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ELEMENTS OF LARGE SCALE MATHEMATICAL
PROGRAMMING

Part II: Synthesis of Algorithms and Bibliography *11§
ARTHUR M. GEOFFRION
University of California, Los Angeles

The problem manipulations and solution strategies of Part I of this paper are now
further illustrated by combining them in various ways to yield several known algo-
rithms. The main object is not an exposition of these algorithms, although this is
certainly important; rather, we wish to focus on the principal patterns in which manipu-
lations and strategies can be assembled. These patterns constitute the real common
denominators in the literature on large-scale programming. See Table 2 in Part I.

4. Synthesizing Algorithms from Manipulations and Strategies

It is beyond the scope of this effort to exemplify all of the important patterns of
manipulations and strategies. We shall limit our discussion to five key ones:

1. PROJECTION, OUTER LINEARIZATION/RELAXATION
2. PROJECTION/PIECEWISE

3. INNER LINEARIZATION/RESTRICTION

4. PROJECTION/FEASIBLE DIRECTIONS

5. DUALIZATION/FEASIBLE DIRECTIONS

The first pattern is illustrated in §4.1 by Benders’ Partitioning Procedure for what
might be called semilinear programs; the second is illustrated in §4.2 by Rosen’s
Primal Partition Programming algorithm for linear programs with block-diagonal
structure; the third in §4.3 by Dantzig-Wolfe Decomposition; the fourth in §4.4 by a
procedure the author recently developed for nonlinear programs with multidivisional
structure; and the fifth in §4.5 by the ‘““local” approach discussed by Takahashi for
concave programs with “complicating” constraints. Another key pattern, OUTER
LINEARIZATION/RELAXATION, was already illustrated in §3.3 with reference
to Kelley’s cutting-plane method. In addition, it is indicated in §4.2 how Rosen’s
algorithm can be used to illustrate the pattern DUALIZATION/PIECEWISE, and
in §4.3 how Dantzig-Wolfe Decomposition can be used to illustrate DUALIZATION,
OUTER LINEARIZATION/RELAXATION.

The discussion of the various algorithms is as uncluttered by detail as we have been
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able to make it. There is little or no mention of how to find an initial feasible solution,’
the details of computational organization, or questions of theoretical convergence.
The reader is invited to ponder such questions in the light of the concepts and results
advanced in the previous two sections, and then to consult the original papers.

4.1 [Benders 62]

One might refer to
(4.1) Maximize,soy¢y ¢z + f(y) st. Az + F(y) < b

as a semi-linear program because it is a linear program in @ when y is held fixed tem-
porarily. The algorithm of [Benders 62] for this problem can be recovered by ap-
plying the pattern PROJECTION, OUTER LINEARIZATION/RELAXATION.
Specifically, project (4.1) onto the space of the y variables, outer-linearize the result-
ing supremal value function in the maximand, and apply the Relaxation strategy to
the new constraints arising as a consequence of Quter Linearization. Assume for sim-
plicity that (4.1) is feasible and has finite optimal value.
Projection onto the space of the y variables yields

(4.2) Maximize,er [f(y) + Sup.0 {c'z st. Az < b — F(y)}]

Note that the supremal value function appearing in the maximand corresponds to the
linear program

(4.3) Maximize,»o c'z s.t. Az < b — F(y).

This program is parameterized nonlinearly in the right-hand side by y, and our as-
sumption implies that it has a finite optimum for at least one value of y. By the Dual
Theorem, therefore, the dual linear program

(4.4) Minimize,»o u'(b — F(y)) st. uw'd = ¢

must be feasible (for all y). Let (', - - - , u”) be the extreme points and (u**', - - - |
u?*?) representatives of the extreme rays of the feasible region of (4.4) (cf. Theorem
3). Again using the Dual Theorem, we see that (4.3) is feasible if and only if (4.4)
has finite optimal value, that is, if and only if y satisfies the constraints

(4.5) (W) =F()=20, j=p+1--,p+g

Since we take the supremal value function in (4.2) to be —« for y such that (4.3)
is infeasible—see §2.1—we may append the constraints (4.5) to (4.2). Thus Projec-
tion applied to (4.1) yields (4.2) subject to the additional constraints (4.5).

