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INTEGER PROGRAMMING ALGORITHMS: A FRAMEWORK AND
STATE-OF.THE-ART SURVEY *{

A. M. GEOFFRION AND R. E. MARSTEN{
Unwversity of California, Los Angeles

A unifying framework is developed to facilitate the understanding of most known
computational approaches to integer programming. A number of currently opera-
tional algorithms are related to this framework, and prospects for future progress are
assessed.

I. Introduction

This paper was written with two complementary purposes in mind. The first is to
undertake a survey of existing general purpose integer linear programming algorithms
that have been implemented with a notable degree of computational success. The sec-
ond is to explain a general algorithmic framework for integer programming that we
have found quite useful in organizing our understanding of the field.

We have tried to make this paper accessible to as wide an audience as possible by
keeping the exposition elementary. Readers wishing to delve more deeply will find
suitable references throughout the text. In addition, there are the excellent previous
surveys [8], [10], and [9], and also such general frameworks for enumerative type al-
gorithms as [1], [6], [16], [48], [59], and [62].

The proposed general framework is presented in §1I, after a discussion of the three
underlying concepts on which it is based: separation, relaxation, and fathoming. No
claim is made for the originality of these concepts; they appear, either explicitly or
implicitly, in many of the references just mentioned. What distinguishes the present
treatment is perhaps mainly in the realm of emphasis—especially the central role
assigned here to the use of relaxation—and the recognition that one framework serves
equally well for algorithms of both enumerative and nonenumerative type.

§IIT surveys selected current algorithms. In each case it is indicated how the al-
gorithm fits into the general framework, with digressions as necessary to explain any
new features of general interest. Computational experience is then cited. The algorithms
are grouped according to whether they are based primarily on enumeration (§3.1),
Benders Decomposition (§3.2), cutting-planes (§3.3), or on group theory (§3.4).
Regrettably, space does not permit discussion of a number of effective algorithms
proposed recently for special applications such as vessel scheduling [3], facilities loca-
tion [21], and crew scheduling [52]. A review of numerous specialized algorithms can
be found in [9].

§IV attempts to summarize the current state-of-the-art for integer programming,
and presents some opinions regarding promising directions for the future development
of the field.

Throughout this paper, the canonical statement of the mixed integer linear pro-
gramming problem is taken to be

Minimize, z0;p20 €T+ dy

MIP .
( ) subject to Cx + Dy < b, x integer,

* Received March 1971.

t This research was supported by the National Science Foundation under Grant GP-26294.
An earlier version was presented at the Third Operations Research Symposium, jointly sponsored
by CPPA and TAPPI, Montreal, Quebec, August 24-26, 1970.

} Now at Northwestern University.
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where C and D are matrices and ¢, d, b,  and y are vectors of appropriate dimen-
sions. By taking d and D to be null, this problem specializes to the ‘“pure integer”’
linear program. It will be assumed for simplicity that the feasible region of (MIP)
is bounded if it is not empty.

II. A General Framework

The general algorithmic framework is built upon three key notions: separation,
relaxation, and fathoming. Each of these is discussed in turn before the general frame-
work itself is presented.

2.1. Separation

For any optimization problem (P), let F(P) denote its set of feasible solutions.
Problem (P) is said to be separated into subproblems (Py), - - -, (P,) if the following
conditions hold:

(S1) Every feasible solution of (P) is a feasible solution of exactly one of the sub-
problems (P4), -+, (P,).

(82) A feasible solution of any of the subproblems (P), ---, (P,) is a feasible
solution of (P).

These conditions assert that F(Py), ---, F(P,) is a partition of F(P). The sub-
problems (Pj), ---, (P,) are called descendants of (P). Creating descendants of the
descendants of (P) is equivalent to refining the partition of F(P).

Our interest in separation is that it enables an obvious divide-and-conquer strategy
for solving (P). Leaving aside for a moment the important question of how one sepa-
rates a problem that is difficult to solve, we can sketch a rudimentary strategy of this
type as follows. First make a reasonable effort to solve (P). If this effort is unsuc-
cessful, separate (P) into two or more subproblems, thereby initiating what will be
called a candidate list of subproblems. Extract one of the subproblems from this list—
call it the current candidate problem (CP)—and attempt to solve it. If it can be solved
with a reasonable amount of effort, go back to the candidate list and extract a new
candidate problem to be attempted; otherwise, separate (CP) and add its descendants
to the candidate list. Continue in this fashion until the candidate list is exhausted.
If we refer to the best solution found so far to any candidate problem as the current
incumbent, then the final incumbent must obviously be an optimal solution of (P)
(if all candidate problems were infeasible, then so is (P)).

The finite termination of such an approach is obviously assured if F(P) is finite
[provided that there is a finite limit on the number of times a degenerate separation
of a candidate problem can occur due to all but one descendant being infeasible].
The usefulness of this strategy depends, of course, upon a sufficient level of success
at solving the candidate problems without further separation. Considerable subse-
quent discussion will be addressed to this point.

The most popular way of separating an integer programming problem is by means
of contradictory constraints on a single integer variable (the separation or branching
variable). For example, if x, is declared to be a binary variable, then (MIP) can be
separated into two subproblems by means of the mutually exclusive and exhaustive
constraints “x; = 0" and “x; = 1”. For general integer variables there are other
possibilities. For example, if x5 is declared to be an integer between 0 and 4, then the
constraints x; = 0, x5 = 1, 5 = 2, x5 = 3, 5 = 4 are mutually exclusive and ex-
haustive, as are 0 < x; < 2, 3 < 25 < 4. Several possible rules for choosing the in-
teger variable on which the separation should be based will be mentioned in §III.
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Sometimes special problem structure can be exploited by devising more powerful
separation techniques. Beale and Tomlin [12] report success along these lines for
problems containing ‘“multiple choice” constraints such as @1 + 2 + 23 + @ + x5 =
1, where each of the variables is binary. A separation can be effected here by mutually
exclusive conditions of the sort x; + @, + x3 = 0, x4 + 25 = 0. In this case the free-
dom of several variables is restricted simultaneously.

2.2. Relaxation

Any constrained optimization problem (P) can be relaxed by loosening its con-
straints, resulting in a new problem (Pg). For example, one may simply omit some of
the constraints of (P). Other possibilities for relaxation include dropping the integral-
ity conditions or the nonnegativity conditions on the variables of (P). The only re-
quirement, for (Pg) to be a valid relaxation of (P) is: F(P) C F(Pg). This defining
property of relaxation trivially implies the following relationships, where, by conven-
tion, (P) is taken to be a minimization problem:

(R1) If (Pg) has no feasible solutions, then the same is true of (P).

(R2) The minimal value of (P) is no less than the minimal value of (Pg).

(R3) If an optimal solution of (Pg) is feasible in (P), then it is an optimal solu-
tion of (P).

In selecting between alternative types of relaxation for a given problem, there are
two main criteria to be considered. On the one hand, it is desirable for the relaxed
problem to be significantly easier to solve than the original. On the other hand, for
reasons that will become clear, one would like (Pg) to yield an optimal solution of (P)
via (R3) or, failing that, the minimal value of (Pz) should be as close as possible to
that of (P). Unfortunately these objectives tend to be antagonistic. In general, the
easier (Pg) is to solve, the greater is the ‘“‘gap’” between the original and relaxed prob-
lems.

In §III the principal relaxation techniques used in integer programming will be
illustrated by reference to various algorithms. By far the most popular type of re-
laxation for an integer linear program is to drop all integrality requirements on the
variables. The resulting ordinary linear program is often an excellent compromise
between the two criteria mentioned above. A number of other interesting types of
relaxation can be gleaned, for instance, from [40], [42], [60], [75], [76]. A discussion
of the role of relaxation in continuous mathematical programming can be found in
[30, §3.3].

