables
are free from insertion, deletion, and update anoma-
lies arising from functional dependencies in the sense
of relational algebra (e.g., Ullman 1982).

This is significant for several reasons. First, it ren-
ders SML highly compatible with relational data base
theory and systems. Relational data base technology
and associated commercial software can readily be
used to implement Elemental Detail Tables, to process
ad hoc retrieval queries against these data via simple
or sophisticated user interfaces, and to give easy data
access to application software written in high level
languages like C and Pascal. See, for example, Ramirez
(1990) and Worobetz and Wright (1991), who describe
systems based on SML that exploit this compatibility.
See also Dolk (1988), Farn (1985), and Lenard (1987).

Second, SML’s relational data base compatibility is
transparent. The modeler only has to worry about
getting the Schema’s definitional system right, and not
about what the relations will turn out to be and
whether they will be free of update anomalies. For
example, the modeler did not have to deliberately
specify the Cartesian product relations in MARKOV
and DENSE TRANSPORTATION; they were
inferred from the associated calling sequences in the
Schema.

Third, standardization benefits follow from the fact
that a Schema implies the design of its associated
Elemental Detail Tables. People who have to deal with
multiple SML models can depend on being able to
view the data in exactly the same way in all models,
thereby eliminating the confusion and extra learning
time occasioned by collections of models that organize
their data differently for no good reason.

2. LEVEL 4 SML: STRUCTURED MODELING
WITH FULL SUPPORT FOR SPARSITY

The main addition at Level 4 is full support for sparse
indexing structures. This contrasts with the dense
indexing structures found at Level 3. This capability
turns out to be essential for many important applica-
tions (e.g., most of those involving mathematical pro-
gramming). This section indicates some of the new
kinds of models which Level 4 SML can represent,
and discusses the significance of a tenth characteristic
of SML that becomes apparent at Level 4.

2.1. Level 4 Models

Level 4 SML introduces sparsity options into all the
model classes that fall within the scope of Level 3. In
addition, some entirely new classes of models now can
be represented, including all relational data bases and
the better part of most semantic data bases. This
subsection discusses a sparse mathematical program-
ming model and selected data base models, but does
not discuss what indexing can do for the other model
classes accessible at Level 3.

2.1.1. Mathematical Programming With Sparse
Indexing: PRODUCTION PLANNING

Appendix A contains PRODUCTION PLANNING,
an SML rendering of a mathematical programming
model appearing originally in Ellison and Mitra
(1982), and subsequently in Lucas, Mitra and Darby-
Dowman (1983), and in Hirlimann and Kohlas
(1988). These references facilitate a direct comparison
of SML with three other languages, namely CAMPS,
LPL, and UIMP, although that will not be done here.

The most conspicuous new language feature used
in Appendix A is the introduction of a so-called index
set statement immediately after most genus type dec-
larations. Its purpose is to at least partially specify the
element population associated with a genus, either by
an expression which makes the population explicit or
by imposing constraints on the population to reflect
the desires of the modeler.

Two other new language features are evident in
Appendix A. Both are used in the T:BAL paragraph.
One is exemplified by Y(i—l:i)k in the calling
sequence, which gives finer interval control over which
elements are called; it says that T:BALi calls Y; and
Y:1x The other is elementary index arithmetic for
simple variables, exemplified by Y(i—1)k in the
generic rule, which gives more flexibility of the sort
needed to deal conveniently with leads and lags in
multitime period models.

The SML Language: Levels 3 and4 | 65

Sparsity is essential in this model. It is created by
the index set statements of three genus paragraphs—
COMPAT, SCOST, and CAP—and is inherited by
the PCOST, X, T, and T:CAP genera by a mechanism
described in Geoffrion (1990c). All other genera have
dense index sets, that is, all possible elements exist.

Appendix A also provides filled-in Elemental Detail
Tables containing an optimal solution of an associated
linear programming problem. The optimal solution
was determined by a solver that treated the /va/ genera
(X,Y, and Z) as “variables,” the /t/ genera (T:AVAIL,
T:CAP, T:DEM, and T:BAL) as “constraints,” and
PROFITS as the objective function to be minimized.
Given the optimal values for the variables, structured
modeling evaluation produced the values shown for
the test genera, for PROFITS, and for the function
genus MUSE.

2.1.2. Relational Data Modeling: HAPPY VALLEY

It has been shown (e.g., Farn 1985) that any relational
data base scheme and associated functional depend-
encies can be represented by a Level 4 SML Schema,
and that any relational data base (data included) can
be represented by a Level 4 SML Schema together
with filled out Elemental Detail Tables. Moreover,
this can be done using only a small subset of SML’s
features; for example, it is not necessary to use func-
tion or test genera or any but the very simplest kinds
of index set statements.

Figure 7 presents an SML rendering of a relational
data base scheme used extensively in Ullman (1982)
to illustrate a variety of ideas.

Sparsity is essential in this model. It is created by
the index set statement of OFFER (the only paragraph
that is not in Level 3 SML), and is inherited by the
PRICE genus. All other genera have dense index sets.

Note the appearance of m1(0) in paragraph ORD.
Actually a Level 3 language feature, it stands for a
user-specified function from order to members (this
function must be specified in an Elemental Detail
Table). The meaning of {1(0) in the same paragraph
is similar.

A valid set of associated, maximally joined Elemen-
tal Detail Tables is given in Table I. The sample data
are Ullman’s (p. 97).