Next we outer-linearize the supremal value function appearing in (4.2). It is easy
to see, referring to (4.4), that its value is precisely

(4.6) Minimum; <j<, {(w')'(b — F(y))}

for all y feasible in (4.2) with (4.5) appended. (Strictly speaking, it is accurate to call
this Outer “Linearization” only if F is linear.) With this manipulation, (4.2) becomes

(47) Maximize,ey [f(y) + Minimumye, {(w)'(b — F(y))}] st (4.5)

1 If one exists, it can usually be found by applying the algorithm itself to a suitably modified
version of the given problem.
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or, with the help of an elementary manipulation based on the fact that a minimum is
really a greatest lower bound,

Maximizesevy, S(y) + 20 st y0 < (W) — F(y)), j=1,---,p,
(uj)t(b - F(y)) > 07 .7 =D + 1) D +q

This is the master problem to be solved.

Relaxation is a natural strategy for (4.8); it avoids having to determine in advance
all of the vectors u’,j = 1, - -+ , p 4+ ¢. To test the feasibility of a trial solution (%o, 9),
where § € Y, one solves the linear subproblem (4.4) with y equal to 7. If the infimal
value is greater than or equal to go, then (go, ) is feasible and therefore optimal in
(4.8); 9, along with £ equal to the optimal dual variables of (4.4), is an optimal solu-
tion of the given problem (4.1). If, on the other hand, the infimal value is less than g,
then a violated constraint of (4.8) is produced (some u’ with 1 < j < p is found if
the infimal value is finite, whilep + 1 < 7 < p + qif it is — « ). Of course, f, F, and
Y must satisfy the obvious convexity assumptions if dropping amply satisfied con-
straints is to be justified. These assumptions will probably have to hold anyway if the
relaxed problems based on (4.8) are to be concave programs (remember u’ = 0). There
is, however, at least one other interesting case: if Y is a discrete set, say the integer
points of some convex polytope, while f and F' are linear, then (4.8) is a pure (except
for yo) integer linear program (see [Balinski and Wolfe 63], [Buzby, Stone and Taylor
65]).

The present development seems preferable to the.original one since: (a) it justifies
dropping amply satisfied constraints from successive relaxed versions of (4.8); (b)
it retains f(y) in its natural position in the criterion funetion of (4.8) (Benders’
version of (4.8), which is also equivalent to (4.7), has y, alone as the criterion function
and an added term f(y) in the right-hand side of each of the first p constraints); and
(¢) its comparative simplicity suggests a generalization, with the help of nonlinear
duality theory, permitting nonlinearities in  [Geoffrion 70].

4.2 [Rosen 64]
The algorithm of [Rosen 64] for the linear program
(4.9) Maximize,, bo'y + Doteibiws st. @fdi+yDi<el, i=1,---,1

illustrates the pattern PROJECTION/PIECEWISE. Assume for simplicity that (4.9)
is feasible and has finite optimal value.
Projection onto the y variables yields the master problem

(4.10) Maximize, [bo'y 4+ D ies Sups, {biz; st. 24; < ¢ — y'Dil,

(4.8)

where we have separated the supremum in the maximand (this separation is perhaps
the main justification for using Projection).

The Piecewise strategy is appropriate for (4.10) because each supremal value in the
maximand is piecewise-linear as a function of y. This follows from the elementary theory
of linear programming, as we now explain. Let § be feasible in (4.10) in the sense that
the maximand is not — . Then each of the [ linear programs appearing in the maxi-
mand must have a finite optimal value, and by the Dual Theorem this optimal value
must be equal to that of the dual linear program

(411) Minimizeuizo (C@'t - g}tDi)u,- s.t. Aiui = bi .