2.3. The Fathoming Criteria

In §2.1 a simple divide-and-conquer strategy based on the notion of separation
was briefly sketched. A sequence of candidate problems must be examined, and when-
ever one of them cannot be solved with a reasonable amount of effort, it must be
separated and its descendants must be examined subsequently. Use of the vague
phrase ‘‘reasonable amount of effort”’ was deliberate, for the success of the strategy
depends to a great extent on the judicious choice of how and how hard to try to solve
each candidate problem. It is in this regard that the concept of relaxation plays an
important role; rather than trying to deal with the candidate problem itself, one deals
instead with some relaxation of it. The so-called fathoming criteria introduced below
are an attempt to clarify and formalize this role.

Let (CP) be a typical candidate problem arising from the attempt to solve (P).
The ultimate objective in dealing with (CP) is to determine whether its feasible region
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F(CP) may possibly contain an optimal solution of (P) and, if so, to find it. If it
can be ascertained by some means that F(CP) cannot contain a feasible solution
better than the incumbent (the best feasible solution yet found), this is certainly
good enough to dismiss (CP) from further consideration, and we say that (CP) has
been fathomed. Or if an optimal solution of (CP) can actually be found, we also say
that (CP) has been fathomed. In either case, the candidate problem has been entirely
accounted for and can be discarded without further separation.

It is useful to distinguish three general types of fathoming, all of them based on
relaxation. We shall suppose that a particular relaxation (CPg) of the candidate
(CP) has been decided upon and that (CPz) has been solved. All problems are to
minimize, »(-) denotes the optimal value of problem (-), and Z* is the value of the
incumbent (let Z* = + oo if no feasible solution of (P) has yet been found).

If (CPy) has no feasible solution, then by (R1) the same is true of (CP). Thus
F(CP) is empty and cannot possibly contain an optimal solution of (P). In this event
(CP) is certainly fathomed.

Secondly, if

(1) o(CP) = Z*

then F(CP) cannot possibly contain a feasible solution of (P) better than the in-
cumbent. Unfortunately, »(CP) is unknown, but »(CPg) is known and by (R2) we
have »(CP) = v(CPg). It follows that (CP) has been fathomed if

(2) o(CPR) = Z*.

Note that it is possible to have »(CP) = Z* > v(CPz), so that condition (1) is
satisfied but condition (2) is not satisfied. In this case the outcome of (CPg) will not
permit discarding (CP). It now becomes evident why, as mentioned earlier, it is de-
sirable to have v(CPg) as close to »(CP) as possible.

Thirdly, suppose that an optimal solution of (CPz) has been found which happens
to be feasible in (CP). Then by (R3) this solution must be optimal for (CP) and hence
(CP) is fathomed. By (82), of course, it is also feasible in (P) and so becomes the
new incumbent if its value is less than Z*.

The above discussion can be summarized and slightly generalized in terms of three
fathoming criteria. Candidate problem (CP) is fathomed if any one of these criteria
is satisfied.

(FC1) An analysis of (CPg) reveals that (CP) has no feasible solution; e.g.,
F(CPr) = &.

(FC2) An analysis of (CPg) reveals that (CP) has no feasible solution better
than the incumbent; e.g., »(CPz) = Z*.

(FC3) An analysis of (CPg) reveals an optimal solution of (CP); e.g., an optimal
solution of (CPp) is found which happens to be feasible in (CP).

Among the various algorithms that have been proposed, there is considerable
variation in the kinds of ‘“analysis” actually employed to implement these criteria.
The standard analysis, which conforms to the discussion above, is to solve (CPg)
optimally and then check whether F(CPz) = & or v(CPr) = Z* or the optimal solu-
tion obtained for (CPy) is feasible in (CP). But there are deviations from this norm
in both directions. Some algorithms do not go so far as to solve (CPg) optimally,
but merely employ sufficient conditions for the tests F(CPz) = & and v(CPz) = Z*
(e.g., any lower bound #(CPg) on v(CPgr)—say a good suboptimal solution of the
dual problem if (CPp) is a linear program—Ieads to the sufficient condition §(CPr) =
Z*). Other algorithms not only go so far as to solve (CPz) optimally, but continue



INTEGER PROGRAMMING ALGORITHMS: A SURVEY 469

the analysis even further in an effort to account at least partially for whatever “gap”
there may be between (CP) and (CPg). As we shall see in §III, when (CP;g) is a
linear program this further analysis is often a kind of postoptimality study aimed at
finding a better lower bound #(CP) on the value of (CP) than v(CPg) itself; the test
#(CP) = Z* is then stronger than the standard test »(CPz) = Z*.

There are two alternative courses of action that may be taken if a particular re-
laxation (CPg) of (CP) does not pass any of the fathoming criteria. The first is
to separate (CP) immediately and add its descendants to the candidate list. The
second alternative is to persist in trying to fathom (CP), as by choosing a new relaxa-
tion (CPg'). For example, some previously ignored constraints can be reimposed.
Each new relaxation provides another chance to pass one of the fathoming criteria.
The relaxation of (CP) can be modified as many times as desired, but if it appears
that too much time is being expended on this one candidate problem, a switch ought
to be made to the first alternative—separation.

2.4. General Procedure

The ingredients of a general procedure for solving (MIP) are now at hand. A flow-
chart is given in Figure 1.

Step 1. Initialize the candidate list to consist of (MIP) alone, and Z* to be an
arbitrarily large number.

Step 2. Stop if the candidate list is empty: if there exists an incumbent then it must
be optimal in (MIP), otherwise (MIP) has no feasible solution.

Step 3. Select one of the problems from the candidate list to become the current
candidate problem (CP).

Step 4. Choose a relaxation (CPg) of (CP).

Step 5. Apply an appropriate algorithm to (CPp).

Step 6. Fathoming Criterion 1. If the outcome of Step 5 reveals (CP) to be infeas-
ible (e.g., F(CPr) = &), go to Step 2.

Step 7. Fathoming Criterion 2. If the outcome of Step 5 reveals that (CP) has no
feasible solution better than the incumbent (e.g., »(CPz) = Z¥), go to Step 2.

Step 8. Fathoming Criterion 3. If the outcome of Step 5 reveals an optimal solution
of (CP) [e.g., an optimal solution of (CPpg) is feasible in (CP)], go to Step 12.

Step 9. Decide whether or not to persist in attempting to fathom (CP). If so, go
to Step 10; otherwise go to Step 11.

Step 10. Modify (perhaps by tightening) the relaxation of (CP) and return to
Step 5.

Step 11. Separate (CP) and add its descendants to the candidate list. Go to Step 2.

Step 12. A feasible solution of (MIP) has been found; if v(CP) < Z*, record this
solution as the new incumbent and set Z* = »(CP). Go to Step 2.

Remarks. Step 1. Prior knowledge about (MIP) can be used to improve the (de-
fault) initializations given above for Step 1. One may know an upper bound Z, on
the optimal value of (MIP), for example, in which case initializing Z* to the value Z,
will cause the procedure to look only for solutions with value less than Z, . One may also
have reason to prefer starting with an initial candidate list obtained by making cer-
tain prior separations of (MIP). This too is permissible, and simply leads to an initial
candidate list with more than one member.

Step 2. If Z* was initialized at Z, rather than an arbitrarily large number, the ab-
sence of an incumbent upon termination should be interpreted as proof that (MIP)
has no feasible solution with value less than Z, .

Step 3. Different rules for selecting the next candidate problem lead to different
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Figugre 1. A general procedure.

patterns of enumeration. Two main types of rules have been employed, as will be
illustrated in the next part of this paper: Last-In-First-Out (LIFO) and Priority.
Under LIFO, the problem selected is always the last one that was added to the candi-
date list. The two main advantages are that the bookkeeping associated with main-
taining the candidate list can be done very compactly, and reoptimization at Step 5
is greatly facilitated (see the remark on Step 5 below). The main disadvantage is that
there is less flexibility to control the enumerative process; occasions do arise when
some older problem in the candidate list may look more promising. Priority rules,
on the other hand, achieve flexibility by selecting the problem with the best priority
index, where the index for each problem may be given by (or be computed from) a
tag affixed at the time of creation. The tag may be, for instance, a lower bound on the
optimal value. Unfortunately, such flexibility must be purchased at the price of more
cumbersome bookkeeping and lessened opportunity to reoptimize efficiently at Step
5. The most effective rules for Step 3 therefore strike a balance between the LIFO
and Priority extremes.