2.1.3. Semantic Data Modeling: TRAVEL

In recent years there has been a great deal of research
extending the relational data model and exploring
alternative data models with greater expressive power.
Many of these efforts can be collected under the
general heading of “semantic data modeling” (e.g.,

66 / GEOFFRION

&MEMBERS

The MEMBER SECTION of the database.

MEMm /pe/ There is a list of current MEMBERS.
MNAME (MEMm) /a/ : Char Every MEMBER has a MEMBER NAME.
MADDR (MEMm) /a/ : Char Every MEMBER has a MEMBER ADDRESS.
BAL (MEMm) /a/ Every MEMBER has a BALANCE.

ITEMi /pe/ There is a list of ITEMS offered for sale.

&SUPPLIERS

The SUPPLIER SECTION of the database.

SUPs /pe/ There is a list of current SUPPLIERS.
SNAME (8UPs) /a/ : Char Every SUPPLIER has a SUPPLIER NAME.
SADDR (8UPs) /a/ : Char Every SUPPLIER has a SUPPLIER ADDRESS.

OFFER (SUPs, ITEMi) /ce/ Select Each SUPPLIER offers to scll certain ITEMS;
the list of possibilitics is known collcctively as the OFFERINGS.

PRICE (OFFERsi) /a/ : Real+ Each OFFERING has its PRICE in dollars per unit

quantity.
&ORDERS

The ORDER SECTION of the database.

ORDo (MEMml (o), ITEMil(o)) /ce/ Thereis a list of ORDERS, cach from one
MEMBER for one ITEM. (Use "order number™ as the identificr.)

QTY (ORDo) /a/ : Real+ Evcery ORDER has an ORDER QUANTITY.

Figure 7. Level 4 SML Schema for HAPPY VALLEY.

Hull and King 1987, Peckham and Maryanski 1988).
Level 4 SML captures many of the features required
for semantic data modeling. TRAVEL in Appendix B
provides an illustration. As for the previous two exam-
ples, sparsity is essential. It is created by the index set
statements of SPEAKS, GOES_TO, BUSINESS_
TRAVELER, TOURIST, and ENJOYS, and is inher-
ited by the OCCUPATION and WORDS_FOR
genera. All other genera have dense index sets.

In addition to the just mentioned index set state-
ments in five paragraphs, this Schema employs just
one other language feature not available at Level 3:
the @EXIST Function appearing in the next to last
genus. It returns its second or third argument as its
value according to whether or not the item written as
the first argument—which must be a reference to a
single element—exists.

Chari (1988) gives a careful discussion of how con-
temporary semantic data modeling compares with
structured modeling. His general conclusion is that
SML can represent most of the principal semantic
data modeling components, and could represent vir-
tually all of them if one minor extension were made.
Even without any extensions, Farn (1985) has proven
by using first-order logic techniques that structured
modeling subsumes the Entity-Relationship data
model, which is, by far, the most popular of the
semantic data models.

2.2. Notable SML Characteristic Apparent
at Level 4

We discuss a characteristic of SML that first becomes
apparent at Level 4.

Sparsity Support

The importance of supporting sparsity derives from
the importance of achieving accurate descriptions of
general structure as it relates to parallel structure (see
the first two parts of Section 1.2). The more expressive
a language’s mechanisms for describing sparsity, the
more accurately its models can be made to describe
reality, the less work a modeler needs to do to instan-
tiate a given model class, and the more readily errors
can be detected automatically. There are other benefits
as well.

Elaborate support for sparse index sets is one of
SML’s most conspicuous characteristics. Geoffrion
(1990c) identifies and discusses four distinct mecha-
nisms, two of which may be unique to SML. The
introduction to Level 4 SML given in the previous
subsection is not detailed enough to support a proper
explanation of these mechanisms here.

3. CONCLUSION

Selected characteristics of SML were discussed at the
end of each section in both articles according to the

Table I
Elemental Detail Tables for HAPPY VALLEY
MEM
MEM | MNAME MADDR BAL
BB | Brooks, B. 7 Apple Rd. 10.50
WF | Field, W. 43 Cherry La. 0.00
RR [Robin, R. 12 Heather St. —123.45
WH | Hart, W. 65 Lark Rd. —43.00
ITEM
ITEM I INTERP
CU I Curds
GR I Granola
LE I Lettuce
SS II Sunflower Seeds
WH I Whey
UF I Unbleached Flour
SUP
SUP II SNAME SADDR
SUN | Sunshine Produce 16 River Street
PUR | Purity Foodstuffs 180 Industrial Rd.
TAS | Tasti Supply Co. 17 River Street
OFFER
SUP ITEM I PRICE
PUR CU II 0.80
PUR GR I 1.25
PUR UF Il 0.65
PUR WH 1 0.70
SUN GR I 1.29
SUN LE I 0.89
SUN SS I 1.09
TAS LE I 0.79
TAS SS I 1.19
TAS WH I 0.79
ORD
ORD | MEM-ml ITEM-il QTY
1 [BB GR 5
2 Il BB UF 10
3 I RR GR 3
4 I WH WH 5
5 [RR SS 2
6 1 RR LE 8

level of SML at which they first became apparent:

Level 1

« Explicit Definitional Dependencies

* Semi-Structured Sublanguage for Documentary
Comments

« Insightful Graphs Always Available

 Hierarchical Organization for Managing
Complexity.

Level 2
» True Logical Capability

The SML Language: Levels 3 and4 | 67

e Separation of Models from Problem Statements
and Solvers.

