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AN INTRODUCTION TO STRUCTURED MODELING*

ARTHUR M. GEOFFRION
Graduate School of Management, University of California, Los Angeles, California 90024

The discipline of modeling has advanced only slowly compared to disciplines concerned with
analyzing and solving models once they are brought into being. Structured Modeling is an
attempt to redress this imbalance.

Structured Modeling aims to provide a formal mathematical framework and computer-based
environment for conceiving, representing, and manipulating a wide variety of models. The
framework uses a hierarchically organized, partitioned, and attributed acyclic graph to repre-
sent the semantic as well as mathematical structure of a model. The computer-based environ-
ment is evolving via experimental prototypes that provide for ad hoc query, immediate expres-
sion evaluation, solving simultaneous systems, and optimization.

If successful, Structured Modeling will enable model-based work to be done with greater
productivity and acceptance by nonspecialists, will exploit important developments in small
computers, and will cross-fertilize management science/operations research, artificial intelli-
gence, database management, programming language design, and software engineering.

This paper is an introduction and status report on a long term project. The presentation is
based largely on examples; rigorous development and details are left to a series of technical
reports.

(MODELING; GRAPHS; MODEL DESIGN; MODEL MANAGEMENT SYSTEMS)

1. Introduction

Structured modeling is an approach to modeling and also to the design of computer-
based modeling systems quite different from current ones. This section motivates the
need for structured modeling by considering some of the problems and opportunities
presently facing the management science/operations research (MS/OR) community.
These suggest some desirable features for future modeling systems. Those features are
the main objectives of structured modeling.

1.1 Problems and Opportunities Facing MS/OR

The two problems and four opportunities discussed below are among the more
important ones confronting the MS/OR community.

Low Productivity

Doing MS/OR tends to be a low productivity activity. Even seasoned practitioners
are repeatedly surprised by how much effort is needed to achieve useful results.

A contributing factor is that at least three distinct representations typically are used
for each model: a “natural” representation suitable for communication with people
(often managers) without special training in MS/OR, a mathematical representation
suitable for analytical use, and a computer-executable representation (see, e.g., Fourer
1983). Such multiple representations are inefficient by virtue of their redundancy, are
susceptible to inconsistency, and they demand too many different skills to complete
even small projects.

A second factor contributing to low productivity is that interfacing models with
advanced solvers (especially optimizers) traditionally has been a laborious task requir-
ing specialized skills. Typically the burden falls on the user to present the model at hand
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in a format acceptable to the chosen solver. Interface standards are sorely needed. The
only one commonly used, the MPS standard for linear programming, is ancient and not
very suitable for modern mathematical programming systems.

A third factor is that most modeling software addresses just one among the many
kinds of models that arise—e.g., just linear programs, or just multi-period financial
models. Such software is awkward at best and unusable at worst when, as is increasingly
necessary, models of different kinds must be integrated in order to address issues of
importance. There is a need for modeling software of wider applicability.

A fourth factor contributing to low productivity is that available modeling software
typically caters to just one or two of the many phases of the total life-cycle associated
with model-based analysis and systems. Some of the more important phases are: deter-
mine requirements, design, build, test, use, revise, maintain, document, explain, ana-
lyze results, report findings, and evolve. Most MS/OR practitioners are forced to piece
together a patchwork quilt of tools to deal with these various phases as they arise over
the life of a project. Modeling environments with greater life-cycle scope are needed
(Gass 1987).

Poor Managerial Acceptance

A second and much lamented problem facing MS/OR is that managers and policy
makers call for model-based assistance too infrequently.

One reason for this is that MS/OR practitioners and their work often are incompre-
hensible to nonspecialists. To the extent that practitioners are poor communicators or
techno-centric instead of problem-centric, managers perceive insufficient empathy and
business understanding and hence turn elsewhere for help.

A related reason is that even technically successful MS/OR work can make managers
feel less powerful rather than more so. This occurs whenever a manager becomes
dependent on the MS/OR practitioner—as usually happens when the manager does not
really understand the model or how it can be used to arrive at conclusions of practical
interest. The natural response to this kind of dependency is to avoid it.

These perennial problems are counterbalanced by perennial opportunities often re-
cited by the MS/OR faithful. In addition, there have recently emerged certain new
opportunities each of which, if properly exploited, has the potential to exert an influ-
ence of historic proportions.

Desktop Computing Revolution

One important opportunity is the desktop computing revolution. This rapidly evolv-
ing technology offers numerous possibilities for doing MS/OR more productively, and
communicating and delivering MS/OR in ways that managers and policy makers are
more likely to accept (Gass, Greenberg, Hoffman and Langley 1986). The next genera-
tion of desktop machines promises to remove many of the remaining barriers to desk-
top implementation (Crecine 1986).

Emerging Foundations of Modeling

Another opportunity is that modeling has, in recent years, become an active subject
of study in its own right for researchers in several fields: database management (see, e.g.,
Brodie 1984 and Tsichritzis and Lochovsky 1982 on “data models™), programming
language design (see, e.g., Horowitz 1984 and Shaw 1984), and artificial intelligence
(see, e.g., Brachman and Levesque 1985 and Mylopoulos and Levesque 1984 on
“knowledge representation”). A particularly noteworthy development is the “concep-
tual modeling” movement (Brodie et al. 1984), which attempts to synthesize what is
known about modeling issues common to all three fields.
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It is both surprising and inviting that these fields make virtually no reference to the
literature of MS/OR or its closely kindred fields. MS/OR, for its part, traditionally has
taken modeling for granted as whatever anyone wants to posit within the conventional
languages of mathematics, and thus has failed to develop any coherent modeling
theories of its own. The development of new foundations for analytical modeling is
long overdue and has many good ideas to draw upon from the three fields mentioned.

Progress in Database Management

A third opportunity for MS/OR is the remarkable flowering of the field of database
management during the last decade, especially the explosive emergence of relational
technology, the development of excellent database programs for desktop computers
(Krasnoff and Dickinson 1986), and the evolution of sophisticated query interfaces
(Jarke and Vassiliou 1985). Database systems are natural adjuncts to data-hungry
MS/OR software. Data management and flexible retrieval capability are just as impor-
tant for most MS/OR applications as the functions performed by the solvers toward
which the models usually are oriented.

Popularity of Spreadsheet Modeling

A fourth opportunity, not unrelated to the first one, arises from the legions of
modeling enthusiasts created by the phenomenal rise of spreadsheet software. Many of
these people have the potential to graduate to more sophisticated modeling, and so
form a great reservoir of potential demand for MS/OR technology and expertise (Bod-
ily 1986).

1.2 The Answer: A New Generation of Modeling Systems

The problems and opportunities just enumerated call for a new generation of model-
ing systems with the following desirable features:

(a) a rigorous and coherent conceptual framework for modeling based on a single
model representation format suitable for managerial communication, mathematical
use, and direct computer execution

(b) independence of model representation and model solution, with model interface
standards to facilitate building a library of models and of easily accessed solvers for
retrieval, systems of simultaneous equations, optimization, and other important ma-
nipulations

(c) sufficient generality to encompass most of the great modeling paradigms that
MS/OR and kindred model-based fields have developed for organizing the complexity
of reality (activity analysis, decision trees, flow networks, graphs, markov chains,
queueing systems, etc.)

(d) usefulness for most phases of the entire life-cycle associated with model-
based work

(e) representational independence of general model structure and the detailed data
needed to describe specific model instances

(f) desktop implementation with a modern user interface (e.g., visually interactive,
directly manipulative, syntactically humane, and with liberal use of graphics and tables)

(g) integrated facilities for data management and ad hoc query in the tradition of
database systems

(h) immediate expression evaluation in the tradition of desktop spreadsheet
software.

Features (a) through (d) address, respectively, the four contributing factors listed
earlier for low productivity. Feature (c) also helps productivity by reducing learning
time in situations where multiple models must be maintained. Productivity is further
enhanced by feature (e), which facilitates reusing the same general model structure in
different specific applications.
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Feature (a) should help to overcome poor managerial acceptance to the extent that it
succeeds in facilitating managerial communication. Feature (e) should also facilitate
communication, for general model structure is free of distracting detail. Feature (f) not
only can lead to improved managerial acceptance, but may even be a prerequisite for it.

Features (f), (a), (g), and (h) respectively address the four opportunities listed earlier.
In addition, feature (e) is one of the recurring themes of the second opportunity (the
emerging foundations of modeling). It is one of the pillars of database theory because
specific database content changes far more frequently than does database structure.

1.3 Structured Modeling

Structured modeling aims to provide the foundation for a new generation of modeling
systems with all of the features listed in §1.2. It also aims to influence how model-based
work is carried out using more conventional modeling systems.

The formal framework of structured modeling is based on discrete mathematics. It
uses a hierarchically organized, partitioned, and attributed acyclic graph to represent a
model or a model class. Particular attention is given to representing semantic as well as
mathematical structure, and to compatibility with four of the most fundamental ma-
nipulations applied to models: retrieval, expression evaluation, solving a simultaneous
system, and optimization.

At the core of structured modeling is the notion of a definitional system, that is, a
system of definitions of all of the elements comprising a “model”. The definitions have

.some special properties: they are typed (there are five types), correlated (interdepen-
dencies are explicit), and certain of the types are value-bearing. Moreover, the defini-
tions are grouped by definitional similarity, the resulting groups are organized hierar-
chically by conceptual similarity, and the whole system of definitions must be free of
circularity.

This kind of definitional system turns out to be widely applicable within model-ori-
ented fields such as MS/OR/DSS (for finance, logistics, marketing, production, and
other application areas), information systems, economics, and engineering. Thus
structured modeling ideas have the potential for wide adoption.

This kind of definitional system also turns out to have deep connections to formal-
isms used in artificial intelligence, database management, programming language de-
sign, and software engineering. These connections invite cross-fertilization among these
fields from the modeling perspective.

Structured modeling ideas may be useful even if structured modeling software is not
available or is not selected for use. Usually there are many opportunities in the context
of conventional modeling systems to use some of the modeling concepts, constructs,
and guidelines that comprise the structured modeling approach. Some of the guidelines
for “good” modeling associated with structured modeling are: (1) incorporate impor-
tant data development processes directly into the model, (2) document definitional
interdependencies, (3) use stepwise refinement, (4) compose models from validated
submodels, and (5) exploit parallel structure.

Finally, it should be noted that structured modeling lays the foundation for a unified
theory of model aggregation. This was the original need that led to the development of
structured modeling.

Related Modeling Approaches and Systems

Structured modeling has benefited significantly from ideas introduced by or embod-
ied in other modeling approaches and systems. Numerous opportunities remain for
cross-fertilization. We consider briefly some of the principal categories of related ap-
proaches and systems from the point of view of the eight desirable features.
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Names of commercially available software packages are given in italics. Their ven-
dors are listed in a separate reference section following the bibliography.