Step 4. It is conceivable that (CPg) is so relaxed by comparison with (CP) that
it has unbounded optimal value. Since the feasible region of (MIP) was assumed
bounded, however, we may guarantee without loss of generality that (CPg) is like-
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wise bounded by including adequately large bounds on the variables of (CPp) if
necessary.

Step 5. It is important not to solve each candidate problem from scratch, but
rather to update earlier solutions efficiently whenever possible. Whether this is prac-
tical depends on the type of algorithm used for this step and on the choices made at
Steps 3, 4, and 11. Note that it may not always be necessary to solve (CPz) completely,
since the sufficient conditions employed to implement Steps 6, 7 and 8 may be de-
signed to operate with less information than an optimal solution of (CPg).

Steps 6, 7, and 8. It bears emphasis that one need only apply convenient sufficient
conditions at these steps, for to fathom with absolute certainty could be computa-
tionally onerous. The order of these steps is not at all rigid. In fact, it is best to con-
ceptualize Steps 5 through 8 as a single unit devoted to the attempted fathoming of
(CP).

Step 9. A very simple rule would be: give up after a certain number of unsuccessful
attempts to fathom (CP). A more sophisticated stopping rule could be based on the
apparent rate of progress toward an optimal solution of (CP).

Step 12. An additional function can be performed if an improved feasible solution
of (MIP) has been found and the problems in the candidate list are tagged with
lower bounds on their optimal values: purge the list of those problems whose lower
bounds are not smaller than the new Z*, for they obviously cannot contain a feasible
solution better than the new incumbent.

This general procedure admits a great deal of flexibility, as will be evident from the
diversity of algorithms discussed in the next section. It should also be clear that,
although the scope of this paper is confined to integer linear programs, the framework
given here extends readily to integer nonlinear programs and many other combina-
torial optimization problems that do not have a natural or efficient mathematical
programming formulation.

III. Current Algorithms

We now consider a number of recent general purpose algorithms whose computa-
tional effectiveness has been empirically demonstrated for medium-to-large problems.
Each algorithm is described in terms of the general framework, with digressions as
necessary to explain novel features of general interest. Computational experience is
cited, most of which is as yet unpublished.

First a number of enumerative (implicit enumeration, branch-and-bound) al-
gorithms are covered, including those of [23], [61] (OPHELIE MIXED), [14] (MPSX-
MIP), [69], [70] (UMPIRE), [29] (RIP30C), [22], [58], and [43] (MARISABETH).
Benders Decomposition is explained in the next section, and computational results
from [2] (MIDAS-2), [19] (FMPS-MIP), and [51] (IPE) are reported. In §3.3 the
cutting-plane approach is briefly discussed, including computational results from
[55], [56]. We treat the group theory approach in a manner strongly influenced by
[39] (IPA).

Any omissions of computationally successful general purpose codes should be inter-
preted as due to lack of information on our part, rather than as the exercise of per-
sonal opinion.

The reader is cautioned to interpret the numerical results quoted here with care,
especially when it comes to making effectiveness comparisons between different al-
gorithms. The figures quoted here are believed accurate, but the description of the
problems run and the manner in which each code was actually operated are neces-
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sarily incomplete. Taken in the aggregate, however, the results reported do give a
fairly good feeling for the current state-of-the-art.

3.1. Enumerative Algorithms

By “enumerative” algorithms we mean to include all those which come under the
popular headings of “‘implicit enumeration” and ‘“branch-and-bound.” Such algorithms
methodically search the set of possible integer solutions in such a way that not all
possibilities need be considered individually.

It seems natural to classify enumerative algorithms into two categories: those which
base their fathoming tests primarily on the logical implications of the problem con-
straints, and those which base them primarily on associated linear programs (derived
by ignoring integrality requirements). The first category of algorithms, applicable
only to all-integer problems, was stimulated in this country to a great extent by
Balas [4]. Work in this vein includes [28], [33], [41], [49], [74], and many more. Although
there have been some notable successes in solving problems of very special structure
(e.g., [26], [44], [60]), it appears that in general computing times tend to increase
approximately exponentially with the number of variables. This is undoubtedly the
reason why, so far as we know, no computer code for an algorithm of this type has
yvet proven to be of general practical utility.

The other category, however, has spawned a number of computer codes of general
utility for mixed as well as pure integer programs. Work employing linear program-
ming as the primary fathoming device was stimulated by the seminal contribution of
Land and Doig [46]. Before discussing several recent developments in this vein, it will
be useful to review the generally superior variant of the Land and Doig algorithm
proposed by Dakin [20].

The following summary indicates how Dakin’s algorithm for (MIP) fits into the
general framework.

Algorithm of Dakin.

Step 1. Standard.

Step 2. Standard.

Step 3. LIFO rule.

Step 4. Relax all integrality requirements.

Step 5. Solve by a linear programming algorithm.

Step 6. Standard.'

Step 7. Standard.'

Step 8. Standard.!

Step 9. Always go to Step 11.

Step 10. Omit,.

Step 11. Dichotomize the current candidate problem via the alternative constraints
z; £ [£;] and z; = [;] + 1, where Z; is a fractional-valued z-variable in the solution
found at Step 5.° See the text for the particular rule used to select the separation
variable and the order in which the new candidate problems are added to the list.

Step 12. Standard.

Step 11 is one of the main respects in which the various enumerative algorithms
differ. Dakin’s interval dichotomization constraints have been widely adopted, but
many other ways have been suggested for selecting the variable on which to base the

! The ‘““standard’’ option for this step is always the parenthetical one given in §2.4.
2 [x] stands for the integer part of x.
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separation, and the order in which to add the new candidate problems to the list
(when this matters). Dakin selected the separation variable by first estimating, for
each alternative constraint of each fractional-valued variable, the amount by which
the optimal value of the current linear program would increase if the constraint were
introduced. The estimate used was the increase that would actually occur during the
very first dual simplex method iteration, assuming that this method is used for reop-
timization. The separation variable selected is the one corresponding to the largest
such estimate, with the corresponding new candidate problem being placed on the
list last (after its alternative).

For computational experience with this basic algorithm, see the original paper by
Dakin, [15], and [73].

3.1.1. Davis, Kendrick and Weitzman [23] and Penalties. The “estimates’ used at
Step 11 by Dakin contain the essence of an important development commonly known
as penalties. Widespread appreciation of the significance of penalties followed the
publication of [24], which gave an independent development in the context of a quite
rudimentary enumerative scheme. We prefer to describe here the work of Davis,
Kendrick and Weitzman (DKW), however, since they gave one of the first system-
atic developments of penalties in the context of a powerful enumerative scheme.

The DKW paper addresses mixed integer programs in which all integer variables
are binary. In terms of the general framework, its outline would be the same as that
given above for [20] except for Steps 3, 7 and 11. Leaving aside for a moment the
details of computing and using penalties, these three steps can be described in general
terms as follows.

Step 3. Select the candidate problem with the smallest associated bound (see
Step 11).°

Step 7. If v(CPr) + PEN(CPy) = Z* go to Step 2.

Step 11. Dichotomize (CP) in the manner of Dakin. The variable selected is the
one with the greatest ‘“up penality” or “down penalty’’; the associated bounds of
the two descendants are »(CPg) plus the appropriate penalties.

Encouraging computational results have been obtained for a number of test prob-
lems. The largest of these, having to do with hospital scheduling, had 197 constraints,
217 continuous variables, and 100 0-1 variables; it was solved in 5% minutes on an
IBM 7094. More recently, it is reported [27] that an investment planning model for
the electric power industry with 290 constraints, 410 continuous variables, and 92
binary variables was solved in 21 minutes on an IBM 360/85.