Level 3

« Separation of General Structure and Instantiating
Data

« Exploitation of Parallel Structure

 Predetermined Relational Data Table Structure.

Level 4
 Sparsity Support.

Four additional characteristics pertaining to SML as
a whole also deserve mention.

Explicit Semantic Framework

Elsewhere we have argued that modeling environment
architecture should commence with the design of an
explicit semantic framework for conceptual modeling,
and that this framework should possess certain prop-
erties (Geoffrion 1989c¢). It was further argued that
any modeling language offered within the modeling
environment should rest upon the chosen framework
as its supporting foundation.

The structured modeling project has followed this
approach, beginning with the semantic framework put
forth in Geoffrion (1989a), continuing with the design
of SML to embody this framework, and following
through with the development of a prototype struc-
tured modeling environment that implements SML
(Geoftrion 1991).

This approach seems, unfortunately, to have little
in common with the genesis of most modeling lan-
guages and systems. Very few make specific reference
to a foundational semantic framework. SIMSCRIPT
is one of the exceptions, having been designed in
part to embody the entity-attribute-set worldview
(Markowitz 1979). In contrast, most modeling lan-
guages appear to have been designed with only an
implicit foundation in mind, if any. For example,
algebraic modeling languages for mathematical pro-
gramming seem to be based loosely on the kind of
algebra commonly used to describe mathematical pro-
grams, together with such notions as objective func-
tion, variable, and constraint. These languages are a
great improvement over matrix generators, for reasons
that are well explained by Fourer (1983), but their
designs are ad hoc and inspired more by the linear
programming paradigm than by the cognitive process
of modeling.

We believe that modeling languages should be built
on more rigorous foundations. Besides the inherent
virtues of rigor and the argument given in Geoffrion
(1989c), this position enables the advantages

68 / GEOFFRION

mentioned in the discussion of the next characteristic.
In addition, note that a single foundational framework
has the potential to support multiple specialized lan-
guages and systems more gracefully than may be
possible ad hoc in the absence of a unifying founda-
tion, for foundational theory applies to all derivative
languages and foundational concepts need only be
learned once by users.

Examples of the language design approach advo-
cated here can be found in the neighboring field of
programming languages; think of the original LISP
(based on the lambda calculus; see McCarthy 1960)
and Prolog (based on the Horn clause subset of first
order logic; see Colmerauer 1985). Might the durabil-
ity and popularity of these languages have something
to do with their explicit, rigorous foundations?

Exhaustive Context-Sensitive Semantic
Restrictions

The fact that SML is founded on an explicit semantic
framework has made it possible to supplement the
usual context-free syntax of its definition with enough
so-called Schema Properties and Table Content Rules
(few of which have been woven into these two papers)
to guarantee the integrity of model classes and model
instances written in SML, in the sense explained be-
low. Such a claim appears to be unique to SML.

This claim is detailed and proven in Sections 4 and
5 of Geoffrion (1990a). Loosely speaking, Proposition
2 in that paper shows that a Schema satisfying all
Schema Properties must represent a “genuine” class
of structured models. Proposition 1 shows that if a
Schema, together with Elemental Detail Tables with
fully specified attribute value columns, satisfy all
Schema Properties and Table Content Rules, then
they specify a “genuine” structured model instance.
Here “genuine” means complying with the semantic
framework of Geoffrion (1989a). Of course, these
propositions cannot ensure that the model class or
model instance truly fulfills what the modeler in-
tended, but they do guarantee internal consistency
and freedom from essentially all errors that can be
checked for in the absence of domain-specific knowl-
edge and metaknowledge not expressible in SML.

The significance of Propositions 1 and 2 is that it
should be easier, and take less time, to develop correct
new models and to maintain existing ones with SML
than with other modeling languages that lack a com-
plete set of semantic restrictions. But this hypothesis
has not yet been tested in a systematic way.

See Chapter 2 of Vicuiia (1990) for a more complete
discussion of the value of such semantic restrictions
and a detailed analysis of three contemporary model-

ing languages from this point of view. This dissertation
also gives a formal attribute grammar specification of
all SML Schema Properties and Table Content Rules.
Moreover, it uses this specification as the main input
for a tool that generates a language-directed editor
(e.g., Reps and Teitelbaum 1987) for SML. This illus-
trates a second persuasive motivation for making a
modeling language’s semantic restrictions explicit: So
that they can be used in conjunction with modern
software development tools to generate portions of a
modeling environment. As Vicuifia explains, this ap-
proach extends beyond language-directed editors to
other important functionalities.

Standardization Through Generality

Other things being equal, there are significant advan-
tages to reducing the number of different modeling
paradigms or representational styles: a) communica-
tion is facilitated because fewer paradigms or styles
must be learned and remembered by those who work
with them, b) model integration is facilitated because
more of the things to be integrated are expressed in a
common paradigm or style, and ¢) concentration on
fewer paradigms and styles justifies greater investment
in each.

Thus, it is advantageous for a modeling language to
have the broadest practical scope of applicability. The
wider the scope, the greater its potential value as a
standardized modeling paradigm and representational
style.

It is natural to think of “scope” relative to the model
classes arising in MS/OR and kindred model-based
fields, but actually it suffices to think of “scope”
relative to a single business or other type of organiza-
tion. The benefits of standardization can be obtained
by using a single modeling language in just one orga-
nization, or even in one part of one organization.