Many attempts have been made to make mathematical programming systems easier
to use by orienting them more toward modeling and less toward the optimizers around
which they are built. Two standouts are GAMS (Bisschop and Meeraus 1982, Kendrick
and Meeraus 1987) and PLATOFORM (Palmer 1984). Others are AMPL (Fourer, Gay
and Kernighan 1987), CAMPS (Lucas and Mitra 1985), EMP (Schittkowski 1985),
GXMP (Dolk 1986b), LINDO, LPMODEL (Katz, Risman and Rodeh 1980), MLD
(Burger 1982), and PAM. As a group, the greatest strength of these systems—their
ability to raise the productivity of optimization applications—is perhaps also their
greatest weakness in that they are wedded to one particular modeling paradigm (con-
trary to desired feature (c)). They also lack integrated facilities for ad hoc query and
immediate expression evaluation. v

Financial planning systems are designed primarily to support the preparation of
business analyses and reports based on the spreadsheet modeling paradigm, that is,
based on named rows and on columns that usually correspond to successive time
periods. This paradigm turns out to be of surprisingly general applicability (Bodily
1986, Plane 1986). Unlike the leading desktop spreadsheet packages, these systems use
a simple declarative language to specify the spreadsheet, and they automatically at-
tempt to solve any simultaneous equations that may be implicit in the spreadsheet. The
dominant package in this class is the mainframe system IFPS (also available in desktop
versions). A version is even available with integrated optimization capability (Roy,
Lasdon and Lordeman 1986). As a group, financial planning systems offer high produc-
tivity, support for multiple life-cycle phases, and good managerial understandability
within their intended domain of application. Their main weaknesses are in the areas of
compatibility with modeling paradigms other than the spreadsheet, independence of
general model structure and detailed data, and integrated facilities for ad hoc query.

Database management systems usually are not thought of as “modeling” systems by
the MS/OR community, but this is a mistake. All are based on one or another data
model (Tsichritzis and Lochovsky 1982). A recent survey (Krasnoff and Dickinson
1986) lists 56 desktop relational database systems. As a group these systems are, of
course, strong on database functions. But they are weak on compatibility with non-
database modeling paradigms and on provisions for accessing nondatabase solvers for
simultaneous equations and optimization.

Integrated multi-function desktop productivity software, of which Framework is a
current example, provides word processing, spreadsheet modeling, some database capa-
bilities, business graphics, a built-in programming language, and other useful functions.
One recent package even includes an expert system shell. These systems can be excel-
lent productivity tools for a wide variety of tasks, including many kinds of modeling.
However, it may not be appropriate to think of them as modeling systems in a true
sense because they do not offer a coherent conceptual framework for modeling. How
they fare by features (b) through (e) depends largely on how they are used. They do
possess features (f), (h), and perhaps (g).

A related approach is a modeling environment based on loosely integrated utilities
for data extraction, large file manipulation, data management, solving simultaneous
systems, and other functions arising in model-based work. A nice example is ANA-
LYTICOL at AT&T Bell Laboratories (Childs and Meacham 1985). It fares well by
features (c), (d) and perhaps (g), and not so well by features (a), (h), and perhaps (f).
How it fares by features (b) and (e) depends almost entirely on how it is used.

The above categories do not exhaust the landscape of modeling approaches and
systems. For example, there are discrete event simulation frameworks and languages
(e.g., Markowitz 1979, Oren, Zeigler and Elzas 1984); various knowledge representa-
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tion approaches from artificial intelligence (Brachman and Levesque 1985), among
which the closest to structured modeling appears to be the “conceptual graph” formal-
ism of Sowa (1984) within the general category of semantic networks; and the novel
approach of Jones (1985) to graphical modeling systems based on attributed graph
grammars, which can capture general model structure at a level similar to that used in
structured modeling. In addition, of course, there are numerous application-specific
packages which, by definition, have conceptual frameworks of narrow applicability and
thus lack feature (c).

This brief review of related modeling approaches and systems is not intended to show
that structured modeling’s predecessors are inferior because none exhibits all eight
desirable features. Rather, the review is intended to show that structured modeling aims
at an apparently vacant niche, and to suggest that there are benefits to be gained (in
both directions) from studying structured modeling in the context of alternative ap-
proaches and systems.

1.4 Organization

§2 contains an introduction to the basic ideas of structured modeling, an example, an
explanation of how these ideas fit into the world of model-based work, and a discussion
of the prospects for achieving a new generation of modeling systems of the type envi-
sioned in §1.2. Rigorous definitions and selected technical results on the structured
modeling framework are deferred to the Appendix.

§3 exemplifies three of the ways in which structured modeling can be used: for
top-down model design by stepwise refinement, for integrated modeling in the sense of
unifying two or more distinct models in a coordinated way, and for clear communica-
tion and documentation. All five of the modeling guidelines listed in the previous
subsection are illustrated along the way.

§4 discusses opportunities for further research and development. Many are inspired
by important parallels between issues in structured modeling and similar issues in
database management, programming language design and software engineering, and
artificial intelligence. The opportunities are collected into four main categories: the
structured modeling framework itself, designing a model within the framework, com-
puter implementation design, and model management systems.

Finally, §5 offers some closing comments.

This paper makes few assumptions concerning the reader’s background beyond
general familiarity with MS/OR and tolerance for basic terminology drawn from graph
theory and a few other parts of discrete mathematics. Familiarity with elementary
relational database ideas will also be helpful (e.g., Date 1981).

Because of the introductory nature of this paper, it is necessary to defer numerous
details and related developments to a forthcoming series of technical reports.

2. Basics of Structured Modeling

The structured modeling framework has three levels: elemental structure, generic
structure, and modular structure. Each is defined in turn, followed by an illustration (as
well as other ideas) based on a classic MS/OR application, the feedmix model. Then the
role of these modeling ideas is discussed in a broader context, followed by an assessment
of their potential as the basis for a new generation of modeling systems of the type
advocated in §1.2.

2.1 Basic Definitions

The definitions given here are, for the most part, informal. Rigorous versions are
given in the Appendix of this paper, but a forthcoming technical report must be
consulted for a complete development. A detailed example is given in the next subsec-
tion for all of these definitions.
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The reader is invited at this point to test the author’s claim that structured models are
easy to understand. The severest possible test would be to examine a structured model
prior to any study of structured modeling concepts. Doing this will not only help the
reader judge the claim, but also aid digestion of the definitions. So please spend a few
minutes examining, in this order, Figure 5 (the general structure of the feedmix model),
Figure 6 (sample data for a particular instance), Figure 3 (a diagram of definitional
dependencies at a more aggregate, dimensionally independent level), and Figure 4 (a
way of organizing the essential concepts of the model).

Elemental Structure

Structured modeling views a model as being composed of discrete elements. The
central notion is that each element has a definition in which the element’s existence is
either postulated as a primitive of the model, or postulated in terms of other elements
whose definitions have already been given.

Elemental structure aims to capture all of the definitional detail of a specific model
instance. It can be viewed in terms of a directed graph of elements (nodes) and “calls”
(arcs). Each call represents a definitional reference, that is, the participation of one
element’s definition in the definition of another. The head node of each arc is the
calling element and the tail node is the called element. There are five zypes of elements,
some of which have a value: '

(1) primitive entity elements have no associated value and generally represent things

or concepts postulated as primitives of the model (e.g., protein as a nutrient);

(2) compound entity elements have no associated value and generally represent
things or concepts that are defined in terms of other things or concepts (e.g., a
“link” in a transportation system defined in terms of a certain plant and a certain
customer);

(3) attribute elements have a constant value and generally represent properties of
things or concepts (€.g., a minimum daily requirement in grams associated with
protein);

(4) function elements have a value that is dependent according to a definite rule on
the values of called elements, and generally represent calculable properties and
more complex aspects of models (e.g., the total annual cost associated with
inventories);

(5) test elements are like function elements except that their value must be either
True or False (e.g., whether the minimum daily requirement level for protein
is met).

The graph is assumed to be acyclic because it is possible and desirable to avoid circular
definitions. If the graph is to represent the entire elemental structure, then it must also
be attributed. Attributes must be associated with its nodes and arcs to represent (i) the
values of non-entity elements, (ii) the rules by which the values of function and test
elements are calculated, and (iii) an order for the inbound arcs at each node.

Generic Structure

Generic structure aims to capture the natural familial groupings of elements. Mathe-
matically, this is accomplished by partitioning all elements of a given type into genera,
each of which is a cell of the partition. Thus each genus comprises elements of the same
type (e.g., the collection of all primitive entity elements representing nutrients).

Not every possible partition by type is allowed. It must satisfy a property called
generic similarity, which means roughly that every element in a genus calls elements in
the same foreign genera (e.g., every element in the minimum daily requirement genus
makes reference to some element in the nutrient genus). This property seems to hold for
all sensible partitions and is essential in order to prove certain desirable properties of the
structured modeling framework.
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Modular Structure

Modular structure aims to organize generic structure hierarchically to the extent that
this seems appropriate and useful. The basic idea is to group genera into conceptual
units called modules according to commonality or semantic relatedness, then to group
these modules into higher order modules, and so on (e.g., the nutrient genus and the
minimum daily requirement genus might be grouped together into a “nutrient data”
module). This enables the complexity of a model to be managed in terms of higher
order abstractions.

Mathematically, modular structure is a rooted tree whose root represents the entire
model and whose terminal nodes correspond 1:1 with the genera. All other nodes are
modules representing conceptual units comprising their descendent genera.

Not every possible modular structure is allowed. It must admit an indented list
representation with no forward references, that is, the genera must be listed in such an
order that no element in a genus ever calls an element in a genus that is farther down the
list. A modular structure that satisfies this qualification is called monotone, and its
indented list representation is called a modular outline.

In practice it is easy and natural to define a monotone modular structure. But if for
some reason it is desired to ignore modular structure or to postpone its design, then it is
always possible to posit the trivial monotone modular structure in which there are no
modules other than the root and all genera are ordered according to a topological sort of
the genus graph (defined in §2.2). Such a sort is easy to perform. There is also an
efficient procedure for finding a monotone order, if one exists, for any given modular
structure.

Structured Model

Finally we can define a structured model as (a) an elemental structure together with
(b) a generic structure satisfying similarity and (c) a monotone modular structure.

It should be noted that the acyclicity assumption on elemental structure and the
closely related monotonicity assumption on modular structure do not necessarily pre-
clude representing models with simultaneity or recursion. In all realistic cases examined
to date, simultaneity and recursion can be dealt with in a natural way without violating
these assumptions. Sometimes this involves switching to an equivalent representation
of some model feature, sometimes it involves modeling in such a way that a “solver”
external to the model carries the burden (as by solving a system of simultaneous
equations), and sometimes it simply involves recognizing that simultaneity or recursion
exists in a way that does not impinge on the acyclicity or monotonicity assumptions.
These assumptions play a key role in the theory and application of structured modeling.

It should also be noted that structured modeling is not limited to static models.
Dynamic models with discretized time can be accommodated by introducing a primi-
tive entity genus with as many elements as there are time instants or time slices, and
dynamic models with continuous time often can be accommodated by allowing the
values of attribute and function elements to be functions of time.

Model Schema

Up to this point we have been concerned with specific model instances. However, the
focus of applied modeling work is very rarely on a single model instance. Nearly always
it is on an entire class of similar instances. Therefore it is appropriate to formalize the
notion of a class of “similar” structured models. That is the purpose of the concept of a
model schema. :

Informally speaking, a model schema is any class of structured models whose modu-
lar outlines all can be placed in 1:1 correspondence in a way that is consistent with
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modular structure, with generic structure, and with the intended meaning of the
models.

2.2 Example and Additional Concepts

The feedmix problem can be found in the linear programming chapter of most basic
textbooks on MS/OR. We use it to illustrate the concepts just defined and to introduce
some important additional ideas and notational conventions.

Element Graph

Figure 1 is the element graph for a simple model with two nutrients and two materials
from which feeds are blended. It is the directed graph of elemental structure without
any annotations to indicate node or arc attributes. Figure 1 does, however, employ
informal annotations to indicate node interpretation and type. Node type is indicated
here by the shape of the symbol used: squares for primitive entity elements, circles for
attribute elements, triangles for function elements, and hexagons for test elements.
There are no compound entity elements. Recall that an arc represents a call of the tail
element by the head element.

