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I. INTRODUCTION

Given a vector-valued criterion function f(x) = ( fi(#),..., f,(x)) and a set
of “feasible” points X C R", the Vector Maximum Problem

V—MAXf(x) subjectto xeX . (VMP)

is the problem of finding all points that are gfficient: 1° is said to be efficient
if 2% € X and there exists no other feasible point x such that f(x) > f(x%)
and f(x) 7 f(x°). The concept of efficiency-—sometimes under an alias such
as “‘admissibility,” “maximality,” “noninferiority,” or “Pareto optimality”—
has long played an important role in economics, game theory, statistical deci-
sion theory, and in all optimal decision problems with noncomparable criteria.

In this study we propose a slightly restricted definition of efficiency that
(a) eliminates efficient points of a certain anomalous type; and (b) lends itself
to more satisfactory characterization (see Theorem 2 below, and Section II).
We shall call this new definition proper efficiency, although Kuhn and
Tucker [7] have previously used the same term. Their intent appears to have
been much the same as ours but, as we shall see, the present definition is of
greater generality and seems to be somewhat more natural.

Proper Efficiency

DEerINITION. x° is said to be a properly efficient solution of (VMP) if it is

* This research was performed primarily under a grant from the National Science
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under the auspices of the Western Management Science Institute. Additional sponsor-
ship was provided by the United States Air Force under Project RAND—Contract
No. F44620-67-C-0045—monitored by the Directorate of Operational Requirements
and Development Plans, Deputy Chief of Staff, Research and Development
Hq USAF. Views or conclusions contained in this Memorandum should not be
interpreted as representing the official opinion or policy of the United States Air Force.
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efficient and if there exists a scalar M > 0 such that, for each 7, we have

£®) = () _
A= fm <M

for some j such that f(x} < f;(x%) whenever x € X and f;(x) > f(x").

An efficient point that is not properly eflicient is said to be improperly
efficient. Thus for x° to be improperly efficient means that to every scalar
M > 0 (no matter how large) there is a point x € X and an 7 such that

fi(®) > fi(+") and

F2) — Fla)
=5 M

for allf such that f,{x) < f{x?%). If we take a sequence {(M*> — o0 and remem-
ber that there is but a finite number of criteria, we see that for some criterion
#y, the marginal gain in f; can be made arbitrarily large relative to each of the
marginal losses in other criteria. Assuming that the decision maker’s desire
for f; is not satiated, x° certainly seems undesirable. An example of improper
efficiency is given mn Section [I1.

Characterization

A matter of great interest, both computationally and theoretically, is the
relation of the Vector Maximum Problem to the following scalar maximum

problem:

»
MAX Y A fi(x)  subjectto  xeX, (P

=]

where the A; are nonnegative parameters often normalized according to
37 1A = 1. The fundamental results characterizing proper vector maxima
in (VMP) in terms of the solutions of (P,) are given in Theorems 1 and 2.

THEOREM 1. Let A; > 0 (i = 1,..., p) be fixed. If x° is optimal in (P,), then
%0 is properly efficient in (VMP),

Proor. It is obvious that &® is efficient. We shall show that x? is properly
efficient in (VMP) with M = (p — 1) Max, ;{A,/A;} (we may assume that
p = 2). Suppose, to the contrary, that for some criterion 7 and x € X we have

Ji(x) — f(*°) > M(f;(x°) — fy(=))
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for all f such that fi{x) <C f;(x?). It follows directly that
() ( _ 1) 0 . . .
film) = fa®) > S5 A fi(x®) — flw))  dorall o jsE

Multiplying through by A/(p — 1) and summing over j 3£ ¢ yields
A filxy — ful%) > )_;, A f(°) — [i(%)),
e

which contradicts the optimality of a% in (P,).

TuaroreM 2. Let X be a convex set, and let the f; be concave on X. Then
%0 is properly efficient in (VMP) if and only if &° is optimal in (P,) for some A
with strictly positive components.