Let the vector 4; be an optimal solution of this program, and let the corresponding
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basis matrix be B; . Since changes in y cannot affect the feasibility of 4;, the optimal
value of (4.11)—which is equal to the value of 7th supremal value function of (4.10)
at y—must be

(412) (C«;t —_ ytDi)ﬁ/i

so long as the “reduced costs’ remain of the correct sign, that is, so long as y satisfies
the condition

(4.13) (¢i' — y'D;)®BiN(A4;).; — (¢f — y'D;); <0, all nonbasic 7,

where the superseript B masks all but the basic components of (¢;' — y’D;). Thus the
master problem (4.10), confined to the linear ‘“piece” containing 7, becomes the
linear program

(4.14) Maximize, bo'y + Die1 (¢' — y'Di)d: st. (413), i=1,---,1L

This shows that Step 2 of the Piecewise strategy can be accomplished by linear pro-
gramming. Rosen actually solves the dual of (4.14). His Theorems 1 and 2 concern
Step 3 (cf. the discussion following (3.4) in §3.1).

It is interesting to note that if we had started with the dual of (4.9)—a block-
diagonal linear program with coupling constraints—we would obtain precisely the
same procedure as the one just described by dualizing with respect to the coupling
constraints only [Geoffrion 69] and then invoking the Piecewise strategy. In this way
[Rosen 64] could also be used to illustrate the pattern DUALIZATION /PIECEWISE.

4.3 Dantzig-W olfe Decomposition

Dantzig-Wolfe Decomposition is archetypical of the pattern INNER LINEARIZA-
TION/RESTRICTION. Mechanized pricing plays a prominent role. We shall illus-
trate this pattern first with the algorithm of [Dantzig and Wolfe 60] for a purely linear
program, then with the algorithm of [Dantzig 63a, Ch. 24] for a nonlinear program,
and finally with a variation of the latter in which not all nonlinear functions need be
inner-linearized.

It is interesting to note that Dantzig-Wolfe Decomposition can also be viewed as
an instance of the pattern DUALIZATION, OUTER LINEARIZATION/RELAXA-
TION. In the context of (4.15), for example, one would dualize with respect to the
constraints Az < b, outer-linearize the resulting minimand in the obvious way, and
then apply Relaxation.

[Dantzig and Wolfe 60]. The well-known Dantzig-Wolfe decomposition approach for
linear programs will be explained in terms of the linear program

(4.15) Maximize,»o cz st. Az <b, Az =<0,

where we have arbitrarily divided the constraints into two groups. With the definition

(4.16) X & {2=0:Az <0},
we may write (4.15) as

(4.17) Maximize,cx ¢z st. Az < b.

Since X is a convex polytope, we know (Theorem 3) that it admits an exact inner
linearization using only a finite number of points. Invoking this representation for X,
we obtain a new master linear program with a vast number of variables to which Re-
striction can be applied in the form of the Simplex Method. It turns out that the
pricing operation (cf. §3.2) can be accomplished by solving a linear subproblem whose
feasible region is X. The details are as follows.
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Assume that X is not empty and also, for ease of exposition only, that X is bounded.
Then X can be represented in terms of its extreme points (', - - -, 2”), and (4.17) can
be written as the equivalent master linear program
(4.18) Maximizeaso (Dt air’) st. D Pga; = 1, A Piax’) < b.

The Simplex Method for this problem corresponds to Restriction with respect to the
constraints & = 0. To describe how the pricing operation can be mechanized, we shall
use the familiar terminology of linear programming rather than the general terminology
of Restriction. The optimality conditions at the general iteration are u = 0 and

(4.19) o+ ulda’ — ' >0, j=1,---, p,

where uo and the vector u are the current Simplex multipliers. Condition (4.19) is
equivalent to

[uo + Minimumycjc, {(u'd — c¢')z%}] >0
or, since (z', - - -, 2*) span X, to
(4.20) [uo + Mingex (u'4A — ¢*)z] > 0.

The linear program in this expression is a valid replacement for the finite minimum in
the previous expression because the minimum of a linear function over X occurs at an
extreme point. Thus we see how to test optimality when the Simplex Method is applied
to (4.18). If either u = 0 or (4.20) fails to hold, a profitable nonbasic variable satis-
fying the usual criterion for the entering variable is obtained automatically: if the
greatest violation occurs in u = 0, introduce the corresponding slack variable; if in
(4.20), introduce the variable o, , where x”° is an optimal basic feasible solution of the
linear program in (4.20) (the extremal function coefficient of a;, is ¢’z”, and the tech-
nological coefficient column is unity followed by Az™).