NUTRITION TEST

o O

NUTRITION LEVELS TOTAL COST
MIN DAILY REQ'TS ANALYSIS QUANTITY UNIT COSTS

ONG© OO OO0 OO0 OO0
4 4

/

O L O

NUTRIENTS MATERIALS
FIGURE 1. Element Graph for a 2 X 2 Feedmix Model.
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The process of calculating the values of all function and test elements in their natural
topological order is called evaluation. Such an order always exists by virtue of the
acyclicity assumption. For Figure 1, evaluation can be accomplished by proceeding
from bottom to top.

Genus Graph

There is an obvious grouping of elements. Primitive entity elements are partitioned
into nutrient elements (the NUTR genus) and materials elements (the MATERIAL
genus). Attribute elements are partitioned into minimum daily requirement elements
(the MIN genus), elements specifying how much of each nutrient is in each pound of
material (the ANALYSIS genus), quantity elements (the Q genus), and unit cost ele-
ments (the UCOST genus). Function elements are partitioned into the elements that
calculate the achieved nutrition levels (the NLEVEL genus) and the total cost element
(the singleton TOTCOST genus). Finally, the test elements are all left together in a
single genus (T:NLEVEL).

These partitions are shown in Figure 2. The informal definition of generic similarity
clearly holds by inspection of the incoming arcs to the elements in each genus.

The graph theoretic condensation of an element graph according to such partitions is
called the genus graph; see Figure 3. It is more convenient than the element graph for
most purposes because it is dimension independent. For example, Figure 3 does not
depend on how many nutrients or materials there may be. It can be shown that the

/D A\ /DN

(©0 00 (OO

] [ L] [

FIGURE 2. Element Graph Nodes Partitioned by Type for Feedmix Model.
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T:NLEVEL
NLEVEL TOTCOST
MIN ANALYSIS Q UCOST
NUTR MATERIAL

FIGURE 3. Genus Graph for Feedmix Model.

genus graph is always acyclic when the element graph is finite and acyclic and generic
similarity holds.

Modular Tree

Several plausible hierarchical organizations of generic structure are possible, includ-
ing this one: group the genera NUTR and MIN together in a module whose interpreta-
tion is “nutrient data”, and group MATERIAL, UCOST, and ANALYSIS together in
another module whose interpretation is “material data”. This modular structure is
represented by the modular tree shown in Figure 4. Note that there is no mathematical
connection between the arcs of the genus graph and those of the modular tree.

Figure 4 also includes an indented list representation of the tree. It can be seen from
Figure 3 that there are no forward references in this list, and so it is a bona fide modular
outline.

Nongraphical Notation

Element graphs, genus graphs, and modular trees offer a practical vehicle for ex-
pressing elemental, generic, and modular structure, to say nothing of expressing a
model schema, only if supported by a software system with advanced graphics capabili-
ties. A less demanding alternative is to express generic and modular structure and
model schemata by a text-based “schema’, and to express elemental structure by such a
schema together with a collection of “elemental detail tables”. Both concepts will be
explained in some detail.

The particular notational conventions used here for text-based schemata and ele-
mental detail tables constitute only one possible solution to the problem of designing a
practical notation for structured models and model schemata. They have certain ad-
vantages, as will become evident, but do not “define” structured modeling in any sense.
Others may wish and, indeed, are encouraged to propose other notational conventions
to embody the core concepts of structured modeling described informally above and
formally in the Appendix.



558 ARTHUR M. GEOFFRION

NUTR
&NUT_DATA
MIN
MATERIAL
&FEEDMIX
&NUT_DATA
NUTR
&FEEDMIX &MATERIALS UCOST MIN
&MATERIALS
Q MATERIAL
ANALYSIS UCOST
NLEVEL ANALYSIS
Q
T:NLEVEL NLEVEL
T:NLEVEL
TOTCOST TOTCOST

FIGURE 4. Modular Tree and Modular Outline for Feedmix Model.

Schema

Figure 5 gives a text-based schema that expresses the generic and modular structure
of the feedmix example. It also represents a model schema in the sense defined earlier,
that is, an entire class of structured models for feedmixing whose modular outlines are
all 1:1 with one another in a consistent way—in fact, they are all identical.

Figure 5 uses a format and syntax that is detailed in a forthcoming technical report.
An acquaintance with this schema will be a big step toward understanding schemata in
general. Thus we give an overview of schema format and syntax followed by a narrative
interpretation of the particular schema at hand.

1. A schema is composed of paragraphs, one for each line of the modular outline and
indented in exactly the same way. There are two kinds of paragraphs: module para-
graphs describing modules, which always begin with the module name, and genus
paragraphs describing genera, which always begin with the genus name.

2. Module names and genus names are unique and capitalized. The former always
begin with an ampersand (&) for quick recognition, while the latter always begin with a
letter of the alphabet.

3. Every paragraph consists of two parts: a formal part followed by an interpretation
part. The interpretation part is distinguished in Figure 5 by being printed in italics (a
special separation character is used when the schema is prepared using a single-font
editor). The syntax of the interpretation part is essentially unrestricted, although the
style followed here is recommended, including: introduce an underlined, capitalized,
unique key phrase in each paragraph and capitalize this phrase at each subsequent use.
The purpose is to provide easily readable documentation. The formal part of a module
paragraph consists only of the module name. The syntax of the formal part of a genus
paragraph is the subject of the remaining comments.

4. The formal part of a genus paragraph always includes a type indicator (/pe/, /ce/,
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&NUT_DATA NUTRIENT DATA

NUTRI /pe/ There is a list of NUTRIENTS that animals require.

MIN (NUTRi) /a/ {NUTR} : R+ For each NUTRIENT there is a MINIMUM DAILY

REQUIREMENT (units per day per animal) for the target animal population.
&MATERIALS MATERIALS DATA

MATERIALm /pe/ There is a list of MATERIALS that can be blended for animal feed.
UCOST (MATERIALm) /a/ {MATERIAL} : R Each MATERIAL has a UNIT COST (8 per pound of
material).

ANALYSIS (NUTRi, MATERIALm) /a/ {NUTR}X{MATERIAL} : R+ Each NUTRIENT-
MATERIAL combination has an ANALYSIS (units of nutrient per pound of material).

Q (MATERIALm) /va/ {MATERIAL} : R+ The feed QUANTITY (pounds per day per animal) of each
MATERIAL is to be chosen.

NLEVEL (ANALYSISi.,Q) /f/ {NUTR} ; SUMm (ANALYSISim * Qm) Once the QUANTITIES are
chosen, there is a NUTRITION LEVEL (units per day per animal) for each NUTRIENT calculable from
the ANALYSIS.

T:NLEVEL (NLEVELi,MINi) /t/ {NUTR} ; NLEVELi >= MINi For each NUTRIENT there is a
NUTRITION TEST to determine whether the NUTRITION LEVEL is at least as large as the MINIMUM
DAILY REQUIREMENT.

TOTCOST (UCOST,Q) /f/ ; SUMm (UCOSTm * Qm) There is a TOTAL COST (dollars per day per
animal) associated with the chosen QUANTITIES.

FIGURE 5. Schema for Feedmix Model.

/a/, /f/, or /t/) to indicate element type. The indicator /va/, for variable attribute, can be
used in place of /a/ for an attribute genus when its values are discretionary and hence
likely to change or to be placed under solver control.

5. The genus name in a non-/pe/ genus paragraph is always followed by a generic
calling sequence in parentheses that identifies all of the elements which participate in
the definition of a typical element. The syntax of generic calling sequences is designed
so that the generic similarity property holds.

6. The type indicator in a genus paragraph usually is followed by an index set
statement that specifies the element population of the genus. If omitted, then it is
understood that every possible element exists.

7. The index set statement of an attribute genus paragraph usually is followed by a
range statement, announced by a colon, that specifies the allowable values for the
elements of the genus.

8. The index set statement of a function or test genus paragraph is always followed
by a generic rule, announced by a semicolon, that specifies how the element values are
to be calculated.

9. Every genus that can have more than one element is fully indexed. An index is
never “dummy”, but is always a specific lower case letter uniquely associated with the
genus that introduces it. A genus that introduces an index is said to be self-indexed, and
the index is given immediately after the genus name in its genus paragraph. A genus
that does not introduce an index is externally indexed unless it must be a singleton. It is
indexed by the free indices in its calling sequence.

The full syntax associated with items 5-8 is a lot richer than is apparent from the
simple example presented in Figure 5. Nevertheless, that schema suffices for illustrative
purposes.

The first paragraph simply says that there is a module named &NUT_DATA having
to do with nutrient data. Indentation reveals that there are two genera in this module,
NUTR and MIN.
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The second paragraph says that there is a primitive entity genus named NUTR whose
elements are indexed by i. It does not say how many elements are in the genus or what
any of them are. That is the job of the elemental detail tables. NUTR is self-indexed.

The third paragraph says that there is an attribute genus named MIN whose typical
element MINi calls element NUTRI. The index set statement {NUTR} says that MIN
has one element for every element of NUTR. The range statement says that all ele-
ments have nonnegative real values. MIN is externally indexed (by i), as are all subse-
quent genera except MATERIAL (which is self-indexed by m) and TOTCOST (which
has no indices at all).

The next three paragraphs are similar to the first three.

The paragraph for the attribute genus ANALYSIS has a typical element ANALY-
SISim that calls elements NUTRi and MATERIALm. The index set statement says that
ANALYSIS has an element for every nutrient-material combination, and the range
statement says that all elements have nonnegative real values.

Consider the first function genus. Its typical element NLEVELI calls ANALYSISim
for all m (this is indicated by the dot in place of the second index of ANALYSIS in the
calling sequence), and also Qm for all m (note that Q appears in the calling sequence
with none of its indices—alternatively, “Q.” could have been used). The generic rule
says that NLEVELI is calculated by summing the product of ANALYSISim and Qm
over all m.

The other function genus, TOTCOST, must be a singleton because there are no free
indices in its calling sequence. It calls all elements of genera UCOST and Q. The
meaning of the generic rule should be evident.

The test genus has typical element T:NLEVELI, which calls the corresponding ele-
ment of NLEVEL and the corresponding element of MIN. The index set statement
stipulates that there is a T:NLEVEL element for every element of NUTR. The generic
rule stipulates that T:NELEVELI has value True if and only if the value of NLEVELi is
greater than or equal to the value of MINi.

Elemental Detail Tables

The purpose of elemental detail tables is to describe a particular instance of the
general class of models represented by a schema. The skeletal structure of elemental
detail tables is automatically determined from the schema according to rules given in a
forthcoming technical report. .

Figure 6 gives the six elemental detail tables for the schema of Figure 5.

The first table, named NUTR, lists the identifiers of the nutrients and the minimum
daily requirement value for each. It also provides for an interpretation of the nutrient
identifiers. In general, the identifiers introduced by a self-indexed genus can be
any unique names, and the interpretation column helps document the modeler’s
intentions.

The second table performs a function similar to the first, but for materials instead of
nutrients.

The ANALYSIS table gives the analysis values for all elements in the ANALYSIS
genus. The other tables are equally obvious.

2.3 Models, Problems, and Solvers

The foregoing has focused entirely on modeling. What about the things one does with
models?

