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DUALITY IN NONLINEAR PROGRAMMING:
A SIMPLIFIED APPLICATIONS-ORIENTED DEVELOPMENT*

A. M. GEOFFRION¥

Summary. The number of computational or theoretical applications of nonlinear duality theory
is small compared to the number of theoretical papers on this subject over the last decade. This study
attempts to rework and extend the fundamental results of convex duality theory so as to diminish the
existing obstacles to successful application. New results are also given having to do with important
but usually neglected questions concerning the computational solution of a program via its dual.
Several applications are made to the general theory of convex systems.

The general approach is to exploit the powerful concept of a perturbation function, thus permitting
simplified proofs (no conjugate functions or fixed-point theorems are needed) and useful geometric
and mathematical insights. Consideration is limited to finite-dimensional spaces.

An extended summary is given in the Introduction.
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1. Imtroduction.

1.1. Objective. In this paper much of what is known about duality theory for
nonlinear programming is reworked and extended so as to facilitate more readily
computational and theoretical applications. We study the dual problem in what is
probably its most satisfactory formulation, permit only assumptions that are
likely to be verifiable, and attempt to establish a theory that is more versatile and
general in applicability than any heretofore available.

Our methods rely upon the relatively elementary theory of convexity. No
use is made of the differential calculus, general minimax theorems, or the conjugate
function theory employed by most other studies in duality theory. This is made
possible by fully exploiting the powerful concept of a certain perturbation
function—the optimal value of a program as a function of perturbations of its
“right-hand side.” In addition to some pedagogical advantages, this approach
affords deep geometrical and mathematical insights and permits a development
which is tightly interwoven with optimality theory.

The resulting theory appears quite suitable for applications. Several illus-
trative theoretical applications are made; and some reasonable conditions are
demonstrated under which the dual problem is numerically stable for the recovery
of an optimal or near-optimal primal solution. A detailed preview of the results
obtained is given after the canonical primal and dual programs are introduced.

1.2. The canonical primal and dual programs. The canonical primal problem
is taken to be:
(P) Minimize f(x) subjectto g(x) <0,

xeX

where g(x) £ (g,(x), -+, g,(x)), and f and each g, are real-valued functions
defined on X < R". It is assumed throughout that X is a nonempty convex set on
which all functions are convex.

The dual of (P) with respect to the g-constraints is:

(D) Maxir(l)lize [inﬁmXum f(x) + u'g(x)],

uz xXe
where u is an m-vector of dual variables. Note that the maximand of (D) is a con-
cave function of u alone (even in the absence of the convexity assumptions), for
it is the pointwise infimum of a collection (indexed by x) of functions linear in u.

Several other possible “duals” of (P) have been studied, some of which are
discussed in § 6. All are closely related, but we believe (D) to be the most natural
and useful choice for most purposes.

It is important to recognize that, given a convex program, one can dualize
with respect to any subset of the constraints. That is, each constraint can be
assigned to the g-constraints, in which case it will possess a dual variable of its own ;
or it can be assigned to X, in which case it will not possess a dual variable. In
theoretical applications, the assignment will usually be dictated by the desired
conclusion (cf. § 8); while in computational applications, the choice is usually
made so that evaluating the maximand of (D) for fixed u = 0 is significantly easier
than solving (P) itself (cf. [17], [19], [29]).
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1.3. Preview and summary of results. Section 2 presents the fundamental
optimality and duality results as three theorems. Theorem 1 is the optimality
theorem. Its first assertion is that if (P) has an optimal solution, then an optimal
multiplier vector exists if and only if (P) has a property called stability, which
means that the perturbation function mentioned above does not decrease in-
finitely steeply in any perturbation direction. Stability plays the role customarily
assumed in Kuhn—Tucker type optimality theorems by some type of “‘constraint
qualification.” Because stability is necessary as well as sufficient for an optimal
multiplier vector to exist, it is evidently implied by every known constraint
qualification. It turns out to be a rather pleasant property to work with mathe-
matically, and to interpret in many problems. The second assertion of the optimality
theorem is that the optimal multiplier vectors are precisely the negatives of the
subgradients of the perturbation function at the point of no perturbation. An
immediate consequence is a rigorous interpretation of an optimal multiplier vector
in terms of quasi ‘““prices.”

Theorem 2 is the customary weak duality theorem, which asserts that the in-
fimal value of (P) cannot be smaller than the supremal value of (D). Although
nearly trivial to show, it does have several uses. For instance, it implies that (P)
must be infeasible if the supremal value of (D) is + 0.

Theorem 3 is the powerful strong duality theorem: If (P) is stable, then (D)
has an optimal solution ; the optimal values of (P) and (D) are equal ; the optimal
solutions of (D) are essentially the optimal multiplier vectors for (P); and any
optimal solution of (D) permits recovery of all optimal solutions of (P) (if such
exist) as the minimizers over X of the corresponding Lagrangean function which
also satisfy g(x) £ 0 and the usual complementary slackness condition. Note
that stability plays a central role here, just as it does in the optimality theorem.
It makes (D) quite inviting as a surrogate problem for (P), and precludes the
possibility of a “duality gap”—inequality between the optimal values of (P) and
(D)—whose presence would render (D) useless in many, if not most, potential
applications.

Section 3 gives complete proofs of these key results. The main construct is
the perturbation function already mentioned. By systematically exploiting its
convexity, no advanced methods or results are needed to achieve a direct and
unified development of the optimality and strong duality theorems. No differen-
tiability or even continuity assumptions need be made, and X need not be closed
or open.

Section 4 develops a useful geometric portrayal of the dual problem which
permits construction of simple examples to illustrate the various relationships
that can obtain between (P) and (D). It also yields geometric insights which
suggest some of the further theoretical results developed in the next section.

Section 5 establishes six additional theorems, numbers 4 through 9, con-
cerning (P) and (D). Theorem 4 asserts that the maximand of (D) has value — o0
for allu = 0if and only if the right-hand side of (P) can be perturbed so as to yield
an infimal value of —oo. Theorem 5 asserts that if (P) is infeasible and yet the sup-
remal value of (D) is finite, then some arbitrarily small perturbation of the right-
hand side of (P) will restore it to feasibility. Theorem 6 amounts to the statement
that (P) is stable if it satisfies Slater’s qualification that there exist a point x° € X
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such that g,(x%) < 0,i = 1, ---, m. The next result, called the continuity theorem,
gives a key necessary and sufficient condition for the optimal values of (P) and (D)
to be equal : the perturbation function must be lower semicontinuous at the origin.
(Stability is just a sufficient condition, in view of the strong duality theorem, unless
further assumptions are made.) Theorem 8 provides useful sufficient conditions
for the perturbation function to be lower semicontinuous at the origin ; and, there-
fore, for a duality gap to be impossible: fand g continuous, X closed, the infimal
value of (P) finite, and the set of e-optimal solutions nonempty and bounded for
some ¢ > 0. The final result of § 5, called the converse duality theorem, is an im-
portant companion to the strong duality theorem. It requires X to be closed and f
and g to be continuous on X ; and asserts that if (D) has an optimal solution and the
corresponding Lagrangean function has a unique minimizer x* over X which is
also feasible in (P), then (P)is stable and x* is the unique optimal solution. Actually,
as the discussion indicates, the hypothesis concerning the uniqueness of the
minimizer of the Lagrangean can be weakened.

Section 6 examines the relationships between the results of §§1 to 5 and
previous work. After discussing the specialization to the completely linear case,
a detailed comparison is made to several key papers representative of the major
approaches previously applied to nonlinear duality theory. These are: Dorn [8],
which exploits the special properties of quadratic programs; Wolfe [34], which
applies the differential calculus and the classical results of Kuhn and Tucker;
Stoer [28] and Mangasarian and Pontstein [25], which apply general mini-
max theorems; and Rockafellar [26], which applies conjugate convex function
theory. This comparison is favorable to the methods and results of the present
study.

Section 7 discusses numerical considerations of interest if (D) is to be used
computationally to solve (P). Such questions have been almost totally ignored
in previous studies, but must be examined if nonlinear duality theory is to be
applied computationally. After first indicating some of the pitfalls stability
precludes, we briefly survey the two main approaches that have been followed for
optimizing (D); and, subsequently, the main topic of whether and how an optimal
or near-optimal solution of a stable program can be obtained from an optimal or
near-optimal solution of its dual. A result is given in Theorem 10 from which it
follows that no particular numerical difficulties exist in solving (P), provided that
an exactly optimal solution of (D) can be found. However, if only a sequence
converging to an optimal solution u* of (D) can be found, the situation appears
to turn on whether the Lagrangean function corresponding to u* has a unique
minimizer over X. If it does, Theorem 11 shows that the situation is manageable,
atleast when X is compact and fand g are continuous on X . Otherwise, the situation
can be quite difficult, as demonstrated by an example.

Section 8 makes the point that nonlinear duality theory can be used to prove
many results in the theory of convex systems which do not appear to involve
optimization at all; just as linear duality theory can be used to prove results
concerning systems of linear equalities and inequalities. This provides an easy and
unified approach to a substantial body of theorems. The possibilities are illustrated
by presenting new proofs for three theorems. The first is a separation theorem
for disjoint convex sets ; the second a characterization in terms of supporting half-
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spaces for a certain class of convex sets generated by projection; and the third a
fundamental property of a system of inconsistent convex inequalities.

Finally, in § 9 we indicate a few of the significant areas in which further work
remains to be done.

1.4. Notation. The notation employed is standard. We follow the convention
that all vectors are columnar unless transposed (e.g., u').

2. Fundamental results. After establishing some basic definitions, we state
and discuss three fundamental results: the optimality theorem, weak duality
theorem, and strong duality theorem. The proofs of the first and third results are
deferred to § 3.

2.1. Definitions.

DEerINITION 1. The optimal value of (P) is the infimum of f (x) subject to x€ X
and g(x) < 0. The optimal value of (D) is the supremum of its maximand subject
tou = 0.

Problems (P) and (D) always have optimal values (possibly + co) whether
or not they have optimal solutions—that is, whether or not there exist feasible
solutions achieving these values—provided we invoke the customary convention
that an infimum (supremum) taken over an empty set is + oo(— 00).

DEFINITION 2. A vector u is said to be essentially infeasible in (D) if it yields a
value of — oo for the maximand of (D). If every u = 0is essentially infeasible in (D),
then (D) itself is said to be essentially infeasible. If (D) is not essentially infeasible,
it is said to be essentially feasible.

The motivation for this definition is obvious: a vector u = 0 is useless in (D)
if it leads to an “infinitely bad” value of the maximand.

DEFRINITION 3. A pair (x, u) is said to satisfy the optimality conditions for (P)
if

(i) x minimizes f + u'g over X,

(i) u'g(x) =0,

(iii) u = 0,

(iv) g(x) = 0.

A vector u is said to be an optimal multiplier vector for (P) if (x, u) satisfies the
optimality conditions for some x.

An optimal multiplier vector is sometimes referred to as a ‘“‘generalized
Lagrange multiplier vector,” or a vector of “dual variables” or “‘dual prices.”