One reason for the phenomenal success of spread-
sheet modeling is its emergence as a kind of modeling
language standard owing to its great flexibility to
represent model instances. That this should have oc-
curred even though it fares very poorly for represent-
ing model classes, can be interpreted as testimony to
the value of standardization through generality.

The examples and discussion given in the first two
sections of this and the companion paper indicate the
remarkable generality of SML. Many additional ex-
amples can be found in Geoffrion (1990b), which
contains models drawn from a variety of application
areas. It would appear that SML has the potential to
become a modeling language standard within some
organizations, and perhaps even for some classes of
models across organizations.

Executability

A modeling language can be promising in concept but
impractical as a basis for achieving essential modeling
environment functionality. The FW/SM prototype,
which implements SML, shows that SML does not
fall into this trap. These ideas are discussed in detail
in Section 2.2 of Geoffrion (1989c) and in Section 4.2
of Geoffrion (1991). The four kinds of executability
discussed there are error-trapping, automatic docu-
mentation, solver interface setup, and a smart loader/
editor for instantiating data. The ability of SML to
support these kinds of executability can be explained
to a great extent by several of the SML characteristics
discussed previously.

SML’s executability is demonstrated independently
in Vicufia (1990) which, as mentioned, achieves an
independent implementation of SML using attribute
grammar technology on a UNIX work station. The
language-directed editor for SML described there en-
ables even newcomers to SML to write Schemas that
satisfy all SML syntax and Schema Properties because
it rejects all mistakes. It can do the same for Elemental
Detail Tables by enforcing Table Content Rules, al-
though not all of these rules have been implemented.

It is remarkable that Vicufia’s may be the first
language-directed editor for any modeling language.
We believe that this is an important kind of function-
ality for modeling environments of the future. A lan-
guage-directed editor for any modeling language can
improve productivity by preventing errors, and can
relieve users of the burden of having to keep many
language details constantly in mind. Such an editor is
a special boon for highly expressive languages like
SML, which necessarily involve considerable com-
plexity. In SML’s case, since its Schema Properties
and Table Content Rules are exhaustive in the sense
explained earlier, a language-directed editor can guar-
antee that every model built with it will be genuine
with respect to structured modeling’s semantic
framework.

An alternative technology for achieving a language-
directed editor and evaluator for structured modeling,
namely graph grammars, is developed in Jones (1991).
This is a particularly promising direction of work
because it marries structured modeling, whose core
concepts rely on attributed graphs, with graph-based
modeling systems, whose interfaces have great visual
appeal. One of the most challenging design problems
in this regard is to determine which constructs of text-
based SML can be replaced more effectively by graph-
ical constructs for model representation purposes. It
is not clear at this time which hybrid of these two
styles will prove best in the end.

The SML Language: Levels 3 and4 |/ 69
APPENDIX A

Level 4 Schema and Sample Elemental Detail
Tables for PRODUCTION PLANNING

This model is introduced in Section 2.1.1. The general
structure and sample data are based on Section 3 of
Ellison and Mitra (1982). We give an algebraic for-
mulation before giving an SML version.

The letter / (used as the index for machines) is easily
confused with the numeral /. A symbol change was
not made to preserve the greatest possible similarity
to the cited reference.

A.1. Formulation in Ordinary Algebra

Ellison and Mitra actually present a single model
instance. However, it is easy to discern a class of
similar model instances, and that is what is presented
here. We choose to be somewhat laconic in the doc-
umentary style of this formulation because the SML
formulation gives complete details.

Indices

i time periods (periods in all);
J production modes;

k products;

! machines.

Coefficients

tiu the time standard (hours per unit) for producing
product k in period i in mode j on machine /;

ay the availability (hours) in period i/ and mode j of
machine /,

D the selling price ($/unit) in period i of product k;

dy the demand (units) in period i for product k;

Six the storage cost ($/unit-period) for one-period
carryover in period i for product k, excluding
i=1

hi the storage capacity (units) for one-period
carryover in period i for product k, excluding
i=1

1. the resale value ($/unit) for product & at the end
of the final period;

¢ the production cost ($/unit) in period i for pro-
ducing product £ in mode j on machine /.

Variables

X the production quantity (units) in period i and
mode j for product £ on machine /

i the storage quantity (units) in period i for product
k (in the last period, this activity is really
liquidation);

zy the sales quantity (units) in period i for product
k.

70 / GEOFFRION
Objective Function (Maximand)

Tidi2w i (Dik = Cuipa)Xijrt = Licr 2k SikVire + 2T = Pur)Vik

Constraints

Machine availability limits

Yu tiwXigw < ay for all i, j, L (1)
Material balance in the first period

2% Xy = Y + zye for all k. (2a)
Material balance in periods after the first

S X + Ve = Yu + za foralli=2, k. (2b)
Storage capacity limits

Vi s hy foralli< k. 3)
Demand requirements

Zi = d,‘ for all i, k. (4)

Variable nonnegativity
yu =0 forall i k,
X = 0 forall 4, j, k, L. (5)

Sparsity

The above formulation is almost nonsparse. The only
sparsity comes from the fact that s, and A are not
defined for the last period. This leads to the Y,
operator in the second term of the objective function
and to the exclusion of i = / in constraint set (3).

A second and much more subtle kind of sparsity is
evident from the data given in Ellison and Mitra: not
all products can be produced on all machines. That is,
certain k/ combinations are incompatible. This is
totally overlooked in the above algebraic formulation,
as it was in Ellison and Mitra’s algebraic formulation.
It is possible to accommodate this incompatibility by
making 2, extremely large for the incompatible k/
combinations, but that would be semantically corrupt.