It remains now to discuss the penalties referred to above. The key fact is that an
optimal linear programming tableau contains information that enables an estimate to
be readily constructed of the amount by which the optimal value would change if any
one of the variables were forced to assume a particular integer value. The situation
can be visualized in terms of the following figure, which depicts the optimal value of a
minimizing linear program—say the one solved at Step 5—as a function, V;(z;),
of the value of z; considered as a parameter. It is well known and not difficult to
show that V;(z;) is a convex piecewise-linear function attaining its minimum at
Z;, the optimal value of x; in the linear program. (Although this possibility is not
illustrated, it is possible for the linear program to become infeasible for x; too large

# DKW also suggested the following modification: if no feasible integer solution has yet been
found and separation has just taken place (rather than fathoming), limit the selection to the two
problems just created (choose the one with the smallest associated bound).



474 A. M. GEOFFRION AND R. E. MARSTEN

,, Iv"], (x],)
’

V.(1)
]

V,(0)

4,

V(&)
P

FIGURE 2

or too small; in this case V;(z;) could be considered as having infinite value.) Desig-
nate by m; (—mo) the right-hand (left-hand) derivative or slope of V', at the point
T; . These derivatives can usually be computed directly from the optimal tableau,
and enable estimation of V;(0) and V;(1) by linear extrapolation. The resulting
estimate of V;(0) is V,;(Z;) 4+ meZ;, which happens to equal the true value in this
case. The estimate of V;(1) is V;(Z;) + mi(1 — &;), which undershoots the true
value. In general, by convexity these estimates can never exceed the true values.
The quantity meE; will be denoted by ¢i(j) and called the simple down penalty
associated with x; ; mi(1 — Z;) will be denoted by ¢:(j), the simple up penalty.

Clearly ¢.(j) = 0 and Vj(u) = Vi(Z;) + ¢.(j) for all j and v = 0 or 1. Further-
more, since V; must increase by at least Min {qo(j), ¢1(7)} if x; is to be an integer,
the optimal value of the linear program must increase by at least

PEN & Max; {Min {¢g(5), :(j)}} = 0

for any solution that is all integer.
This analysis directly yields the improved version of Step 7 given above for DKW,
since

v(CP) 2 v(CPr) + PEN(CPr) 2 v(CPp)

(the new notation makes explicit the dependence of PEN on (CPg)).

Before discussing the use of penalties at Step 11, we mention one rather obvious
further use of penalties at Step 7. Even if v(CPr) + PEN(CPr) < Z¥ it is still
possible to have v(CPr) + ¢a(§) = Z* for some 7 and @ = 0 or 1. In this case the
variable x; can be fixed at the value 1 — 4 in the current candidate problem and in
any of its descendants.

At Step 11 one computes Max; {Max {q(J), ¢i(7)}}. If ga(r) achieves this maxi-
mum, then z, is chosen to be the separation variable. A lower bound on the optimal
value of the descendant associated with x, = 4 is »(CPg) + qa(r), while one asso-
ciated with the other descendant is v(CPg) + PEN(CPgr) [note that while

v(CPgr) + qa(r)
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is also a valid lower bound, the given bound is superior since
q-2(7) = Min {go(7), (1)} = PEN(CPr)].

1.2. OPHELIE MIXED (Roy, Benayoun and Tergny [61]). The algorithm de-
scribed in [61] is quite close to the DKW algorithm just described. The only dis-
cernible differences are in the elaborate heuristics used at Steps 3 and 11.

Step 3 mainly uses the priority rule of selecting the candidate problem with the
most promising bound, but secondary criteria are also employed to take into con-
sideration the probable ease with which a given candidate problem could be reop-
timized and the plausibility of the associated bounds (e.g., the more variables fixed
the better the likely quality of the bound).

Step 11 is done in the manner of DKW, except that the choice of separation variable
may be limited to a set determined by a ‘hierarchy graph” reflecting the analyst’s
opinions concerning the relative importance of different variables.

The algorithm has been commercially implemented for the CDC 6600 as OPHELIE
MIXED by SEMA using the OPHELIE II linear programming system for Step 5.
Table 1 quotes some unpublished results obtained from private sources. In inter-
preting the computing times, all on the CDC 6600, it should be kept in mind that
customer billing is done on the basis of “system seconds” (SS), which is central proc-
essing (CP) seconds plus {IO seconds X fraction of central memory used}. System
seconds is therefore the best measure of efficiency. See also the extensive published
computational results in [61].

3.1.3. MPSX-MIP (Bénichou et al. [14]). The algorithm employed in [14] coincides
with that of Dakin in its essentials except for Steps 3 and 11. Step 3 employs a com-
promise LIFO/Priority strategy, while Step 11 makes use of a preconceived priority
order for selecting the separation variable. More specifically, the version of these steps
used in most of the computations is as follows.

Step 3. Select a problem from among those designated “Class 2” if possible; other-
wise, from among those designated ‘“Class 1”’; if both of these classes are empty,
select from the remaining unclassified problems. When selecting from Class 2, the
choice is arbitrary; when from Class 1, select the problem with the best ‘“‘estimation”
(see below), redesignate both this problem and its alternative (the one created at
the same execution of Step 11—it has the same estimation) as Class 2, and cancel
any remaining Class 1 designations; in selecting from the problems with no class desig-
nation, choose the problem with the best estimation and designate both this problem
and its alternative as Class 2. _

Step 11. Dichotomize (CP) in the manner of Dakin. Choose the separation vari-
able from among those with a fractional part of between 0.1 and 0.9 unless this sub-
set is empty. In either case, select according to a priority order which ranks variables
in decreasing order of their absolute cost coefficients. Designate the two descendants
as Class 1, and associate with each the estimation assoc1ated with the candidate prob-
lem being dichotomized.

The “estimation” referred to is a heuristic formula that estimates v(CP) by

v(CPg) + 2_; Min {PCL;(&; — [&,]), PCU([z;] + 1 — &)},

where the sum is over the fractional-valued variables and PCL; (PCU,;) is a lower
(upper) “pseudocost” for variable j. Pseudocosts are quite similar in spirit to pen-
alties, but are empirically determined rather than being derived from the optimal
tableau like ¢,(j). It appears that they are taken to be the most recently observed
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actual rate of increase in the optimal value of a relaxed candidate problem due to
forcing a fractional variable to 0 or 1.

Bénichou et al. have suggested a number of variants and embellishments on the
above version of their algorithm, such as using criteria other than “estimations” at
Step 3 and alternative priority orders at Step 11. Space does not permit a detailed
description here.

A commercial implementation has been carried out by IBM France based on IBM’s
Extended Mathematical Programming System. A number of quite large problems
have been solved. One production scheduling problem with 721 constraints, 39 binary
variables and 1117 continuous variables was solved in 18.3 minutes on a 360/65 once
the first LP solution was obtained. Another with 157 constraints and 78 binary vari-
ables was solved in 6.07 minutes (not including first LP) on an IBM 370/155. The
largest problem reported in terms of integer variables had 590 of them with 69 con-
straints, and was solved in 25.7 minutes (not including first LP) on a 360/65.

3.14. UMPIRE and Improved Penalty Bounds (Tomlin, [69], [70]). Tomlin [69]
(see also [70]) proposed two ways of improving the simple penalty bounds discussed
previously in §3.1.1, and has tested these improvements in an implementation of the
algorithm of Beale and Small [11] for general mixed integer programs. The latter
algorithm will be reviewed below.

Tomlin’s first method for obtaining improved bounds is based on the following sim-
ple observation: forcing a fractional variable in a linear programming solution to an
integer value requires increasing at least one nonbasic variable above zero, but any
such increase must be by at least unity if this nonbasic variable is specified as integer
in the original problem statement. The latter condition is ignored in the earlier deriva-
tion of simple penalties. Tomlin showed how this requirement could be used to yield
stronger up and down penalty bounds.

The smaller of the new up and down penalties associated with a given fractional
variable is a lower bound on the increase in optimal value caused by forcing that
variable to be integer (cf., Min {qo(7), ¢1(7)} in §3.1.1). Tomlin has shown, however,
that a Gomory cut associated with the same fractional variable yields a still better
bound than the smaller of the improved up and down penalties. Such a cut is generated
in the usual way, and a linear estimate of the increase in optimal value caused by
adding it to the linear program is constructed from information available in the final
tableau in the same manner by which one obtains ¢.(j). The resulting bound might
be called the Gomory-penalty Pgs(j) associated with the given fractional variable
(¢f., p. 907 of [49]).