It is easy to verify that a pair (x, u) satisfies the optimality conditions only if
x is optimal in (P). Thus the existence of an optimal multiplier vector presupposes
the existence of an optimal solution of (P). The converse, of course, is not true
without qualification. It also can be verified that if u is an optimal multiplier vector,
then (x, u) satisfies the optimality conditions for every optimal solution of (P).
Thus an optimal multiplier vector is truly associated with (P)}—more precisely,
with the optimal solution set of (P)—rather than with any particular optimal solu-
tion. On this point the traditional custom of defining an optimal multiplier
vector in terms of a particular optimal solution of (P) is misleading, although it is
equivalent to the definition used here.
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It is perhaps worthwhile to remind the reader that the optimality conditions
are equivalent to a constrained saddle point of the Lagrangean function. Specifi-
cally, one can verify that (x*, u*) satisfies conditions (i)—(iv) if and only if u* = 0,
x*e X, and

Sx¥) + ug(x¥) = f(x¥) + *Yg(x*) = f(x) + (w*)'glx)

forallu = 0 and x € X. Another equivalent rendering of the optimality conditions,
one which gives a glimpse of developments to come, is this: (x*, u*) satisfies the
optimality conditions if and only if x* is optimal in (P), u* is optimal in (D), and
the optimal values of (P) and (D) are equal.

These remarks on Definition 3 do not depend in any way on the convexity
assumptions. The demonstrations are straightforward.

DErINITION 4. The perturbation function v( -) associated with (P) is defined
on R™ as

uy) £ inﬁn}um { f(x) subject to g(x) < y},
where y is called the perturbation vector.

The perturbation function is convex (Lemma 1) and is the fundamental
construct used to derive the relationship between (P) and (D). Evidently v(0)
is the optimal value of (P). Values of v at points other than the origin are also of
intrinsic interest in connection with sensitivity analysis and parametric studies
of (P).

DEFINITION 5. Let y be a point at which v is finite. An m-vector 7 is said to be a
subgradient of v at y if !

u(y) Z v(y) + 7' (y — y) forall y.

Subgradients generalize the concept of a gradient and are a technical necessity
since v is usually not everywhere differentiable. Their role is made even more
important by the fact that they turn out to be the negatives of the optimal mul-
tiplier vectors (Lemma 3). An important criterion for their existence (Lemma 2)
is given by the property in the next definition (cf. Gale [15]).

DErFINITION 6. (P) is said to be stable if v(0) is finite and there exists a scalar
M > 0 such that

v(0) — v(y)

<M forally #0.
Iyl Y

Stability is an easy property to understand intuitively. We shall see that it is
implied by all known constraint qualifications for (P). It can be interpreted as a
Lipschitz condition on the function v. If it fails to hold, then the ratio of improve-
ment in the infimal value of (P) to the amount of perturbation can be made as
large as desired (the particular norm | - || used to measure the amount of pertur-
bation is immaterial). This is also true in the marginal sense, that is, with the

! The direction of this inequality would be reversed if v were concave rather than convex.
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perturbations made as small as desired, as follows from the convexity of v. A
consequence of this observation is that the following alternative definition of
stability (used by Rockafellar) is equivalent to the one above.

DErINITION 6'. (P) is said to be stable if v is finite at 0 and does not decrease
infinitely steeply in any perturbation direction ; that is, if

lim [M] < oo forally#0.
0-0+ oyl

The limit defined is the negative of the directional derivative of v in the perturbation
direction y (4 oo are allowed as limits).

2.2. Optimality. Although the main focus of this study is duality theory, an
inevitable by-product of the present approach is what must surely be near the ulti-
mate of Kuhn-Tucker type optimality theorems. (Cf. Gale [15, Theorem 3] and
Rockafellar [26].) The following theorem also gives a key characterization of
optimal multiplier vectors.

THEOREM 1 (Optimality). Assume that (P) has an optimal solution. Then an
optimal multiplier vector exists if and only if (P) is stable ; and u is an optimal multiplier
vector for (P) if and only if (—u) is a subgradient of vat y = 0.

Part of the content of this theorem is the result that, if x* is an optimal
solution of (P), and (P) is stable, then there exists a vector u* such that (x*, u*)
satisfies the optimality conditions for (P). It is well known that some qualification
of (P) is needed for this result to hold ; stability plays the role of such a qualification
here. It bears emphasizing, however, that the theorem reveals stability to be not only
a sufficient qualification for this purpose, but also a necessary one. Thus, stability
is implied by every “constraint qualification” ever used to prove the necessity
of the optimality conditions. For example, Slater’s constraint qualification that
there exist a point x° € X such that g(x° < 0 for all i implies stability, as does the
original Kuhn-Tucker constraint qualification. For a discussion of these and many
other “‘classical” qualifications, see Mangasarian [24].

It is striking that none of the classical qualifications emphasizes the role of
the objective function, although a careful reading reveals that each requires the
objective function to be within a particular general class (e.g., defined on all of R,
or differentiable on an open set containing the feasible region). Of course, if the
objective function is sufficiently well-behaved, (P) will be stable no matter how
poorly behaved the constraints are (e.g., if fis constant on X then (P) is obviously
stable for any constraint set as long as it is feasible) . On the other hand, it is possible
for an objective function to be so poorly behaved that (P) is unstable even if all
constraints are linear. For example [15], put n=m=1, f(x)= —\/;,
X = {x:x = 0}, g,(x) = x; then by perturbing the right-hand side positively,
the ratio

0—(—\/})= 1

Iyl Sy

in Definition 6 can be made as large as desired by making the perturbation amount
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y sufficiently small. The obvious trouble with the objective function is that it has
infinite steepness at x = 0.

One further useful and somewhat surprising observation on the concept of
stability is in order. Namely, to verify stability it is actually necessary and sufficient
to consider only a one-dimensional choice of y: (P) is stable if and only if v(0) is
finite and there exists a scalar M > 0 such that

w(0) — (&, -+, &)

<M forall £ >0.

The proof makes use of the fact that stability according to Definition 6 does not
depend on which particular norm is used (this follows from the fact that if || - ||,
and || - ||, are two different norms on R™, then there exists a scalar r > 0 such that
(Iylli/Ilvll2) = r for all nonzero y € R™), so that the Chebyshev norm

Iyl = maximum {|y,|, --- . |y}

can be used in Definition 6. Thus stability of (P) implies the above inequality simply
by taking y of the form (¢, - - -, £). Conversely, the above inequality implies that
(P) is stable because

o(0) — voly) _ v0) = oliyllr, -~ I¥l7)
Iyl + = Iyl +

by the fact that v is a nonincreasing function.

The second part of Theorem 1 gives a characterization of optimal multiplier
vectors useful for sensitivity analysis and other purposes. Suppose that u* is any
optimal multiplier vector of (P) and a perturbation in the direction y’ is contem-
plated ; that is, we are interested in the perturbed problem:

R ally #0,

Minimize f(x) subjectto g(x) <0y

xeX

for 6 = 0. From Theorem 1,
v(0y") = v(0) — O(u*)'y’ forall & = 0.

We thus have a lower bound on the optimal value of the perturbed problem, and
by taking limits we can obtain a bound on the right-hand derivative of v(0y’)
at0 =0;

d*o(0y)
do

In particular, with )’ equal to the jth unit vector, we obtain the well-known result
that —u¥ is a lower bound on the marginal rate of change of the optimal value of
(P) with respect to an increase in the right-hand side of the jth constraint. All of this
follows from the fact that any optimal multiplier vector is the negative of a sub-
gradient of v at 0. The converse of this is also significant, as it follows that the set of
all subgradients—and hence all directional derivatives of v—can be characterized
in terms of the set of all optimal multiplier vectors for (P). Further details and an
application to the optimization of multidivisional systems are given elsewhere
[16,§4.2].

= —(w)y.
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2.3. Duality. We begin with a very easy result that has several useful conse-
quences.

THEOREM 2 (Weak duality). If X is feasible in (P) and # is feasible in (D), then
the objective function of (P) evaluated at X is not less than the objective function
of (D) evaluated at .

To demonstrate this result, one need only write the obvious inequalities

infimum { f(x) + #g(x)xe X} = f(X) + #'g(x) < f(%).

The convexity assumptions are not needed.

One consequence is that any feasible solution of (D) provides a lower bound
on the optimal value of (P) ; and any feasible solution of (P) provides an upper bound
on the optimal value of (D). This can be useful in establishing termination or error-
control criteria when devising computational algorithms addressed to (P) or (D);
if at some iteration feasible solutions are available to both (P) and (D) that are
“close” to one another in value, then they must be “close” to being optimal in
their respective problems. In Theorem 3 we shall see that there exist feasible
solutions to (P) and (D) that are as close to one another in value as desired, provided
only that (P) is stable.

From Theorem 2, it also follows that (D) must be essentially infeasible if the
optimal value of (P)is — oo and, similarly, (P) must be infeasible if the optimal value
of (D) is + o0.

THEOREM 3 (Strong duality). If (P) is stable, then

(a) (D) has an optimal solution,

(b) the optimal values of (P) and (D) are equal,

(c) u* is an optimal solution of (D) if and only if —u* is a subgradient of v at
y=0,

(d) every optimal solution u* of (D) characterizes the set of all optimal solutions
(if any) of (P) as the minimizers of f + (u*)'g over X which also satisfy the feasibility
condition g(x) < 0 and the complementary slackness condition (u*)'g(x) = 0.

Conclusions (a) and (d) justify taking a dual approach to the solution of (P).
It is perhaps surprising that all optimal solutions of (P) can be found from any
single optimal solution of (D). Another way of phrasing (d) would be to say
that if u* is optimal in (D), then x is optimal in (P) if and only if (x, u*) satisfies
optimality conditions (i), (ii) and (iv) (see Definition 3). In § 7 we shall take up at
some length the matter of approaching the computational solution of (P) via
its dual.

Conclusion (b) precludes the existence of what is often referred to as a duality
gap between the optimal values of (P) and (D). Most applications of nonlinear
duality theory require that there be no duality gap (e.g., see § 8 and [18]).

Conclusion (c) reveals the connection between the set of optimal solutions of
(D) and the perturbation function. If (P) has an optimal solution as well as the
property of stability, then, using Theorem 1, we obtain an alternative interpretation
of the optimal solution set of (D) : it is precisely the set of optimal multiplier vectors
for (P).

It is perhaps worth noting that Lemma 4 in the next section shows that con-
clusion (c) holds under a slightly weaker assumption than stability, namely, when
v(0) is finite and the optimal values of (P) and (D) are equal.
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Additional results concerning (P) and (D) are given in § 5. Relationships to
known results are taken up in § 6.

3. Proof of the optimality and strong duality theorems. It is convenient to
subdivide the proofs of Theorems 1 and 3 into five lemmas.

It will be necessary to refer to the set Yof all vectors y for which the perturbed
problem is feasible :

Y2 {yeR™:g(x) < y for some x e X}.

Obviously, v(y) = oo ifand only if y¢ Y.

