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~ ARTICLES

THE SML LANGUAGE FOR STRUCTURED MODELING:
LEVELS 1 AND 2

ARTHUR M. GEOFFRION

University of California, Los Angeles, California
(Received November 1990; revision received April 1991; accepted May 1991)

This is the first of two articles on the principal features of SML, a language for expressing structured models. SML is
presented in terms of four “levels” of increasing expressive power; this article covers the first two levels, while the sequel
covers levels 3 and 4. The lower levels, at least, are easy to learn. Both articles rely entirely on examples and give special
attention to the characteristics of SML that, collectively, make it unique. The intended audience includes evaluators of
other modeling languages, designers of modeling languages and systems, and those who follow the development of

structured modeling.

Anew generation of modeling environments is
envisioned in Geoffrion (1989c). That vision
requires three main design challenges be met: 1) a
general conceptual framework for thinking about
models, 2) an executable language based on this frame-
work for representing models, and 3) software integra-
tion on a grand scale.

The foundations of structured modeling (Geoffrion
1989a) were developed as one possible answer to the
first challenge. SML—for Structured Modeling
Language—was developed to answer the second chal-
lenge. SML has been implemented in a research pro-
totype modeling environment called FW/SM, which
also develops an approach to the third challenge
(Geoffrion 1991 and Neustadter et al. 1991). See
Geoffrion (1987) for a general introduction to struc-
tured modeling.

SML was first introduced informally in Geoffrion
(1987). Subsequently, SML was specified formally in
Geoffrion (1990a), a long report intended for reference
rather than for publication. A much more accessible
account of SML is the comprehensive tutorial in
Geoffrion (1990b), which enables others to under-
stand SML’s construction well enough to evaluate its
strengths and weaknesses, and to read and write it
with confidence. The present pair of articles is essen-
tially a selective condensation of that tutorial.

The aims of this article and its sequel are: a) to
present informally the main features of SML via a
series of simple models, and b) to explain the charac-
teristics of SML that we believe are particularly note-
worthy. Our intended audience includes evaluators of
modeling languages, designers of modeling languages
and systems, and those who follow the development
of structured modeling.

To understand SML and its distinctive characteris-
tics, one first needs to understand the conceptual
framework given in Geoffrion (1989a). That frame-
work views every analytic model as a collection of
objects wherein each object has a definition that is
either primitive or based on the definition of other
objects. It is natural to diagram these definitional
dependencies as a directed graph whose nodes are the
objects. Briefly, the conceptual framework categorizes
the nodes into five basic types, groups them into
classes by similarity, organizes the node classes into a
hierarchy (rooted tree) as a means for managing com-
plexity, and associates mathematical expressions with
the node classes whose nodes have computable values.
This sketch is sufficient to bring into focus the essence
of how structured modeling views every analytical
model: as a kind of computationally active graph of
the model’s constituent objects and the definitional
dependencies among them.

Subject classifications: Computers/computer science: modeling language design. Computer/computer science, data bases: semantic data modeling.
Information systems, decision support systems: structured modeling.
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SML is a notational system for this way of viewing
analytic models. However, it would be wrong to leave
the impression that SML is the only language designed
for this purpose. Another such, still in its formative
phase, is the logic-based language LSM (Chari and
Krishnan 1990). A graph-based language is also avail-
able (Jones 1991). Many alternatives are possible, and
in fact a number of dialects of SML can be found in
other prototype structured modeling implementations
cited in Geoffrion (1991).

There are, of course, many modeling languages and
associated systems already in existence. To cite just a
few, there are: :

e AMPL and GAMS in a field of more than 25
languages for optimization modeling (Fourer, Gay
and Kernighan 1990, Brooke, Kendrick and
Meeraus 1988);

* CAMP for economic planning (Sagie 1986);

* DATAFORM for LP matrix generation (DATA-
FORM 1987);

» DEMOS for risk analysis and Monte Carlo simula-
tion (Wishbow and Henrion 1987);

* GNGEN for network modeling (Forster 1988);

» IFPS’ text-based language for spreadsheet modeling
(e.g., Plane 1986);

» LINDO for linear, integer, and quadratic program-
ming model instances (Schrage 1991);

» 1-2-3™ for spreadsheet modeling;

« OPTIMA and PM* for production-distribution-
inventory modeling (Karrenbauer and Graves 1989,
Krishnan 1990);

» SIMSCRIPT for discrete event simulation modeling
(e.g., Markowitz 1979);

» STELLA for continuous simulation modeling
(Stella 1989).

However, none of these languages, nor any other with
which this writer is acquainted, seems able to meet
the challenges set forth in Geoffrion (1989c).

Notable Characteristics of SML

Whatever SML’s virtues and shortcomings may be
relative to alternative modeling languages, the follow-
ing characteristics are among those which readers may
find of particular interest in the context of modeling
language design:

« meticulous attention to the explicit specification of
definitional dependencies, which provides semantic
information for model debugging, communication,
maintenance, integration, evolution, and the auto-
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matic production of various kinds of reference doc-
umentation that otherwise would not be feasible;

* a sublanguage for making documentary comments
that has nearly all the permissiveness of natural
language, yet enough rules of composition (concern-
ing the use of underlining and upper case) to enable
checks to be made automatically on semantic
consistency;

« insightful graphs as a by-product even for models
that seem to have nothing to do with graphs;

» support for hierarchical organization of major
model components as a means of managing com-
plexity in large models;
extensive logical capabilities that enable SML to
express, in a natural way, logical model features
reminiscent of the propositional and predicate cal-
culi, either alone or in combination with other kinds
of model features;
model/problem independence, a property that pro-
motes conceptual clarity and posing multiple prob-
lems and tasks relative to a single model;
the ability to strongly separate the general structure
defining a class of models from the data needed to
single out a particular model instance, a quality that
should facilitate reuse, communication, quality con-
trol, and other important activities;
« rules for deriving, from general model structure, a
relational data structure design for detailed data that
is robust with respect to insertion/deletion/update
anomalies (Neustadter 1990), a quality that reduces
the burdens of model design, promotes standardi-
zation, and sets the stage for exploiting relational
data base technology;

elaborate support for sparsity, a capability that is

important not only for large models, but also, in

general, if model specification semantics are to be
faithful to reality;

a rigorous foundation based on the formal, explicit

semantic framework given in Geoffrion (1989a);

» comprehensive specification of semantics as well as
syntax for both general model structure and model
instance data, a property that facilitates comprehen-
sive error-trapping;

« the ability to represent a very wide range of models.

This article and its sequel discuss each of these char-
acteristics, plus a few others, in this order.

Four Levels

SML is a single language, but we present it in terms
of four levels of increasing expressive power. This
approach provides an easy learning path for
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newcomers to SML, and offers a useful way to think
about SML (and perhaps even modeling in general)
after SML has been learned. The lower levels, at least,
are easy to learn. The most difficult features are post-
poned to Level 4, which supports sparse indexing
structures.

The scope of SML increases at each level, but even
Level 1 has significant application. Expressive power
can be sketched as follows.

Level 1 encompasses:

 Definitional Systems (correlated, acyclic, hierarchi-
cal, two definition types);
« Structural Models/Graphs (labeled).

Level 2 encompasses:

» Definitional Systems (three additional definition
types);

« Structural Models/Graphs (add values,
computation);

 Spreadsheets;

» Numeric Formulas;

 Propositional Calculus Models.

Level 3 encompasses simply indexed versions of the
above plus:

» Mathematical Programming (simple indexing only);
* Predicate Calculus Models.

Level 4 encompasses richly indexed versions of the
above plus:

» Relational Data Base Models;
» Semantic Data Base Models.

The four levels are perfectly upward compatible, that
is, any model description at one level is valid at any
higher level.

We shall have much more to say about the classes
of models that can be expressed at each level, but it
may be useful at this point to follow one of the strands
through all four levels. We choose graph models (not
to be confused with the definitional dependency graph
mentioned earlier):

» Level 1 SML can be viewed as a text-based language
for representing any graph. Nodes and arcs may be
named, and may be organized hierarchically.