These improved penalties can be used in the obvious way to improve any algorithm
that employs simple penalties. Tomlin chose to incorporate them in the algorithm
described in [11], which is the same as that of Dakin described previously except for
Steps 7 and 11. These two steps happen also to be the ones where penalties are used.
They become as follows when Tomlin’s more powerful penalties are used in place of
the simple penalties employed by Beale and Small.

Step 7. If v(CPr) + Max, {Ps(j)} = Z*¥, go to Step 2.

Step 11. Dichotomize (CP) in the manner of Dakin. Choose for the separation
variable the one with the largest improved up or down penalty, put the corresponding
descendant next on the candidate list, and finally place its alternative at the very end
of the list.

It is reported in [69] that using the more powerful penalties in place of simple penal-
ties can reduce the work to solve all-integer or predominantly integer problems by
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50 % or more. For a capital budgeting problem with 50 binary variables and 5 con-
straints, for example, the solution time on a Univac 1108 was reduced from 94 sec.
to 44 sec.

Additional computational experience with these improved penalties is cited in [70].
The algorithm used was essentially the same as the one above except that a different
type of separation was employed at Step 11 for variables appearing in multiple-choice
type constraints (i.e., constraints of the form > icsx; = 1). The type of separation
used for these variables, first described in [12], is of the form: z; = 0, all j € J1 or
z;= 0,allj € J — J1,where J; is some subset of J. Penalties appropriate to this type of
dichotomization are derived. The implementation, within the UMPIRE system, was
done by Scientific Control Systems Ltd. for the Univac 1108. Computational experi-
ence with a number of quite large problems is reported. One had about 250 rows, 200
continuous variables and 164 binary variables; another had about 200 rows, 700
continuous variables and 40 binary variables; and two others had about 1000 con-
straints and 200 binary variables. Although a strict optimal solution was not obtained
for any of these problems, satisfactory integer solutions are claimed. At the very
least, it can be concluded that the modifications made to the original Beale and
Small algorithm—improved penalties and a special facility for handling multiple-
choice variables—greatly improve the performance.

3.1.5. RIP30C and Surrogate Constraints (Geoffrion [29]). All of the above algo-
rithms use linear programming as the main fathoming device, and make essentially no
use of the logical fathoming devices employed by the additive algorithm of [4] and
others of this school mentioned in the introduction to §3.1. The main limitation of
these fathoming devices is that they apply at reasonable computational cost to only
one constraint at a time. The joint logical implications of several constraints taken
simultaneously are therefore lost, with the apparent result that computation times
tend to increase approximately exponentially with the number of integer variables
for methods relying only on logical fathoming devices. In [29] it is shown how a “‘surro-
gate’ constraint (see Glover [33]) can be constructed which captures more of the joint
logical implications of the entire set of original constraints. It was demonstrated that
the dual variables in the solution of a candidate problem as a linear program yield a
surrogate constraint that is as “strong” as possible in an appropriate sense. This con-
straint is constructed by taking a nonnegative linear combination of the original con-
straints using the values of the dual variables as weights, and then adding to it the
constraint that the objective function must have a better value than that of the in-
cumbent. A closely related construct was developed independently in [5].

A computer code (RIP30C) was built to determine how much improvement, Jf
any, such strongest surrogate constraints would make in Balas’ additive algorithm as
organized in [28]. The search strategy of that algorithm is LIFO at Step 3 and uses a
“least total infeasibility after branching’’ rule at Step 11 to select the separation vari-
able. The standard logical fathoming strategy for Steps 4-10, which will not be re-
viewed here, was supplemented with a linear programming subroutine that could be
used optionally to generate strongest surrogate constraints. Tests on a wide variety of
all 0-1 problems showed decisively that the modification leads to a great improvement
in performance. Of even more significance than the large observed reductions in com-
puting times for specific problems, perhaps, was the observed behavior of computing
times as a function of problem size. Sequences were run of set-covering, optimal
routing, and capital budgeting problems of varying sizes up to 90 0-1 variables. The
modification appeared to mitigate solution-time dependence on the number of vari-
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ables from an exponential to a low-order polynomial increase. The dependence was
approximately linear for the first two problem classes, with 90-variable problems typi-
cally being solved in about 15 seconds on an IBM 7044 ; and approximately cubic for
the third class, with 80-variable problems typically solved in under 2 minutes.

The point is sometimes raised that since linear programming is used to generate
strongest surrogate constraints, it is possible to attribute the improved efficiency to
the fathoming power of the linear program itself rather than to the power of surro-
gate constraints. Some light can be thrown on this issue by running the RIP30C code
with the linear programming routine fully operative but with no memory of surro-
gate constraints from one candidate problem to the next. IFor a representative battery
of 8 test problems in the range of 44 to 90 variables, this increased the running time
per problem by an average of 100 % (the median was 42 %). This is if anything a con-
servative rather than true indication of the value of surrogate constraints, however,
because the standard LP fathoming tests at Steps 6 and 7—which remained opera-
tional—are really equivalent to the construction of a binary infeasible surrogate
constraint, a task that could often be done by means other than by linear program-
ming. On the other hand, it must be admitted that any naturally integer lincar pro-
eramming solutions at Step 8 have nothing to do with surrogate constraints.

The RIP30C code referred to above has subsequently undergone extensive modi-
fication. Among the new features used routinely are the following: a dual linear pro-
gramming subroutine which resolves degeneracies more efficiently and permits column-
generation and reduced storage requirements for large problems; penalties of the type
discussed in §3.1.4 for fathoming and for selecting a separation variable; and means
for “purging” the candidate list as suggested in the remark on Step 12 in §2.4. The
performance of the code is perhaps best indicated by the ratio of total time required
to solve an integer program to the elapsed time upon solution of the initial linear pro-
gram. For an eclectic set of 8 realistic test problems in the size range of 80~131 binary
variables, this ratio currently ranges from 1.05 to 3.1, with a mean of 1.67 and a
median of 1.5. The computing times themselves range from 0.95 to 7.5 secs. on an
IBM 360/91. All runs were made using the standard default options of the code, with
no exploitation of special structure.

3.1.6. Other Enumerative Algorithms. Davis [22] has implemented an algorithm
which, like [29], employs both logical tests and linear programming for fathoming
under a primarily LIFO search strategy. In contrast to the latter algorithm, however,
he relies mostly on simple penalties rather than on strongest surrogate constraints to
enhance the power of the standard fathoming tests. Davis also introduced an innova-
tion aimed at obtaining an earlier proof of termination or, failing that, an indication
that certain variables may be essentially dropped for the remainder of the search
because they must assume particular values. This is done by periodically solving a
linear program composed of (MIP) with the integrality requirements dropped,
augmented by linear constraints which specify that only those solutions need be
considered which: (a) improve on the value of the ecurrent incumbent, and (b) do
not duplicate any solutions already accounted for by fathoming. An implementation
for the Univac 1108 has been extensively tested. To mention just the larger problems:
two project selection problems with 105 binary variables and 2 constraints were solved
in 5 and 6% seconds; a project selection problem with 50 binary variables and 5 con-
straints was solved in 103 seconds; two machine scheduling problems with 131 binary
variables and 40 constraints were solved in 15 and 20 seconds; and an investment,
planning problem with 11 binary variables, 288 continuous variables and 99 con-
straints was solved in 100 seconds.
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Mitra [58] has done comparative studies of the relative effectiveness of a number of
variants of Dakin’s basic plan. The variants consist of five alternative options for
Step 3 and six alternative options for the choice of separation variable at Step 11.
Presumably Step 7 uses some kind of penalties, although this is not spelled out. Com-
putational experience is cited with 9 practical problems, many of them very large
(thousands of constraints and hundreds of 0-1 variables). However, no problem with
more than 40 0-1 variables was solved to optimality. This makes it difficult to draw
any firm conclusions from the 17 reported runs. The reader should consult the original
paper, as an adequate summary would not be possible in this limited space.