The first lemma establishes that the perturbation function is convex on Y.
This well-known result is the cornerstone of the entire development. It also is
obvious that v is nonincreasing.

LeEMMA 1. Y is a convex set, and v is a convex function on Y.

Proof. The convexity of Y follows directly from the convexity of X and the
convexity of g. Since — oo is permitted as a value for v on Y, the appropriate
definition of convexity for v is in terms of its epigraph [26]: {(y,x)e R"*':ye Y
and x4 = v(y)}. Let (y°, 1°) and (', &) be arbitrary points in this set, and let 6 be an
arbitrary scalar between 0 and 1. Define 0 = 1 — 0. Then

v(0y° + 0y) = infimum f(0x° + Ox') subject to g(6x° + Ox') < 0y° + 0y’
x0,x"eX

< infimum f(0x° + 0x’) subject to g(x°) < )°, g(x') £ ¥’

x0,x'eX

infimum 60f(x°) + 0 f(x’) subject to g(x°) <%, g(x) < ¥
x0,x"eX

IIA

= 0v(y°) + Bu(y) < 6p° + Oy,
where the equality or inequality relations follow, respectively, from the convexity
of X, the convexity of g, the convexity of f, separability in x° and x’, and the defini-
tions of x° and y'. Thus the point 0(y°, u°) + 0(y', i) is in the epigraph of v, and so
v must be convex on Y. This completes the proof.

Many properties of v follow directly from its convexity. For example, v must be
continuous on the interior of any set on which it is finite; it must have value — oo
everywhere on the interior of Y if it is — oo anywhere; its directional derivative
(see Definition 6’) must exist in every direction at every point where it is finite;
it must have a subgradient at every interior point of Y at which it is finite ; and it
must be differentiable at a given point in Y if and only if it has a unique subgradient
there. These properties hold, not only for v, but for any convex function (see, e.g.,
[11] or [26, § 2]).

The following property is an important criterion for the existence of a sub-
gradient of a convex function at a point where it is finite. We offer a proof to keep
the development self-contained ; the method of proof is due to Gale [15].

LEMMA 2. Let ¢(-) be a convex function on a convex set Y = R™ taking values
inR U {—o0}. Let || - | be any norm on R™, and let j be a point at which ¢ is finite.
Then ¢ has a subgradient at 5 € Y if and only if there exists a positive scalar M such

that
O =) <\ foraliyey  such that y # 5.

ly — ¥l
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Proof. Suppose that ¢ has a subgradient y at ye Y ; ie,

&) = () + 7'(y — y) forallyeY.

Then ¢(y) > — oo on Y, and upon rearranging and dividing by ||y — ¥| (we shall
use the Euclidean norm, although any norm will do) we obtain

96) — 90) _ —7 — J)
ly =3I = ly—=7l
Since the right-hand side does not exceed [|j for any y, we obtain the desired
inequality with M = ||§]|. (If ||§]| = O, the desired inequality holds with M equal
to any positive number.)
Now suppose that there exists a positive scalar M such that the stated in-
equality holds. We must show that there exists a subgradient of ¢ at y. Since
¢(y) > — oo on Y, we may define the sets

® £ {(y,2)e R"*':ye Y and ¢(7) — ¢(y) Z 2},

Y2 {(y,z)eR"* M|y — j|| < z}.
It is easy to see that ® and W are convex sets, that ® (1 ¥ is empty, and that P is
open. From elementary results on the separation of nonintersecting convex sets,

it follows that ® and W can be separated by a hyperplane that does not intersect ¥ ;
that is, there exist an m-vector y and scalars p and a such that

forall ye Y such that y # y.

Yy 4+ pzza for(y,z)ed, Yy + pz <a for(y,z)e?,

Now (,0) e @, so y'y = a. Actually y'y = «, for 'y < o follows from the second
inequality and the fact that (¥, &) e ¥ for all ¢ > 0. Thus the inequalities become

Yy — 9 +pz=0 for(y,z)ed,
Yy — y) + pz <0 for(y,z)eP.

Since (¥, 1) € ¥, we have p < 0. Put ) = —9'/p. Then the first inequality becomes
7(y — y) = z whenever (y, z) e @, that is, whenever ye Y and ¢(7) — ¢(y) = z.
Putting z = ¢(y) — ¢(y), we have

Py —3) 2 ¢()) — ¢(y) whenever ye,

which says precisely that —$ is a subgradient of ¢ at y = y. This completes the
proof.

The following known result is equivalent : a convex function has a subgradient
at a given point where it is finite if and only if its directional derivative is not — oo
in any direction (cf. [11, p. 84], [26, p. 408]). This result would be used in place of
Lemma 2 if Definition 6’ were used in place of Definition 6.

The next lemma establishes a crucially important alternative interpretation
of optimal multiplier vectors.

LemMMA 3. If (P) has an optimal solution, then u is an optimal multiplier vector
for (P) if and only if —u is a subgradient of v at y = 0.

Proof. Suppose that u* is an optimal multiplier vector for (P). Then there is a
vector x* such that (x*, u*) satisfies the optimality conditions for (P). From
optimality conditions (i) and (ii) we have f(x) = f(x*) — (u*)'g(x) for all x e X.
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It follows, using (iii), that for each point y in Y,
f(x) = f(x*) — (w*)y forallxe X suchthatg(x)<y.

Taking the infimum of the left-hand side of this inequality over the indicated values
of x yields

o(y) = f(x*) + (—u*)y forallyeY.

It is now evident that —u* satisfies the definition of a subgradient of v at 0
(since f(x*) = v(0) and v(y) = oo for y ¢ Y). This completes the first half of the
proof.

Now let —u* be any subgradient of v at 0. We shall show that (x*, u*) satisfies
optimality conditions (i}~(iv), where x* is any optimal solution of (P). Condition
(iv) is immediate. The demonstration of the remaining conditions follows easily
from the definitional inequality of —u*, namely,

v(y) = v(0) — (u*)y for all y.

To establish (iii), put y = e;, the jth unit m-vector (all components of ¢; are 0
except for the jth, which is 1). Then v(e;) = v(0) — u¥, or u¥ = v(0) — v(e;). Since
v is obviously a nonincreasing function of y, we have v(0) = v(e;) and therefore
u¥ = 0. Condition (i) is established in a similar manner by putting y = g(x*).
This yields (u*)'g(x*) = v(0) — v(g(x*)) = 0, where the equality follows from the
fact that decreasing the right-hand side of (P) to g(x*) will not destroy the optimality
of x*. Hence (u*)'g(x*) = 0. But the reverse inequality also holds by (iii) and the
feasibility of x* in (P), and so (ii) must hold. To establish condition (i), put y = g(x),
where x is any point in X. Then

v(g(x)) = v(0) — (u*)'g(x) forall xe X.
Since f(x) = v(g(x)) for all xe X and v(0) = f(x*), we have
f(x) = f(x*) — (u*)g(x) forallxeX.

In view of (ii), this is precisely condition (i). This completes the proof.

We now have all the ingredients necessary for the optimality theorem.

Proof of Theorem 1. The perturbation function is convex on Y, by Lemma 1,
and is finite at y = 0 because (P) is assumed to possess an optimal solution.
By Lemma 2, therefore, v has a subgradient at y = 0 if and only if (P) is stable.
But subgradients of v at y = 0 and optimal multiplier vectors for (P) are negatives
of one another by Lemma 3. The conclusions of Theorem 1 are now at hand.

It is worth digressing for a moment to note that the hypotheses of Lemma 3
and Theorem 1 could be weakened slightly if the definition of an optimal mul-
tiplier vector were generalized so that it no longer presupposes the existence of
an optimal solution of (P). In particular, the conclusions of Lemma 3 and Theorem
1 hold even if (P) does not have an optimal solution, provided that v(0) is finite and
the concept of an optimal multiplier vector is redefined as follows. A point u
is said to be a generalized optimal multiplier vector if for every scalar ¢ > 0 there
exists a point x, such that (x,, u) satisfies the e-optimality conditions: x is an &-
optimal minimizer of f + u'gover X, u'g(x) = e, u = 0,and g(x) < 0. The necessary
modification of the proof of Lemma 3 is straightforward.
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The entire development of this paper could be carried out in terms of this
more general concept of an optimal multiplier vector. The optimality conditions
for (P), for example, would be stated in terms of a pair ({x*>, u) in which the first
member is a sequence rather than a single point. Such a pair would be said to
satisfy the generalized optimality conditions for (P)if, for some nonnegative sequence
{&"y converging to 0, for each v the pair (x’, u) satisfies the "-optimality conditions.
This generalization of the traditional optimality conditions given in Definition 3
seems to be the most natural one, when the existence of an optimal solution of (P)
is in question. It can be shown that if u is a generalized optimal multiplier vector
then ((x"), u) satisfies the generalized optimality conditions if and only if {x")
is a sequence of feasible solutions of (P) converging in value to v(0).

Although such a development might well be advantageous for some purposes,
we elect not to pursue it here.?

The next lemma establishes (in view of the previous one) the connection
between optimal multiplier vectors and solutions to the dual problem.

LEmMA 4. Let v(0) be finite. Then u is an optimal solution of (D) and the optimal
values of (P) and (D) are equal if and only if —u is a subgradient of vat y = 0.

Proof. First we demonstrate the ““if”” part of the lemma. Let (—u) be a sub-
gradient of v at y = 0; that is, let u satisfy

u(y) = v(0) — u'(y — 0) for all y.

The proof of Lemma 3 shows that u = 0 follows from this inequality. Thus u is
feasible in (D). Substituting g(x) for y, and noting that f(x) = v(g(x)) holds for all
x € X yields

f(x) + v'g(x) = v(0) forallxeX.
Taking the infimum over x € X, we obtain

infimum { f(x) + u'g(x)} = v(0).

It now follows from the weak duality theorem that ¥ must actually be an
optimal solution of (D), and that the optimal value of (D) equals v(0). This com-
pletes the first part of the proof.

To demonstrate the “only if”” part of the lemma, let u be an optimal solution
of (D). By assumption,

[inﬁmxum f(x) + u'g(x)] = v(0).

Since u'g(x) < u'y for all xe X and y such that g(x) < y (remember that u = 0),
it follows that

S(x) + u'y =2 v(0)
for all xe X and y such that g(x) < y. For each ye Y, we may take the infimum

2 K. O. Kortanek has pointed out in a private communication (Dec. 8, 1969) that the concept of
an optimal multiplier vector can be generalized still further by considering a sequence {u") of m-vectors
and appropriately defining “‘asymptotic” optimality conditions (cf. [21]). This would permit a kind
of optimality theory for many unstable problems (such as the example in § 2.2), although interpretations
in terms of subgradients of v at y = 0 are obviously not possible.
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of this inequality over x € X such that g(x) < y to obtain
v(y) — (—u)y =2 v(0) foryeY.

This inequality holds outside of Y as well, since v(y) = oo there. Thus (—u) satisfies
the definition of a subgradient of v at 0, and the proof is complete.

The final lemma characterizes the (possibly empty) optimal solution set of
(P).