The only semantically correct way to represent the
second kind of sparsity is to introduce a set of pairs
that gives the compatible k/ combinations, and to
honor that set everywhere k and / appear in combi-
nation with one another: that is, in the definitions of
tiw and c;g and X, in the summations appearing in
the second term of the objective function and in
constraints (1) and (2), and in the second part of
constraint (5). We leave such a modification of the
above algebraic formulation as an exercise for the
reader. The notation becomes considerably messier,

as it usually does for conventional algebraic notation
with any but the simplest kinds of sparsity.

A.2. SML Formulation

The SML formulation given below takes full account
of sparsity. It should be straightforward for the
reader to see its correspondence with the algebraic
formulation.

PERi /pe/ There is an ordered list of time PERIODS
(seasons).

PRODXK /pe/ There is a list of PRODUCTS.
&PRODUCTION PRODUCTION DATA
MACHI /pe/ There is a list of MACHINES.

COMPAT (PRODk, MACHI) /ce/ Select
{PROD} x {MACH]} where k covers {PROD)}, 1
covers {MACH} Certain PRODUCT-MACHINE
combinations are COMPATIBLE and some are
not. For each PRODUCT there is a MACHINE
that is COMPATIBLE, and for every MACHINE
there is a PRODUCT that is COMPATIBLE.

MODEj /pe/ There is a list of production
MODES.

PCOST (PERi, MODEj, COMPATKI) /a/ ({PER}
x {MODE}) x {COMPAT} Thereisa PRODUC-
TION COST ($/unit) for each COMPATIBLE
combination of PERIOD, MODE, PRODUCT and
MACHINE.

X (PERi, MODEj, COMPATKI) /va/ ({PER} X
{MODE}) x {COMPAT]} : Real+ A nonnegative
PRODUCTION QUANTITY (units) must be
decided for each COMPATIBLE combination of
PERIOD, MODE, PRODUCT, and MACHINE.

T (PERi, MODEj, COMPATKI]) /a/ ({PER} %
{MODE}) X {COMPAT}:Real+ Thereisa TIME
STANDARD (hours/unit) for the production of
each PRODUCT on each COMPATIBLE
MACHINE, by PERIOD and MODE.

MUSE (Tij.l, Xij.) /f/ (PER} x {MODE}) x
{MACH} ; @SUMKk (Tijkl * Xijkl) For each
MACHINE there is a utilization measure called
MACHINE USE (hours) by PERIOD and MODE
which converts PRODUCTION QUANTITIES
into hours according to the TIME STANDARDS.

AVAIL (PERi, MODEj, MACHI) /a/ ({PER} x
{MODE}) x {MACH} : Real+ Each MACHINE
has an AVAILABILITY (hours) in each PERIOD
and MODE.

T:AVAIL (MUSEIijl, AVAILijl) /t/ ((PER} x
{MODE}) x {MACH}; MUSEIijl <= AVAILijl
An AVAILABILITY TEST checks, for each com-
bination of PERIOD, MODE, and MACHINE,
whether MACHINE USE is within machine
AVAILABILITY.

&STORAGE STORAGE DATA

SCOST (PERIi, PRODXK) /a/ (Filter(i<—=1) {PER})
x {PROD} For each PRODUCT there is a
STORAGE COST ($/unit-period) for carryover
from one PERIOD (except the last) to the next.

CAP (PERi, PRODK) /a/ (Filter (i<—1) {PER}) x
{PROD} For each PRODUCT there is a limited
STORAGE CAPACITY (units) for carryover from
one PERIOD (except the last) to the next.

Y (PERi, PRODK) /va/ {PER} x {PROD} :
Real+ A nonnegative STORAGE QUANTITY
(units) must be decided for each PRODUCT in
each PERIOD. (For the last PERIOD, Yik is really
a liquidation activity rather than a storage activity.)

T:CAP (Yik, CAPik) /t/ (Filter (i<—=1) {PER}) %
{PROD)} ; Yik <= CAPik There is a STORAGE
CAPACITY TEST for each PRODUCT in each
PERIOD (except the last) to check whether the
STORAGE QUANTITY is within the STORAGE
CAPACITY.

&SALES SALES DATA

RVAL (PRODk, PER<~-1>) /a/ {PROD} Each
PRODUCT has a RESALE VALUE ($/unit) at the
end of the final PERIOD.

PRICE (PERi, PRODk) /a/ {PER} X
{PROD} There is a SELLING PRICE ($/unit) for
each PRODUCT in each PERIOD. This is a “vin-
tage” price, that is, it depends on when the
PRODUCT is made rather than when it is sold.

Z (PERi, PRODK) /va/ {PER} x {PROD} A
SALES QUANTITY (units) must be decided for
each PRODUCT in each PERIOD.

DEM (PERi, PRODK) /a/ {PER} x {PROD)} :
Real+ There is a DEMAND (units) for each
PRODUCT in each PERIOD.

T:DEM (Zik, DEMIKk) /t/ {PER} x {PROD)} ; Zik
>= DEMik Thereis a DEMAND TEST for each
PRODUCT each PERIOD to check whether the
total SALES QUANTITY is greater than or equal
to the DEMAND.