MARISABETH is a mixed integer code built by Shell Berre-Paris for the Univac
1108. The algorithm is of the branch-and-bound type, but details have not been made
public. The implementation is based on the Marie-Claire linear programming code
of Univac France. Performance data [43] are given in Table 2. In this table, NR
stands for the number of rows, NC (NB) for the number of continuous (0-1) vari-
ables, T'1 for the time to solve the initial linear program, T2 for the total computing
time, and NCP for the number of candidate problems examined at Step 5. Problem 1
is concerned with oil refinery planning, problems 2-5 with multi-period investments,
problems 6-8 with scheduling oil product deliveries by rail, and problems 9 and 10
with coastal shipping of oil products.

3.2. Benders Decomposition

Benders’ approach [13] to mixed integer programming rests on an equivalent ver-
sion of (MIP) in terms of its integer variables alone. The equivalent version is ob-
tained in three stages. The first stage is to “project” (MIP) onto the space of its -
variables as follows:

(MIP-1) Minimize, o, integer [c + Infimum, o {dy | Dy = b — Ca}].

Notice that evaluating the objective function requires solving the linear programming
subproblem

(SUB) Minimize,>o dy subject to Dy = b — Cx.
The second stage is to dualize (SUB), so that (MIP-1) becomes

(MIP-2) Minimize, o, integer [ + Supremum, o {u(Cz — b) |d + uD = 0}].

TABLE 2
Computational Results with MARISABETH

Problem NR NC NB T1 T2 NCP
1 156 98 25 22 sec. 3 min. 43 sec. 195
2 671 803 48 7 min. 9 sec. 14 min. 55 sec. 121
3 146 317 18 2 min. 8 sec. 4 min. 38 sec. 61
4 280 252 54 32 sec. 17 min. 52 sec. 791
5 355 769 14 4 min. 13 sec. 18 min. 12 sec. 67
6* 885 260 584 6 min. 17 sec. 68 min. 1161
7* 1254 254 839 17 min. 43 min. 889
8* 762 174 638 11 min. 75 min. 344
9* 1581 485 282 1 min. 32 sec. 17 min. 107
10* 2011 702 294 1 min. 23 sec. 2 min. 20 sec. 39

* The solutions of these problems are suboptimal, to an unspecified degree of approximation.
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In terms of the extreme points {u', - - -, 4"} and extreme rays {«", ---, ¥"Y of
the feasible region of the dual of (SUB), this problem can be written
Minimize, »o, integer [cx + Max {u'(Cz — b), -+, u"(Cz — b)}]
(MIP-g) >0, integ [ . { ( }
subject to %’(Cxz — b) < 0, j=p+1,---,p+q

The third and final stage is to linearize (MIP-3) by expressing the maximum in the
objective function as a least upper bound:

Minimize, >0, integer: 2o € + To

(MIP-B) subject to zo = w’ (Cx —b), j=1,---,p,

wW(Cx —b) =0, j=p+1-,p+q

See the original paper by Benders or [8] or [30], [31] for further details. The equiva-
lence between (MIP) and (MIP-B) which justifies solving one problem via the other
is this: if (2%, 2*) is optimal in (MIP-B), then z* is also optimal in (MIP) in the
sense that solving (SUB) with = 2™ will yield ¥* such that (z*, ¥*) is optimal in
(MIP). '

The advantage of (MIP-B) over (MIP) is that it reduces the number of continu-
ous variables to one (z,); but the disadvantage is that it has many constraints that
are only implicitly known. No one would seriously propose computing %', - - - , u”*
explicitly before attempting to solve (MIP-B). Consequently, this problem is an ex-
cellent candidate for relaxation by omitting most of the constraints and generating
them only as needed. This can be done within our general framework by specializing
it as follows (read (MIP-B) for (MIP) at Steps 1, 2 and 12).

Step 1. Standard.

Step 2. Standard.

Step 3. A formality (this step will be executed only once).

Step 4. Omit all of the p 4+ ¢ constraints involving % (bound z and z, if necessary
during the early iterations—see the remark on Step 4 in §2.4).

Step 5. Solve (CPg) optimally.

Step 6. Omit.*

Step 7. Standard.

Step 8. Test the feasibility of the optimal solution (£, £,) just obtained for (CPg)
in (MIP-B) by solving (SUB) with = #£. Denote the optimal value by »(£). There
are three possible outcomes:

(i) (SUB) is infeasible. Fathoming Criterion 3 is not satisfied, but the corre-
sponding dual solution generates a violated constraint of (MIP-B). Go to
Step 9.

(ii) (SUB) is feasible and v(£) > &£ . Fathoming Criterion 3 is not satisfied,
but the corresponding dual solution generates the most violated constraint
of (MIP-B). Furthermore, a feasible solution of (MIP-B) is (£, o = u(%));
if the value of this solution is less than Z*, make it the new incumbent and
reset Z*. Go to Step 9.

(iii) (SUB) is feasible and v(£) = #£,. Fathoming Criterion 3 is satisfied; make
(£, £o) the new incumbent and go to Step 12.
Step 9. Always go to Step 10.

* Assuming that (MIP) has a finite optimal solution, F(CPg) # .
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Step 10. Tighten the relaxation by adding the violated constraint just determined.

Step 11. Omit.

Step 12. Standard.

This approach, which is obviously finitely convergent, has the advantage of pro-
viding both lower and upper bounds on the optimal objective function value. A lower
bound is provided each time Step 5 is executed, and an upper bound each time out-
come (ii) obtains at Step 8. The two bounds approach one another as the calculations
proceed, and coincide at termination.

Recent computational experience is cited by [2], [19], [45] and [51]. Aldrich’s code,
MIDAS-2, actually solves a somewhat weaker approximate version of the relaxed
problem at Step 5. This diminishes the computational effectiveness of the code, which
is implemented within IBM’s Mathematical Programming System for the 360/65.
MPS is used to solve the linear program at Step 8, and the integer program at Step 5
is solved by an ‘“‘enhanced’’ version of Balas’ additive algorithm [4]. The largest prob-
lem solved was of the investment planning type and had 378 constraints, 1326 contin-
uous variables and 24 integer variables; it was solved in 4 iterations (executions of
Step 5—no time given). Experience is also cited for a warehouse location problem with
39 constraints, 53 continuous variables and 14 binary variables. It was solved in 4.46
minutes and 12 iterations.

Childress cites experience with the mixed integer programming option available with
Bonner and Moore’s Functional Mathematical Programming System. Again a Balas-
class algorithm was used for Step 5. The following two refinery design models were
the largest for which computational experience was reported. The first model had 288
constraints, 390 continuous variables, and 56 binary variables, and was solved to within
1 of 1% of optimum in 18.13 minutes on a Univac 1108. The second model, with 515
constraints, 851 continuous variables and 48 binary variables, took 19.17 minutes to
within 1.3 % of optimum.

Inman and Manne have undertaken an implementation for problems in which all
of the integer variables are binary and subject to multiple choice type constraints.
They are specifically interested in project evaluation problems for economic or indus-
trial development, where the objective is to decide which of a number of possible com-
binations of projects to undertake. The multiple choice structure makes it possible,
for problems of moderate size, to carry out the optimization at Step 5 by complete
enumeration. Step 8 was accomplished using IBM’s Mathematical Programming Sys-
tem. Computational experience is cited for one problem that dealt with plant size,
time-phasing, and process choice for the steel, oil and electricity sectors of Mexico;
there were 350 continuous variables, 27 binary variables, and 275 constraints. Two
versions of the problem were solved on an IBM 360/67. After an initial simplex solu-
tion, one took 10 iterations and 5.30 minutes to reach optimality, and the other 25
iterations and 10.50 minutes. Another problem dealt with the location of electricity
generating plants and transmission lines in Mexico; there were 622 continuous vari-
ables, 22 binary variables, and 531 constraints. After an initial simplex solution, this
took 16 iterations and 28.64 minutes. Still another facility location problem had 98
continuous variables, 22 binary variables and 40 constraints. After an initial simplex
solution, it took 18 iterations and 5.22 minutes.