Level 2 allows nodes and arcs to have values that

are either specified by the user or calculated by a

formula.

e Level 3 allows “similar” nodes and arcs to be
indexed and organized in simple (nonsparse) classes,
and it introduces data tables for organizing node
and arc information according to these classes.

 Level 4 allows the use of index-based subsetting for
defining complex (sparse) classes of nodes and arcs.

Although implementations of SML are not a focus
of this pair of articles, it should be mentioned that
SML’s division into four levels is likely to induce a
useful four-way classification of the capabilities of any
implementation. This works out nicely in the case of
FW/SM: Each of FW/SM’s capabilities can be classi-
fied according to the lowest level at which it is useful
(of course, it remains useful at all higher levels). Thus,
FW/SM’s features can be revealed progressively to
users level-by-level in parallel with SML’s features.
Not only is this sequence natural, but it is effective as
well because each feature then can be learned and
exercised first in the context of models that are no
more complicated than necessary to render the feature
meaningful. The Appendix contains the details.

Organization and Typography

The organization of the balance of this article and its
sequel is simple. Sections 1 and 2 of each paper give
separate treatment of the four levels of SML. Each of
these sections has two standard subsections that treat
one level of SML as an extension of the previous level:

1. an example-based discussion of the additional
kinds of models that can be represented, presented
so0 as not only to illuminate the issue of expressive
power, but also to explain some of the principal
language features introduced at the current level;

2. a discussion of the broader significance of selected
SML characteristics that first become apparent at
the current level.

Geoffrion (1990b) contains two additional sub-
sections for each level:

3. adetailed explanation of the new language features;
4. some exercises for the reader (the solutions are
given in an appendix).

However, we do not attempt here even a condensation
of that material, owing to space limitations. Serious
students of SML will need to study that paper, which
is freely available from the author.

Section 3 of the companion paper is devoted to
significant SML characteristics not treated elsewhere.

In this article and its sequel, we actually employ the
minor dialect of SML that is used by the FW/SM
prototype (Geoffrion 1991), rather than the formal
version described in Geoffrion (1990a). This dialect
differs from the formal version only in that it uses
indentation, boldface, and underlining to enhance
readability by enabling the omission of certain



reserved words needed only for purely technical
reasons.

ITALIC CAPITALS are used for the names of all
examples.

Familiarity with Sections 1-3 of Geoffrion (1987)
and Sections 1-3 of Geoffrion (1989a) is advisable for
full comprehension of what follows.

1. LEVEL 1 SML: STRUCTURAL MODELING

Level 1 SML is a tiny subset of the full language that
is very easy to learn. It suffices for what others have
called structural modeling, which is not to be confused
with structured modeling in its general form. One
obtains Level 1 SML by imposing two restrictions on
full SML: There must be exactly one element per
genus, and there may be no value-bearing elements.
Geoffrion (1989a) presents some 28 definitions cov-
ering the core concepts and the associated concepts
and constructs of structured modeling. The ones that
are pertinent to Level 1 SML are listed in Table 1.
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The reader is encouraged to review these ideas in
Geoffrion (1989a), including the detailed illustrations
given there for the classical transportation model. We
shall illustrate their meaning in the context of another
model in Section 1.1.1. Note the following comments:

1. Definition 6: The two conventions given in
Geoffrion (1989a) for the proper design of a
calling sequence are important. Briefly, they say
that a calling sequence should: a) call all relevant
elements (indirectly if not directly), and b) call no
irrelevant elements, Within these limits, there is
still latitude to exercise personal taste as to whether
an indirect call should be promoted to direct status,
or a direct call should be demoted to indirect status
(not always possible).

2. Definition 10: Generic structure is trivial at
Level 1 because, as mentioned at the outset, there
is just one element per genus.

3. Definition 13: As pointed out at the end of
Section 4 of Geoffrion (1989a), the practical mean-
ing of a monotone ordered modular structure is

Table 1
Definitions Used in Level 1

Definition Core Concepts Informal Explanation
1 Primitive entity element A primitive definition representing any distinctly identifiable entity; the first
of five element types
2 Compound entity element A definition based on the definitions of certain primitive entity elements or
other compound entity elements; the second of five element types
6 Calling sequence A segmented tuple containing all the elements on which a nonprimitive

element’s definition depends

7 Closed collection of elements
8 Acyclic collection of elements
9 Elemental structure

0 Generic structure, genus

12 Modular structure, module,
default modular structure

Calling sequences only call other elements in the collection

No definition in the collection is ultimately circular with respect to calls

Nonempty, finite, closed, acyclic collection of elements

An elemental structure partition that does not mix element types; each cell
called a genus

A rooted tree whose leaf nodes are 1:1 with the genera of a generic structure;
each nonleaf node called a module; degenerate tree with only one module

(the root) called the default modular structure

13 Monotone ordering An order for the modular structure tree such that preorder traversal yields all
genera in a no-forward-reference order

14 Structured model An elemental structure together with an associated generic structure and
monotone ordered modular structure

Definition Associated Constructs Informal Explanation

23 Modular outline The indented list representation of the preorder traversal of a (not necessarily
monotone) ordered modular structure

24 Element graph A directed acyclic graph representing all elements of an elemental structure and
the calling sequence references among them; has certain node and arc
attributes

25 Genus graph A directed acyclic graph representing all genera of a generic structure and the
calling sequence references among them

27 Adjacency matrix A node-node adjacency matrix for an element graph or a genus graph (shows
direct calls only)

28 Reachability matrix A node-node reachability matrix for an element graph or a genus graph (shows

indirect as well as direct calls)
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simpler than its formal definition might suggest. It
simply means that the genera should be arranged
sensibly in outline form so that there are no forward
references among them.

4. Definitions 24 and 25: The one-element-per-genus
restriction implies that the element graph and
genus graph are one and the same for Level 1 (and
Level 2) SML, provided one ignores the node and
arc attributes of element graphs.

5. We have listed just five of the associated concepts
and constructs of Geoffrion (1989a), but in fact all
nine are pertinent to SML at Level 1. The other
four are unimportant to present purposes.

The rest of this section indicates some of the kinds
of models that Level 1 SML can represent, and dis-
cusses the significance of selected characteristics of
Level 1 SML.

1.1. Level 1 Models

Structural models have been employed for years by a
community of people who rely on simple graph
models as a way to express structural relationships
over an extremely wide range of applications. See, for
example, Harary, Norman and Cartwright (1965), and
Roberts (1976), which are written from the graph
theoretic viewpoint, and Warfield (1976), which
addresses the management of qualitative ideas and
complexity. Lendaris (1980) provides a good survey.
Besides the varied applications which structural mod-
eling finds in references such as these, structural mod-
eling is also of interest to MS/OR as an approach to
the very earliest phases of the model formulation
process.

Any graph can be represented in Level 1 SML by
viewing its nodes and arcs as “objects” to be modeled.
If this approach unduly subordinates whatever the
graph was originally intended to represent, other
Level 1 representations usually are possible that are
free of this shortcoming. In any case, Level | SML
suffices for structural modeling.

Level 1 SML also suffices to represent the simplest
kinds of definitional systems. This subsection presents
two simple examples: a definitional system and a
cyclic graph.

1.1.1. Definitional System: DOS GLOSSARY

Definitional systems were discussed in detail in
Section 1.1 of Geoffrion (1989a), which advocated
that they should be correlated, acyclic, hierarchical,
typed, and grouped. Level 1 supports the first three
properties and two of the five possible types for the

fourth, namely primitive and compound entities. (The
fifth property awaits Level 3.)

Figure 1 gives a small system of definitions covering
rudimentary concepts relating to files and directories
in MS-DOS (a more detailed model is sketched in the
sequel paper’s discussion of Level 3). Notice that:

« the Schema comprises named genus and module
paragraphs, which are organized according to an
indented outline; module paragraphs are easy to
distinguish because their names always begin with
%3 &”;

each genus paragraph hosts one definition of the
definitional system:;

each paragraph has a formal part in boldface and an
informal part not in boldface;

the formal part of each genus paragraph begins with
its name, includes definitional dependencies (if any)
between parentheses, and concludes with a declara-
tion of element type—“/pe/” for primitive entity
and “/ce/” for compound entity;

the informal part is ordinary English, but under-
lining is used to declare key phrases and capitals are
used to indicate previously declared key phrases and
variants thereof.