Proor. The proof of the “if” part of the theorem is provided by T'heo-
rem 1. If x° is properly efficient, then there ex1sts a scalar M > 0 such that

- for each i ( = 1,..., p) the system

Jix) = fi(x")
fx) 4+ Mfi(x) > fi(x®) -+ Mf{«), &l jF#i
admits no solution in X. By a fundamental property of concave functions

(1, p. 62], for the fth system there exist A >0 (j=1,..,p) with
3? A =1 such that

j=1

ASx) + 3 Mfel) 4 Mf(x)) <A + 3 Afia®) + Mfi(0),

J#Ei I

or equivalently

Ji(x) —i—M’ZA'f,(x ) <SSR0 + MY A,

]'r*l }a‘;

for all x € X. Summing over 7 yields, after some rearrangement,

f@+M2MMw<fﬁ+MZMMw)

=1 i#j j=1 i#j
for all x € X. This completes the proof.
Thus, from a computational viewpoint, finding properly efficient solutions

is reduced to a parametric programming problem; (P,) yields only properly
efficient solutions as A varies over

P
Ar — PNeRr:all), > 0and 3 4 = 1,

=1
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and if concavity holds then this approach yields all properly efficient points.!

A more complete characterization theory is developed in the next section.
It provides, for example, necessary conditions for a proper vector maximum
in the absence of concavity.

Ii. Turory

We shall give the theory of the Proper Vector Maximum Problem in
terms of the relationships between the following six problems. In
Problems 3-5, X is taken to be of the form X = {x:g(x) = 0}, where
g(x) = (g4(x),..., gm(x)). In Problem 3 and 4, the differentiability of all

functions is presumed.
ProsLEM 1. Find a point % that is a properly efficient sclution of (VMP),

ProBLEM 2. Find a point & that is a iocaAﬂy2 properly efficient sélution
of (VMP). :

ProsLEM 3. Find a feasible point & such that none of the p systems?
C=1,..p)
Vo fi(®) >0

Vo (%) u>=0, ra]l jFi
Vg% u >0, all  jag{%) =0
has a solution u in R”.
ProsLem 4. Find a feasible point %, a point ¥ > 0 in R™, and a point
A € A+ such that 3 - g(#) = 0 and
VA - F(%) + 7 - g(®)] = 0.

ProBLEM 5. Find a feasible point &, a point ¥ >0 in R™, and a point
A € A+ such that 7+ g(%) = 0 and & achieves the unconstrained maximum

of A - f(x) + 7 - g(x).

!In this regard see, for example, Charnes and Cooper {2, Ch. 9], Markowitz [3],
and Geoffrion [4].

* & is said to be a Jocally properly efficient solution of (VMP) if it is properly efficient
in Ny n X, where N is some (open convex) neighborhood of %.

3 A,p(X) represents the gradient vector of the function ¢ evaluated at x = #.
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ProBLEM 6. Find a point & and a point A € A* such that &
in (P X)'

Problem 1 is the central problem of interest. Problem 2 is its “local”
equivalent, and Problem 3 is the local problem in terms of directional deriva-
tives. Problem 4 represents the generalized Lagrange multiplier or Kuhn-
Tucker conditions in differential form associated with Problem 1. Problem 5
is precisely equivalent to the following saddle-point problem:

is optimal

Find a point #, a point § > 0 in R™, and a point A € A+ such that the pair
(%, 7) is a saddle-point subject to y > 0 of the function

F(x,3) =X f(%) + - &lx);
i.e., such that F(%,y) > F(%,7) > F(x,7) for all x e R* and y = 0 in R™

Problem 5 is also of interest for its own sake. Problem 6 is just (P,).

12 statmg the relations between these problems, we shall use the notation
j——""> k, which is to be understood as follows. Let (, v) be the unknowns
of problem j and (u, w) the unknowns of problem k. ‘Then this notation is to
be read: “If (i, ¥) solves problem j, and if assumptions A ,... hold, then there
exists @ such that (i, ) solves problem k. (One or more of u, v, and w
can be vacuous.) The assumptions that will be used at one time or another
are:

AssumptioN C. All functions are concave on E™,

AssumprioNn D. All functions are continuously differentiable on E™.