LEMMA 5. Assume that v is finite at y = 0 and that y is a subgradient at this point.
Then x* is an optimal solution of (P) if and only if (x*, —v) satisfies optimality
conditions (i), (ii) and (iv) for (P).

Proof. Let x* be an optimal solution of (P). By Lemma 3, (—7) must be an
optimal multiplier vector for (P); and so (x*, —7) must satisfy the optimality
conditions for (P) (see the discussion following Definition 3). This proves the
“only if*” part of the conclusion.

Now let (x*, —7v) satisfy (i), (ii) and (iv). The proof of Lemma 4 shows that
—v = 0, and so (iii) is also satisfied. Hence x* must be an optimal solution of (P).
This completes the proof.

We are now able to prove the strong duality theorem.

Proof of Theorem 3. Since (P) is stable, v(0) is finite and we conclude from
Lemmas 1 and 2 that v has a subgradient at y = 0. Parts (a), (b) and (c) of the
theorem now follow immediately from Lemma 4. Part (d) follows immediately
from Lemma 5 with the help of part (c).

4. Geometrical interpretations and examples. It is easy to give a useful
geometric portrayal of the dual problem (cf. [20], [23, p. 223], [31]). This yields
insight into the content of the definitions and theorems of § 2, permits construction
of various pathological examples, and even suggests a number of additional
theoretical results. We need to consider in detail only the case m = 1.

The geometric interpretation focuses on the image of X under fand g, that is,
on the image set

I2{(z,,2z,)e R*:z; = g(x)and z, = f(x) for some x € X}.
Figure 1 illustrates a typical problem in which x is a scalar variable. The point

P* is obviously the image of the optimal solution of problem (P); that is,

2, (VALUE OF f)

P

\ 2, (VALUE oF g)

Fi1G. 1
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P* = (g(x*), f(x*)), where x* minimizes f subject to g(x) < 0 and x € X. Thus the
geometric interpretation of problem (P) is obvious: Find the point in I which
minimizes z, subject to z; < 0.

Consider now a particular value # = 0 for the scalar variable of (D). To
evaluate the maximand of (D) at &i one must minimize f + @ig over X. This is the
same as minimizing z, + iz, subject to (z,, z,) € I; as the line z, + #iz; = const.
has slope —1 in Fig. 1, we see that evaluating the maximand of (D) at # amounts
to finding the lowest line with slope —# which intersects I. This leads to the line
/ tangent to I at P, pictured in Fig. 1. The point P is the image of the minAimizer
of f + fig over X. The minimum value of f + fig is the villue of z, where ¢/ inter-
cepts the ordinate, namely, 2, in Fig. 1 (since (0, £,) €/). The geometric inter-
pretation of (D) is now apparent : Find that value of #i which defines the slope of a
line tangent to I intersecting the ordinate at the highest possible value. Or, more
loosely, choose #i to maximize 2, . In Fig. 1, this leads to a value of ¥ which defines
a line tangent to I at P*,

The geometric interpretation of (P) and (D) helps.to clarify the content of
Theorems 1, 2 and 3. The problem pictured in Fig. 1, for example, is obviously
stable. In the neighborhood of y = 0, v(y) is just the z,-coordinate of I when z,
equals y; and this coordinate does not decrease infinitely steeply as y deviates
from 0. The subgradient of v at y = 0 is precisely the slope of the line tangent to
I at P*, which from Definition 3 is seen to be the negative of the optimal multiplier
vector. This verifies the conclusion of Theorem 1 for this example. The geometrical
verification of Theorems 2 and 3 is so easy as not to require comment here.

P*

2

Fi1G. 2

An example of an unstable problem is given in Fig. 2, in which I is tangent
to the ordinate at the point P*. The value of v decreases infinitely steeply as y
begins to increase above 0, and so there can be no subgradient at y = 0. The
only line tangent to I at P* is vertical. This checks with Theorem 1. Theorem 2
obviously holds, and Theorem 3 does not apply. The dual has optimal value equal
to that of the primal, but no finite u achieves it.

This concludes the discussion of the geometrical interpretation of the defini-
tions and theorems when m = 1. The generalization for m > 1 is conceptually
straightforward, although it may be helpful to think in terms of the following
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convex set instead of I itself:
I+ £ {(21’ ) Zm+1)ERm+1:Zi g gi(x)’i = 17 cer,m,
and z,,,; = f(x) for some x € X}.

Using I in place of I does not change in any way the geometrical inter-
pretations given for (P) or (D). The line / now becomes, for each choice of #l, a
supporting hyperplane (when m > 1) of I'*.

Now we shall put our geometrical insight to work by constructing enough
pathological examples to show that the cases allowed by Theorems 1, 2 and 3
can actually occur. These examples are displayed on Diag. 1. The image set I is
portrayed in each case. A dashed line indicates a missing boundary, and an arrow-
head indicates that I continues indefinitely in the given direction. Although the
examples are given geometrically, it is easy to write down corresponding expres-
sions for X, f, and g. Only a single variable is needed in Examples 1, 6, 9 and 10.
In Examples 1, 6 and 9, simply identify x with z,; let g(x) = x; f(x) = z,(x),
where z,(z,)is the z,-coordinate of I for a given value of z, ; and let X be the interval
of z, values assumed by points in I. In Example 9, for instance, the corresponding
problem (P) might be:

M}I(lirgize x subjectto x Z0.
For Example 10, one may put f(x) = —x, g(x) = +1, and X =[—1, ). The
remaining examples require two variables: identify x, with z, and x, with z,,
let g(x,, x,) = x; and f(x,X,) = x,; and put X equal to I. In Example 3, for
instance, we obtain for (P) the problem:

Minimize x, subjectto x, <0,
(x1,x2)eX

where

X 2 {(x,x%,):0<x; £2,1 <x, <4,and x, 2 3if x; = 0}.

In Diag. 1, we have not distinguished whether or not (P) has an optimal
solution when v(0) is finite. There does exist an optimum solution of (P) in each
of Examples 1-5; it is denoted in each case by a heavy dot. It is easy to modify
each of these examples so that no optimum solution exists : simply delete the dot from
I in Examples 2-5, and delete the dot and the part of I to its right in Example 1.
This shows that the cases allowed for (P) in Diag. 1 when its optimal value is
finite can occur either with or without the existence of an optimal solution for (P).

5. Additional results. The geometrical insights offered in the previous section,
and particularly the geometric examples of Diag. 1, suggest a number of further
results concerning the relation between (P) and (D). In this section we prove
several results useful in ascertaining when certain of the cases represented by
Examples 2-10 cannot occur. We also present a converse duality theorem which
sharpens part (d) of the strong duality theorem.

5.1. Theorems 4-6. The first result suggested by Diag. 1 is a criterion for the
essential infeasibility of (D).
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THEOREM 4. (D) is essentially infeasible if and only if v(y) = — oo for some y.

Proof. We shall prove the contrapositive. Suppose that (D) is essentially
feasible, so that there exists a vector # = 0 and a scalar M such that f(x) + u'g(x)
> M for all xe X. Let y be an arbitrary point in Y. Then

f) = f(x) +u'glx) —y) =2 M — 'y

for all x e X such that g(x) < y. Taking the infimum of f(x) over the indicated
values of x, we obtain v(y) = M — &'y > — oco. This proves that (D) is essentially
feasible only if v(y) > — oo for all ye Y.

Suppose now that v(y) is not — oo anywhere on Y. To show that (D) is essen-
tially feasible, it is enough to show that v has a subgradient y at some point y in Y,
for then, by reasoning as in the first part of the proof of Lemma 4, we may demon-
strate that —7 is essentially feasible in (D). Let y be any point in Y, and put
y = y + 1, where 1 is an m-vector with each component equal to unity. Obviously,
yisinthe interior of Y, and v(y) is finite by supposition. Since v is convex, therefore,
by a known property of convex functions (see the remark following Lemma 1)
it must have a subgradient at y. Thus (D) is essentially feasible if v(y) > — oo for
all ye Y. The proof is now complete.

Since the convexity of v implies that it has value — co at some point in Y if
and only if it has value — oo at every interior point in Y, we see that (D) will be
essentially infeasible if and only if v(y) = — oo on the whole interior of Y.

The next result is suggested by the apparent impossibility of altering Examples
7 and 8 of Diag. 1 so that [ is strictly separated from the ordinate (i.e., so that
y = 01is bounded strictly away from Y; cf. [20, Theorem 2(b)]).

THEOREM 5. If (P) is infeasible and the optimal value of (D) is finite, then 0 is in
the closure of Y.

Proof. Suppose, contrary to what we wish to show, that y = 0 is not in the
closure of Y. Then, by the convexity of Y, 0 can be strictly separated from it by
a hyperplane with normal p, say: p'y = ¢ > 0 for all ye Y. Certainly p = 0, for
otherwise some component of y could be taken sufficiently large to violate p'y > 0.
Since g(x) e Y for all x € X, we obtain

infimum {p'g(x)} > 0.
xeX
Let u = 0 be any vector that is essentially feasible in (D), so that

infimum { f(x) + u'g(x)} > —o0.
xeX

Then u + Op is also essentially feasible in (D) for any scalar 6 = 0, and

infimum {/(x) + (u + 0pfg(x)} Z infimum {f() + w'g(x)} + 0 infimum {p'g(x)}.

By letting 6 — oo, we obtain the contradiction that the optimal value of (D) is
+ 0. Hence 0 must be in the closure of Y, and the proof is complete.

This shows that the cases represented by Examples 7 and 8 (namely, (P)
infeasible and a finite optimal value for (D)) can occur only if some arbitrarily
small perturbation of y away from 0 will restore (P) to feasibility. Of course, if
Y is closed (e.g., X compact and g continuous), then these cases cannot occur.
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A similar result is suggested by the conspicuous feature which Examples
2-5 of Diag. 1 have in common : the ordinate touches I but never passes through its
interior. In other words, y = Qis always a boundary point of Y. This turns out to be
true in general when (P) has a finite optimal value but is unstable, as follows from
the next theorem.

THEOREM 6. If v(0) is finite and y = 0 is an interior point of Y, then (P) is stable.

Proof. Since v is convex and 0 is in the interior of Y, it must have a subgradient
at this point (see the remark following Lemma 1). Apply Lemma 2.

The converse of this theorem is not true; that is, the stability of (P) does not
imply that 0 is an interior point of Y. A counterexample is provided by Example 1
with the portion of I to the left of the dot removed.

The condition that 0 is in the interior of Y can be thought of as a *‘constraint
qualification” which implies stability (provided v(0) is finite). It is equivalent to the
classical qualification introduced by Slater that there exist a point x° € X such
that g(x°) < 0,i = 1, ---, m. In this event, it follows from Theorem 6 that only
the cases represented by Examples 1 and 6 of Diag. 1 can obtain.

5.2. Duality gaps and the continuity of v. There is one more result suggested
by the examples of Diag. 1 that we wish to discuss. It pertains to the possibility
of a duality gap, or difference in the optimal values of (P) and (D). From Diag. 1
we can immediately observe that this can happen when (P) is feasible only if (P)
is unstable, although it need not happen if (P) is unstable. Geometric considerations
suggest that any difference in optimal values must be due to a lack of continuity
of v at y = 0 (a convex function can be discontinuous at points on the boundary
of its domain). And indeed this important result is essentially so, as we now show.