.

.

.

The glossary shown in Figure 1 consists of ten
definitions: FILE, F_NAME, ..., D_TREE. FILE is
a primitive in the sense that it is not defined in terms
of anything else in the definitional system. Hence, in
the structured modeling framework, FILE is modeled
as a “primitive entity” (/pe/) element. Note that the
remaining elements are defined in terms of previous
elements. For example, DIR is defined in terms of
FILE, and so FILE is in DIR’s “calling sequence”
(DIR “calls” file) and DIR is modeled as a “compound
entity” (/ce/) element.

Figure 2 gives the associated genus graph.

We now use Figure 1 to illustrate the core concepts
reviewed at the outset of Section 1: the definition of a
file is a primitive entity element (the only one); all
other definitions are compound entity elements; the
calling sequence (list of definitional dependencies) of
each compound entity element appears between
parentheses; the collection of all ten elements
obviously is closed and acyclic (this is especially evi-
dent from the genus graph); the elemental structure is
everything in Figure 1 except for the &FILES and
&DIRECTORIES paragraphs; the generic structure is
essentially the same as the elemental structure given
that one chooses the finest possible partition wherein
every element is alone in its genus (the genus names
are FILE, ..., D_TREE); the modular structure is a
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&FILES FILE dcfinitions

FILE /pe/ AFILE is a collcction of related information. All programs, text, and data on
disk reside in FILES.

F_NAME (FILE) /ce/ Every FILE has a FILE NAME that follows DOS conventions.

F_EXT (FILE) /ce/ Evcry FILE has a FILE EXTENSION that follows DOS
conventions.

F_ID (F_NAME, F_EXT) /ce/ The FILE ID of a FILE refers to its FILE NAME
followed by its FILE EXTENSION, scparated by a period.

F_8I2 (FILE) /ce/ Every FILE has a FILE SIZE mcasurcd in bytes.

F_DATE (FILE) /ce/ EveryFILE has a FILE DATE indicating the date and time of
creation or last modification.

&DIRECTORIES DIRECTORY dcfinitions

DIR (FILE) /ce/ A disk DIRECTORY contains an entry for cach FILE on a disk.
Each DIRECTORY may contain other DIRECTORIES, which are referred to as
"subdircctories".

D_NAME (DIR) /ce/ Evcry DIRECTORY has a DIRECTORY NAME that follows
DOS conventions.

D_8IZ (DIR, F_8IZ) /ce/ Thesum of the FILE SIZES of all FILES in a
DIRECTORY (but not in any subdircctorics) is called the DIRECTORY SIZE.

D_TREE (D_NAME) /ce/ The DIRECTORY TREE is a rooted labeled tree whose
links represent which DIRECTORIES are contained in which other DIRECTORIES; the nodes
(with the exception of the root) are labeled by and one-to-one with the DIRECTORY NAMES.

Figure 1. Level 1 Schema for DOS GLOSSARY.

rooted tree with exactly two modules, named &FILES
and &DIRECTORIES, whose genus children are evi-
dent in Figure 1; the default modular structure would
simply be the root with the ten genera as children; the
natural monotone ordering associated with Figure 1—
clearly it has the no-forward-reference property—is
the one which puts genera in top-to-bottom order
within each module; and finally, based on the above,
Figure 1 corresponds to a structured model. This
completes the illustration of all core concepts.
Further clarification is in order for the earlier com-
ment on Definition 6. Consider F_ID in Figure 1.
Notice that F_ID depends definitionally on FILE
because there are indirect calls to FILE via F_NAME
and F_EXT. At the modeler’s discretion, F_ID could
be made to call FILE directly without altering the
meaning of the Schema. However, F_ID must not
call F_SIZ, because the F_SIZ concept has no role in
defining the F_ID concept, and F_ID must call
F_EXT directly because that concept plays a defini-
tional role and there is no way to call it indirectly.

Consider now the associated constructs. Figure 1
shows a particular modular outline if one ignores
everything except paragraph names, and Figure 2 is
the genus graph, which could be made into the ele-
ment graph if it were annotated with the necessary
node and arc attributes. The adjacency and reachabil-
ity matrices can be derived easily from either
Figure 1 or 2, but we shall not exhibit them.

Finally, we offer additional details concerning the
informal “interpretation” part of each paragraph,
which is written in a sublanguage of SML intended
for documentary purposes. This sublanguage is one of
the few things that SML adds to structured modeling
as set forth in Geoffrion (1989a). Its only rules have
to do with the use of capitalized strings called “key
phrases” (more precisely, a key phrase is an upper case
letter followed by upper case letters, digits, apos-
trophes, underscores, slashes, hyphens, or blanks). A
key phrase is either underlined, in which case it is
uniquely associated with the module or genus being
defined in its paragraph, or it is not underlined, in
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D_TREE
A
F_ID D_SIZ D_NAME
////ﬂ N\\ A
F_NAME F_EXT F_SIz F_DATE DIR
FILE

Figure 2. Genus Graph for DOS GLOSSARY.

which case it is a reference to some underlined key
phrase. (Exactly which key phrase is being referenced
is nearly always obvious to human readers, but a
computer is likely to require user interaction for accu-
rate recognition owing to the varied grammatical
inflections of English.) An underlined key phrase
serves to introduce vocabulary for discourse about the
concept of its paragraph, and need only obey the rule
of uniqueness: Underlined key phrases must be unique
within a given schema. Every other key phrase occurs
in the course of discourse about the current para-
graph or prior ones, and must obey certain rules (see
Geoffrion 1990a or b) designed to make sure that
calling sequences are complete with respect to defini-
tional dependencies. It follows that, as a result of the
structure of SML’s interpretation sublanguage, auto-
matic checks can be made on the completeness of
calling sequences and on the consistency of the mod-
ular structure and of interpretations.

The interpretations of Figure 1 illustrate the proper
use of key phrases. Clearly, they are unique and all
have correct syntax, with “FILE” associated with the
FILE paragraph, “FILE EXTENSION” associated
with F_EXT, and so on. Aside from the FILE para-
graph itself, every occurrence of “FILE” or “FILES”
in an interpretation denotes a reference to the FILE
paragraph, which therefore requires the referencing
paragraph to call FILE directly or indirectly or, if the
reference is made by a module paragraph (as in the
case of &FILES), then it is required that the module
includes FILE or some genus that calls FILE. Indeed,
this rule is obeyed. Note that the plural form is treated

exactly like the singular form. In general, all gram-
matical inflections arising from changes in number,
person, tense, etc., are treated exactly like the base key
phrase. Note also that the term “DOS” appears several
times and obeys the key phrase syntax, but is neither
a key phrase nor an inflection of any key phrase. This,
together with the problem of recognizing inflections,
illustrates why user interaction with a key phrase
recognizer is necessary for any foreseeable implemen-
tation of SML’s interpretation sublanguage.

1.1.2. A Structural Model: TOURNAMENT

A directed graph [V, A] is called a tournament if,
forall u# vin V, (4, v) is in 4 or (v, u) is in A4,
but not both (Roberts 1976). Such graphs can
describe the outcome of round robin athletic com-
petitions, pairwise comparison experiments, and other
situations.

Figure 3 shows a particular tournament graph. This
graph has node names, but no arc names. Note that
there are two directed cycles, a fact which is not at
odds with the acyclicity requirement of structured
modeling. An SML rendering of this graph appears in
Figure 4. The correspondence between Figures 3 and
4 should be evident. In particular, note that the mod-
ular structure has the no-forward-reference property.

It is also possible to represent the class of all tour-
nament graphs in SML, but that cannot be done in a
useful way within the confines of Level 1.

A > B

C > D
Figure 3. TOURNAMENT Graph.