Thus there is no difficulty in carrying out the Simplex Method applied to (4.18).
Each iteration requires solving the linear subproblem in (4.20).3 This approach may
possess an advantage over the direct application of the Simplex Method to (4.15)
when the subproblem has some special structure. For example, if (4.15) is a transporta-
tion problem with additional constraints, then the subproblem becomes a pure trans-
portation problem if A is taken to comprise the additional constraints. Another ex-
ample is the case in which 4 is block-diagonal, for then the subproblem separates into
k independent smaller linear programs. In general, one should select a grouping of the
constraints (in terms of A and A) that isolates a special structure, and then exploit
this structure in dealing with (4.20). See [Broise, Huard and Sentenac 68], [Orchard-
Hays 68, §10.4] for additional discussion based on computational experience.

[Dantzig 63a, Chapter 24]). Now consider a nonlinear version of (4.17), namely

(4.21) Maximize,ex f(z) s.t. gi(z) < by, 1=1,---,m,

2 Actually, the inequality constraints involving A are also normally considered as candidates
for restriction to equality. The latter constraints can be excluded, if desired, from the candidates
for restriction by giving u = 0 priority over (4.19) in determining the entering basic variable. Such
a modification is necessary, as we shall see later in this subsection, when nonlinear functions are
inner-linearized.

3 The subproblem need be solved from scratch only at the first iteration; thereafter, restarting
or parametric techniques can be used to recover an optimum as » changes from iteration to itera-
tion.
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where X is a convex set, f is concave on X, and ¢; is convex on X. Dantzig and Wolfe’s
approach [Dantzig 63a, Chapter 24] for this problem can be viewed as follows. Let f and
each g; be approximated by Inner Linearization over an arbitrarily fine base (z', «*
+++> in X, so that (4.21) is approximated as closely as desired (in principle, at least)
by the linear master problem

Maximizeaso 2o, f(27) st. Dja; = 1,

2iaigia’) Kb, =1, m
We say ‘““in principle” because we do not wish to actually evaluate f and each g¢; at
every point in the base, or even specify the base explicitly. Hence it is natural to solve
(4.22) by Restriction with the constraints & = 0 as the candidates for restriction to
equality (when «; is restricted to 0, the values f(2’) and gi(z’) are not needed ). A very
natural way to do this is to employ the Simplex Method with a priority convention
to ensure that the restricted problems are truly optimized: slack variables correspond-
ing to the g; constraints must be given priority over structural variables in determin-
ing which variable is to enter a basis. Any feasible solution of (4.21) can be used to
find an initial basic feasible solution, and at the general iteration the optimality criterion
or pricing problem is (ef. (4.19)) u; > 0 (1 <7< m) and

(4.22)

(4.23) U + 2t ugi(a’) — f(2') 20, allj,
where 4o, U1, -+ + , Un are the current Simplex multipliers. By the priority convention,

we may assume that u; > 0 (1 £ ¢ < m). Note that (4.23) is intimately related (cf.
(4.20)) to the convex subproblem

(4.24) Minimizesex 2 me wigi(z) — f(@).

If up plus the optimal value of this problem is nonnegative, then (4.23) holds and an
optimal solution of (4.21) is at hand (z* = Z ; 6, where & is the current and optimal
solution of (4.22)); otherwise, an optimal or near-optimal solution £ of (4.24) can be
profitably added to the current explicit base by introducing the corresponding «; into
the basis in the usual way after evaluating f(£) and g:;(£). In practice, termination
would take place as soon as the value of the current approximation to an optimal solu-
tion of (4.21)—the quantity f( D, &;z;)—approaches closely enough the following
easily demonstrated upper bound for the true optimal value:

(4.25) Z?=1 Uub; — Mianx[Z?=l wigi(z) — f(z)].

This approach is particularly attractive when the structure is such that (4.24) is
relatively tractable by comparison with (4.21); for example, when X is an open set and
f and g¢; are differentiable, or when (4.24) is separable into several independent sub-
problems.

A Variant. It is interesting to observe that Inner Linearization need not be applied
to all nonlinear functions of (4.21). * An advantage can sometimes be gained by inner-
linearizing only a subset of the nonlinear functions, say g1, - - -, gn, (m; < m). Then
instead of (4.22) we have the concave master problem

Maximizea?__of( Zj a,’.l‘j) s.t. ZJ‘ o =1,
(4.26) 2oiagi(z’) Kby, =1, my,
90X iam’) <bi, i=m+1, -, m.