THEOREM 7 (Continuity). Let v(0) be finite. Then the optimal values of (P) and
(D) are equal if and only if v is lower semicontinuous at y = 0.

Proof. The first part of the proof makes use of the function w,

w(y) £ supremum[inﬁmum f(x) + u'(g(x) — y)] ,

uz0 xeX

which isto be interpreted as the optimal value of the dual problem of (P) modified to
have right-hand side y rather than 0. Certainly w is a convex function on R™, for
it is the pointwise supremum of a collection of functions that are linear in y.

Suppose that v is lower semicontinuous at y = 0. It follows that v is finite
on the interior of Y. Let (y*) be the following sequence in the interior of Y con-
verging to 0:y* = 1/v, where 1 is an m-vector with each component equal to unity.
It follows from Theorem 6 that (P), modified to have right-hand side y” instead of 0,
must be stable. By part (b) of Theorem 3, therefore, we conclude that v(y*) = w(y")
for all v. We then have

w(0) = lim inf w(y*) = lim inf v(y*) = v(0) = w(0),

where the first inequality follows from the convexity of w, the second from the
lower semicontinuity of v, and the last from the weak duality theorem. Hence
v(0) must equal w(0), the optimal value of (D), and the “only if”’ part of the theorem
is proved.
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Now assume that v(0) equals the optimal value of (D). We must show that v
is lower semicontinuous at y = 0. Suppose to the contrary that there exists a
sequence {y") of points in Y converging to 0 such that {v(y*)> — v < v(0). We may
derive the contradiction #= optimal value of (D) as follows. Since f(x) + u'g(x)
< f(x) + u'y holds for allu = 0, ye Y and x € X such that g(x) < y, we may take
the infimum of both sides to obtain

infimum { f(x) + w'g(x)lg(x) < y} < v(y) + u'y forallu 20 and yeV.
xeX

It follows that

infimum f(x) + v'g(x) | S v(y) + u'y forallu =0 andyeY.
xeX

Hence,

infimum f(x) + u'g(x) | £ lim (v(y*) + v'y*) =0 forallu = 0.

xeX

Taking the supremum over u = 0, we obtain the desired contradiction: optimal
value of (D) < . This completes the proof.

Theorem 7 motivates the need for conditions which imply the lower semi-
continuity of v at 0. The following result is of fundamental interest in this regard.

THEOREM 8. Assume that X is closed, f and g are continuous on X, the optimal
value of (P) is finite, and {x € X : g(x) < 0 and f(x) < «} is bounded and nonempty
for some scalar o = v(0). Then v is lower semicontinuous at y = 0.

The boundedness hypothesis is obviously satisfied if, as is frequently the
case in applications, the feasible region of (P) is bounded (put o = v(0) + 1).
If the boundedness of the feasible region is in question but (P) has an optimal
solution, then the hypothesis holds if the optimal solution is unique or, more
generally, if the set of alternative optimal solutions is bounded (put o = v(0)).
If the boundedness of the feasible region and the existence of an optimal solution
of (P) are in question, then the hypothesis holds if a set of alternative ¢-optimal
solutions is bounded (put « = v(0) + ¢).

The proof of Theorem 8 depends on the following fundamental property
of convex functions (cf. [12, p. 93]).

LEMMA 6. Let ¢(-) be a convex continuous real-valued function on a closed
convex set X < E". Define ®, & {xe X : ¢(x) < ¢}, where ¢ is a scalar. If ®, is
bounded and nonempty for ¢ = 0, then it is bounded for all ¢ > 0.

Proof. Let ¢ > 0be fixed arbitrarily, and let x, be any point in ®,. The assump-
tions imply that ®, is closed and convex, and that there exists a scalar M > 0
suchthat | x — x,|| < Mforallx € ®,.Suppose, contrary to the desired conclusion,
that there is an unbounded sequence (x*) of points in ®,. The direction vectors
(x* = x0)/IIx* — x| must converge subsequentially to a limit, say A. Furthermore,
(xg + OA)e @, for all 0 = 0, since @, is closed and contains a sequence of points
whose limit is x, + 6A (such a sequence is {xy + O(x* — xg)/|x" — x,||> for v
such that 6/|x” — x,| < l—remember that ®, is convex). Define 1 = ¢(x,
+ MA)/2e. Clearly 0 <A <1, and (xq + MA) = Axo + (M/AHA) + (1 — A)x,.
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The convexity of ¢ therefore implies
Plxg + MA) < Ag[xo + (M/DA] + (1 — D(xo).
Rearrangement of terms yields the key inequality

-2

M
—A
A

o] 5o+ 5] 2 Jotxo + ey -

P(xo).

Since the choice of 2 implies that the first term on the right has value 2¢, and since the
second term is obviously nonnegative, this inequality directly contradicts the
known fact that [x, + (M/1)A] € ®,. Hence our supposition that @, is unbounded
must be erroneous, and the lemma is proved.

Proof of Theorem 8. Suppose, contrary to the conclusion, that there exists a
sequence {y"> of points in Y such that {(y*) — 0 and <v(y"))> — © < v(0). For each
v, there exists a point x* € X such that g(x") = y* and v()") < f(x") = v(y*) + (1/v)
(the infimal value v(y”) can be approached as closely as desired). Clearly < f(x*)) — 7,
and our assumptions imply that, for all v sufficiently large x* must be in the set

EL {xeX:ig(x)<e,i=1,---,mand f(x) < v(0)}

for any fixed ¢ > 0. But repeated application of Lemma 6 reveals that E is bounded,
and so {x"» must be a bounded sequence. We may therefore assume (taking a
subsequence if necessary) that {x")» converges, say to X. By the closedness of X
and the continuity of g and f, we have x € X, g(x) < 0, and f(x) = lim f(x") = o.
Thus X is feasible in (P) and & = f(X) = v(0). But this contradicts the supposition
7 < v(0), and so v must be lower semicontinuous at y = 0.

5.3. A converse duality theorem. Lemma 6 is also the key to the following
important partial converse to the strong duality theorem.

THEOREM 9 (Converse duality). Assume that X is closed and that f and g are
continuous on X. If (D) has an optimal solution u*, f + (u*)'g has a unique minimizer
x* over X, and x* is feasible in (P), then x* is the unique optimal solution of (P),
u* is an optimal multiplier vector, and (P) is stable.

Proof. Since (D) has an optimal solution, we see from Diag. 1 that only the
cases represented by Examples 1, 3 and 7 are possible. The last case is precluded
by the assumption that x* is feasible in (P). If we can show that v is lower semi-
continuous at y = 0, then by Theorem 7 the first case must obtain and (P) must be
stable. If we can also show that (P) has an optimal solution, then part (d) of Theorem
3 will imply that x* must be the unique optimal solution, for it is the unique
minimizer of f + (u*)'g over X. Part (c) of Theorem 3 and Theorem 1 will also
imply that u* is an optimal multiplier vector for (P).

Thus our task is to demonstrate that v is lower semicontinuous at y = 0
and that (P) admits an optimal solution. To accomplish this, apply Lemma 6
with ¢(x) equal to f(x) + (u*)g(x) — f(x*) — (u*)g(x*). It follows that the set

D, £ {xe X:f(x) + @ ex) S f(x*) + We(x*) + e}

is bounded for all ¢ > 0 (®, is identical with x*).
To see that (P) has an optimal solution, let {x") be a feasible sequence such
that { f(x")> — v(0), and put ¢ = v(0) + 1 — optimal value (D). It is easily verified
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that x" € @, for all v sufficiently large, and consequently the problem:

Minigﬂize f(x) subjectto g(x) <0,
whose feasible region is contained in that of (P), must have the same optimal value.
Since this optimal value is actually achieved (the minimand is continuous and the
feasible region is compact), this demonstrates the existence of an optimal solution
to (P). The lower semicontinuity of v at y = 0 follows from an easy modification
of Theorem 8 in which the proof uses @, (with the same choice of ¢) in place of =.
This completes the proof.

If f + (u*)'g is strictly convex in some neighborhood of x*, it must have a
unique minimizer over X ; but the reverse implication need not hold. Of course,
one would expect f + (u*)'g to be strictly convex near x* when (P) is a nonlinear
program, as only one of the functions f and g; such that u¥ > 0 need be strictly
convex near x* for this to be so. Another way of rationalizing the uniqueness of
the minimizer of f + (u*)'g over X when (P) involves nonlinear functions is to
apply Theorem 10 of § 7 with ¢ = 0; it then follows that fand each g; with a positive
multiplier would have to be linear over the set of alternative minimizers.

A possibly useful observation on Theorem 9 is that the uniqueness hypothesis
on x* can be weakened somewhat with the help of the concept of g-uniqueness.
If the set of all points x with some particular property is nonempty and g is constant
on this set, then this set is said to be g-unique. It is g-uniqueness of x*, rather than
uniqueness, which is essential in Theorem 9. If in the hypotheses we substitute
“and the set X* of all minimizers of f(x) + (u*)'g(x) over X is bounded and g-
unique,” then the conclusion still holds with the substitution “then X* is the set
of optimal solutions of (P).”

It is interesting to note how the conclusions of Theorem 9 change if x* is
not g-unique but the set X* of all minimizers of f + (u*)'g over X is still bounded.
The set @, used in the proof remains bounded by Lemma 6, since ®, = X* is
nonempty and bounded. It follows that (P) is stable and has an optimal solution,
u* is an optimal multiplier vector, and the optimal solution set of (P) coincides
with the points of X* which also satisfy g(x) < 0 and (u*)'g(x) = 0.

If X is bounded, then the hypothesis “x* is feasible in (P)”’ can be omitted
because its only role in the proof of Theorem 9—to ensure that (P) is feasible—
can be played by Theorem 5 (Y must now be closed).

6. Relations to previous duality results. In this section we examine in more
detail the relationships between our results and previous work on duality theory
in linear, quadratic, and nonlinear programming. Rather than attempting an
exhaustive survey or even citation of the literature, which by now is quite extensive,*
we select several key papers as representatives for comparison. These are the
well-known papers by Dorn [8], Wolfe [34], Stoer [28], Mangasarian and
Ponstein [25], and Rockafellar [26]. The first paper is representative of the results
that can be obtained for the special case of quadratic programming ; the second of

3 The usefulness of this concept is brought out more clearly in § 7.3.

* See the extensive bibliographies of [24, Chap. 8] and [26]. For a dual problem ostensibly quite
different from the one considered here, see also Charnes, Cooper and Kortanek [4] (their “‘Farkas-
Minkowski property” appears to imply stability when v(0) is finite).
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the results that can be obtained by means of the differential calculus and the classical
results of Kuhn and Tucker; the third and fourth of the results obtainable by
applying general minimax theorems; and the fifth of the more recent results
obtainable by applying the theory of conjugate convex functions.