&NODES
A /pe/
B /pe/
c /pe/
D /pe/

&ARCS
AB (A, B) /ce/
AD (A, D) /ce/
BC (B, C) /ce/
CA (C, An) /ce/
CcD (c, D) /ce/
DB (D, B) /ce/

Figure 4. Level 1 SML Schema for TOURNAMENT
(see Figure 3).



1.1.3. Representing Graphs in General

Formally speaking, Level 1 SML can represent any
structural model that can be represented by a graph,
either directed or undirected, possibly with names for
some nodes and/or arcs. Moreover, Level 1 SML
allows the nodes and arcs to be organized in a hier-
archy (tree) as a tool for managing complexity in large
models.

One style of representation is as follows. Most
graphs can be expressed in ways other than the one to
be described; we do not necessarily advocate the par-
ticular modeling style used here, which serves only to
exhibit one possibility that always works.

Consider any directed or undirected graph with
possibly named nodes and arcs. Create one /pe/ genus
paragraph for every node, and one /ce/ genus para-
graph for every arc with the calls in the calling
sequence in tail-to-head order if the arc is directed.
Use node and arc names, if any, for genus names;
otherwise, genus names are arbitrary. Interpretations
are advisable, but may be omitted. Modular structure
is arbitrary so long as the no-forward-reference
requirement is obeyed. For example, one could use
the default modular structure by creating no modules
other than the root and putting the /pe/ paragraphs
first in any order, followed by the /ce/ paragraphs in
any order. Clearly, Figure 4 employs this modeling
style.

1.1.4. Comments on the Generality of Definitional
Systems

The prior examples and discussion, while perhaps
compelling in the case of graphs, do not do justice to
the generality of the definitional system concept even
within the confines of Level 1. Definitional systems
are much broader in applicability than might be
guessed from a simple glossary application like the
one in Section 1.1.1. The following comments elabo-
rate this point.

1. The Schema of Figure 1 is a slightly modified
extract of a 166 paragraph Level 1 Schema that
completely models the user interface of a popular
file and directory manager program.

2. Level 1 definitional systems are useful as a tool for
structuring ideas in connection with both reading
and writing:

a. An appreciation for the applications to reading
can be gained by taking any text passage(s) of
interest and constructing therefrom a defini-
tional or conceptual system in Level 1 SML.
The basic idea is to build a model using primi-
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tive and compound entity genera to capture the
various concepts in what is being read, and the
relations among these concepts. This is similar
to parsing sentences in English or statements in
a computer language, but the result is a struc-
tural model instead of a parse tree.

b. An appreciation for the applications to writing
can be gained by a similar exercise. See Wayner
(1988, 1990) for related ideas.

3. Although the definitional dependency notion
played a key role in the development of the struc-
tured modeling formalism and of SML, it is pos-
sible to substitute other notions that are also
compatible with the structured modeling formal-
ism and SML. Specifically, replacing definitional
dependency by any other acyclic relation on a
model’s elements yields a possible alternative inter-
pretation of the structured modeling formalism,
and, hence, a possible new application domain.
Appendix A of Geoffrion (1990b) discusses this
point further.

1.2. Notable SML Characteristics Apparent at
Level 1

At least four notable characteristics of SML are
apparent.

Explicit Definitional Dependencies

Geoffrion (1989a) explains on page 32 why correlation
is a desirable property for definitional systems. The
given reasons extend in an obvious way to modeling
languages, and are compelling. We next recapitulate
one of those reasons.

Making changes in a model raises the possibility of
introducing inconsistencies. Most inconsistencies arise
in practice because the ramifications—*“interdepen-
dencies,” really—of what was changed were not taken
fully into account. The likelihood of such inconsist-
encies rises rapidly with model complexity. Therefore,
it is desirable for the interdependencies among the
various components of a model to be visible and
explicit in the model and its documentation. Then,
when a model is changed, it will be possible to work
out the full ramifications of the change, whether direct
or indirect.

Additionally, making definitional dependencies
explicit is a prerequisite for the two SML characteris-
tics discussed next and for certain SML language
features to be mentioned in later sections, and it
enables several kinds of reference documentation to
be generated automatically (Geoffrion 1991). It also
sets the stage for a hypertext (e.g., Conklin 1987)
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implementation of a Schema or of model documen-
tation based on a Schema.

SML makes definitional dependencies explicit via
calling sequences. Appendix A of Geoffrion (1990b)
expands this topic.

Semi-Structured Sublanguage for Documentary
Comments

Inadequate documentation has been identified repeat-
edly as a major factor contributing to failures of
modeling projects and the premature demise of
modeling systems. It impedes understanding, com-
munication, maintainability, and evolution. See, for
example, Gass (1984), and Section 10.9 of Miser and
Quade (1985).

Well-written SML produces thorough and readable
documentation as a by-product of its notational con-
ventions. We refer particularly to the interpretation
part of genus and module paragraphs which, if used
properly, render the formal part of a model written in
SML essentially self-documenting. Indeed, being self-
documenting was one of the explicit design goals of
SML (Geoffrion 1990a). In addition, SML’s design
makes it possible to automatically produce various
kinds of supplementary documentation, as the
REFGEN process of FW/SM demonstrates
(Geoffrion 1991). See also Section 3.3 of Geoffrion
(1987).

A self-documenting modeling language not only has
the benefits suggested above, but also can lead to better
models. To develop one aspect of this point, consider
the sublanguage used for genus and module interpre-
tations. As indicated at the end of Section 1.1.1,
interpretations are natural language with certain syn-
tax and rules of use imposed for key phrases. These
rules make it possible to carry out certain complete-
ness and consistency tests with reference to the formal
part of a paragraph. This has the important effect of
reducing the chances that the formal part of a Schema
will be semantically unrealistic.

In other words, these rules promote a degree of
rigorous coordination between the formal and infor-
mal parts of a model description, in contrast to the
usual situation with a modeling language in which
comments are totally unstructured and can contain
blatant inconsistencies with respect to the formal
model specification.

Note that it is the central role played by definitional
dependency which enables the formal and informal
parts of an SML Schema to be tied together through
rules of use for key phrases, and, thus, which enables
the completeness and consistency checks mentioned
above.

For a radically different approach to the documen-
tation problem, see Bhargava and Kimbrough (1990).
It has been applied to structured modeling by Chari
and Krishnan (1990).

Insightful Graphs Always Available

Graphs can facilitate visualizing important aspects of
a model. Advocates of modeling paradigms that have
natural graphs, such as decision analysis and flow
networks, argue strongly that these greatly enhance
understanding for all who are involved.

Element graphs, genus graphs, module graphs, and
modular structure trees are standard constructs of
structured modeling that illuminate model structure.
These graphs are available for every model written in
SML whether or not the model happens to have a
natural graph associated with it. All are illustrated in
Geoffrion (1989a) for the ordinary transportation
model (as expected, none bears any obvious resem-
blance to the usual network diagram for this class of
models). See Geoffrion (1987) for other examples.

Few other modeling languages offer any graphs or
diagrams as standard complements to their primary
representation.

Hierarchical Organization for Managing
Complexity

Hierarchical organization is widely practiced and rec-
ognized in many fields as an effective way to deal with
complexity, which, in turn, is one of the major banes
of understanding and communication. Almost any
modeling language can benefit from hierarchical orga-
nization applied to the conceptual units of a model
and its documentation. SML’s organization of its
paragraphs according to a modular outline is its main
tool for achieving hierarchical organization.

Closely related to the notion of hierarchical organi-
zation are the notions of modularization and top-
down design, widely esteemed in the software
engineering community and elsewhere as effective
approaches to the design of complex structures. Mod-
ules can be much easier to understand and work with
than the whole which comprises them, and a top-
down approach based on a hierarchical view of com-
plexity can be an-effective way to design them. Thus,
it would seem appropriate for a complex model to be
designed not as a monolith, but rather as an inter-
connected collection of modules that is organized
hierarchically.

Modularization and top-down design are straight-
forward to accomplish in SML. See Section 3 of



Geoffrion (1987), and Geoffrion (1989b) for addi-
tional discussion and examples.