The SML Language: Levels 3 and4 [71

T:BAL (Xi.k., Y<i-1l:i>k, Yik, Zik) /t/ {PER} x
{PROD} ; @SUMj SUMI (Xijkl) + @IF (i=1, 0,
Y<i-1>k) = Yik + Zik There is a MATERIAL
BALANCE TEST for each PRODUCT each
PERIOD.

PROFIT$ (PRICE, PCOST, X, SCOST, Y, RVAL)
/f/ 1 ; @SUMi SUMj SUMk SUMI ((PRICEik -
PCOSTijkl) = Xijkl) = @SUMi<1:-2> SUMk
(SCOSTik * Yik) + @SUMk ((RVALk -
PRICE<-1>k)« Y<=1>k) The TOTAL PROFIT
($) takes into account all revenues and costs. (The
validity of the formula for TOTAL PROFIT depends
upon: a) the vintage interpretation of SELLING
PRICE mentioned earlier, and b) an assumption that
all unsold merchandise in the final PERIOD is liqui-
dated rather than stored.)

We give a valid set of associated, maximally joined
Elemental Detail Tables in Table II. The values for
the /va/ elements are for an optimal solution to an
associated linear programming problem, namely the
one which maximizes PROFIT$ by choosing values
for X, Y, and Z subject to all /t/ elements being true.

APPENDIX B
Level 4 Schema and Elemental Detail Table
Structure for TRAVEL

This model is introduced in Section 2.1.3. The
Schema is an equivalent rendering of the main exam-
ple in Hull and King (1987). Thus, one can say that
this model falls within the semantic data base model-
ing tradition.

&ADDRESS ADDRESS DATA
ADDRESSa /pe/ There is a list of ADDRESSES.

STREET (ADDRESSa) /a/ : Char There is a
STREET associated with every ADDRESS.

CITY (ADDRESSa) /a/ : Char There is a CITY
associated with every ADDRESS.

ZIP (ADDRESSa) /a/ : Char There is a ZIP asso-
ciated with every ADDRESS.

&BUSINESS BUSINESS DATA
BUSINESSD /pe/ There is a list of BUSINESSES.

BNAME (BUSINESSD) /a/ : Char Unique Every
BUSINESS has a unique BUSINESS NAME.

LOCATED_AT (BUSINESSb, ADDRESSal(b))
/ce/ Every BUSINESS is LOCATED AT at some
particular ADDRESS.

Elemental Detail Tables for PRODUCTION PLANNING

Table I1

PER PRICE
PER I INTERP PER PROD | PRICE Z DEM T:DEM T:BAL
1 I Summer 1 Pl | 10 47889 25 #TRUE #TRUE
2 I Winter 1 P2 | 10 30 30 #TRUE #TRUE
1 P3| 9 30 30 #TRUE #TRUE
PROD 2 Pl | 1l 49.190 30 #TRUE #TRUE
PROD I INTERP 2 P2 | 11 25 25 #TRUE #TRUE
1 I Nuts 2 P3| 10 25 25 #TRUE #TRUE
P2 I Bolts
P3 I Washers COMPAT
MACH PROD MACH I
MACH I INTERP Pl Ml I
Ml I Machine 1 g ﬁg H
M2 I Machine 2 P Mi I
M3 I Machine 3 P M2 I
PCOST P3 Ml I
PER MODE PROD MACH | PCOST X T P3 M2 I
1 N P ML | 2 0.000 4
1 N P1 M2 [l 4 0.000 7 MODE
1 N Pl M3 | 1 13333 3 MODE I INTERP
1 N P2 Ml | 3 20000 5 N | Normal
1 N P M2 | 3 0.000 6 o i Overtime
1 N P3 Ml | 4 0.000 6
1 N P3 M2 | 2 16667 6
1 o) Pl Ml | 3 19556 3 SCOST
1 o Pl M2 S 0.000 6 PER PROD I SCOST CAP
1 0 P M3 | 2 15000 2
1 0 P2 Ml | 4 5333 4 1 Pl | 1 20
1 o P M2 | 4 4.667 5 ! P2 I 1 20
1 0 P3 ML | 5 0.000 5 ! P3 I ! 0
1 0 P3 M2 | 3 13333 5
2 N P ML | 3 0.857 5
2 N Pl M2 | 5 0.000 8 Y
2 N Pl M3 | 2 12500 4 PER PROD [Y
2 N P2 Ml | 4 17619 6 1 Pl I 0
2 N P2 M2 I 4 0.000 7 1 P2 I 0
2 N P2 ML | 5 0.000 7 1 P3 I 0
2 N P3 M2 | 3 15714 7 2 PI I 0
2 0 P1 ML | 4 22,500 4 2 P2 I 0
2 0 Pl M2 | 6 0.000 7 2 P3 I 0
2 o Pl M3 | 3 13333 3
2 0 P2 Ml | 5 0.000 5
2 o) P M2 | 5 7381 6 T:CAP
2 o P3 ML | 6 0.000 5 PER PROD I T:CAP
2 0 P3 M2 | 4 9.286 6 | P1 I #TRUE
1 P2 I #TRUE
MUSE
PER MODE MACH | MUSE AVAIL T:AVAIL 1 P3 I #TRUE
1 N Ml | 100 100 #TRUE
1 N M2 | 100 100 #TRUE RVAL
1 N M3 | 40 40 #TRUE PROD I RVAL
1 o) ML | 80 80 #TRUE - | 5
1 0 M2 | 90 90 #TRUE P I 5
1 0 M3 | 30 30 #TRUE P3 i "
2 N MI | 110 110 #TRUE
2 N M2 | 110 110 #TRUE
2 N M3 || 50 50 #TRUE
2 0 ML | 90 90 #TRUE PROFITS | PROFITS
2 0 M2 | 100 100 #TRUE
2 o} M3 | 40 40 #TRUE Il 1490.41