AssumpTioN Q,. The following constraint qualification holds: there
exists a feasible point & such that g(#) > 0 for g; nonlinear.

AssumptioNn Q,. The Kuhn-Tucker constraint gualification holds [5,
p. 483].
We are now in a position to state the relationships between the six problems.

Tueorem ( COMPREHENSIVE).
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For example, the Comprehensive Theorem asserts (I — 2) that every
properly efficient solution of (VMP) is a locally properly efficient solution of
(VMP), and (1 < 2) that the converse is true under Assumption C. It also
asserts (5 — 6) that if (&, 7, A) solves Problem 5, then (&, A) solves Problem 6;
and (5 «—2— 6) that if (#, A) solves Problem 6, then there exists a point
i R™ such that (#, 7, ) solves Problem 5.

Because of its length, we give the proof in Appendix A.

The Comprehensive Theorem is actually many theorems in one. Its
significance is that it gives, under various assumptions, necessary and/or
sufficient conditions for proper efficiency. In order to be explicit, we state
the most important of these conditions as three simple corollaries of the
Comprehensive Theorem. Corollary 1 asserts that under Assumptions D
and Q, , the conditions of Problem 4 are necessary first-order conditions for
proper efficiency. Corollary 2 characterizes Problem 1 as being equivalent .
(in the appropriate sense) to Problems 2, 5, and 6 under Assumptions C
and Q, . Corollary 3 asserts that all six problems are equivalent under C, D,
and either Q; or Q. ) : .

CoroLLArY 1. If Assumptions D and Q, hold, then Problem 2 — Problem 4.

CoroLLary 2. If Assumptions C and Q, hold, then Problem 1 <> Pro-
blem 2 < Problem 5« Problem 6.

CoroLrary 3. If Assumptions C, D, and either Q; or Qp hold, then
Problem 1 <+ Problem j for § = 2,..., 6.

The Comprehensive Theorem subsumes, of course, the cases in which
there are no constraints or only equality constraints. Again for the sake of
explicitness, we shall state the main results for these cases in Appendix B.

It is of interest to note that in the special case all of the f; are identical or
p = 1, the notion of proper efficiency coincides with the notion of a con-
strained maximum, so that the results of the Comprehensive Theorem reduce
to well-known counterparts in the theory of nonlinear programming.

11I. Discussion

We turn now to further discussion of the notion of proper efficiency.

Just how slight a restriction proper efficiency is over efficiency can perhaps
be better appreciated in the light of the following. Denote the set of all
efficient (properly efficient) points by X>(X%;), and the image in R? of
X> under f by f[X=]. If the f; are continuous and concave on the closed
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e r—

convex set X, then f[X3]Cf[X®]Cf[Xf: ], where the bar denotes clo-
sure. This result is a consequence of Theorem 2 and a result? due to Arrow
et al. [6]. Thus under the given conditions, which are almost always satisfied
in concave programming, the outcome of any improperly efficient point is
always the limit of the outcomes of some sequence of properly efficient

points.

Comparison with the Definition of Kuhn and Tucker

The notion of “‘proper” efficiency introduced by Kuhn and Tucker
applies only when assumptions D and Q, hold. Under these assumptions,
0 is said to be “properly’” efficient if it is efficient and if it solves Problem 3.
Let us denote the problem of finding such a “properly” efficient point as
(X%, 3). Then the results obtained by Kuhn and Tucker are® (in the presence

of D and Q,):

(i) (X>,3)— 4[5, Theorem 4] : i
(i) 4-5(X>,3)[5, Theorem 5]
(iii) (X=,3)< 5[5, Theorem 6].