We make a sharp distinction between a “model” as an abstraction of reality, the
“problems” or “tasks” one poses in terms of a model, and the “solver” used to solve a
problem or carry out a task. For example, consider the feedmix model. The usual
problem associated with this model is to find values for the QUANTITY elements so as
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NUTR
NUTR " INTERP MIN
P I Protein 16
C Calcium 4
MATERIAL
MATERIAL || INTERP UCOST
std H Standard Feed 1.20
add Additive 3.00
ANALYSIS
NUTR MATERIAL ANALYSIS
P std 4.00
P add 14.00
C std 2.00
C add 1.00
Q
MATERIAL | Q
std 2.00
add .50
NLEVEL
NUTR " NLEVEL T:NLEVEL
P 15.00 FALSE
C 4.50 TRUE
TOTCOST

" TOTCOST
3.90

FIGURE 6. Sample Elemental Detail for Feedmix Model.

to minimize the value of the TOTAL COST element subject to the values of all
NUTRITION TEST elements being True. The type of solver most appropriate to this
kind of problem is well known, namely one that implements an algorithm for linear
programming.

Optimization is not the only important kind of problem that one might wish to pose
in connection with a model. Two others are ad hoc queries aimed at retrieving infor-
mation about the model, and finding values for selected attribute elements so that
certain test elements are True. The former requires a type of solver sometimes called a
query processor in the field of database management, and the latter often requires an
equation solver. Many other important kinds of problems and tasks could be identified,
such as drawing logical inferences (which requires a type of solver sometimes known as
an inference engine in the field of artificial intelligence).

Structured modeling provides a framework for modeling within which various prob-
lems and tasks can be posed precisely and naturally. It does not provide a framework
that directly supports the algorithmic aspects of solvers. Solver design and implemen-
tation is an entirely distinct area to which modeling bears a client relationship.

A structured modeling system should, however, make provision for invoking solvers
of various kinds. These can be thought of as residing in a “solver library”, where they
are conveniently available for use whenever needed.
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2.4 Prospects for Achieving a New Generation of Modeling Systems

Now that the basics of structured modeling have been explained, it is appropriate to
consider the potential of these ideas as a basis for the new generation of modeling
systems advocated in §1.2. The discussion is organized according to the eight desirable
features given there.

Feature (a): rigorous modeling framework with a single model representation suitable
Jfor managerial communication, mathematical use, and direct computer execution. The
structured modeling framework described previously is rigorous and offers a choice of
two notational styles: one based on attributed graphs (the element graph, genus graph,
and modular tree) and one comprising a text-based schema together, if a specific model
instance is required, with elemental detail tables. A structured modeling system could
be based on either one or a combination of these styles.

Suitability for managerial communication is discussed in some detail in §3.3 where,
among other points, it is noted that genus graphs are particularly attractive devices for
managerial communication.

Suitability for mathematical use depends on what kind of mathematics one wishes to
apply. Obviously there is no issue with respect to graph theoretic mathematics. But
there may be for other kinds of mathematics. Probably the most important kind, at
least in MS/OR, is ordinary algebra with indexing over sets of similar mathematical
objects. One of the reasons for introducing the text-based schema notation was to
enable this kind of mathematics (see especially items 5, 6, 8, and 9 in §2.2).

Direct computer executability is possible if due care is exercised in designing the
notational conventions supported by a structured modeling system. Standard compiler
technology (e.g., Aho, Sethi, and Ullman 1986) can be used to digest schemata like
Figures 5, 7, and 10 because they can be (and, in fact, are) written in a context-free
language. Graph-based notations probably can be digested with the help of graph
grammars (see Jones 1985).

Feature (b): model/solver independence with interface standards and provision for
libraries of models and solvers. It is clear from §2.3 that structured models are entirely
separate from any solver that may be invoked on them. Structured models can be kept
in libraries and so can solvers. The design of interface standards that facilitate coupling
solvers to models is a technical challenge that seems not overly difficult because all
models can be represented using the very same formalism. The knotty problem of
interface standards can be dealt with by inverting the usual approach: instead of living
with multiple solver-oriented standards for modelers to write to, provide a single
model-oriented standard for solver and modeling system technicians to write to.

Building a library of models, especially of model classes, facilitates reusing old
models in new situations. A similar point holds with respect to building a library of
solvers. An organization that undertakes modeling efforts frequently could achieve a
significant productivity gain from such reuse. This suggests that it could be worthwhile
for a group of similar organizations to collaborate on a joint library of models and
solvers, or for a library of generic applicability to be built for a specific functional area.
The latter approach is being implemented for marketing at Purdue, where a major
commercial database as well as traditional descriptive and normative marketing models
are being cast in structured form (Wright 1986).

Feature (c): generality. The generality of structured modeling follows from the fact,
explained in §1.3, that it formalizes the notion of a definitional system as a way to
describe models—both model classes and particular model instances. Structured mod-
eling does not aim to offer a modeling paradigm in the usual sense, but rather a lingua
franca within which models from a wide variety of paradigms can be expressed.

The three simple models given in this paper, all drawn from MS/OR, do not begin to
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illustrate the generality of structured modeling. An extensive and more suggestive
collection of structured models is in preparation; it covers a wide variety of applications
to business, database management, economics, englneermg, MS/OR, and various other
application areas.

Feature (d). life-cycle orientation. The life-cycle of a modeling application goes from
the initial feasibility analysis to the final completion of the original objectives. Exami-
nation of the many stages in between shows that true life-cycle orientation requires
what might best be thought of as an interactive work “environment”. This environ-
ment should support not only models and solvers as discussed prev1ous1y, but should
also offer a variety of utilities needed for communication, organizing things and ideas,
and for different kinds of ancillary quantitative analysis. This poses a considerable
challenge for the design of structured modeling system implementations.

Feature (¢): general structure/detailed data independence. The notion of general
structure is captured in structured modeling by the modular and generic structure
formalisms. The notion of detailed data is captured by the notion of elemental struc-
ture. The former can be expressed by a text-based schema, and the latter by elemental
detail tables.

Feature (f). desktop computer based with a modern user interface. There are two
primary challenges: (i) performance difficulties when the number of elements gets large
or the user interface gets sophisticated, and (ii) access to mainframe data and programs.
The next generation of personal workstations (e.g., Crecine 1986) should provide suffi-
cient resources to deal with the first challenge for models of at least moderate size, and
mainframe links are progressing rapidly (e.g., Derfler 1986). :

Feature (g): integrated ad hoc query capabilities. It can be shown under mild as-
sumptions that elemental detail tables (proposed for nongraphical notation) can be
viewed as a relational database in third normal form or higher (see, e.g., Ullman 1982).
The primary key columns are the ones to the left of the vertical double lines.

This is an important result because it establishes a bridge between structured model-
ing and the relatively mature field of relational databases. One useful consequence is
that a strong point of departure is immediately available for the development of query
languages for ad hoc retrieval and for implementations of structured modeling systems.

Feature (h): resident expression evaluation capability. This requirement is attainable
using spreadsheet technology and extensions thereof. It has the potential for consider-
able efficiency because of element graph acyclicity (the required topological sort can be
done once and for all for a given schema).

It is reasonable to conclude that all of the features defining a “new generation™ are
achievable by a properly designed and implemented structured modeling system. They
all have, in fact, been achieved to some degree by prototype implementations.

Of course, the simultaneous achievement of all these features is likely to exact a price
in terms of complexity and performance relative to systems with more modest ambi-
tions, or that have a narrower domain of application. Will structured modeling systems
be simple enough to be usable by application domain experts? Will they be efficient
enough for production applications as well as prototyping? Will they be able to compete
with more highly specialized systems? The answers to such questions must await further
progress in computer implementation.

3. Some Uses of Structured Modeling

This section illustrates some of the ways in which a structured modeling system could
be used: to do “top-down” model design by stepwise refinement, to do “integrated”
modeling, and for communication and documentation.
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3.1 Top-Down Model Design

Top-down design is a time-honored concept that has been used with success by
engineers, computer software designers, and probably by almost every profession
concerned with undertakings of great complexity. For present purposes, “top-down
design” means stepwise refinement based on a hierarchical view of complexity. The
rationale for this approach is to attempt to get the “big picture” right at the outset with a
minimum of distracting or inessential clutter, and then to add detail in stages that take
advantage of previously established perspective. The overall effect is one of hierarchical
decomposition of the complexity dimension.

Structured modeling provides a hospitable framework within which to develop top-
down ideas because modular structure is hierarchy, and because generic structure
usually lends itself conveniently to refinement.

Example

We illustrate top-down model design using another classical model of management
science as the point of departure, namely the economic order quantity model with
multiple (independent) items. Figure 7 presents a schema for this model along with
elemental detail tables containing sample data. The reader should have no difficulty
deciphering this schema based on the explanations given in §2.2.

ITEMi /pe/ Thereis a list of ITEMS.
&ITEMDATA Certain ITEM DATA are provided.

D (ITEMi) /a/ {ITEM} : R+ Every ITEM has a DEMAND RATE (units per year).
H (ITEMi) /a/ {ITEM} : R+ Every ITEM has a HOLDING COST RATE (dollars per unit per year).
F (ITEMi) /a/ {ITEM} : R+ Every ITEM has a FIXED SETUP COST (dollars per setup).

Q (ITEMi) /va/ {ITEM} : R+ The ORDER QUANTITY (units per order) for each ITEM is to be chosen.
&OPCON OPERATING CONSEQUENCES following from ORDER QUANTITY choices.
FREQ (Di,Qi) /f/ {ITEM} ; Di/Qi Every ITEM has a SETUP FREQUENCY (average number of
setups per year) equal to DEMAND RATE divided by ORDER QUANTITY.

SETUPS (FREQI,Fi) /f/ {ITEM} ; FREQi * Fi Every ITEM has an ANNUAL SETUP COST (dollars
per year) equal to the SETUP FREQUENCY times the SETUP COST.

CARRYS (Hi,Qi) /f/ {ITEM} ; Hi * Qi/2 Every ITEM has an ANNUAL CARRYING COST (dollars
per year) equal to its HOLDING COST RATE times one-half of its ORDER QUANTITY (which
estimates average inventory level).

ITEMS$ (SETUPS$i,CARRYS$i) /f/ {ITEM} ; SETUPSi + CARRYSi Every ITEM has an ANNUAL
ITEM COST (dollars per year) equal to its ANNUAL SETUP COST plus its ANNUAL CARRYING
COST.

TOT$ (ITEMS) /f/ ; SUMi (ITEMS$i) The TOTAL ANNUAL COST (dollars per year) is the sum of all
ANNUAL ITEM COSTS.

ITEM
ITEM ” D H F Q FREQ SETUP$ CARRY$ ITEM$
COKE 3600 40 9.00 500 7.20 64.80 100 164.80
7-UP 2500 .40 9.50 300 8.33 79.17 60 139.17
BEER 2000 .54 9.00 400 5 45 108 153
TOTS$

TOTS$
" 456.97

FIGURE 7. Schema and Sample Elemental Detail for a Multi-Iltem EOQ Model.
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DEMAND RATE, HOLDING COST RATE, and FIXED SETUP COST must, in
virtually every real application, be calculated from other data. Thus the schema of
Figure 7 is but a “first pass” toward a truly applicable model. It requires further
refinement. For the second pass, assume:

(a) DEMAND RATE must be calculated as the sum of demands deriving from

several final products

(b) HOLDING COST RATE is the sum of the opportunity cost of capital tied up

and the out-of-pocket storage cost

(c) FIXED SETUP COST is the sum of separate costs for the materials and labor

consumed. _
Consequently, D, H, and F each must be elaborated into an entire module. The result
might be as follows for the RITEMDATA module (the rest of the schema stays the
same).

&ITEMDATA Certain ITEM DATA are provided.
&D DEMAND RATE DATA

FINALPRODp /pe/ There is a list of FINAL PRODUCTS.