2. LEVEL 2 SML: STRUCTURAL MODELING
WITH VALUE-BEARING ELEMENTS

Level 2 adds a major ingredient to the Level 1 foun-
dation: new kinds of elements that have an associated
real, integer, logical, or string value. One can look at
Level 2 SML either as an extension of structural
modeling that permits elements to have values, or as
a no-indexing restriction of full structured modeling
(indexing is not needed, as there is still only one
element per genus at Level 2).

The introduction to Section 1 listed the core con-
cepts and associated constructs of structured modeling
that were pertinent to Level 1 SML. Those plus the
ones in Table II are pertinent to Level 2.

The reader is invited to review the material in
Geoffrion (1989a) on these ideas, and to work
out their meaning in the context of the models of
Section 2.1. We do this in Section 2.1.2 for the model
SATELLITE.

The rest of this section indicates some of the kinds
of models which Level 2 SML can represent, and
discusses the significance of selected characteristics of
Level 2 SML.

2.1. Level 2 Models

Section 1.1 discussed the kinds of models represent-
able in Level | SML from two main perspectives,
definitional systems and graphs. Level 2 offers exten-
sions of each of these, and can also represent
spreadsheet models, formula-oriented models, and
propositional calculus models. These five possibilities
do not exhaust the useful ways of thinking about the
scope of Level 2 SML, but they do convey a reasonable

The SML Language: Levels 1 and2 | 47

appreciation of its expressive power. We discuss each
in turn.

2.1.1. Definitional Systems

Level 1 SML has two types of definitions, namely
primitive and compound entity. Level 2 supports
three more types: attribute, function, and test. All of
the Level 2 examples that follow can be viewed from
the definitional systems perspective.

2.1.2. Graph Models With Data or Formula
Attributes: SATELLITE, RUSSIAN ROULETTE

This subsection considers graphs whose nodes and
arcs may have attributes in the form of given or
calculated values. Level 2 SML is able, at a formal
level, to represent any directed or undirected graph
with:

» possibly named nodes and/or arcs;

» given values of numeric, logical, or string type at
selected nodes and/or arcs;

» numeric or logical values at selected nodes and/or
arcs that are calculated from values at other nodes
and/or arcs, so long as none of the calculations is
circular, and the expressions describing the calcula-
tions fall within a certain (broad) class.

Like Level 1, Level 2 SML also allows nodes and arcs
to be organized in a hierarchy for purposes of com-
plexity management in large models.

This subsection develops two examples,
SATELLITE and RUSSIAN ROULETTE, and con-
cludes by considering the general case.

SATELLITE

An earth satellite’s orbit can be disturbed by gravita-
tional forces directed toward other objects that it
encounters. It is therefore of interest to be able to

Table I1
Definitions Used in Level 2

Definition Core Concepts Informal Explanation
3 Attribute element, value, range A definition with a user-supplied value in a certain range, based on the
definitions of certain primitive or compound entity elements; the third of
five element types
4 Function element, value, rule A definition with a value calculated by a certain rule, based on the
definitions of certain other elements; the fourth of five element types
5 Test element, value, rule A definition with a logical value calculated by a certain rule, based on the
definitions of certain other elements; the fifth of five element types
15 Complete specification A structured model with every detail fully specified
16 Variable attribute An attribute element whose value the modeler expects to change often or to
place under solver control
17 Evaluation The task of determining the value of every function and test element
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calculate, based on the mass and proximity of such
objects, whether or not they pose a threat to the
satellite’s orbit. Newton’s Law of Gravitation makes
this calculation an easy one: The force which an object
exerts on a satellite is proportional to the product of
the masses of the satellite and the object, and inversely
proportional to the square of the distance between
them. The proportionality factor is the universal grav-
itational constant, which is about 6.67 X 107!' in
metric system units. We assume that an object is a
“threat” if it exerts enough force to accelerate one
gram by one millimeter per second?; that is, if it exerts
a force of at least 107% newton. For a numerical
instance of this model, assume further that the satellite
has a mass of 100 kg, and that a 2,000 kg object is
200 meters away.

Figure 5 diagrams the calculation. It comprises
seven nodes, all with names written adjacent to them,
and unnamed arcs. Inside the oval representing each
node is written either a user-supplied value or a for-
mula for calculating the value. Except for the arcs
leaving the two nodes at the bottom, arcs represent
the transfer of a value from one node to another.
The arcs leaving the two bottom nodes serve to indi-
cate the meaning of the three middle nodes. Clearly,
Figure 5 falls within the class of attributed graphs
identified earlier.

Figure 5 can be modeled as in Figure 6. Notice that:

« all type declarations absent from Level 1 SML now
appear (“/a/” for attribute and “/va/” for variable
attribute, “/£/” for function, and “/t/” for test);

« “: Real+” declares nonnegative attribute values (in

TRUE if FORCE > 108
FALSE otherwise

THREAT

FORCE G * S_MASS * O_MASS

2000kg ) O_MASS

SATELLITE OBJECT

Figure 5. Diagram of SATELLITE Model.

general, a colon always announces a so-called range
statement for an attribute genus—that is, a con-
straint on the allowable value of each element);

« the formula for gravitational force is introduced by
a semicolon and written in an obvious notation that
uses “*” for exponentiation (in general, a semicolon
always announces a so-called generic rule for func-
tion and test genera—that is, a numeric-valued or
logical-valued expression);

» the logical-valued expression that determines the
value of THREAT is written as though it were a
constraint, but it is not; the expression evaluates to
true or false and does not enforce any condition
whatever.

All the terms reviewed at the outset of Section 2 can
be illustrated with reference to this example: mass and
distance are attribute elements, force is a function
element, “threat” is a test element, complete specifi-
cation would require specifying the two mass values
and the distance value, object mass and distance are
treated as variable attribute elements because they are
likely to change, and evaluation involves the calcula-
tion of values for force and threat.

A completely specified and evaluated model in-
stance is given by Figure 6 together with this Elemental
Detail Table (maximally joined and named S_
MASS):

Il S_MASS O_MASS D
0 100 2000

FORCE
200 3.335E-10

THREAT
#FALSE

Note that SML uses “#FALSE” and “4TRUE” for
truth values.

RUSSIAN ROULETTE

The trivial Markov chain associated with playing

Russian roulette has this graph:
> Deaa 1

3 P
1-p Alive

Note that, whereas Figure 5 has data and formula
attributes on the nodes, this graph has them on the
arcs. A Schema that represents this graph appears in
Figure 7.

It is possible to simplify this Schema by merging the
paragraphs of the last module with the corresponding
paragraphs of the next to last module, but we shall
not do this.

If the game is played with a six-chamber revolver,
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SATELLITE /pe/ Thereis a SATELLITE in space.
OBJECT /pe/ ‘Thereis an OBJECT in space.

S_MASS (SATELLITE) /a/ : Real+ The SATELLITE has a certain SATELLITE MASS
in kg.

O_MASS (OBJECT) /va/ : Real+ The OBJECT has a certain OBJECT MASS in kg.

D (SATELLITE, OBJECT) /va/ : Real+ TheSATELLITE and OBJECT are a certain
DISTANCE apart in meters.

FORCE (8_MAsSs, O_MAs8, D) /f/ : 6.67 * 10~(-11) * S MASS *
O_MAS8 / D*2 The OBJECT exerts a certain FORCE on the SATELLITE, in newtons,
according to Newton’s Law of Gravitation.

THREAT (FORCE) /t/ : FORCE > 10~(-6) The OBJECT is a THREAT to the
SATELLITE if and only if it exerts a FORCE of greater than one millionth of a newton.

Figure 6. Level 2 Schema for SATELLITE.

&STATES possible STATES of a Russian roulette player
ALIVE /pe/ ALIVE
DEAD /pe/ DEAD

&TRANSITIONS STATE TRANSITIONS in Russian roulette

LOSE (ALIVE, DEAD) /ce/ Atasingle play of Russian roulette, an ALIVE player
who LOSES TRANSITS from ALIVE to DEAD.

WIN (ALIVE, ALIVE) /ce/ Atasingle play of Russian roulette, an ALIVE player
who WINS stays ALIVE.

DEATH_IS_FOREVER (DEAD, DEAD) /ce/ At a single (virtual) play of Russian
roulette, a DEAD playcr stays DEAD.