To justify excluding efficient solutions that are not “proper,” Kuhn and
Tucker give an example with p = 2 in which such a solution admits a first-
order gain in one criterion at the expense of but a second-order loss in the
other. Indeed, every “improperly” efficient solution poses an equally objec-
tionable anomaly.® The converse, however, is not true—not every anomalous
efficient point is “improper” in the sense of Kuhn and Tucker, as the fol-
lowing example shows. Put n =1, m=1, p =2, g(x) = x, fi(x) = a?
fo{x) = — &3, a® = 0. Assumptions D and Q, hold, and 1 is “properly”
efficient, but for » positive and sufficiently small the gain in f; can be made
arbitrarily large with respect to the loss in f, (the gain-to-loss ratio is 1/x
for x > 0). .o

Since 1 ——25> 3 (see Comprehensive Theorem), the sct of points
“properly” efficient in the sense of Kuhn and Tucker contains all those

$If S is a closed convex set in R", then the set of efficient points of .S contains the
subset of points of S for which there is a supporting hyperplane whose normal has
all positive components, and is contained in the closure of the last mentioned set.

5 Each of these assertions can be obtained as an immediate corollary of the Com-
prehensive Theorem.

¢ For an explicit proof see Klinger [7]; his proof seems to require the locus of
#(t) in the definition of Q; to be linear, but this restriction can be removed (cf. the

proof of 2 .D_'.Si 3 in Appendix A).
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properly efficient in the present sense. The above example (in which 0
is improperly efficient in the sense of Section I) shows that the containment
can be strict.

To summarize, the advantages of the present definition of proper efficiency
over that of Kuhn and Tucker seem to be that it excludes all of a precise
class of anomalies, and that it applies even in the absence of Assumption D

or Q,.

CONCLUSION

We began with the premise that, in optimization problems with multiple
criteria, it is natural to restrict attention to efficient decisions that are properly
so—in the sense that at least one potential marginal gain-to-loss ratio must be
bounded. We then obtained, in Theorems 1 and 2, basic characterization
results for proper efficiency in terms of the scalar parametric problem (P,).
These results were extended in the Comprehensive Theorem to include the
relationships with four other intimately related problem formulations, with
and without various constraint qualifications, differentiability, and convexity
assumptions. The result is a coherent theory of the Proper Vector Maximum
Problem which generalizes the well-known Kuhn-Tucker theory for non-
linear programming. This theory seems more satisfactory than that possible
using either the usual definition of efficiency or the closely related definition
of “proper” efficiency proposed by Kuhn and Tucker.

APPENDIX A

Proof of the Comprehensive Theorem

c
A. | «<——=6. This is a restatement of Theorems 1 and 2 (with A
normalized).
.0y N
B. 6« ~ 5 < = — 4, These assertions are all known results from

the theory of nonlinear programming applied to (P,).

6»--—>C’o’ 5 is a consequence of a slightly more general form of the

Farkas-Minkowski Theorem [1, p. 67].
5 ——— 6 is easily verified directly.

D . , . .
5 ——» 4 occurs because the gradient of a continuously difterentiable
function must vanish at an unconstrained extremum.
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4—5 5 5 occurs because a concave function (which A - f(x) + 7 - g(x)
must be, since A >> 0 and ¥ > 0) achieves an unconstrained supremum at any
point for which its gradient vanishes.

C. 121 > 2 is trivial.

s

Let & be a locally properly efficient solution in the neighborhood Ng.
Under Assumption C, Theorem 2 tells us that # maximizes A-f(x) on
N:N X for some Ae A+, Again from Assumption C, # must maximize
X - f(x) over X, and so by Theorem 1 & must be properly efficient. Thus

22— 1. |
D. 3 <«——> 4. This result can essentially be found in [5, Theorems 4
and 5].

3 < 4 can be shown as follows. If (%, #, A) is a solution to Problem 4, then

$ AVL () + X 7 ¥as(8) =0,

f=1 eJ

where ] = {j:g{%) =0}, for the complementary slackness condition
7 - g(%) = 0 implies ¥, = 0 when g,(&) = 0. Upon postmultiplication of the
vector equation by u, we readily see by contradiction that & must be a
solution of Problem 3.