6.1. Linear programming. Let the primal linear program be:

Minimize c¢'x subjectto Ax = b.

xz0

With the identifications f(x) = ¢'x, g(x) = b — Ax and X = {xe R":x = 0}, (D)
becomes:
Maximize [infimum ¢'x + u'(b — Ax)].
uz0 x20
Observe that the maximand has value u'b if (¢! — u'A) = 0, and — oo otherwise.

Thatis,(c' — u'A) = 0Ois anecessary and sufficient condition for essential feasibility,
so that (D) may be rewritten

Maximize u'b subjectto u'A = c'.

uz0 =
This, of course, is the usual dual linear program.

The stability of the primal problem when it has finite optimal value is a
consequence of the fact that its constraints are all linear (the perturbation function
v is piecewise-linear with a finite number of “pieces””). Thus Theorems 1 and 3
apply.

The duality theorem and the usual related results of linear programming are
among those now at hand, either as direct specializations or easy corollaries of
the results given in previous sections. It is perhaps surprising that, even in the
heavily trod domain of linear programming, the geometrical interpretation of the
dual given in § 4 does not seem to be widely known.

It is interesting to examine what happens if one dualizes with respect to only
a subset of the general linear constraints. Suppose, for example, that the general
constraints Ax = b are divided into two groups, 4,x = b, and A,x = b,, and
that we dualize only with respect to the second group; i.e., we make the identi-
fications f(x) = ¢'x, g(x) = b, — A,x and X = {xeR":x =20 and A, x =2 b,}.
Then the new primal problem is still stable, and the dual problem becomes:

u =0 x=0
A1x=by

Maximize |:inﬁmum c'x + uhy(by — Azx)]
Formidable as it looks, this problem is amenable to solution by at least three
approaches, all of which can be effective when applied to specially structured
problems. In terminology suggested by the author in [17], the first approach is
via the piecewise strategy, of which Rosen’s “primal partition programming”’
scheme may be regarded an example [17, § 4.2]; the second approach is via outer
linearization of the maximand followed by relaxation (Dantzig—Wolfe decompo-
sition may be regarded as an example [17, §4.3]); the third approach is via a
feasible directions strategy [19]. The point to remember is that the dual of a linear
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program need not be taken with respect to all constraints, and that judicious
selection in this regard allows the exploitation of special structure. This point is
probably even more important in the context of structured nonlinear programs.
It has been stressed previously by Falk [10] and Takahashi [29].

6.2. Quadratic programming: Dorn [8]. Let the primal quadratic program be:

Minimize 4x'Cx — ¢'x subject to Ax < b,
X

where C is symmetric and positive semidefinite. The dual (D) with respect to all
constraints is

Maximize [infimum g(x;u)],

uxz0 x

where
q(x;u) 2 Ix'Cx — u'b + (U'A — H)x.

In what follows, we shall twice invoke the fact [14, p. 108] that a quadratic function
achieves its minimum on any closed polyhedral convex set on which it is bounded
below.

Consider the maximand of (D) for fixed u. The function q( - ; u), being quad-
ratic, is bounded below if and only if its infimum is achieved, which in turn can be
true if and only if the gradient of ¢ with respect to x vanishes at some point. Thus
inf, g(x; u) equals — oo if there is no x satisfying V. q(x; u) = x'C + '4 — ¢') = 0;
otherwise, it equals 3x'Cx — u'b + (—x'C)x for any such x (an obvious algebraic
substitution has been made). We can now rewrite the dual problem as:

Maximize [—u'b — $x'Cx for any x satisfying x'C + (W'4 — ¢') = 0]

uz0
subject to
X'C + WA —c)=0 forsomex.
But this is equivalent in the obvious sense to:

Maximize —u'b — $x'Cx subject to x'C + u'd — ¢' = 0.
u%O
In this way do the primal variables find their way back into the dual. This is
precisely Dorn’s dual problem.

The linearity of the constraints of the primal guarantees stability whenever
the optimal value is finite, and so Theorems 1 and 3 apply. Dorn’s dual theorem
asserts that if x* is optimal in the primal, then there exists u* such that (u*, x*) is
optimal in the dual and the two extremal values are equal. This is a direct conse-
quence of Theorem 3. Dorn’s converse duality theorem asserts that if (4, X) are
optimal in the dual, then some X satisfying C(x — £) = 0 is optimal in the primal
and the two extremal values are equal. To recover this result, we first note by
Theorem 2 that the primal minimand must be bounded below, and hence there must
be a primal optimal solution, say Xx. By Theorem 3, the extremal values are equal,
and X must be an unconstrained minimum of ¢(x ; ), i.e., X'C + #'A — ¢' = 0.
But £'C + #i'A — ¢' = 0also holds, and so X'C = £'C.
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In a similar manner we may obtain the symmetric dual of the special quadratic
program studied by Cottle [5], and also his main results.

6.3. Differentiable nonlinear programming: Wolfe [34]. The earliest and
probably still most widely quoted duality results for differentiable convex programs
are those of Wolfe. He assumes X = R" and all functions to be convex and differ-
entiable on R", and proposes the following dual for (P):

(W) Max>i%1ize f(x) + u'g(x)

subject to

Vf(x) + i u,Vg(x) = 0.

Wolfe obtains three theorems under the Kuhn—Tucker constraint qualification. The
first is a weak duality theorem. The second asserts that if x° is optimal in (P),
then there exists u° such that (1%, x°) is optimal in (W) and the extremal values are
equal. The third theorem, which requires all g; to be linear, asserts that the optimal
value of (W) is + oo if it is feasible and (P) is infeasible.

In order to compare these results with ours, we must examine the relationship
between (W) and (D). Observe that, for fixed ## = 0, (iz, X) is feasible in (W) if and
only if X is an unconstrained minimizer of ' + u'g. In terms of the dual variables
only, therefore, (W) may be written as:

(W.1) Maxirglize [minimum f(x) + u'g(x)]

uz X
subject to u such that the unconstrained minimum of f + u'g is achieved for
some X.

Evidently (W.1) is equivalent to (W) in a very strong sense : (i, X) is feasible in (W)
only if # is feasible in (W.1) and the respective objective function values are equal ;
and u is feasible in (W.1) only if there exists a point X such that (i, X) is feasible in
(W) and the respective objective function values are equal. Problem (W.1) is, of
course, identical to (D) except for the extra constraint on u. We are now in a
position to recover Wolfe’s results. His first theorem follows immediately from
our weak duality theorem, since the extra constraint on u in (W.1) can only depress
the optimal value by comparison with (D). Wolfe’s second theorem follows
immediately from parts (a), (b) and (d) of the strong duality theorem, since the
Kuhn-Tucker constraint qualification implies stability. His third theorem would
be a direct consequence of Theorem 5 were it not for the extra constraint on u in
(W.1); that is, were (D) to replace (W) in his statement of the theorem. The extra
constraint in (W.1) necessitates a different line of reasoning, and although one
could be fashioned using only the previous results of this paper, it would not be
sufficiently different from Wolfe’s proof to warrant presentation here.

As Wolfe himself noted, (W) may be difficult to deal with computationally ;
its maximand is not concave in (u, x), and its constraint set involves nonlinear
equality constraints and needn’t even be convex. Another difficulty is that (W) is
more prone than (D) to the misfortune of a duality gap, since it has (as revealed
by (W.1)) an extra constraint on u.
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6.4. Stoer [28] and Mangasarian and Ponstein [25]. The natural generalization
of Wolfe’s dual when some functions in (P) are not differentiable or the set X is not
all of R" is the following, which might be called the general Wolfe dual:

(GW) Maximize f(x) + u'g(x)
uz0
X
subject to:
X minimizes f + u'g over X.

This problem bears the same relation to (D) as (W) does ; the more general version
of the intermediary program (W.1) that is appropriate here should be evident.
Although (GW) is generally inferior to (D) for much the same reason that (W) is,
it is nevertheless worthwhile to review some of the work that has been addressed
to this dual.

The landmark paper treating (GW) is by Stoer [28], whose principal tool is
a general minimax theorem of Kakutani. The possibility of using minimax theorems
in this connection is due, of course, to the existence of an equivalent characteriza-
tion of the optimality conditions for (P) as a constrained Lagrangean saddle point.
Stoer’s results are shown to generalize many of those obtained via the differential
calculus by numerous authors in the tradition of Wolfe’s paper. Because of certain
technical difficulties inherent in his development, however, we shall examine
Stoer’s results as reworked and elaborated upon by Mangasarian and Ponstein
[25]. To bring out the essential contributions of this work, we shall take consider-
able license to paraphrase.

Aside from some easy preliminary results which do not depend on convexity—
namely, a weak duality theorem and an alternative characterization of a con-
strained Lagrangean saddle point (see the discussion following our Definition 3)—
the Stoer—-Mangasarian-Ponstein results relating (P) and (GW) can be paraphrased
as three theorems, all of which require fand g to be convex and continuous, and X
to be convex and closed. The first [25, Theorem 4.4a] is: Assuming (P) has an
optimal solution X, an optimal multiplier vector # exists if and only if f(x) + u'g(x)
has the so-called “low-value property” at (X, #). We shall not quote in detail this
rather technical property, but we do observe that, in view of our Theorem 1, the
low-value property must be entirely equivalent (when all functions are continuous
and X is closed) to the condition that (P) is stable.

The second theorem [25, Theorem 4.4b] is: Assuming (GW) has an optimal
solution (X, i), there exists a minimizer x° of f + ii'g over X satisfying it'g(x°) = 0
such that x° is optimal in (P) if and only if f(x) + u'g(x) has the so-called “high-
value property” at (X, #). The high-value property is also quite technical, but its
significance can be brought out by comparing the theorem with the following
immediate consequence of Theorems 1 and 3 of this study : There exists an optimal
solution of (D) and for any optimal i there is a minimizer x° of f + i'g over X
satisfying i'g(x®) = 0 such that x° is optimal in (P), if and only if (P) is stable and
has an optimal solution. It follows that the high-value property holds and (GW)
has an optimal solution if and only if (P) is stable and has an optimal solution
(when f and g are continuous and X is closed). The demonstration is straight-
forward, and makes use of the evident fact that if &1 is optimal in (D) and X minimizes
f + u'g over X, then (X, 1) must be optimal in (GW).
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The third result is a strict converse duality theorem, a counterpart of our
Theorem 9: If (X, i) is an optimal solution of (GW) and f(x) + &'g(x) is strictly
convex in some neighborhood of X, then X is an optimal solution of (P) and (X, @)
satisfies the optimality conditions for (P). The difference between this and Theorem
9, besides the fact that it addresses (GW) rather than (D), is the slightly stronger
hypothesis that f + #'g be strictly convex near X (rather than simply requiring the
minimizer of f + #'g over X to be unique or just g-unique).

This discussion casts suspicion on the need for general minimax theorems as
a means of obtaining strong results in duality. Such an approach may even be
inadvisable, as it seems to lean toward (GW) rather than (D), and toward technical
conditions less convenient than stability.