&TRANSITION_PROB TRANSITION PROBABILITIES in Russian roulette

P (LOSE) /a/ : 0 <= Real <= 1 Thereis a certain PROBABILITY OF
LOSING in a single play.

WIN_PROB (WIN, P) /f/ 7 1 - P Thec PROBABILITY OF WINNING in a
single play is the complement of the PROBABILITY OF LOSING.

DEATH_IS_FOREVER_PROB (DEATH_IS_FOREVER) /a/ : 1 <= Real
<= 1 The PROBABILITY OF STAYING DEAD is one.

Figure 7. Level 2 SML Schema for RUSSIAN ROULETTE.

then the associated Elemental Detail Tables would be: certain broad class of graphs with attribute values that
| P are given or calculated. The modeling approach given
v below substantiates this claim.
|| WIN_PROB Consider any directed or undirected graph falling
WIN-PROB | = = within the class given at the outset of this subsection.
Do the following:

|| DEATH_IS_.FOREVER_PROB

DEATH-IS_-FOREVER-PROB 0 0

A. Model the topological structure and names exactly
Level 2 SML can represent, at a formal level, a as explained in Section 1.1.3.



50 / GEOFFRION

B. For each node or arc having a user-supplied value,
create one /a/ genus paragraph for each such
value; make it call the corresponding /pe/ or /ce/
genus paragraph and make its range statement
declare the appropriate value type.

C. For each node or arc having a calculated value,
create one /f/ of /t/ genus paragraph for each
such value according to whether the calculated
value is numeric or logical; write the generic rule
so that it will perform the appropriate calculation,
and make calls to the corresponding /pe/ or /ce/
genus paragraph and to all genera used in the
generic rule.

D. Optionally, it may be possible to simplify by merg-
ing some /pe/ and /ce/ paragraphs in an obvious
way with the /a/, /£/ and /t/ paragraphs that call
them.

E. Interpretations are optional.

F. Modular structure is arbitrary so long as the
no-forward-reference requirement is obeyed. For
example, one could use the default modular struc-
ture by creating no modules other than the root
and putting the /pe/ genus paragraphs first, in any
order, followed by the /ce/ genus paragraphs in
any order, followed by the /a/ genus paragraphs
in any order, followed by the /£/ and /t/ para-
graphs in no-forward-reference order (this must be
possible by the noncircularity assumption).

RUSSIAN ROULETTE is consistent with this style,
although unmade Step D simplifications are possible.

Steps A-F work at a formal level, but in particular
cases the result may not incorporate all of the essential
definitional dependencies that a modeler may wish to
include. The reason is that, like the approach of
Section 1.1.3 (of which this is an extension), this
approach does not take full account of the key role
which definitional dependencies are supposed to play
in structured modeling. To comply with the spirit of
structured modeling, it is necessary to add a new step:

G. Include additional calling sequence calls to make
explicit any essential definitional dependencies.

This addition could lead to circular definitional de-
pendencies, which, of course, would mean that the
Schema is no longer true SML. However, suitable
representations can nearly always be achieved by using
an alternative style for rendering such situations in
Level 2 SML.

One such alternative style would be to begin with
Step C without any /pe/ or /ce/ calls, and then to
add /pe/ and /ce/ genera as necessary to bring out
all essential definitional dependencies. This style usu-
ally works well when all values are associated with

nodes (and none with arcs). The SATELLITE Schema
is consistent with this style.

2.1.3. Spreadsheets: INCOME STATEMENT

Graphs of the type described in Section 2.1.2 encom-
pass spreadsheet models without circular references.
One need only view each nonempty spreadsheet cell
as a node with its row-and-column address as its name.
There would be one arc for each external reference of
each cell.

Since noncircular spreadsheets are known to suffice
for a remarkably wide variety of modeling applica-
tions, the same must be true of Level 2 SML. Of
course, it does not follow that all such spreadsheet
applications would be “natural” to reformulate in
Level 2 SML; Level 3 usually is much more satisfac-
tory for spreadsheet models in which, as is the usual
case, groups of similar cells occur.

INCOME STATEMENT is based on the financial
model appearing in the last chapter of LeBlond and
Cobb (1985). It illustrates how Level 2 SML can
represent a typical spreadsheet. Figure 8 shows the
income statement as it appears in the book. Figure 9
gives the corresponding Schema, where interpretations
have been omitted as self-evident.

Not given here are the one-row, one-column
Elemental Detail Tables (one for each /a/ and /f/
genus) necessary to represent the particular numerical
instance of Figure 8. If desired, it should be an easy
matter, in all but the most rudimentary modeling
systems based on structured modeling, to construct a
report that is linked to the contents of these tables,
and mimics the layout of Figure 8.

Gross Sales $732,730

Less: Returns and Allowances 4,167
Net Sales 728,563
Cost of Goods Sold 468,947
Gross Margin 259,616
Operating Expenscs 201,042
Depreciation 12,016
Earnings Before Intcrest and Taxes 46,558
Interest Expense 7,043
Earnings Before Taxes 39,515
Income Taxes 10,342
Earnings Alter Taxes 29,173
Cash Dividends 0
Nect Income $29,173

Figure 8. Income Statement from LeBlond and Cobb
(1985).



FIRM /pe/
&INCOME_STATEMENT
&GROSS_MARGIN

GROSS_SALES (FIRM) /a/
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RETURNS_AND_ALLOWANCES (FIRM) /a/

NET_SALES (GROSS_SALES, RETURNS_AND ALLOWANCES) /f/ ;
GROSS_SALES - RETURNS_AND ALLOWANCES

COST_OF_GOODS_SOLD (FIRM) /a/

GROSS_MARGIN (NET_SALES, COST_OF_GOODS_SOLD) /f/ ;
NET_SALES - COST_OF_GOODS_SOLD

&EARNINGS_BEFORE_TAXES

OPERATING_EXPENSES (FIRM) /a/

DEPRECIATION (FIRM) /a/

EARNINGS_BEFORE_I&T (GROSS_MARGIN, ¢ ’ERATING_EXPENSES,
DEPRECIATION) /f/ ; GROSS_MARGIN - (OPERATING_EXPENSES

+ DEPRECIATION)

INTEREST_EXPENSE (FIRM) /a/

EARNINGS_BEFORE_TAXES (EARNINGS_BEFORE_I&T,

INTEREST EXPENSE) /£/
INTEREST EXPENSE

EARNINGS_BEFORE_I&T -

INCOME_TAXES (EARNINGS_BEFORE_TAXES) /f/ ; .26 *

EARNINGS BEFORE_TAXES

EARNINGS_AFTER_TAXES (EARNINGS_BEFORE_TAXES, INCOME_TAXES)
/£/ ; EARNINGS BEFORE_TAXES - INCOME_TAXES

CASH_DIVIDENDS (FIRM) /a/

NET_INCOME (EARNINGS_AFTER_TAXES, CASH_DIVIDENDS) /f/ ;
EARNINGS _AFTER_TAXES - CASH_DIVIDENDS

Figure 9. Level 2 SML Schema for INCOME STATEMENT.

The range of all attributes is the reals; this is SML’s
default in the absence of a range statement, which is
optional.

2.1.4. Numeric Formulas: BEAM DEFLECTION

Level 2 SML furnishes a language for writing many
kinds of numeric formulas. Constants needed by for-
mulas can be represented by numeric-valued attribute
elements, variables by numeric-valued variable attri-
bute elements, and the numeric formulas themselves
by function elements. Formulas are executed by eval-
uation in the structured modeling sense.

The simple BEAM DEFLECTION model from
structural mechanics is illustrative. It predicts the de-

flection of a beam that is supported at both ends and
is subject to a point load in the middle. Let L be the
length of the beam, I be its cross-sectional moment of
inertia, E be its modulus of elasticity, and P be the
midpoint load. Then the deflection is given by the
formula PL%/48 EI. Figure 10 gives an SML Schema
for this formula.