DPARTIAL (ITEMi,FINALPRODp) /a/ {ITEM}X{FINALPROD} : R+
Each FINAL PRODUCT contributes a PARTIAL DEMAND RATE (units per
year) for each ITEM.

D (DPARTIALI.) /f/ {ITEM} ; SUMp (DPARTIALip) Every ITEM has a DE-
MAND RATE (units per year) equal to the sum of its PARTIAL DEMAND
RATES.

&H HOLDING COST RATE DATA

VAL (ITEMi) /a/ {ITEM} : R+ Every ITEM has a UNIT VALUE (dollars per
unit).

STORAGE (ITEMi) /a/ {ITEM} : R+ Every ITEM has a STORAGE COST
RATE (dollars per unit per year) associated with physical possession.

H (VALi,STORAGEI) /f/ {ITEM} ; 0.12 * VALi + STORAGEi Every ITEM
has a HOLDING COST RATE (dollars per unit per year) equal to a 12% opportu-
nity cost of capital tied up (calculated on the basis of UNIT VALUE) plus the
STORAGE COST RATE.

&F SETUP COST DATA

FMATERIAL (ITEMi) /a/ {ITEM} : R+ The setup of an ITEM incurs a specific
SETUP MATERIAL COST (dollars per setup).

FLABOR (ITEMi) /a/ {ITEM} : R+ The setup of an ITEM incurs a specific
SETUP LABOR COST (dollars per setup).

F (FMATERIALi,FLABORI) /f/ {ITEM} ; FMATERIALi + FLABORi Every
ITEM has a FIXED SETUP COST (dollars per setup) equal to SETUP MATE-
RIAL COST plus SETUP LABOR COST.

Still greater detail can be added at a third pass. Assume:
(d) PARTIAL DEMAND RATES must be built up from demand estimates for
FINAL PRODUCTS and the parts explosion
(e) UNIT VALUE must be assembled from its major components
(f) SETUP LABOR COST must be constructed as labor hours times labor rate.
Then DPARTIAL becomes this module:
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&DPARTIAL PARTIAL DEMAND RATE DEVELOPMENT
DFINAL (FINALPRODp) /a/ {FINALPROD} : R+ Each FINAL PRODUCT
has an estimated FINAL PRODUCT DEMAND RATE (units per year).

BILL (ITEMi,FINALPRODp) /a/ {ITEM}X{FINALPROD} : Int+ There is a
table giving the number of each ITEM in each FINAL PRODUCT: this is called
the BILL OF MATERIALS.

DPARTIAL (BILLip,DFINALp) /f/ {BILL} ; DFINALp * BILLip FEach
FINAL PRODUCT contributes a PARTIAL DEMAND RATE (units per year) for
each ITEM equal to the estimated FINAL PRODUCT DEMAND RATE times the
appropriate BILL OF MATERIALS multiplier.

In addition, VAL becomes a module:
&VAL UNIT VALUE DEVELOPMENT
DIRMAT (ITEMi) /a/ {ITEM} : R+ The value of each ITEM includes a certain

amount of DIRECT MATERIAL COST (dollars per unit).

DIRLAB (ITEMi) /a/ {ITEM} : R+ The value of each ITEM includes a certain
amount of DIRECT LABOR COST (dollars per unit).

VAL (DIRMATi,DIRLAB;) /f/ {ITEM} ; DIRMATi + DIRLABi Every ITEM
has a UNIT VALUE (dollars per unit) equal to the sum of DIRECT MATERIAL
COST and DIRECT LABOR COST.

Finally, FLABOR becomes a module:
&FLABOR SETUP LABOR COST DEVELOPMENT

SETLABOR /pe/ There is a labor class known as SETUP LABOR.

SETRATE (SETLABOR) /a/ {SETLABOR} : R+ SETUP LABOR is charged
at a certain SETUP LABOR RATE (dollars per hour).

SETHOURS (SETLABOR,ITEMI) /a/ {ITEM} : R+ The setup of an ITEM
requires a specific number of SETUP LABOR HOURS (hours per setup).

FLABOR (SETRATE, SETHOURS:I) /f/ {ITEM} ; SETRATE * SETHOURSI
The setup of an ITEM incurs a specific SETUP LABOR COST (dollars per setup)
equal to SETUP LABOR RATE times SETUP LABOR HOURS.

It is instructive to examine the effect of these stepwise refinements on the genus graph
and on the modular outline.

The genus graphs corresponding to each of the three passes are given in Figures 8A,
8B, and 8C. The graphs are drawn so that the additional detail supplied at each pass
literally occurs from the top down.

There is a side point to be made here about a common phenomenon that might be
called the “data iceberg”. Most textbook models represent only the tip of a figurative
iceberg, ignoring the great mass of data and associated calculation required underneath
to support the tip that it may bask in the light of mathematical analysis and computa-
tional solution. Structured modeling can represent this additional detail in an organized
way through stepwise schema refinement.

The modular outlines after each of the three design passes are shown in Figure 9. This
diagram vividly summarizes the stepwise refinement aspect of the top-down design
process. Of course, stepwise refinement may not always lead to such a simple progres-
sion of transformations of the modular outline.

Considering that so many new attribute genera have been introduced, one may
wonder whether the final version of the schema is better viewed as a “model” or as a
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TOT$
ITEM$
SETUP$ CARRY$
4 4
FREQ
F D Q H
ITEM

FIGURE 8A. Genus Graph for Multi-Item EOQ Model: First Pass.

“database’; only a few genera have to do with what is actually required to formulate the
classical EOQ cost minimization problem. Structured modeling is indifferent to
whether it is representing something that is more like a traditional analytical model or
more like a database. The distinction is artificial and will, we hope, gradually dissolve
with the advent of more comprehensive modeling approaches like the one proposed.

3.2 Integrated Modeling

There are several different things one might mean by “integrated modeling” (Geof-
frion 1986b). Here it is used in the sense of coordinated unification of two or more
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TOT$
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ITEM$
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SETUP$ CARRY$
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D Q
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STORAGE

FINALPROD ITEM
FIGURE 8B. Genus Graph for Multi-Item EOQ Model: Second Pass.

distinct models. Integration can be across business functions, as when a production
model is combined with a distribution model; across geography, as when regional
energy models are combined into a national model; across time, as when a planning
model is combined with a scheduling model; or across other dimensions.

Integrated modeling enables results and insights that cannot be achieved by separate
models. This becomes increasingly significant for any organization in which modeling
has been in use for some time, as the classical approach of many independent applica-
tions can be expected to reach a point of diminishing returns. Integrated modeling may
even be essential in strategic studies, which usually involve whole systems rather than
subsystems, and in very large modeling efforts of any kind, where independent con-
struction, test, and final assembly of component models may be the only practical way
to cope with the complexity required of the final model.

Structured modeling provides a natural framework for integrated modeling because
it makes explicit the essence of what must be coordinated, namely definitional and
computational dependencies among submodels. Moreover, on the basis of limited
experience, it appears that the conceptual integrity of the submodels usually can be
preserved when integration is done within the structured modeling framework.
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FLABOR FMATERIAL DPARTIAL VAL STORAGE
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I’y
SETLABOR FINALPROD ITEM
FIGURE 8C. Genus Graph for Multi-Item EOQ Model: Third Pass.
Example

A very simple example of integrated modeling is obtained by juxtaposing the well-
known Hitchcock-Koopmans transportation model with the multi-item EOQ model
introduced in the previous subsection. Figure 10 gives a schema for the transportation
model, and Figure 11 gives the corresponding elemental detail tables filled in with
sample data (not used in this example).

If the transportation model is posed on an annualized basis, solving the usual linear
programming problem yields the “optimal” annual flows, but does not prescribe how
often shipments should be made or, equivalently, what the shipment size should be.
Very frequent shipments are small and thus good for the customer in that they lead to
small inventories, but bad in that they are expensive to receive (they require many
transactions). Infrequent shipments lead to just the opposite result. The best compro-
mise can be found by solving an EOQ problem for each shipment link.
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FIRST DESIGN PASS SECOND DESIGN PASS THIRD DESIGN PASS
ITEM ITEM ITEM
&ITEMDATA &ITEMDATA &ITEMDATA
&D &D T
FINALPROD FINALPROD
DPARTIAL &DPARTIAL |
&H BILL
VAL DPARTIAL |
STORAGE D M
H &H A
&F &VAL I
FMATERIAL DIRMAT
FLABOR DIRLAB |
F VAL |
Q STORAGE
&OPCON H |
FREQ &F =1
SETUP$ FMATERIAL I
CARRYS$ &FLABOR
ITEM$ SETLABOR |
TOT$ SETRATE I
SETHOURS
FLABOR ]
F
Q .
&OPCON
FREQ
SETUP$
CARRY$S
ITEMS$
TOT$

FIGURE 9. Modular Outlines for Multi-Item EOQ Model: All Three Passes.

The situation can be described by two separate structured models. One is the trans-
portation model whose schema is given in Figure 10. The other is the multi-item EOQ
model whose schema is as given in Figure 7 with these modifications: (a) replace the

&SDATA SOURCE DATA

PLANTi /pe/ There is a list of PLANTS.
SUP (PLANT) /a/ {PLANT} : R+ Every PLANT has a SUPPLY CAPACITY measured in tons.

&CDATA CUSTOMER DATA

CUSTj /pe/ There is a list of CUSTOMERS.

DEM (CUSTj) /a/ {CUST} : R+ Every CUSTOMER has a nonnegative DEMAND measured in tons.
&TDATA TRANSPORTATION DATA

LINK (PLANTI,CUST]}) /ce/ Select {PLANT}X{CUST} where i covers {PLANT}, j covers

{CUST} There are some transportation LINKS from PLANTS to CUSTOMERS. There must be at
least one LINK incident to each PLANT, and at least one LINK incident to each CUSTOMER.

FLOW (LINKij) /va/ {LINK} : R+ There can be a nonnegative transportation FLOW (in tons) over
each LINK.

COST (LINKij) /a/ {LINK} : R Every LINK has a TRANSPORTATION COST RATE for use in $/ton.

$ (COST,FLOW) /f/ ; SUMi SUMj (COSTij * FLOWij) There is a TOTAL COST associated with all
FLOWS.

T:SUP (FLOWi.,SUPi) /t/ {PLANT} ; SUMj (FLOWij) <= SUPi Is the total FLOW leaving a PLANT
less than or equal to its SUPPLY CAPACITY? This is called the SUPPLY TEST.

T:DEM (FLOW j,DEM;j) /t/ {CUST} ; SUMi (FLOWij) = DEMj Is the total FLOW arriving at a
CUSTOMER exactly equal to its DEMAND? This is called the DEMAND TEST.

FIGURE 10. Schema for Transportation Model.
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PLANT
PLANT || INTERP SUP
DAL Dallas 20,000
CHI Chicago 42,000
CUST
CUST || INTERP DEM
PITTS Pittsburgh 25,000
ATL Atlanta 15,000
CLEV Cleveland 22,000
LINK
PLANT CUST " FLOW COST
DAL PITTS 5,000 23.50
DAL ATL 15,000 17.75
DAL CLEV 0 32.45
CHI PITTS 20,000 7.60
CHI CLEV 22,000 25.75
$
w___}_
1,102,250
T:SUP
PLANT T:SUP
DAL TRUE
CHI TRUE
T:DEM
CUST | T:DEM
PITTS TRUE
ATL TRUE
CLEV TRUE

FIGURE 11, Sample Elemental Detail for Transportation Model.