4 In [Whinston 66], for example, the objective function of a block-diagonal quadratic program
with coupling constraints is not inner-linearized.



682 ARTHUR GEOFFRION

candidates for restriction to equality. The Simplex Method can no longer be adapted
to this purpose, however, since (4.26) is not a linear program. Implementation requires
a concave programming algorithm for solving the restricted versions of (4.26) and also
a means of mechanizing the pricing operation. We need not discuss the first requirement.
The second involves being able to determine the prices u;’ for all 7 in S, where S is the
current set of indices for which «; is restricted to value 0. This can be done as follows
[Holloway 69]. Let o« be the optimal solution to (4.26) with the additional restrictions
a; = 0forj € S, and let ue’, ui’, - - -, un’ be the associated optimal multipliers (which
must exist if a constraint qualification is satisfied). Then, assuming all functions are
continuously differentiable, the price u;* associated with a; = 01is given for all j € S by

Again we wish to apply Restriction with only the nonnegativity constraints & = 0 as

(4.27) pi = u — V()2 + 2T uigi(a?) + DTy wVgi(2)a,
where
(4.28) 2 A Y esaia

It follows that the pricing problem can be solved by optimizing the convex (u;’ > 0)
subproblem

(4.29) Minimize,ex — VF(2')z + Doih ulgi(z) + Doremysr usVgi(2')2.
Compare with (4.24). If f were inner-linearized too, the first term of the maximand of
(4.29) would be —f(z).

Which of all given constraints should be incorporated into X, and which of the re-
mainder and whether f itself should be inner-linearized, depends mainly on the avail-
ability of efficient algorithms for the resulting versions of (4.29) and (4.26) with o; =
0forj € 8.

4.4 [Geoffrion 68b; §4]
A quite general problem with multidivisional structure is
Maximize, D i fi(#:) st Hi(z) 20, i =1,k

D i1 Gi(zi) Z b,

where f; , hi; and g¢;; are all concave differentiable functions of the vector z; . The sub-
seript. 7 can be thought of as indexing the individual divisions, which are linked to-
gether only by coupling constraints. Theapproach of [Geoffrion 68b; §4]is an application
of the pattern PROJECTION/FEASIBLE DIRECTIONS. The optimization of
(4.30) is carried out largely at the divisional level subject to central coordination.

First (4.30) is projected onto the space of its coupling constraints. This requires
introducing the vectors y1, < -+, yx :

Maximize, , Qi fi(z:) s.t.

Hl(xl) = 0, 7= 1, SN k; G,(.’Ih) = yi,z' = 1, "',k; Z,:=lyi = b.
In effect, this changes the given problem from one with coupling constraints to one
with coupling variables, since (4.31) separates into & separate problems if y is held
fixed temporarily. One may interpret y; as a vector of resources and tasks assigned to
the 7th division. Projection of this problem onto y yields the master problem
(4.32) Maximize, 2oy 0:(y:) s.t. Sk iyi= b,
where v; is defined as the supremal value of the parameterized divisional problem
(4.33) Maximize,; fi(z:) st (Hyo(z:) 20,  Gi(w:) 2 ya

(4.30)

(4.31)
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Now we wish to apply the Feasible Directions strategy to (4.32). The idea of this
strategy, it will be recalled, is to generate an improving sequence of feasible points,
with each new point determined from the previous one by selecting an improving
feasible direction and then maximizing along a line emanating in this direction. The
latter maximization is only one-dimensional, and can easily be essentially decentralized
to the divisional level. The chief difficulty with this strategy concerns how to find a
good improving feasible direction, for the maximand ) i—; v:(y:) is not everywhere
differentiable and is available only implicitly in terms of the divisional problems
(4.33). It can nevertheless be shown [ibid., §4.2], using the theory of subgradients for
concave functions and the optimality conditions associated with (4.33), that the fol-
lowing explicit linear program yields an improving feasible direction 2’ for (4.32) at
a feasible point 3°; moreover, 2° is best among all feasible directions in that it maxi-
mizes the initial rate of improvement of D s v;(y:):

Maximize, ., D ooy Vfiw; s.t.
Vosws — 25 > 0, i1=1 -k
4 such that g% = y¥
Vhim; >0, i=1,---,k
(4.34) j such that A% =0
D120, j such that D %y} = b;
-1<2%;<L1, all 7 and j.