An Elemental Detail Table (maximally joined and
named BEAM_NAME) with sample data for a 2-inch
diameter aluminum rod, after evaluation, is:

|| BEAM_NAME L I E P DEF
|| MyBeam 36 0049 10" 100  0.198
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BEAM /pe/ ‘There is a simple clastic BEAM supported at both ends.

BEAM_NAME (BEAM) /a/ : String The BEAM has a NAME.

L (BEAM) /a/ : Real+ The BEAM has a known LENGTH in inches.

I (BEAM) /a/ : Real+ The BEAM has a known cross-scctional MOMENT OF

INERTIA in inches to the fourth power.

E (BEAM) /a/ : Real+ Thc BEAM has a known MODULUS OF EELASTICITY in
pounds per square inch. This has to do with the stiffness of the material from which the BEAM is

made.

P (BEAM) /va/ : Real+ The BEAM bears a known LOAD, in pounds, placed exactly at

its midpoint.

DEF (L, I, E, P) /f/ ; P * L~3 / (48.0 * E * I)

The BEAM exhibits

a midpoint DEFLECTION, in inches, that depends on LENGTH, MOMENT OF INERTIA,

MODULUS OF ELASTICITY, and LOAD.

Figure 10. Level 2 SML Schema for BEAM DEFLECTION.

2.1.5. Propositional Calculus Modeling:
CONTRACT

Level 2 SML furnishes a language for writing any
propositional calculus model with a finite number of
sentences. See Appendix F of Geoffrion (1990b) for a
detailed discussion of this claim. Atomic formulas can
be represented by attribute or variable attribute genera
of logical type. Sentences in propositional logic, which
are obtained by combining atomic formulas via such
logical connectives as and, or, not, implies, and equiv-
alent, can be represented by test genera. Structured
modeling’s evaluation operation determines the truth
or falsity of any such sentence when all atomic for-
mulas are given specific truth values.

To illustrate, consider a company in the midst of

collective bargaining. There is a current draft of the
contract, and four optional clauses named W, X, Y,
and Z are on the table. There is a certain federal
regulation that holds if and only if W and either X or
Y are adopted. And there is a certain union demand
that will be met if and only if Y and Z are not both
adopted.

An SML Schema describing this situation appears
in Figure 11. Note that @AND, @OR, and @NOT,
respectively, represent conjunction, disjunction, and
negation.

An Elemental Detail Table (maximally joined and
named W) with sample data, after evaluation is:

1 w X Y z T:FED_REG T:UNION_DEM
|| #TRUE #FALSE #FALSE #TRUE #FALSE #TRUE

CONTRACT /pe/ Thercis a union CONTRACT.

W (CONTRACT) /va/ : Logical
X (CONTRACT) /va/ : Logical
Y (CONTRACT) /va/ : Logical

Z (CONTRACT) /va/ : Logical

T:FED_REG (W, X, Y) /t/ ; GAND (W, QGOR (X, Y))

CLAUSE W is optional.
CLAUSE X is optional.
CLAUSE Y is optional.

CLAUSE Z is optional.

FEDERAL

REGULATION TEST determines whether a certain Federal regulation holds: it does if and only if
CLAUSE W and cither of CLAUSES X and Y are in the CONTRACT.

T:UNION DEM (Y, Z) /t/ ; @GNOT (QAND (Y, 2))

UNION DEMAND TEST

determines whether a certain union demand is met: it docs if and only if CLAUSES Y and Z are not

both in the CONTRACT.

Figure 11. Level 2 SML Schema for CONTRACT.



2.2. Notable SML Characteristics Apparent
at Level 2

We discuss two notable characteristics of SML that
first become apparent at Level 2.

True Logical Capability

The ability to express any propositional calculus
model with a finite number of sentences is more than
a curiosity. It is a useful modeling tool that adds to a
modeling language’s generality not only for the spe-
cialized purposes of propositional calculus, but also
for many other purposes when blended with language
features that support numeric computation. In fact,
we shall see that Level 3 SML can do finite predicate
calculus.

Not all modeling languages have true logical-valued
variables and the ability to represent general logical-
valued expressions. Most can simulate at least some
logical model features with the help of numeric-valued
quantities, sometimes supplemented with logical op-
erators (which might, for example, treat any nonzero
number as “true”), but we believe that this is an
undesirable substitute for the real thing.

The basis for this belief is the obvious desirability
of representing a model in as natural a way as possible.
In particular, modeling tricks—Ilike numerical repre-
sentations of inherently logical model features—
should be avoided whenever possible because they
usually: a) inflict semantic distortions (e.g., numeric
quantities are never truly logical), b) undermine the
value of error-checking routines since the underlying
error-checking rules are ignorant of the use of
modeling tricks, and c) reduce the ease with which
models can be communicated, understood, and used
correctly, especially when such activities involve,
as they so often do, people who are not modeling
professionals.

Separation of Models From Problem Statements
and Solvers

Elsewhere we have made a sharp distinction between
models, problems, and solvers (Section 2.3 of
Geoffrion 1987). Basically, we take: a) a model to be
a representation of some aspects of reality, b) a prob-
lem or task to be a description of something to be
done with a model, and c) a solver to be a manipulator
of a model according to some definite procedure for
solving a problem or performing a task.

These are useful distinctions to make for a number
of reasons. First, these distinctions encourage the same
model to be used with different solvers (perhaps to
solve different problems or to carry out different
tasks), and it encourages the same solver to be used
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with different models. Such reuse saves time and
resources.

A second reason is the pursuit of conceptual clarity.
Nonspecialists can easily become confused otherwise.
For example, every consultant has had a client ask
“Can you handle such-and-such a feature?” The true
answer is often Yes and No: “Yes” in that the feature
could be included in the model, but “No” in that an
otherwise excellent solver would become inapplicable.
This answer will not be understood unless the client
knows the conceptual difference between a model and
a solver, and knows that a great variety of problems
and tasks lies between the two. For another example,
a user who is presented with an “LP model” may fail
to understand that its data base has stand-alone value
for ad hoc retrieval, that the objective function and a
constraint can switch roles in order to drive on a
different criterion, or that the model can be used for
static simulation on a casewise basis. It would be better
for the user to be presented with a “model” on which
many problems and tasks may be posed, some of
which may include optimization performed with the
help of standard solvers.

A more subtle reason for distinguishing between
model and solver is that not doing so typically leads
to predicating model design on a particular solver’s
limitations. This inhibits keeping track of modeling
decisions that might warrant reversal if and when a
more capable solver becomes available.

Clearly, SML makes it very difficult to confuse a
model with a problem, task, or solver because SML
provides only for representing models. Not all mod-
eling languages have this characteristic. For example,
most modeling languages for mathematical program-
ming make it mandatory to combine the statement of
a model with problem particulars (i.e., objective func-
tion, variables, and constraints must be specified as
such).

Of course, there is no reason why a structured
modeling environment could not allow problems and
tasks to be stated in a natural way using SML as a
point of departure. We give ten problem/task exam-
ples expressed in natural language, except that key
phrases (in capitals) have been used where possible.
In each case for which solver software is to be invoked,
both the model and an appropriate problem/task must
be communicated to the solver in a way that it can
understand.

SATELLITE

1. “What is the mass of the SATELLITE?” This
requires retrieval of the value of S_MASS.
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2. “For the model instance given, what value of
DISTANCE would cause the FORCE to be ex-
actly 107% newton?” This requires solving one
equation in one variable, a kind of problem some-
times called “goal-seeking.” It can also be viewed
as a special kind of “satisfaction,” which we take
in general to be the problem of finding variable
values that satisfy a simultaneous system.

3. “For the model instance given, what happens to
FORCE if OBJECT MASS increases to 5000 kg?”
This requires changing a variable attribute value
and re-evaluating.

4. “In general, what is the first derivative of FORCE
as a function of DISTANCE?” This requires sym-
bol manipulation.

5. “Given a joint probability distribution on
OBJECT MASS and DISTANCE of closest ap-
proach, what fraction of encountered OBJECTS
will pose a THREAT?” This question can be
answered approximately by a Monte Carlo sim-
ulation experiment that runs the SATELLITE
model numerous times, once for each draw from
the given distribution.