72

The SML Language: Levels 3 and4 /| 173

Table 111
Elemental Detail Table for TRAVEL

Table Name Designs Column Name
ADDRESS ADDRESS || INTERP STREET CITY ZIP
BUSINESS BUSINESS | INTERP BNAME ADDRESS~al
LANGUAGE LANGUAGE | INTERP
DESTINATION DESTINATION | INTERP
PERSON PERSON | INTERP PNAME ADDRESS~a2
SPEAKS PERSON LANGUAGE |
GOES_TO PERSON DESTINATION ||
BUSINESS_TRAVELER PERSON || OCCUPATION BUSINESS~bl
ACTIVITY ACTIVITY || INTERP
TOURIST PERSON ||
ENJOYS PERSON ACTIVITY ||
LANG_COUNT PERSON | LANG_COUNT T:LINGUIST

LANGUAGEg /pe/ Thereisa list of LANGUAGES.

DESTINATIONGd /pe/ There is a list of possible
DESTINATIONS.

&PERSON PERSON DATA
PERSOND /pe/ There is a list of PERSONS.

PNAME (PERSONp) /a/ : Char Unique Every
PERSON has a unique NAME.

LIVES_AT (PERSONp, ADDRESSa2 (p)) /ce/
Every PERSON LIVES AT at some particular
ADDRESS.

SPEAKS (PERSONp, LANGUAGEZg) /ce/ Select
where p Covers {PERSON} Every PERSON
SPEAKS at least one LANGUAGE.

GOES__TO (PERSONp, DESTINATIONd) /ce/
Select Some PERSONS GO TO one or more
DESTINATIONS.

&TRAVELER TRAVELER DATA

BUSINESS_TRAVELER (PERSONp) /ce/
Select Some PERSONS are also BUSINESS
TRAVELERS.

OCCUPATION (BUSINESS_TRAVELERp) /a/
: Char Every BUSINESS TRAVELER has an
OCCUPATION.

WORKS_FOR (BUSINESS_TRAVELERp,
BUSINESSD1 (p)) /ce/ Every BUSINESS TRAV-
ELER WORKS for a particular BUSINESS.

&TOURIST TOURIST DATA
ACTIVITYt /pe/ There is a list of ACTIVITIES.

TOURIST (PERSONp) /ce/ Select Some PER-
SONS are also TOURISTS.

ENJOYS (TOURISTp, ACTIVITYt) /ce/
Select Different TOURISTS ENJOY different
ACTIVITIES.

&LINGUIST LINGUIST DATA

LANG_COUNT (SPEAKSp.) /f/ ; @SUMg

(@EXIST (SPEAKSpg, 1, 0)) L COUNT is the
number of LANGUAGES that a PERSON is able
to SPEAK.

T:LINGUIST (LANG_.COUNTYp) /t/ ; LANG_.
COUNTp >=2 A LINGUIST is a PERSON who
SPEAKS at least two LANGUAGES. (Note:
#TRUE indicates a LINGUIST, #FALSE a non-
LINGUIST.)

The associated, maximally joined Elemental Detail
Tables have the structure given in Table III.

ACKNOWLEDGMENT

This work was partially supported by the National
Science Foundation, the Office of Naval Research,
and Shell Development Company. The views
expressed are those of the author and not of the
sponsors. I am indebted to the many students and
colleagues who contributed to the development of
SML during its long gestation in the 1980s. My great-
est single debt is to Fernando Vicufia, without whom
SML would never have reached its present state of
development. Special thanks go also to the implemen-
tors of SML in the form of the FW/SM research
prototype: Sergio Maturana, Laurel Neustadter,

74 /| GEOFFRION

Yao-Chuan Tsai, and Fernando Vicufia. Finally, I
thank Laurel Neustadter, Richard Ramirez, and
Gordon Wright for their valuable comments on some
of this material.

REFERENCES

BROOKE, A., D. KENDRICK AND A. MEERAUS. 1988.
GAMS: A User’s Guide. The Scientific Press,
Redwood City, Calif.

BURGER, W. F. 1982. MLD: A Language and Data Base
for Modeling. Research Report RC 9639, IBM T. J.
Watson Research Center, Yorktown Heights, N.Y.

CHAR], S. 1988. Knowledge Representation Using Struc-
tured Modeling. Ph.D. Dissertation, Anderson Grad-
uate School of Management, UCLA, Los Angeles.

COLMERAUER, A. 1985. Prolog in 10 Figures. Commun.
ACM 28, 1296-1310.

Davis, R. 1986. Knowledge-Based Systems. Science 231,
957-963.

Dork, D. R. 1988. Model Management and Structured
Modeling: The Role of an Information Resource
Dictionary System. Commun. ACM 31, 704-718.

ELLISON, E. F. D., AND G. MiTRA. 1982. UIMP: User
Interface for Mathematical Programming. ACM
Trans. Math. Software 8, 229-255.

FARrN, C. K. 1985. An Integrated Information System
Architecture Based on Structured Modeling. Ph.D.
Dissertation, Anderson Graduate School of Manage-
ment, UCLA, Los Angeles.