Some earlier computational results by B. R. Buzby for a class of nonlinear distribu-
tion problems are given in [47]. Very recent results for a large multicommodity distri-
bution problem are given in [32], but are not quoted here because the implementation
is so highly specialized.
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A possibly useful variation of the classical Benders Decomposition approach arises
if one also relaxes the integrality requirements at Step 4. The advantage of doing this
is that Step 5 can then be done by ordinary linear programming, at the cost, however,
of adding additional machinery to cope with the need for integrality. Cutting-planes
and enumeration are the two main choices for this extra machinery. If enumeration
is selected (as in [49] and [2]), then the following alterations are necessary in the previ-
ous outline of Benders Decomposition: Step 3 is no longer a mere formality, as it will
be executed more than once; Step 4 should drop all integrality requirements on x, but
should retain those of the p + ¢ constraints which have so far been explicitly generated
at Step 8; Step 6 cannot be omitted; Step 8 should check & for integrality first (there
is no need to solve (SUB) if £ is not integer) ; Step 9 should persist to Step 10 if and
only if a violated constraint of (MIP-B) was just generated at Step 8; and Step 11
cannot be omitted. These changes also suffice to handle the case where some but not
all of the integrality requirements on x are dropped at Step 4—except, of course, that
Step 5 then requires a mixed integer rather than ordinary linear programming routine.

To sum up this variant of Benders Decomposition in a few words, it could correctly
be called an enumerative algorithm for (MIP-B) with the p + ¢ constraints relaxed
at Step 4 and generated as needed at Step 8.

3.3. Cutting-Plane Algorithms

Historically, this was the first general approach taken to solving integer programs.
The foundations were laid by Gomory in a series of well-known papers, and there is
now an extensive literature on the subject [9]. The classical pattern for cutting-plane
algorithms can be described in terms of the general framework as follows.

Step 1. Standard.

Step 2. Standard.

Step 3. A formality (this step will be executed only once).

Step 4. Relax all integrality requirements.

Step 5. Solve by a linear programming algorithm.

Step 6. Standard.

Step 7. Omit.

Step 8. Standard.

Step 9. Always go to Step 10.

Step 10. Tighten the current relaxation by adding a cutting-plane.

Step 11. Never occurs.

Step 12. Standard.

Notice that the approach is based entirely on successively improved relaxations,
with no use whatever made of separation. Thus termination occurs the first time that
either Fathoming Criterion 1 or 3 is satisfied. It follows that the cutting-plane ap-
proach has the disadvantage of not ordinarily providing a feasible solution to the
original problem until termination.

The “cutting-planes’ referred to at Step 10 are, of course, linear constraints. Thus
(CPg*), the linear program to be solved at the kth execution of Step 5, consists of the
original integer linear program with the integrality requirements dropped and &k — 1
new linear constraints added. One infers directly from the general outline given above
that the new ‘“‘cuts’” must be such that

(3) F(CP:") D F(CPg) D -+ D F(CP:*) D F(CP).

That is, each new cut must properly tighten the previous relaxation, and yet still yield
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a valid relaxation of the (one and only) candidate problem itself. In other words,
each new cut must lop off some of the feasible region of the current linear program
without also lopping off any feasible integer solutions of the original integer program.
It follows from (3) that

v(CPR) < v(CP) < -+ < v(CPZ") < v(CP).

There are many ways of deriving cuts satisfying (3).-A few recent references are
[71, [18], [35], [37], [77]. To be useful, however, the cuts should have certain additional
desirable properties. For instance, it is customary for each new cut to cut away the
solution just found at Step 5, for otherwise that solution would still be valid at the next
execution of Step 5. Another desirable property is that at most a finite number of
cuts will be necessary in order to find an optimal solution of the given problem or
discover that none exists. Still more desirable is the property that the cuts actually
are faces of the smallest convex polytope containing F(CP), namely the convex hull
of the feasible integer solutions of the original problem. This elusive object is the ulti-
mate objective of considerable current research, e.g., [38].

Almost all of the computational experience with cutting-plane algorithms reported
in the literature has been confined to very small problems. See [9], [72] and [57] for
reviews and evaluations of these efforts. A conspicuous exception is the work of Glenn
Martin at Control Data Corporation [53], [54], [55], who has had outstanding success
with certain types of problems having a strong tendency toward natural integrality
and basic determinants of moderate size (in the associated continuous LP problem).
Problems relating to networks, the traveling salesman problem, and generalized set
covering problems tend to fall in this category. By far the most numerous and success-
ful applications in Martin’s experience have been crew scheduling problems, many
hundreds of which he has successfully solved during the past 8 years [56]. He reports
that a typical “moderate” sized crew scheduling problem of about 100 inequality con-
straints and 4,000 binary variables takes on the order of 10 minutes to solve on a
CDC 3600. A typical larger problem of 150 rows and 7,000 binary variables can often
be solved with a few cuts in on the order of 40 minutesof CDC 3600 time.

3.4. Group Theoretic Algorithms

The group theoretic approach was initiated by Gomory [36] and has been carried
forward primarily by Shapiro [63], [64], [65]. Other recent contributions have been [34],
[68], [75], and [76]. The present discussion follows Gorry and Shapiro [39].

The group theoretic approach has been applied almost exclusively to the pure integer
programming problem; that is, to (MIP) without any continuous variables ().
Writing 4 = [C | I] to introduce slack variables, we have

Minimize cx

(4) subject to Az = b, x =0 and integer.
The first step in the group theoretic approach is to transform this into an equivalent
form. Let B be any dual feasible basis for (4) regarded as a linear program, and reorder
the variables if necessary so that A = [B | R]. Then (4) is equivalent to the problem
Minimize ézg
(4A) . - . .
subject to xp = b — Axr = 0 and integer, zr = 0 and integer,
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where x5 and zr denote the basic and nonbasic variables, respectively, and
b = B,
= B'R,

c = Cr — CBB—IR g O

R

Problem (4A) is referred to as a correction problem, since the object is to find the
cheapest nonnegative integer correction xr which renders zp nonnegative and integer.
If B is an optimal basis, then x5 is already nonnegative when z, = 0.

The major relaxation employed is to drop the s = 0 conditions. The basic variables,
though still required to be integer, are thus allowed to become negative. This relaxa-
tion of (4A) can then be shown to be equivalent to the following group problem:

Minimize éxg
(GP) ) . « :
subject to A"z = b” (mod D), zr = 0 and integer,
where
D | det B |,
A% = D4 — [4]},
b* = D{b — [b]},

II

and the square brackets denote integer parts. Thus [A] is a matrix each of whose en-
tries is the largest integer not greater than the corresponding entry in A, and similarly
for [b]. Problem (GP) can be interpreted as an optimization over the finite Abelian
group G generated by the columns of A*, and can be solved by a special shortest path
algorithm. .

The group problem (GP) can be used to fathom candidate problems in exactly the
same way linear programs are used in the algorithms of §3.1. The method of creating
candidate problems used in [39] is considerably different from any discussed so far,
however, and so will be described briefly. For simplicity, assume that the integer vari-
ables have upper bounds greater than one. Let &z = (&, -+, &) be an arbitrary
nonnegative correction and define

J(Zr) = min {j | z; > 0}
The candidate problem associated with & is
Minimize ¢(Zr + u)
(CP — Iz) subject toxy = b — A(Z + u) = 0 and integer,
u; = 0 andintegerfor j=1,---,j(&), u;=0 for j=jE) +1, - ,n.

This candidate is relaxed to a group problem by dropping the xz = 0 condition. The
list of candidate problems is separated according to “level number.” Starting at
K = 0 the corrections at level K are those corrections z with D -y z; = K. If an
arbitrary correction & at level K cannot be fathomed, then it is replaced by the cor-

5 If £ = 0, then define j(£g) = n.
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rections
In+e for j =1, ---,7(%),

each of which is at level K + 1. (Here ¢; denotes the jth unit vector.) This effects a
separation of (CP — &) into 7(Zz) new candidate problems.