RUSSIAN ROULETTE

6. “Given a /6 PROBABILITY OF LOSING, what
is the expected number of plays for which a player
will remain ALIVE?” This requires probabilistic
inference.

CONTRACT

7. “Find a subset of CLAUSES W, X, Y, and Z to
include in the CONTRACT, such that the
FEDERAL REGULATION TEST and UNION
DEMAND TEST are both satisfied.” This is a
satisfaction task in logic.

8. “Is there a subset of CLAUSES W, X, Y, and Z
to include in the CONTRACT, such that the
FEDERAL REGULATION TEST and UNION
DEMAND TEST are both satisfied?” This is an
existence problem in logic. (An existence problem
is like a satisfaction problem, but does not require
displaying a solution if one exists.)

9. “If there is a set of truth values for W, X, Y, and
Z, such that T:FED_REG and T:UNION_DEM
are both true, is the solution necessarily unique?”
This is a uniqueness problem in logic.

10. “Given a set of truth values for W, X, Y, and Z,
such that T:FED_REG and T:UNION_DEM are
both true, is X necessarily true?” This requires
logical inference.

These examples illustrate ten kinds of problem/task:
retrieval, goal-seeking, what if (i.e., re-evaluation),

symbol manipulation based on the differential calcu-
lus, Monte Carlo simulation, probabilistic inference,
satisfaction, proof of existence, proof of uniqueness,
and logical inference. This list is far from exhaustive.
For instance, there is also optimization, which moti-
vates several of the examples to be given in the com-
panion article.

Developing good SML-based model manipulation
languages for expressing these and other kinds of
problems and tasks presents a worthy challenge in its
own right. Such a language is an essential part of what
is often called a solver interface, of which we shall see
some examples at Level 3. However, where evaluation
is concerned, we believe that the evaluation mecha-
nism should be so tightly integrated with an SML
implementation that it almost appears to be part of
SML itself.

APPENDIX

FW/SM Processes Classified by Lowest Possible
Level of Use

The functionality of the FW/SM research prototype
has been described fully elsewhere (Geoffrion 1991).
We shall not repeat the details here, but we do wish
to point out that certain of FW/SM’s processes are
useful even at the lower levels of SML. In fact, the
four levels of SML induce a natural stratification of
FW/SM’s processes.

We describe first the processes that are useful in
connection with SML Level 1 and higher, then those
which are useful for Level 2 and higher, and finally
we describe the processes which are useful for Level 3
and higher. There are no processes that are useful only
at Level 4.

Each process provides one functionality or coherent
group of functionalities, and is invoked by selecting it
from a tree-structured menu of processes.

A.1. FW/SM Processes Useful for Level 1
and Higher

FORMAT Format the Schema

This process assures proper indentation when a
Schema is printed, and also does some preparatory
work for SMLCheck.

SMLCHECK Check Schema Syntax and Schema
Properties

SML specification includes not only a formal con-
text-free grammar describing SML’s lexical and syn-
tactic structure, but also an exhaustive collection of
so-called Schema Properties describing the context-



sensitive conditions needed for a Schema written in
this grammar to be consistent with the conceptual
framework given in Geoffrion (1989a). SMLCheck
detects and reports violations of Schema Properties as
well as Schema syntax.

INTERP_CK Check the Interpretation Part of the
Schema

SMLCheck delegates some of its responsibilities
with respect to the relatively informal interpretation
part of a Schema to INTERP_CK, which checks the
syntax of underlined key phrases, interactively recog-
nizes so-called “referenced key phrases,” and checks
the rules for proper use of referenced key phrases.

COSMET Size Schema Frames and Delete Extra
Blank Lines

This purely cosmetic process beautifies on-screen
displays of the Schema.

REFGEN Generate Reference Documentation

REFGEN automatically generates various reference
documents on the Schema useful for communication,
debugging, model maintenance and evolution, and
other purposes. (Other reference documentation is
generated by EDGEN, a process to be described in
Section A.2.)

DBREF Translate Adjacency/Reachability Matrices
From Text to Tables

The genus graph adjacency and reachability
matrices produced by REFGEN are text displays.
DBREF converts them to true tables, so that they can
be manipulated by Framework’s table editor.

NETDRAW Browse the Genus Graph

NETDRAW generates a Schema’s genus graph as a
graphical display that the user can interactively browse
to better understand a model’s general structure.

PrologQuery Prolog-Based Schema Query

This process provides a fully automatic interface to
a commercial Prolog system (Arity 1987) in such a
way that logic-based inferencing can be done with
respect to all Level 1 Schema information except for
the Interpretations. The process translates Schema
information into Prolog predicates (facts and rules),
exports these along with certain other “stock” predi-
cates to the Prolog system, invokes the Prolog system
with proper initial conditions, and deposits the user
in the command-driven Prolog environment. The full
power of Arity Prolog is available to the user for
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answering queries (drawing logical inferences) based
on the available Schema information.

A.2. FW/SM Processes Useful for Level 2
and Higher

The FW/SM processes of interest for Level 2 SML are
those described in Section A.1 plus:

EDGEN Generate Skeletal Elemental Detail Tables

EDGEN generates empty Elemental Detail Tables,
with a flexible option to join contiguous tables. It also
automatically generates two additional reference doc-
uments beyond those created by REFGEN. The tables
all should have exactly one row at Level 2, but they
can have multiple rows at Levels 3 and 4. The
Elemental Detail Tables are relations in the sense of
relational algebra, and FW/SM has a table editor that
permits their direct manipulation.

FcEval Compile Generic Rules into C

The EDGEN process does not create a mechanism
for doing evaluation, that is, for computing values of
function and test elements. FcEval provides this capa-
bility by compiling generic rules into C code that can
be run by the EVALUATE process. This code need
never be regenerated so long as the Schema stays the
same, thus giving the benefits of “warm restart” for
multiple evaluations.

EVALUATE Perform Evaluation

EVALUATE performs generic rule evaluation using
compiled C code, provided FcEval has been invoked
previously. Results are put into the Elemental Detail
Tables where they are readily accessible to Frame-
work’s table editor and to other processes. Immediate
evaluation capability is useful for debugging, answer-
ing “what if ” questions, for doing many kinds of
analysis of the model and of derived results, and for
generating reports.

A.3. FW/SM Processes Useful for Level 3
and Higher

The FW/SM processes of interest for Level 3 SML are
those described in Sections A.1 and A.2 plus:

L/E UTILITIES Utilities for Loading/Editing
Tables

This process, which comprises several subprocesses,
supports various set and relational operations com-
monly needed when building and maintaining
Elemental Detail Tables.
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MATRIX Build Matrix From Table With Two Key
Fields

Elemental Detail Tables with two key fields for attri-
bute, function, or test genera amount to a linearized
representation of a matrix. MATRIX transforms such
an Elemental Detail Table into the corresponding
matrix.

ID_DICT Build Identifier Dictionary

ID_DICT creates a data base of all Identifiers
appearing in the defining Elemental Detail Tables
associated with self-indexed genera. Information on
defining genera and identifier interpretations is
included.

TABLE RULES Check Table Content Rules

There is a collection of so-called Table Content
Rules that are exhaustive in a strong sense for guar-
anteeing the internal consistency of the Elemental
Detail Tables (Geoffrion 1990a), This process is a
partial implementation of these rules.

XtrieveQuery Menu-Based Elemental Detail Table
Query

This process exports all Elemental Detail Tables to
Xtrieve, a commercial quasirelational query interface
and processor (Novell 1988), invokes Xtrieve with
proper initial conditions, and deposits the user in the
menu-driven Xtrieve environment. The full power of
Xtrieve is available to the user for answering queries
concerning data and results, and for generating
reports.

GENNETFW Invoke Generalized Network Flow
Solver

This is a control table interface that builds a suitable
problem file for generalized network flows and invokes
the GENNET optimizer.

MPS_INTERFACE Invoke Linear/Integer Pro-
gramming Solver

This is a completely automatic interface that builds
a suitable MPS problem file for linear and integer
programming and invokes the LINDO optimizer
(Schrage 1991).
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