FOURER, R. 1983. Modeling Languages Versus Matrix
Generators for Linear Programming. ACM Trans.
Math. Software 9, 143-183.

GEOFFRION, A. M. 1987. An Introduction to Structured
Modeling. Mgmt. Sci. 33, 547-588.

GEOFFRION, A. M. 1989a. The Formal Aspects of Struc-
tured Modeling. Opns. Res. 37, 30-51.

GEOFFRION, A. M. 1989b. Reusing Structured Models
via Model Integration. In Proceedings of the Twenty-
Second Annual Hawaii International Conference on
System Sciences. IEEE Computer Society Press,
Washington, D.C., 601-611.

GEOFFRION, A. M. 1989c. Computer-Based Modeling
Environments. Eur. J. Opnl. Res. 41, 33-43.

GEOFFRION, A. M. 1990a. SML: A Model Definition
Language for Structured Modeling. Working Paper
360, Western Management Science Institute, UCLA,
Los Angeles.

GEOFFRION, A. M. 1990b. A Library of Structured
Models. Informal Note, Anderson Graduate School
of Management, UCLA, Los Angeles.

GEOFFRION, A. M. 1990c. The SML Language for Struc-
tured Modeling. Working Paper 378, Western Man-
agement Science Institute, UCLA, Los Angeles.

GEOFFRION, A. M. 1990d. Indexing in Modeling Lan-
guages for Mathematical Programming. Working

Paper 371, Western Management Science Institute,
UCLA, Los Angeles. Extract to appear in Mgmt.
Sci. Portions appeared as “A Taxonomy of Indexing
Structures for Mathematical Programming Model-
ing Languages,” in Proceedings of the Twenty-Third
Annual Hawaii International Conference on System
Sciences, Volume III. IEEE Computer Society Press,
Washington, D.C., 463-473.

GEOFFRION, A. M. 1991. FW/SM: A Prototype Struc-
tured Modeling Environment. Working Paper 377,
Western Management Science Institute, UCLA,
Mgmt. Sci. 37, 1513-1538.

GEOFFRION, A. M. 1992. The SML Language for Struc-
tured Modeling: Levels 1 and 2. Opns. Res. 40,
38-57.

HoONG, S. J. 1986. Guest Editor’s Introduction. Computer
19, 12-15.

HuLL, R., AND R. KING. 1987. Semantic Database Mod-
eling: Survey, Applications, and Research Issues.
Computing Surveys 19, 201-260.

HURLIMANN, T., AND J. KoHLAS. 1988. SML: A Struc-
tured Language for Linear Programming Modeling.
OR Spektrum 10, 55-63.

JonEs, C. V. 1991. Attributed Graphs, Graph-Grammars,
and Structured Modeling. Annals Opns. Res. (to
appear).

LENARD, M. 1987. An Object-Oriented Approach to
Model Management. In Proceedings of the Twentieth
Annual Hawaii International Conference on System
Sciences, Volume 1. IEEE Computer Society Press,
Washington, D.C., 509-515.

Lucas, C., G. MiTRA AND K. DARBY-DOWMAN. 1983.
Modeling of Mathematical Programs: An Analysis
of Strategy and an Outline Description of a Com-
puter Assisted System. Department of Mathematics
and Statistics Report TR/09/83, Brunel University,
Uxbridge, U. K.

MarkowiItz, H. M. 1979. SIMSCRIPT. In Encyclopedia
of Computer Science and Technology, J. Belzer, A.
G. Holzman and A. Kent (eds.). Marcel Dekker,
New York.

MCcCARTHY, J. 1960. Recursive Functions of Symbolic
Expressions and Their Computation by Machine.
Commun. ACM 7, 184-195.

MCcCKINNON, K. I. M., AND H. P. WiLLIAMS. 1989. Con-
structing Integer Programming Models by the Pred-
icate Calculus. Annals Opns. Res. 21, 227-246.

NEUSTADTER, L. 1990. On the Structure of Data in SML
Models. Research Paper, Anderson Graduate School
of Management, UCLA, Los Angeles.

PECKHAM, J., AND F. MARYANSKI. 1988. Semantic Data
Models. ACM Computing Surveys 20, 153-189.
PLANE, D. R. 1986. Quantitative Tools for Decision Sup-

port Using IFPS. Addison-Wesley, Reading, Mass.

RAMIREZ, R. 1990. The ASUMMS Project: An Overview.
Department of Decision and Information Systems,
Arizona State University, Tucson.

REps, T., AND T. TEITELBAUM. 1987. Language Process-
ing in Program Editors. Computer 20, 29-40.

SCHRAGE, L. 1991. LINDO: 4n Optimization Modeling
System, 4th ed. Scientific Press, Redwood City,
Calif,

ULLMAN, J. D. 1982. Principles of Database Systems,
2nd ed. Computer Science Press, Rockville, Md.
VicuRNa, F. 1990. Semantic Formalization in Mathemat-
ical Modeling Languages. Ph.D. Dissertation, Com-

puter Science Department, UCLA, Los Angeles.

The SML Language: Levels 3 and4 | 75

WisHBow, N., AND M. HENRION. 1987. Demos User’s
Manual, Version 3. Department of Engineering
and Public Policy, Carnegie-Mellon University,
Pittsburgh.

WOROBETZ, N. D., AND G. P. WRIGHT. 1991. Data Model
Representation and Implementation in OR/SM, A
Model Manageinent System. Draft Working Paper,
Krannert Graduate School of Management, Purdue
University, West Lafayette, Ind.