6.5. Rockafellar[26]. Finally we come to the outstanding work of Rockafellar,
whose methods rely heavily upon Fenchel’s theory of conjugate convex functions
[11]. To make full use of this theory, it is assumed in effect that fand g; are lower
semicontinuous on X (so that the convex bifunction associated with (P) will be
closed as well as convex, as assumed in Rockafellar’s development).® The theory
of conjugacy then yields the fundamental relationships between (P) and (D). By
way of comparison, we note that one can readily deduce Lemmas 1 through 5
and Theorems 1 through 7 of this study from his results. This deduction utilizes
the equivalence of Definitions 6 and 6’ for the concept of stability, and the equiva-
lence between the optimality conditions of (P) and a constrained saddle point of
the Lagrangean. The content of our Theorems 8 and 9 is not obtained, but
Rockafellar does give some additional results not readily obtainable by our
methods. Namely, the dual of (P) in a certain conjugacy sense is again (P); the
optimal solutions of (P) are the subgradients of a certain perturbation function
associated with (D); and v is lower semicontinuous at 0 if and only if the perturba-
tion function associated with (D) is upper semicontinuous at the point of null
perturbation. The significance of these additional results for applications is not
clear, although they are certainly very satisfying in terms of mathematical symmetry.

Although (D) is the natural dual problem of (P) corresponding to the perturba-
tion function v, it is interesting to note that other perturbation functions give rise
to other duals to which Rockafellar’s results apply immediately. It seems likely
that the methods of this paper could be adapted to deal with other perturbation
functions too, but as yet this has not been attempted.

7. Computational applications. This section studies a number of issues that
arise if one wishes to obtain a numerical solution of a convex program via its
dual—that is, if one is interested in “dual” methods for solving (P). By a dual
method we mean one that generates a sequence of essentially feasible solutions
that converges in value to the optimal value of (D). Such a sequence yields, by
the weak duality theorem, an improving sequence of lower bounds on the optimal
value of (P).

® Rockafellar has pointed out to the author in a private communication (October 13, 1969) that
bifunction closedness, and hence the semicontinuity assumption on f'and g;, can be dropped except for
the ““additional” results referred to below. He also pointed out that results closely related to our
Theorems 8 and 9 appear in his forthcoming book Convex Analysis (Princeton University Press).
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The possible pitfalls encountered by dual methods include these: The
dual may fail to be essentially feasible, even though (P) has an optimal solution;
or it may be essentially feasible but fail to have an optimal solution; or it may
have an optimal solution but its optimal value may be less than that of (P)
(this can invalidate the obvious natural termination criterion when an upper
bound on the optimal value of (P) is at hand). None of these pitfalls can occur
if (P) is stable, thanks to the strong duality theorem. For this reason, and also
because this property usually holds anyway, we shall assume for the remainder
of the section that (P) is stable. We shall also assume that (P) has an optimal
solution.

7.1. Methods for solving (D). There are several ways one may go about
solving (D). Some of these are appropriate only when (P) has quite special struc-
ture, as when all functions are linear or quadratic. Others can be employed under
quite general assumptions. It is perhaps fair to say that most of these methods
fall into two major categories: methods of feasible directions and methods of
tangential approximation. Both are based on the easily verified fact that, for any
i = 0, if X achieves the infimum required to evaluate the maximand of (D) at #
then g(x) is a subgradient of the maximand at it that is,

infimum { f(x) + w'g(x)} = [f(%) + #'g(X)] + g®)w —u), alluz0.

The feasible directions methods typically use g(x) as though it were a gradient to
determine a direction in which to take a “‘step.” Instances of such methods are
found in [3], [10], [19], [22], [29], [33]. The term ““Lagrangean decomposition”
is sometimes applied when the maximand of (D) separates (decomposes) into the
sum of several independent infima of Lagrangean functions. The ancestor of this
class of algorithms is an often-overlooked contribution by Uzawa [30]. The other
principal class of methods for optimizing (D) is global rather than local in nature,
as it uses subgradients of the maximand of (D) to build up a tangential approxi-
mation to it. It is well known that the decomposition method of Dantzig and
Wolfe for nonlinear programming [6, Chap. 24] can be viewed as such a method.
See also [16, § 6] and the “global” approach in [29].

It is beyond the scope of this effort to delve into the details of methods for
optimizing (D). Rather, we wish to focus on questions of common interest to
almost any algorithm that may be proposed for (D) as a means of solving (P).
Specifically, we shall consider the possibility of numerical error in optimizing (D)
and in minimizing f + u'g over X for a given u. It is important to investigate the
robustness of the resulting approximate solutions to (P) when there is numerical
error of this kind. Hopefully, by making the numerical error small enough one
can achieve an arbitrarily accurate approximation to an optimal solution of (P).
We shall see that this is often, but not always, the case.

7.2. Optimal solution of (D) known without error. The simplest case to
consider is the one in which an optimal solution u* of (D) is known without error.
Then by the strong duality theorem we know that the optimal solutions of (P)
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coincide with the solutions in x of the system :°
(i) x minimizes ' + (u*)'g over X,

(i) (u*)'g(x) =0,

(iv) g(x) = 0.

If (i) is known to have a unique solution, as is very often the case when (P)
is a nonlinear program (actually, g-uniqueness is enough—see the discussion
following Theorem 9), then (ii) and (iv) will automatically hold at the solution.
Any sequence of points converging to the solution of (i) also converges to an
optimal solution of (P). Thus, there appear to be no particular numerical diffi-
culties.

If, on the other hand, the solution set of (i) is not unique, then (ii) or (iv) or
both may be relevant. The following result will be useful.

THEOREM 10. Let u = 0 and ¢ = 0 be fixed. Let X, be the set of e-optimal
solutions of the problem of minimizing f + u'g over X ; that is, let X, be the (convex)
set of all points X in X such that

f(X) + u'g(x) [inﬁn}um f(x) + u’g(x)] + e.

Then f comes within ¢, and each g; with a positive multiplier comes within (¢/u;) of
being linear over X, in the following sense: x', x*e X, and 0 £ 2 £ 1 implies
(let A=1-2)

M) + 2f(P) — &  fOx' + 2x?) S Af(xY) + Af (x7),

Jglx') + Tgixd) — = S gx + Ix) S Agx!) + Jgdx). i > 0.

Proof. The right-hand inequalities hold, of course, by convexity. Suppose
that the first left-hand inequality fails for some u >0, ¢ >0, x'e X,, x> X,,
0< 1< 1. Then

fOXY + IxY) < Af(xY) + Af(x?) — ¢

which, when added to the other right-hand inequalities multiplied by the respective
values of u;, yields

fOx' + Ix%) + Y ug(Axt + Ix?)
i=1

13

i=1

< i[f (x') + i uig,-(xl)] + Z[f (x?) + i u.-g,-(xz)] — .
i= i=1

Since X is convex, Ax! + Ax? is in X and so the left-hand side has value greater
than or equal to
infimum f(x) + u'g(x).
xeX

Using the fact that x! and x2 are in X,, however, we obtain the contradiction that

°The rubrics (i), (ii) and (iv) are used in order to maintain correspondence with the optimality
conditions as listed in Definition 3.
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the right-hand side is less than or equal to this value. Hence our supposition must
fail.

A similar argument shows that the other inequalities of the conclusion of the
theorem must hold, completing the proof.

We must distinguish two further possibilities when (i) does not have a unique
solution : either a solution of (i) can be found without error, or it cannot. Suppose
that an optimal solution X of (i) can be found. Then (i) is equivalent to:

(1a) xeX,
(ib) S(x) + @ ex) = f(X) + W gx).

Theorem 10 with u = u* and ¢ = 0 yields the very useful result that (ii) is a linear
constraint so long as x satisfies (ia) and (ib) (u*)'g(x) = ) u¥g{(x), where the sum
is taken over the indices such that u¥ > 0). Thus, any of a number of convex
programming algorithms could be used with x as the starting point to find a
feasible solution of (ia), (ib), (ii), and (iv) and thereby solve (P). Suppose, on the
other hand, that only an g-optimal solution X of (i) can be found. Then (ia) and (ib)
are no longer equivalent to (i), and (ii) is no longer linear over the solution set of (ia)
and (ib). However, this solution set contains the solution set of (i) (because
f(X) + (u*)'g(x) is larger than it ought to be); and Theorem 10 implies that
(u*)g(x) is within #¢ of being linear over it, where # is the number of indices
for which u}¥ > 0. Hence, any convex programming algorithm which solves (ia),
(ib) and (iv) exactly but (ii) only to linear approximation will find a feasible solution
of (P) that is within (# + 1)¢ of being optimal in (P). Therefore, by taking ¢
sufficiently small one can find a solution of (P) that is as near optimal as desired.

In summary, we see that solving (P) once an optimal solution of (D) is known
poses no special numerical difficulties.

7.3. Optimal solution of (D) not known exactly. Suppose that a particular
algorithm addressed to (D) generates a sequence {u") converging to an optimal
solution u*. If the minimizers of f + (u*)'g over X are g-unique, we can obtain a
quite satisfactory result concerning the recovery of an optimal solution of (P).
In the absence of this assumption, however, an example will be given to show that
things can go awry.

THEOREM 11. Assume that f and each g; is continuous on X, X is compact, (D)
has an optimal solution u*, and the minimizers of f + (u*)'g over X are g-unique.
Let {u”) be any nonnegative sequence converging to u* and {(x') any sequence
composed, for each v, of a minimizer of f + (u*)'g over X. Then {x") has at least one
convergent subsequence, and every such subsequence converges to an optimal solution
of (P).

Proof. Since {x")» is in X and X is compact, there must be at least one con-
vergent subsequence. For simplicity of notation, redefine {(x") to coincide with
any such subsequence. Let X(u) be the set of all minimizers of f + u'g over X.
Under the given assumptions it is known (e.g., [7, p. 19]) that X(u) is an upper
semicontinuous set-valued function of u at u*; that is, (u’> — u*, x" e X(u"),
{x"Y — ximplies X € X(u*). But X(u*)is bounded and g-unique, and so by Theorem
9 (see also the ensuing discussion) X must be an optimal solution of (P). The proof
is complete.
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The conclusion of Theorem 11 is very comforting ; but in practice one must
still decide when to truncate the infinite process. We shall assume in the ensuing
discussion that the hypotheses of Theorem 11 hold, except where explicitly
weakened.

One natural termination criterion is based upon the easily demonstrated
fact that x* must be an optimal solution of the following approximation to (P):

P Minimize f(x) subjectto g(x) < g(x").
xeX

The continuity of g, and the fact that {x”) converges subsequentially to an optimal
solution x* of (P), implies that the right-hand side of (P") converges subsequentially
to g(x*) as v —» oo ; hence one may terminate when v reaches a value for which the
right-hand side of (P") is “sufficiently near” to being <0. How near is “sufficiently”’
near depends upon how precisely the g constraints of (P) really must be satisfied.
If a perturbation in the right-hand side of certain of the constraints cannot be
tolerated, however small the change, then it may be advisable to insist that such
constraints be incorporated into X. In other words, it may be advisable not to
dualize with respect to such constraints in the first place.