ITEM genus by a copy of the LINK genus (since each transportation link plays the role
of an ““item”); replace the D genus by a copy of the FLOW genus (since each transpor-
tation flow plays the role of a “demand rate”); and rename the SETUPS$ genus to
RECS$ to commemorate the reinterpretation of a setup cost as a shipment receiving
cost. See Figure 12 for the two genus graphs.

To evaluate costs, one may do the following:

1. Choose values for the FLOW variables in the transportation model and evaluate
to obtain $.

2. Set the FLOW attributes in the EOQ model to the same values as the FLOW
variables in the other model, choose values for the Q variables, and evaluate to
obtain TOTS$.

3. Add $ and TOTS$ to obtain the grand total cost.

If desired, FLOW can be chosen in Step 1 by solving the usual linear programming
problem, and Q can be chosen in Step 2 by solving the usual EOQ problem for its closed
form solution.

Sequential rather than simultaneous.use of the two models leads, of course, to

suboptimization. The two models must be integrated if jointly optimal choices of
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TOT$
ITEM$
T:SUP $ T:DEM CARRY$ REC$
AN I
COST FLOW FREQ
SUP LINK DEM H Q FLOW F
/ ‘\A
PLANT CUST LINK

FIGURE 12. Genus Graphs for Transportation and Modified EOQ Models.

FLOW and Q are desired. This can be accomplished by joining the two schemata in
this way: _
1. Concatenate the two schemata, with the transportation schema coming first (an
arbitrary choice).
2. Drop the LINK and FLOW genera from the second schema, and reroute all calls
to them to the LINK and FLOW genera of the first schema instead.
3. Create a new singleton function genus TOTCOST whose purpose is to add the
values of $ and TOTS; place it at the very end.
The resulting genus graph is shown in Figure 13, and the modular outline in Figure 14.
The global optimization problem can now be posed as choosing values for FLOW and
Q so as to minimize TOTCOST.
Notice that the conceptual integrity of each component model is largely preserved.

3.3 Communication and Documentation

One of the critical success factors for MS/OR applications is good communication
and documentation. Structured modeling offers some attractive possibilities in
this area.

Perhaps the most important feature of structured modeling in this regard is the
completeness and readability of model schemata and elemental detail tables (see Fig-
ures 5-7, 10, and 11). If well executed, they are suitable with only minor adaptation for
nontechnical as well as technical audiences. A simplified version of a schema, called the
natural language summary, is suitable for even the least technical of audiences. It
abbreviates the formal part of each genus paragraph to just the genus name with free
indices suffixed. See Figure 15 for an example. Schemata and natural language sum-
maries have the appealing property of providing a dictionary of model parts that is
without forward references.

Thoughtfully designed modular structure contributes greatly to the readability of a
schema, although none of the simple models used in this exposition is substantial
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FIGURE 13. Genus Graph for Integrated Model.

enough to exhibit the richness of this concept as a means of organizing complexity. A
more realistic example is given in Figure 16, which is based on a capital expenditure
planning application done for a telephone company (Geoffrion 1986a). Only part of the
modular tree is shown; it goes to a depth of seven levels. Figure 17 gives a partial natural
language summary.

Figures 16 and 17 also illustrate a useful technique for constructing “views” of a
model tailored to the needs of specific audiences: prune away subtrees, but do not
separate siblings. Figure 16 exhibits two such views, one used to design a series of
executive seminars at the vice presidential level of telephone operating companies, and
the other used to design a briefing of budget directors. Both views hide unwanted detail.
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&TRANS
&SDATA
PLANT
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TOT$
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FiGURE 14. Modular Outline for Integrated Model.

The first view is also used to organize the main managerial documentation for the
capital expenditure planning system; in fact, Figure 17 actually is an excerpt from this
documentation.

&NUT_DATA NUTRIENT DATA

NUTRi There is a list of NUTRIENTS that animals require.

MINi For each NUTRIENT there is a MINIMUM DAILY
REQUIREMENT (units per day per animal) for the target animal
population.

&MATERIALS MATERIALS DATA
MATERIALm There is a list of MATERIALS that can be
blended for animal feed.

UCOSTm Each MATERIAL has a UNIT COST ($ per pound of
material).

ANALYSISim Each NUTRIENT-MATERIAL combination has
an ANALYSIS (units of nutrient per pound of material).

Qm The feed QUANTITY (pounds per day per animal) of each
MATERIAL is to be chosen.

NLEVELi Once the QUANTITIES are chosen, there is a
NUTRITION LEVEL (units per day per animal) for each
NUTRIENT calculable from the ANALYSIS.

T:NLEVELi For each NUTRIENT there is a NUTRITION TEST
to determine whether the NUTRITION LEVEL is at least as large as
the MINIMUM DAILY REQUIREMENT.

TOTCOST There is a TOTAL COST (dollars per day per animal)
associated with the chosen QUANTITIES.

FIGURE 15. Natural Language Summary for Feedmix Model.
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FIGURE 16. Modular Tree for Capital Planning Model, with Two Views Indicated.

The genus graph (see Figures 3, 8, 12, and 13) holds promise as a communication and
documentation aid. This is confirmed by the fact that many authors have indepen-
dently invented closely related graphics for expository purposes. An example adapted
from an introductory quantitative methods text is shown in Figure 18. Many other
examples can be found in articles and books on analytical modeling (e.g., the deter-
ministic influence diagrams of Howard and Matheson 1984), artificial intelligence (e.g.,
the conceptual graphs of Sowa 1984), database systems (e.g., the entity-relationship
diagrams of Chen 1976), software design (e.g., data flow diagrams as in Enos and Van
Tilburg 1981 or Yourdon and Constantine 1979), and even finance (e.g., the well-
known “DuPont graph” given, among other places, on p. 229 of Weston and Cope-
land 1986).
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YRt The model addresses a PLANNING HORIZON of five individual YEARS.
&PRDATA There are some BASIC PROJECT DATA.

PRp There is a list of candidate PROJECTS.
PNAMEp Each PROJECT has an EXTENDED PROJECT NAME.

BCp A DIVISIBILITY CODE, either “B” or “C”, is assigned to each PROJECT to indicate whether it
is indivisible (binary) or continuously divisible in character.

XLp A LOWER ACCEPTANCE LIMIT (a fraction) is specified for each PROJECT (the default is 0).
XUp An UPPER ACCEPTANCE LIMIT (a fraction) is specified for each PROJECT (the default is 1).
NPVp A NET PRESENT VALUE (NPV) is given for each PROJECT.

Xp An ACCEPTANCE LEVEL between 0 and 1 is to be chosen for each PROJECT; a complete set of
choices defines a trial PORTFOLIO.

NPVX PORTFOLIO NPV is the primary index of a PORTFOLIO’s merit. It is the sum over PROJECTS
of ACCEPTANCE LEVEL times PROJECT NPV.

&LEGALITY The PORTFOLIO must be “LEGAL”.

&RESFEAS RESOURCE FEASIBILITY is a desirable PORTFOLIO PROPERTY.
&SERFEAS SERVICE FEASIBILITY is a desirable PORTFOLIO property.
&FINFEAS FINANCIAL FEASIBILITY is a desirable PORTFOLIO property.

&FUNDS The model incorporates a FUNDS STATEMENT based on the standard financial statement by
the same name. It depends on the PORTFOLIO, is calculated for each YEAR, and plays a key role in
defining FINANCIAL FEASIBILITY.

&CAPFEAS CAPITAL FEASIBILITY is an aspect of FINANCIAL FEASIBILITY.

UCAPt An UPPER CAPITAL LIMIT is given for each YEAR for the company as a whole.

T:CEt Given a trial PORTFOLIO, a CAPITAL FEASIBILITY TEST checks for each YEAR whether
TOTAL CAPITAL EXPENDITURES are within the UPPER CAPITAL LIMIT.

T:IGFt Given a trial PORTFOLIO, an IGF FEASIBILITY TEST is applied to the FUNDS STATEMENT
each YEAR to check whether the ratio of NET FUNDS FROM INTERNAL SOURCES to CAPITAL
REQUIREMENTS is at least as large as a threshold value supplied by management.

T:NICt A NET INCOME FEASIBILITY TEST applies each YEAR to check whether NET INCOME TO
COMMON is at least as large as a threshold value supplied by management.

FIGURE 17. Natural Language Summary for VP View of Capital Planning Model.

Extracts of genus graphs often suffice for explanatory purposes when the entire genus
graph is overwhelming or unnecessary. Figure 19 shows an extract from the full genus
graph for the capital expenditure planning model: namely, all nodes that reach one
target node (note that genus names have been replaced by their associated key phrases).
This diagram has been used to explain the capital feasibility test. The explanation
proceeds from the top down until the curiosity of the questioner is satisfied. The dialog
went something like this:

Q. How does the Capital Feasibility Test work?

A. It checks whether Total Capital Expenditures are within the Capital Limits.

Q. Total Capital Expenditures?

A. Yes, thisis the simple sum of Portfolio Capital Expenditures and all Other Capital
Expenditures outside of the portfolio.

Q. Oh, I see.

The modular tree can also be a useful communication graphic.

4. Opportunities for Further Work

Structured modeling provides many opportunities for further research, development,
and cross-fertilization with established fields. Some of these opportunities are indicated
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FIGURE 18. Graphic from Plane (1986).

here under four headings: the structured modeling framework, model design, imple-
mentation design, and model management systems.

Seven types of expertise are especially useful: discrete mathematics, analytical model-
ing, decision support system design, database management, high-level programming
language design, software engineering, and artificial intelligence. The relevance of the
first three is obvious. The relevance of the others derives from certain interdisciplinary
parallels.

The parallels can be stated as follows. Designing a framework for analytical modeling
is analogous to designing a data model (e.g., Tsichritzis and Lochovsky 1982), designing
a programming language (e.g., Shaw 1984), and designing a framework for knowledge
representation (e.g., Brachman and Levesque 1985). All of these design activities are
centrally concerned with representational frameworks. Moreover, designing a model
schema within a framework for analytical modeling is analogous to designing a data-
base schema within a given data model, designing a computer program within a given
programming language, and designing a knowledge base within a given framework for
knowledge representation. :

It follows that the fields of database management, programming language design,
software engineering, and artificial intelligence all have potentially important contri-
butions to make to structured modeling. In fact, work in any of these fields can inform
all of the others.
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FIGURE 19. Genus Graph Extract for Capital Planning Model.

4.1 Structured Modeling Framework
The structured modeling framework itself can be studied in a theoretical way.

Scope and Comparative Studies

It would be useful to have a better understanding of the representational scope of
structured modeling and its relationship to other frameworks, including those from
related fields.

Ordinary mathematical programming models, graph and network models, and
spreadsheet models are among those that always can be rendered as a structured model.
What kinds of models cannot be so rendered? Are some types of recursive models
intractable?

It turns out that any relational database can be rendered as a structured model. This
is argued constructively in a forthcoming technical report and is proven theoretically by
Farn (1985) using first order logic (more on this below). Farn also shows that the
Entity-Relationship data model of Chen (1976) is subsumed by structured modeling.
What about other data modeling frameworks? One that has been examined in detail is
the well-known and influential Semantic Data Model (SDM) of Hammer and McLeod
(1981). Most of the semantic features of SDM can be rendered straightforwardly in
structured modeling, and virtually all of the remaining ones violate one or another tenet
of structured modeling (usually avoidance of redundancy or the desirability of divorc-
ing general structure from detailed data). Several other data models appear worthy of
careful examination.