The algorithm of [39] can now be related to the general framework.

Step 1. The given problem (4) is transformed into a correction problem (4A).
Any dual feasible basis can be used, but the usual procedure is to use an optimal basis.
Let & = 0. -

Step 2. Standard.

Step 3. The selection rule employed is called “directed search.” Kach candidate
problem is assigned a ‘“plausibility value’. This is a lower bound on its minimal value,
computed at the time of creation from the group problem solution. The candidate
selected is the one with the lowest lower bound from among a subset (those in main
storage) of the pending candidates.

Step 4. Relax the candidate problem (CP — &) to a group problem by dropping
the nonnegativity conditions on the basic variables.

Step 5. For the relaxation performed at Step 4, a known algorithm is available to
set up a canonical representation of the group and solve the problem. For the other
kinds of relaxation performed at Step 10, the appropriate algorithms are assumed to
* be available.

Step 6. Standard.

Step 7. Standard.

Step 8. Standard.

Step 9. Heuristic rules may be used so that “a reasonable computational effort” is
made to fathom the current candidate problem.

Step 10. Several alternative types of relaxation are proposed for this step. These in-
clude Lagrangian group problems [66], cutting planes (§3.3), and surrogate constraints
(§3.1.5).

Step 11. The separation technique is as described earlier. The group (or other)
problem solution is used to compute lower bounds on the minimal values of the new
candidate problems. These are referred to as “plausibility values.”

Step 12. Standard.

Step 10 could also incorporate a variety of heuristics and adaptive devices to choose
a ‘“‘suitable’” relaxation for each candidate problem, depending on its algebraic
structure.

Some computational results are given. For example, several media selection prob-
lems with about 75 constraints and 150 integer variables were solved in under a min-
ute on a Univac 1108.

Some efforts have been made to extend the theory to mixed integer programming
[75]. The computational difficulties encountered, however, seem formidable. More
promising are attempts to synthesize the group approach with Benders Decomposition
which separates the pure integer and continuous parts of a mixed integer problem.

IV. Summary and Prognosis

In this final section, we would like to summarize very briefly the current state-of-the-
art of integer linear programming, and offer some opinions as to promising directions
for the future.

Enumerative algorithms have received the lion’s share of attention in recent years,
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especially as measured by new implementations. This is due partly to disillusionment
with the erratic computational performance of the early cutting-plane algorithms, and
partly to the publication of such influential papers as [46], [50], [4], and [24]. Recent
computational experience seems to vindicate this emphasis. A number of existing codes
are quite reliable in obtaining optimal solutions within a short time for general all-
integer linear programs with a moderate number of variables—say on the order of
75—and well into the hundreds of variables for problems of more special structure.
Mixed integer linear programs of practical origin with up to half a hundred integer
variables and a thousand or two continuous variables and constraints are tractible for
several modern implementations based on a production quality linear programming
system. Problems of this size with several hundred integer variables have been under-
taken, but usually the result has been a suboptimal feasible solution (often an accept-
ably good one). All of the successful general purpose codes use linear programming at
Step 5, almost all of them use the penalty idea in several ways, and many use some sort
of compromise between strict LIFO and Priority at Step 3 and permit several options
for selecting a separation variable at Step 11.

The available computational experience with Benders-type algorithms, although not
nearly so voluminous as that for enumerative algorithms, does suggest that this ap-
proach may be competitive for mixed integer linear programs. The implementations
to date, however—at least the ones of which we are aware—do not achieve the full
potential inherent in the approach because they use only a relatively rudimentary
enumerative all-integer algorithm at Step 5. Thus the computing time spent in Step 5
is longer than necessary, and may account for the fact that only a few dozen integer
variables have so far been handled sucecessfully. The incorporation of a modern integer
algorithm into Step 5 would be a programming task of considerable magnitude, but
the result might well be a code capable of routinely handling one or two hundred
integer variables and a few thousand continuous variables and constraints. Such suc-
cess will almost certainly come to pass if the number of iterations (executions of Step 5)
required to find a near optimal solution tends to remain moderate as problem size in-
creases. Currently there is inadequate computational experience to resolve this erucial
issue, but the available evidence suggests some optimism. Often only a surprisingly
small number of iterations has been necessary, and the number of iterations has usu-
ally not increased in proportion to the number of logical alternatives to be accounted
for, or even in proportion to the number of integer variables (see especially Table 5
in [51] and §7.3.5 of [47]).

One should also keep in mind where Benders Decomposition is concerned the por-
tentous fact that the integer and continuous parts of the problem are treated in a way
that preserves the structure of the continuous part. If the integer variables represent
different configurations of a system, for example, then the integer optimization at
Step 5 selects a new configuration to be tried and Step 8 optimizes the system with
this configuration. The latter optimization can sometimes be done very efficiently by
a special purpose algorithm. An instance of this occurs in some problems of opti-
mal multicommodity distribution system design [32], where Step 8 breaks apart
into a number of independent ordinary transportation problems (one for each com-
modity).

As for the cutting-plane and group theory approaches, it appears that unless sig-
nificant new theoretical advances are made it may be best to marry them with an
enumerative approach. Since [39] explained so clearly how this can be done with the
group theory approach, we confine our remarks here to the synthesis of the cutting-
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plane approach with enumeration, a topic that has thus far received much less atten-
tion than it deserves (cf., p. 897 of [49] and p. 243 of [9]).

The idea is very simple. Just take a Dakin-type enumerative algorithm, say, and
equip Step 10 with the means of generating cutting-planes for the current candidate
problem. A plausible rule for Step 9 would then be: for each candidate problem, persist
to Step 10 up to a certain number of times in succession, or until the rate of improve-
ment due to adding new cuts falls below some threshold value. This rule is appealing
because cutting-plane algorithms typically make the greatest rate of progress during
the early iterations (e.g., [71]). This means that there is a chance of actually solving
within a few cuts a candidate problem unfathomable by standard means, and in any
case a better lower bound on its optimal value is generated each time a cut is added—
which improves the chances of activating the second fathoming criterion. This syn-
thesis, incidentally, can be viewed as a natural extension of the use of penalties at
Step 7, for penalties are analogous to estimating the change induced in the optimal
value of the relaxed candidate problem by adding a single very simple cut (ecf., the
conclusion of §3.1.4). Obviously, adding more than one cut will yield improved esti-
mates of the optimal value of the candidate problem.

In addition to accommodating syntheses between traditionally distinet approaches,
the general framework of Figure 1 also provides a checklist of opportunities for im-
proving any algorithm falling within its scope. It is particularly valuable to refer to
this checklist when it is desired to specialize an algorithm to a particular class of prob-
lems such as fixed charge, project selection, scheduling, ete. Can a prior analysis of
the problem reveal some natural preliminary separations that ought to be made, and
perhaps arranged in a certain desired order for processing? If so, this prior analysis
should be built into Step 1. Is there a better way of telling how “promising” a candi-
date problem is other than by the usual bound that may be associated with it? If so,
then Step 3 can be modified accordingly. Is there a different kind of relaxation that
could be employed at Step 4 or 10 which would make the resulting relaxed candidate
problems easier to solve at Step 5 without unduly compromising the power of Steps
6, 7 and 8, or that would enhance the power of these steps without being too much
more difficult to solve at Step 57 Does the problem structure permit improved sufficient
conditions for Steps 6 and 7? Can indicators be designed to predict with some degree
of reliability when persistence at Step 9 is warranted? What class of separations should
be allowed at Step 11, and by what rule should members of the class be chosen, so as
to most enhance the fathoming tractability of the descendants of a candidate problem?

Finally, we hazard a guess that the field of integer programming may be profoundly
affected by the advent of highly parallel fourth generation computers such as the
ILLIAC IV. The reason is that the ability to process several candidate problems simul-
taneously gives rise to a new range of possible enumerative strategies quite different
from those used to date. We hope that algorithm designers will take the initiative in
exploiting these new possibilities.
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