Here Vg?; refers to a row vector that is the gradient of g;; evaluated at an optimal solu-
tion of (4.33) with y; = ».°, and the other superscripted quantities have similar defini-
tions. The vector w; has the same dimension as «; . This subproblem enables the Feasible
Directions strategy for (4.32) to be carried out.
4.5 [Takahashi 64]

Consider
(4.35) Maximize, f(z) s.t. H(z) =0, G(z) = 0,

where f is concave and all constraints are linear. Suppose that the G constraints are
complicating in the sense that the problem would be much easier if they were not
present. For instance, the complicating constraints may be the coupling constraints of
a structure similar to the one in the previous subsection, or they may spoil what would
otherwise be a special structure for which efficient solution methods would be available.
The pattern of the “local” approach of [Takahashi 64] for this problem is DUALIZA-
TION/FEASIBLE DIRECTIONS.

The dual of (4.35) with respect to the complicating constraints only yields (see,
e.g., [Rockafellar 68] or (Geoffrion 69]) the following problem in the space of the dual
variables A (a vector whose dimension matches G):

(4.36) Minimizex v(\),
where v(\) is defined as the supremal value of the parameterized problem
(4.37) Maximize, f(z) + N'G(z) st. H(z) = 0.

Note that (4.37) is of the same form as (4.35) except the complicating constraints are
now part of the criterion function.
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To apply the Feasible Directions strategy to (4.36), we must be able to identify an
improving feasible direction. Any direction is feasible, of course, since A is uncon-
strained. When f is strictly concave, it can be shown that v is differentiable. Its gradient
at a point A’ is simply G(z"), where 2° is the optimal solution of (4.37) with A = \°.
Hence the Feasible Directions strategy can be carried out for (4.36) using the negative
of the gradient of v as the improving feasible direction. Actually, Takahashi proposes a
short-step method rather than requiring a one-dimensional minimization to be per-
formed in order to determine step size. The procedure may be summarized as follows.

1. Choose a starting point \’.

2. Solve (4.37) with A = \° for its optimal solution 2°. If G(z°) = 0, then 2’ is opti-
mal in (4.35); otherwise, go on to Step 3.

3. Let N = X" — ¢G(2°), where ¢ is a small positive constant, and return to Step 2
with A" in place of \°.

5. Conclusion

We have attempted to develop a framework of unifying concepts that comprehends
much of the literature on large-scale mathematical programmning. If we have been
successful, the nonspecialist should have an overview of the field that facilitates further
study, and the advanced reader should feel that he has a deeper understanding of
previously familiar algorithms and that he perceives new commonalities among ap-
proaches that heretofore seemed to be related only vaguely if at all.

In addition, we hope that the framework will suggest a variety of worthwhile topics
for investigation. The problem manipulations and solution strategies discussed here
all invite further study, and others should be added to the fold so that additional al-
gorithms can be encompassed. The algorithms falling within the purview of each par-
ticular manipulation/strategy pattern (cf. Table 2) should be studied carefully in rela-
tion to one another, with the aim of learning how “best” to use the tactical options of
the pattern and organize the computations for various classes of problems.

The relationships between ostensibly different patterns also warrant further study.
We mentioned in §3.3 that Restriction (Relaxation) is essentially equivalent to
Dualization followed by Relaxation (Restriction), and other equivalences were
briefly noted in §4.2 and §4.3. Many others exist; for example, it has often been ob-
served that Dantzig-Wolfe and Benders Decomposition are dual to one another in an
appropriate sense. The results of [Zoutendijk 60; Secs. 9.4, 10.3, 11.4] are in this spirit,
even if they do not specifically involve algorithms for large-scale programming. Knowl-
edge of such relations reduces the number of essentially different patterns to be con-
sidered, and enables meaningful comparisons among the remainder.

Investigations along these lines should help civilize the jungle of extant algorithms
and pave the way for truly significant computational studies.
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