Functional programming languages (e.g., Glaser, Hankin and Till 1984) bear a strong
kinship to structured modeling. These declarative (nonprocedural) languages are more
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problem-oriented than conventional computer programming languages, have a simpler
mathematical basis, and are better suited to exploiting certain highly parallel computer
architectures. How does their expressive power relate to that of structured modeling? It
is intriguing to note that, from the functional programming viewpoint, the differences
between “modeling” and “programming” largely disappear.

An area where modeling and programming have often been confused is discrete
event simulation. It might seem that structured modeling is not applicable to this area
because it does not allow the kind of procedural programming often used in the past to
accomplish such simulations, but at least one approach is known that may bring
discrete event simulation within the reach of structured modeling.

Is structured modeling general enough to encompass any of the knowledge represen-
tation frameworks used in artificial intelligence (e.g., logic, production rules, semantic
networks, or frames)? If so, then it should be possible to build hybrid systems that
include access not only to solvers for retrieval and optimization, the mainstay model
manipulations of structured modeling, but also to some types of inference engines. If
not, then what additional syntactic/semantic extensions does structured modeling re-
quire in order to represent Al knowledge bases?

Two knowledge representation frameworks warrant special discussion: first order
logic and semantic networks.

First Order Logic

First order logic (FOL for short—see, e.g., Barr and Feigenbaum 1981) is important
for several reasons. First, it is one of the foundations on which Al was originally erected.
Second, it probably is the best developed mathematically of all knowledge representa-
tion frameworks. Third, and most pertinent for the present discussion, FOL provides a
common ground on which many alternative modeling frameworks can be understood
and compared.

Levesque and Brachman (1985) have used FOL to help understand what seems to be
an inherent trade-off between the expressiveness of knowledge representation frame-
works and their computational tractability. Reiter (1984) has expressed the relational
data model in FOL and used this view to illuminate questions relating to query defini-
tion, incomplete information, integrity constraints, and extensions with greater sesman-
tic expressiveness. Li (1985) has recast the Entity-Relationship model and Semantic
Data Model in FOL, and used this view to show that the latter subsumes the former. As
mentioned earlier, Farn also used this approach.

A clear understanding of the relationship between structured modeling and FOL
should yield insights into the expressive power of structured modeling, both alone and
in relation to other modeling frameworks that may be recast in terms of FOL. It should
also serve as a useful compass when contemplating future changes in the structured
modeling framework and, possibly, as a gateway leading to the eventual incorporation
of inference engines into structured modeling.

Semantic Networks

The term “semantic network™ actually covers a diversity of representational formal-
isms based on attributed graphs (e.g., Brachman and Levesque 1985). It is said to be the
most popular of all approaches to knowledge representation.

Our interest in semantic networks is that it appears to be the closest of all knowledge
representation approaches to structured modeling, particularly in the rich development
presented by Sowa (1984). This book is the culmination of a long-term effort to unify
the foundations of artificial intelligence in terms of “conceptual graphs”. Many con-
ceptual graphs can be represented as structured models and, conversely, a subset of all
structured models can be represented as conceptual graphs.
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Of particular interest is Sowa’s demonstration of a two-way mapping between con-
ceptual graphs and first order logic. This provides a way of attacking the agenda set
forth in the previous topic. It could also lead to a kind of inference theory for structured
modeling analogous to that available for FOL.

Also of interest is Sowa’s proposed two-way mapping between conceptual graphs and
natural language. It may be possible to develop an analogous mapping between struc-
tured modeling and natural language.

Conceptual Modeling

“Conceptual modeling” is a term coined to symbolize the need to cross-fertilize and
harmonize common modeling issues arising in three previously independent fields:
data modeling in database theory, knowledge representation in artificial intelligence,
and programming language abstractions in high-level language design (Brodie et al.
1984). This requires raising modeling to a higher plane of abstraction and generality.

Analytical modeling as practiced in MS/OR is an important and conspicuous omis-
sion from the list. The goal of conceptual modeling should be to find the common
abstract ground of all four fields. Since structured modeling already provides a formal
framework for analytical modeling and, as has been mentioned, for other types of
modeling as well, it would be appealing to study how structured modeling can contrib-
ute to both the original and expanded mission of conceptual modeling.

Successful work along these lines would have two primary benefits. First, it would
produce a deeper and more general understanding of the modeling process so that it can
be practiced more as a science and less as an art. Those who understand this more
general theory of modeling would be armed with concepts and distinctions that sharpen
their ability to organize the complexity of reality in formal ways. Second, it could
produce a correspondence between each modeling framework and a master set of
modeling abstractions, whether the framework is from data modeling, knowledge rep-
resentation, programming language abstractions, or analytical modeling. One would
then be in a position to determine the relative power of the various modeling frame-
works, and to translate more easily among them. This could be a powerful approach to
many of the comparative studies issues raised earlier, and would complement the first
order logic approach mentioned in that context.

Extensions

Extensions of the existing structured modeling framework are possible. One attrac-
tive possibility would be to allow attribute elements to have values that are specified .
only probabilistically. This would facilitate some types of stochastic modeling and
Monte Carlo simulation. Another possibility would be to allow an infinite number of
elements. This would, for example, allow a genus to represent a countable infinity of
time periods and thus permit modeling infinite time horizons explicitly rather than
implicitly.

Other extensions and refinements of a less radical nature may also be of interest. For
example, the syntax and semantics of generic calling sequences, range statements, index
set statements, and generic rules could be refined to facilitate expressing details that are
presently awkward or impossible to express. There is room for considerable variation
among implementations of structured modeling, and in fact beyond a certain level of
detail most syntax probably should be implementation-specific.

Designing extensions is an area calling for considerable discretion. The unbridled
pursuit of representational power in a modeling framework can easily lead to excessive
complexity, to a loss of previously available functionality, or to incompatibility with the
desirable features listed in §1.2. Often it is wiser to let the user of a modeling system
carry the burden of certain model details rather than to impose the burden on the
system.
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4.2 Model Design

Assuming one variant or another of a structured modeling framework, how should
one go about designing a model—particularly the generic and modular structure—for a
given practical application? It is always possible to design different structures that are
more or less equivalent for any particular situation, but not all of these are equally
useful. Some will have better properties than others. Principles are needed to help guide
the practitioner.

The interdisciplinary parallels noted at the outset suggest that it is useful to look to
neighboring fields for related ideas and results that can be adapted to the special needs
of structured modeling.

“Normal Form” Theory

Recall that designing a relational database schema is analogous to designing a struc-
tured modeling schema. The theory of functional dependency and “normal forms™ has
been developed to avoid troublesome insertion, deletion, and update anomalies for
relational databases (e.g., Chapter 7 of Ullman 1982). Are there similar issues to be
studied for structured modeling? Structured modeling appears to be relatively free of
such anomalies, but it remains to establish this formally and to devise countermeasures
for such cases as may exist. Farn (1985) was the first to examine this area.

Program and System Design Techniques

Recall that designing a computer program is analogous to designing a structured
modeling schema. Many criteria have been proposed for what constitutes a “good”
computer program, including these adapted from Yourdon and Constantine (1979):
clarity of intent, execution efficiency, correctness, maintainability, modifiability, flexi-
bility, and generality. Each of these has an obvious meaning in the analogous context of
structured modeling.

Computer scientists and experienced implementors have long pursued an under-
standing of how computer program and system design influences these and other
criteria. They have not hesitated to propose design techniques; among them are modu-
lar design, top-down design, structured design, Jackson’s method, HOS, SADT, and
others (e.g., Yourdon 1975 and Enos and Van Tilburg 1981). If much of this work is
pragmatic, stylistic, or otherwise subjective in character, this may be due to the inherent
difficulty of the task and does not necessarily reflect adversely on the utility of this
work. Some of these contributions can help inspire guidelines and techniques for
designing good structured modeling schemata.

Knowledge Base Design Techniques

Recall that designing a knowledge base is analogous to designing a structured model-
ing schema. Are there knowledge base design techniques that can be adapted to struc-
tured modeling?

Is it possible to design an expert system that can construct a rough structured model-
ing schema for a new situation?

4.3 Implementation Design

Turning structured modeling ideas into good computer implementations raises
many design challenges.

Language Design

How can the context-free schema language used in this paper be improved? Would
non context-free languages offer any advantages? Is a syntax-directed editor practical



582 ARTHUR M. GEOFFRION

(e.g., Reps, Teitelbaum and Demers 1983)? If so, this would significantly enlarge the
pool of potential users because nearly any language is much harder to write than
to read.

To consider just one topic in a little more detail, recall our intent to endow a
structured modeling system with ad hoc query capabilities in the tradition of database
management systems. We know that we can adopt virtually any relational database
query language since, as explained earlier, elemental detail tables can be viewed as a
relational database. But it should be possible to do better than that because a structured
modeling schema has much more semantic content than a relational database schema.
Thus an enticing topic is how to design a schema-directed query language and processor
that is both simpler to use and more powerful than whatever is adopted as the point of
departure from the realm of relational database systems. See Farn (1985) for an early
contribution along these lines.

Data Structures

Data structure design for elemental detail becomes important when, as is often the
case in medium to large-scale applications, the total number of elements is in the
thousands or higher.

User Interface

Is a fully graphic, rather than text-oriented, interface based on the genus graph
practical? The work of Jones (1985) seems particularly applicable here because it specif-
ically addresses attributed graphs (which, of course, is the basic mathematical formal-
ism of structured modeling).

Ease of use is a design objective of a structured modeling system because accessibility
to problem domain experts (managers, policy makers, etc.) and user productivity are
major goals. This suggests exploring how to exploit the availability of key phrases and
explicit definitional linkages in a schema in order to achieve something approaching
natural language dialog throughout the structured modeling system. Natural language
techniques from artificial intelligence could be useful. A promising approach along
these lines would be to apply the work of Sowa (1984) mentioned earlier.

Another desirable feature would be the ability to select automatically the most ap-
propriate solver depending on the particular query posed by the user and the mathe-
matical nature of the model. This poses some deep questions of problem recognition
and classification.

Solver Interface

Given a particular solver, how can it be installed in the solver library and interfaced
once and for all with the rest of the system?

The interface can take one of several forms. One is to provide for a nonprocedural
control table for the user to fill out whenever the solver is to be invoked. Another is to
make the interface fully automatic by constructing a program that can read any com-
patible structured model and construct the necessary solver inputs therefrom. Experi-
ments are under way with both approaches in the context of solvers for optimization.

If theoretical work on reconciling structured modeling with the knowledge represen-
tation frameworks of artificial intelligence is successful, then some new implementation
design issues arise: how to package Al solvers (for reasoning, question-answering, and
other purposes) for installation in the solver library, and how best to interface with
them. Any translation of a model representation that may need to occur should be
totally transparent to the user.
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Factorable Programming Technology for Derivatives

Expression evaluation is supposed to be a resident capability of a structured modeling
system and so is not ordinarily thought of as requiring a special solver. However, a
special solver may well be required if first and perhaps higher order derivatives are
desired for function element values viewed as functions of prior attribute element
values. McCormick (1983) has shown how to calculate such derivatives efficiently and
exactly if the functions in question are represented in so-called “factorable form™.
Roughly speaking, this means that each function must be expressed as compositions of
simple sums, products, and univariate transformations.

Lenard (1986) observed that, for many models, a structured modeling element graph
supplies the better part of the required factorable representations if a little care is
exercised when designing the model schema. Can this observation be implemented so
as to achieve efficient computation of derivatives with minimum inconvenience to the
modeler?