So far we have assumed that a true minimizer x* of f + (u*)'g over X could
be found for each v. While this may be a reasonable assumption when X is a convex
polytope and fand g are linear or quadratic functions, it is desirable in the interest
of generality to be able to cope with numerical inaccuracy. Results as satisfactory
as those obtained above seem quite elusive unless we suppose that a minimizer
of f + (u*)'g over X, say x", can be approached as closely as desired and, indeed, is
approached more and more closely as v increases. Specifically, let us suppose that
a point X* in X can be found satisfying ||X* — x*|| < ¢', say, where &' = 0 and
<"y — 0. It follows easily that, for each subsequence of {x")» converging to x*,
the corresponding subsequence of (X" also converges to x*- Thus, Theorem 11
holds with {x*> in place of {(x*>. Of course, X’ is not optimal in (P*), which we
define to be (P*) with X" in place of x” in the right-hand side. What is true, however,
is that X" is within & of being optimal in (P") if it comes within & of minimizing
f + (W’)'g over X(see [9]). Since the right-hand side of (P*) converges subsequen-
tially to g(x*) as v — oo, we can use (P*) in much the same way as (P") to determine
when to terminate, except that the magnitude of € must also be considered.

22 (VALUE OF f)

(g¥), fla¥)

2, (VALUE oF g)
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Finally, we wish to emphasize the central role played by the assumption of
Theorem 11 that the minimizers of f + (u*)'g over X are g-unique. Failure of this
assumption can lead to serious difficulties ; see, for example, Fig. 3, in which any
sequence {u’) converging to u* from below will lead to a sequence (x") with
g(x) > 0 for every subsequential limit point X. Not only does X fail to solve (P),
but g(x”) = g(x) > 0 for all v, so that the natural termination criterion based on
(P*) will never be satisfied (unless of course the permissible tolerance in the right-
hand side of (P) is sufficiently large).

8. Theoretical applications. Although the primary emphasis thus far has been
on results of interest from the computational viewpoint, many of the results are
also of interest from a purely theoretical point of view. Just as linear duality
theory can be used to obtain many results in the theory of linear systems that do
not appear to involve optimization at all (see, e.g., [6, § 6.4]), so does nonlinear
duality theory readily yield many results in the theory of convex systems. In this
section, we illustrate this fact by using our results to obtain new proofs of three
known theorems. The first is a separation theorem for disjoint convex sets; the
second is a characterization of a certain class of convex sets in terms of supporting
half-spaces; and the third is a fundamental property of an inconsistent convex
system. With only a modicum of ingenuity, by similar methods one may obtain
many other interesting results, some of them perhaps new. Thus, nonlinear
duality theory provides a unified approach to the derivation of a substantial body
of theorems in the theory of convexity.

8.1. A separation theorem. Let X and X be nonempty, closed, convex, disjoint
subsets of R, and suppose further that X is bounded ; then there exists a hyperplane
in R that strictly separates X and X. A conventional proof of this theorem can
be found, for example, in [2, p. 55], but we shall deduce it from Theorem 3. The
other standard separation theorems can be obtained in a similar fashion. (The
alert reader will recall that another separation theorem was used in the course of
proving Theorem 3; what is being demonstrated in effect, then, is a kind of equi-
valence between duality theory and separation theory for convex sets.)

The hypotheses of the theorem certainly imply that the convex program

Minimize || x — X||

xeX
xeX
has infimal value greater than 0. A convenient choice of norm is || x| £ maximum
{lx4], - -+, Ix}. Then the above problem can be rewritten
Minimize o subjectto ¢ = x; — X;, i=1,---,k,
xeX
xeX o= —x;+%, i=1,--,k,

where o is a scalar variable. Dualizing with respect to the (linear) constraints in-
volving g, we obtain from Theorem 3 that the dual problem

k k
Maximize [inﬁmum o+ Y oux; — % —0)+ Y i l—x; + X — a)]
uz0 xeX i=1 i=1
xeX
a
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has an optimal solution u*, and that its optimal value is greater than 0. By taking
advantage of the separability of the infimand with respect to x, X and ¢, we therefore
have the key inequality

2k K
[inﬁmum a(l -y u:")] + [inﬁmum Y (uF — u,’f+i)x,]

i=1 xeX i=1

k
+ [inﬁmum Y o= (uF - u,’fH)J?iJ > 0.
xeX i=1
The infimum over ¢ must be 0 (i.e., ).7*, u¥ = 1 must hold), for otherwise it
would be —oo and the inequality could not be true. Defining o; = u} — uf,;
and rearranging, the inequality then becomes
k k
infimum )’ ox; > supremum ) o%;.
xeX i=1 %eX i=1

This shows that X and X are strictly separated by the hyperplane

k
{xeR": Y ox; = oco},

i=1
where o is any scalar strictly between the values of the left- and right-hand sides
of the rearranged inequality.

8.2. A characterization of the set Y. The set Y £ {ye R":g(x) < y for some
x € X} has cropped up quite often in this study. Indeed, this kind of set arises
frequently in mathematical programming when it is necessary to work with the
collection of perturbations for which a perturbed problem has a feasible solution.
It also arises when a set must be “projected’ onto a subspace ; in the special case
above, Y can be thought of as being obtained by projecting the set {(x, y)e R"*™:
g(x) — y £ 0, xe X} onto the R™ space associated with y (see [17, § 2.1]).

It is sometimes useful to be able to characterize such sets in terms of their
supporting half-spaces. In [16, p.24], a slightly weaker form of the following
theorem is demonstrated by applying a result due to Bohnenblust, Karlin and
Shapley (see [2, p. 64]). Assume that g,,---, g, are convex functions on the
nonempty convex set X < R" and that Y is closed. Then ye Y if and only if y
satisfies the system of linear constraints

Ay = infimum A'g(x), all le A,
xeX

where A £ {AeR":1 =0 and Z’l": i = 1}. Furthermore, every constraint in
this system describes a half-space that supports Y in the obvious sense.’

The only part of the conclusion that cannot be proved directly and easily is
the assertion that y e Y if y satisfies the given system of constraints. To prove this
using nonlinear duality theory, we observe that if y satisfies the given system of

7 That is, for each fixed 1€ A, either there exists a point j in Y such that 'y = infimum,y A'g(x)
or there exists a sequence <y*)» of points in Y such that lim,_ A"y’ = infimum,x A'g(x).
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constraints, then (as the normalization of 4 is immaterial) we have

supremum [inﬁmum Mg(x) — y)] = 0.
xeX

Az0
This is easily recognized as the assertion that the dual of

Minimize 0‘x subjectto g(x) —y =<0
xeX
has optimal value 0. Applying Theorem 5 to this “primal’ problem yields, since
{y:g(x) — y < yfor some x € X} must be closed when Y is closed, that this problem
must be feasible and hence that y must be in Y.

8.3. A fundamental property of an inconsistent convex system. Letg,, - - -, g,
be convex functions on the nonempty convex set X = R". If the system g,(x) < 0,
-+, (%) < 0 has no solution in X, then there exists an m-vector u = 0 such that
m
™, u;=land

[inﬁmum u‘g(x):l = 0.
xeX

This is essentially the Fundamental Theorem on p. 62 of [2], where a proof
relying on Helly’s intersection theorem can be found. To deduce it from Theorem 3,
we merely observe that the system of inequalities has no solution in X only if the
convex program

Minimize ¢ subjectto gix) —o =<0, i=1,---m,

xeX
4

has infimal value >0. Since Slater’s qualification is obviously satisfied, this
program is stable and so by Theorem 3 we conclude that the dual program

Maximize |:inﬁmum o+ Y ufg(x) — o)
xeX i

uz0 i=1 _

g

has an optimal solution u* with value =0. Hence

v

0,

[inﬁn;um (u*)‘g(x):l + [inﬁmum a(l -y u;")
X€ [ i=1 ]
where we have taken advantage of the separability of the infimum in the dual
program. The second term must be 0—that is, )", u¥ = 1 must hold—for other-
wise its value would be — co. Hence the first term is nonnegative and the theorem
is proved.

A generalization of the Farkas—Minkowski theorem applicable to convex
systems [2, p. 67] can be readily demonstrated by a very similar line of reasoning.

9. Opportunities for further research. It is hoped that what has been accom-
plished here will encourage further work in a similar vein. Much remains to be
done.

In terms of importance, one could hardly do better than to work toward
relaxing the convexity assumptions. We have pointed out several occasions on
which these assumptions could be dispensed with entirely. For example, it is
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tantalizingly true that (D) is a concave program even without any assumptions
at all on X, fand g. Furthermore, the astute reader may have noticed that the only
role played by the assumed convexity of f, gand X in §§ 2 and 3 (and in a number of
later results) is to guarantee via Lemma 2 that v and Y are convex. Thus the con-
vexity assumptions on f, g and X can be weakened at least in Theorems 1 and 3,
to the assumption that v and Y are convex. Perhaps a theory adequate for some
purposes could be constructed under still weaker assumptions. Quite likely this
can be done using the notions of pseudo- or quasi-convexity (e.g., [24, Chaps. 9,
10]) in place of convexity, but the real challenge would be to get along with con-
siderably weaker assumptions. Published efforts along these lines so far leave a
lot to be desired in terms of potential applicability, mainly because global results
in the absence of global properties like convexity seem to require assuming global
knowledge that is overly difficult to have in practice. Perhaps a local theory is all
one can hope for without convexity-like assumptions.

Important opportunities are also to be found in studying questions such as
those treated in § 7, relating to the robustness of computational methods addressed
to the dual problem in the face of numerical error. For example, to what extent
does an inability to minimize the Lagrangean function exactly for a given value of u
disrupt convergence to an optimal solution of (D)? Probably such studies will
have to be carried out in the context of the various specific dual methods that have
been proposed. One successful study in this vein is Fox [13].

A natural extension of the theory developed here would be the construction of
parallel theories for perturbation functions other than v, perhaps even for an
entire class of them. Rockafellar’s work strongly suggests that this is possible.
Some of the alternative choices for v might prove quite useful in widening the
scope of applications of duality theory.

Another direction of possible extension would be toward more general linear
vector spaces. This would open up applications to optimal control, continuous
programming, and other infinite-dimensional problems. In fact, a good deal has
already been accomplished along these lines (e.g., Luenberger [23], Rockafellar
[27], Van Slyke and Wets [31]), particularly with reference to generalizations of
the results of §§ 2 and 3 of this paper. The very recent treatment by Luenberger
adopts a viewpoint quite similar to the one taken here, and is especially recom-
mended to the interested reader.

A number of questions concerning economic significance and interpretation
yet remain to be explored. The paper by Gale [15], which includes a discussion of
optimal multiplier vectors and the concept of stability, is a fine example of what
can be done. See also Balinski and Baumol [1] and Williams [32].

Finally, we should mention that a variety of opportunities for application
exist even without further extensions. Many more theoretical applications of the
kind illustrated in § 8 are possible. Illustrative of the possible computational
applications is a recent nonlinear generalization by this writer of Bender’s partition
programming method [18].
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