Continuous Time Models

Many models with continuous time dynamics require attribute and function element
values to be functions of time. Evaluation can then involve solving differential equa-
tions and taking integrals, and different kinds of solvers may then become necessary
(e.g., for optimal control) by comparison with those used for static or discrete time
models. This poses implementation design problems that have not yet been studied.

Data Flow Computers

It turns out that the element graph of a structured model is essentially equivalent to a
machine-level program for a data flow computer, a kind of parallel processing architec-
ture that overcomes some of the limitations of conventional von Neumann computers
(e.g., Ackerman 1982). This suggests that evaluation could be an extremely efficient
process on such a computer. Implementation design for structured modeling on data
flow computers is an attractive and untouched topic.

4.4 Model Management Systems

It has been recognized during the last decade that better computer-based systems are
needed to support modeling in organizations where there are many models and many
users. This situation raises important issues in the management of information re-
sources. A variety of approaches to these issues can be found in a rapidly growing
literature. See, for example, Dolk and Konsynski (1985) and Palmer (1984). An exten-
sive bibliography has been compiled by Blanning (1986).

It can be argued that a structured modeling system of the type envisioned here
provides the kernel of a model management system. Certainly this would be consistent
with the explicit design goal of supporting the entire modeling life-cycle, which typically
involves many people spanning different roles and interrelationships among different
models. It is straightforward to provide for multiple models in a “model library” and
for multiple solvers in a “solver library” as suggested at the end of §2.3. One can create a
structured model of the model library itself to categorize models by type, purpose,
users, files needed, and so on. One can do a similar thing for the solver library, the
system programs, and for the community of users. Such tools can help support the
essential managerial functions of model management. The first paper in this general
vein is Dolk (1986a).

Several new research topics are suggested by a structured modeling approach to
model management. Three are selected for mention here.
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Translators

There is a practical need to convert existing models, data, and associated materials to
and from the lingua franca of structured modeling. It is not realistic to expect structured
modeling to become the only language used. Cohabitation with other languages and
systems is inevitable. Thus translators are needed for conventional mathematics and
other modeling languages, data processing applications, and systems for information
management and decision support.

Data Acquisition Techniques

Data acquisition is a topic of importance to organizations with multiple data sources
on computer media. Can tools for data acquisition be designed so as to be schema-
directed, that is, able to acquire data that are based on inferred or user-supplied corre-
spondences between a model schema of interest and models describing the data
sources?

Formalizing Model Schema Operations

It may be possible to formalize the basic operations over model schemata used for
stepwise schema refinement, model comparison, model integration, and other kinds of
development or model management work. For example, an important operation is
joining two schemata together in such a way that equivalent genera are merged. Rela-
tively few operation types probably account for most of the operations performed in
practice. Formalization could bring orderly thought to many activities that would
otherwise be ad hoc, and could lead to improved computer-based support for important
classes of activities.

There are at least three possible approaches to formalization. First, take a tree manip-
ulation approach based on modular structure. Second, take a graph grammar approach
based on an attributed graph view of structured modeling (cf. Jones 1985). Third, take a
formation rule approach based on a semantic network view of structured modeling (cf.
§83.5 and 3.6 of Sowa 1984). All three deserve exploration.

5. Conclusion

Structured modeling is a style intended to support high quality model-based work
with greater productivity and user acceptance. To achieve this objective it will be
necessary to develop professional quality modeling environments based on these ideas
and to produce cogent pedagogical materials for practitioners. These materials should
also explain how to use structured modeling ideas in conjunction with conventional
software.

A prototype structured modeling system is at an advanced stage of development, and
is described in a forthcoming report. Its aim is to help guide the way toward professional
quality software for structured modeling. It has already helped to refine the original
vision of a computer-based structured modeling environment and will continue to shed
light on a variety of issues as new features are added and experience with it accumulates.
Two earlier prototypes by Clemence (1984) and Farn (1985) have also been useful.

The development of pedagogical materials for practitioners is still in its early stages.
Nevertheless, a few pioneers have already undertaken development work aimed at
practical application.

It is too early to say whether systems based on structured modeling will succeed in
providing the answer to some of the problems and opportunities facing MS/OR and
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kindred communities. Whatever the outcome, we submit that the eight design objec-
tives of §1.2 merit serious attention by designers of new systems.

Serious attention is also merited by the striking interdisciplinary parallels pointed out
in §4 between analytical modeling, database management, programming languages and
software engineering, and artificial intelligence. Cross-fertilization is a most attractive
undertaking. Progress in any of these fields informs the others.

The challenges of trying to conceive and bring into being a new generation of model-
ing systems are exciting and important. However, one should keep in mind that lan-
guage influences how people think. Any coherent modeling system provides a “lan-
guage” for modeling, and so must influence how its users think when modeling or
doing model-based analysis. We saw in §3, for example, that a structured modeling
system leads naturally to top-down and integrated approaches to model design, and to
certain styles of communication with lay audiences. Are these influences truly benefi-
cial? What other, perhaps less apparent, influences are there? We need to understand
these issues in the broad context of rational approaches to mankind’s organized activi-
ties, not only for structured modeling, but also for alternative modeling approaches.
This is the true challenge of making modeling more of a science.'

! T acknowledge with gratitude the substantial assistance and encouragement provided by many colleagues
and students, including G. Bradley, S. Chari, R. Clemence, D. Dolk, C. K. Farn, J. Jackson, C. Jones, M.
Lenard, J. Mamer, S. Maturana, Y. Tsai, and G. Wright. ’

My debt extends to the National Science Foundation and the Office of Naval Research for supporting this
work since its inception, to the Naval Personnel R&D Center, and to Hewlett-Packard and IBM for their
generous grants to the UCLA Graduate School of Management. The views contained in this report are mine
and not to be attributed to the sponsoring agencies.

Appendix: Some Formalities

A forthcoming technical report presents the concepts of structured modeling in numerous formal defini-
tions, proves basic theoretical results, and develops in detail the nongraphical (text and table based) notational
conventions sketched in §2.2.

This appendix quotes selected formal definitions and propositions from this report. This serves: (a) to
answer questions that may arise from the informal definitions given in §2.1 and 2.2 of this paper, (b) to supply
certain details not given in §2, and (c) to facilitate comparing structured modeling with alternative modeling
approaches.

A primitive entity element is undefined mathematically.

A compound entity element is a segmented tuple of primitive entity elements and/or other compound entity
elements. (A “segmented tuple” is a finite nonempty ordered list whose components are partitioned in a
contiguous way.)

An attribute element is a segmented tuple of entity elements together with a unique value in some range.

A function element is a segmented tuple of elements together with a rule that associates a unique value in
some range to this tuple—more precisely, in the case of nonentity elements, to the value of these elements
provided these values fall within a prescribed domain.

A test element is like a function element, except that it has a two-valued range {True, False}.

The segmented tuple portion of an element is called its calling sequence. An element B is said to call another
element A if A appears in B’s calling sequence. A calling sequence segment has the obvious definition.

A collection of elements is closed if, for every element in the collection, all elements in the calling sequence of
that element are also in the collection.

A closed collection of elements is acyclic if there is no sequence {E1, E2, . . . , En— 1, E1} such that E1
calls E2, E2 calls E3, . . . , En — 1 calls En = E1, where n > 2 and the elements of the sequence are not
necessarily distinct.

An elemental structure is a nonempty, finite, closed, acyclic collection of elements.

A generic structure is defined on an elemental structure as a collection of partitions, one for each of the five
types of elements. The resulting mutually exclusive and exhaustive element sets are called genera (plural of
genus). '

A generic structure satisfies the generic similarity property if the following is true for every genus other than
primitive entity genera: every element in the genus has the same number of calling sequence segments and all
calls in a given segment are to the same genus; moreover, each segment calls the same genus for every element.
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A modular structure is defined on a generic structure as a rooted tree whose terminal nodes are in 1:1
correspondence with the genera. The nonterminal nodes are called modules. The default modular structure
corresponds to the simplest possible such rooted tree, namely the one with only one module (the root).

A monotone ordering of a modular structure defined on a generic structure satisfying similarity is specified by
an order for each sibling set. These orders are extended in the usual way to obtain a strict partial order over all
nodes except the root whereby any two nodes can be compared so long as neither lies on the rootpath of the
other. This partial order is monotone in the following sense: if genus B calls genus A and A and B are
descendents of distinct sibling nodes #1 and #2 respectively (A = #1 andfor B = #2 permitted), then #1 comes
“before” #2 in their sibling order.

A structured model is an elemental structure together with a generic structure satisfying similarity and a
monotone-ordered modular structure.

The modular outline of a monotone-ordered modular structure is the indented list representation corre-
sponding to the preorder traversal.

The element graph of an elemental structure is an attributed directed graph with a node for every element
and an arc from element B to element A if element A calls element B. Every node has an attribute denoting its
type (primitive entity, compound entity, attribute, function, or test). Every non-entity node has another attri-
bute giving its value, every attribute node has another attribute giving its range, and every function and test
node has an attribute giving its rule. Every arc has two attributes; the first identifies the calling sequence
segment to which it corresponds, and the second identifies its position within the segment.

The genus graph of a generic structure satisfying similarity is a directed graph with a node for every genus
and an arc for every segment of every genus (primitive entity genera excepted) directed from the genus being
called to the calling genus.

A model schema is any prescribed class of structured models that satisfies isomorphism in this sense. given
any two models in the class, their modules and genera can be placed in 1:1 correspondence in such a way that
(a) adjacency is preserved in the modular structure trees, and (b) corresponding genera have the same number
of calling sequence segments and call corresponding genera from each segment.

The following propositions give some of the basic theoretical results associated with the above concepts,
with a minimum of commentary.

PROPOSITION. In an elemental structure with a generic structure satisfying similarity, no element calls
another element in the same genus.

PROPOSITION. Genus graphs are always acyclic.

A well-known property of acyclic directed graphs is that their nodes can be classified uniquely into ranks
such that nodes of rank r (> 1) have incoming arcs only from nodes of lower rank including at least one node
ofrank r — 1.

Element and genus graphs can be ranked, for both are acyclic. The next result asserts that these rankings are
consistent when viewed in terms of elements. One consequence of this fact is that no partition of elements
comprising generic structure may put together elements of different type or elemental rank, if generic similarity
is to hold.

PROPOSITION. Consider an elemental structure together with a generic structure satisfying similarity. The
rank of any element based on the element graph is identical to the rank of the element’s genus based on the
genus graph.

The next result gives a key property of the modular outline.
PROPOSITION. If genus B calls genus A in a structured model, then A comes before B in the modular outline.

Consider an elemental structure, together with a generic structure satisfying similarity and a modular
structure. It is natural to wonder about the existence of a monotone ordering and how to construct one, for
without a monotone ordering there can be no structured model. The following result gives one of two known
characterizations of when a monotone ordering exists. The characterization as stated is theoretical, but the
proof provides a simple and constructive method (that has been implemented) for determining monotone
orderings when they exist.

PROPOSITION (excerpt). Consider an elemental structure, together with a generic structure satisfying simi-
larity and a modular structure. A monotone ordering exists if and only if the following condition holds: for every
sibling set of the modular structure tree, there is no sibling sequence {S1, S2, . . ., Sn — 1, S1} such that some
genus descendent of S1 calls some genus descendent of S2, some genus descendent of S2 calls some genus
descendent of S3, . . . , some genus descendent of Sn — 1 calls some genus descendent of Sn = S1, wheren> 2
and the siblings in the sequence are not necessarily distinct.
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A similar issue arises relative to the situation where no modular structure is given. It follows from the second
and last propositions that, given an elemental structure together with a generic structure satisfying similarity,
the default modular structure always has a monotone ordering.
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