To see 3— 4, let & be a solution of Problem 3 and apply the Farkas-
Minkowski Theorem in turn to each of the p systems. As a result, there must
exist numbers w;? > 0 and 2;* == 0 such that, for 7 = 1,..., p, '

Vo fi®) + Y wiVe fi(®) + ) 27Vags(%) = 0.

i#i jeJt

Summing over { yields

£ (14 Z ) v + L (£ 5) Ve =0
Put

,A\,- = (1 + Z w,i) R J; = (Z zﬁ') for je]

e i=1

and §, = O for j ¢ J. Clearly £ A; = /(X2 A)), and §; = $;/(T2., A,) solves
Problem 4.
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p,0q
E. 2 — 3. We have previously shown

3—+4~—£—>5———>6———->1———>2‘

hence 3 —— 2. To complete the proof of the Comprehensive Theorem it
remains only to show 2 ———— 3.

Let # be a locally properly efficient solution of (VMP), and let Assump-
tions D and Q, hold. Suppose, contrary to what we desire to show, that &
is not a solution of Problem 3. Then one of the p systems, say the first, has a
solution: there exists # such that

Vo fi(®) -4 >0
Vofs(£) 4 =0 J=2,.,p
Vagi(#) - >0 all  jag(%)=0.
By Assumption Q, there exists a continué)usly differentiable aric"a'&(t),

0 < t < 1, contained in the feasible region, with #(0) = & and some positive
scalar « such that

0. 50 -

Consider the functions f;(#(¢)). From Taylor’s Theorem we have

F3(2) = £i(3(0)) + 1 LD

e f | )]

where ¢, is some scalar between 0 and ¢. Denote the summation in the last
term by s,(t), so that f(£()) = fi(%) + ts,(t). Evidently 5,(0) = oV fi(%) - @
and s,(t) is continuous (from the right) at t = 0. Now for ¢ sufficiently near 0,
#(t) is in the neighborhood within which & is properly efficient. Consider a
sequence {#*> — 0, where 1 > 0. By taking a subsequence, if necessary,
we may assume that the set {7 : f;(Z(t)) < f;(®)} is constant for all v—call
it J-. .We know that {5;(#}> — oV, f(%) - =0, all je J-. But 5() <0
by definition for all » and j € J-, and so {s{(t*)) — 0 for all j € J-. Further-
more, {5(#)> — aV, fi(%) - u > 0. Therefore the sequences

FEE) — /() o
@ Ty, <,
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(i), el

all diverge to + co. But this contradicts the local proper efficiency of %, and
so & must indeed be a solution to Problem 3.

which can be written

APPENDIX B

No Constraints and Equality Constratnts

No Constraints

Here we consider the case in which X is an open set in R® (perhaps the
whole of R"). Corollary 4 gives necessary, and Corollary 5 sufficient, condi-
tions for a locally properly efficient (l.p.e.) solution.

CoRrOLLARY 4. Let the f; be continuously differentiable on X. If x° is l.p.e.,
then V [A + f(x°)] = O for some A € A+,

Proor. With m = 0 and x® € X, (J, becomes superfluous, and the Com-
prehensive Theorem yields 2 — 3 — 4.

COROLLARY 5. Let the f; be twice continuously differentiable on an open set
X C Re If x° € X satisfies VA - f(x%)] = O for some A € A+, and the Hesszan
V2 [A - f(x%)] is negative definite, then x° is L. p.e.

Proor. The assumptions imply that A - f(x) is strictly concave on some
(convex) open neighborhood N,e of 4% Hence x° maximizes this function
on N, , and so by Theorem 1 x° must be l.p.e.

It is clear from the proof of Corollary 5 that the hypothesis “‘f; twice
continuously differentiable and V,2[A - f(x°)] negative definite’’ can be weaken-
ed to “‘f; continuously differentiable and A - f(x) concave on some neigh-
borhood of x0.”

Equality Constraints

Here we consider the case X = {x:gjx) =0, = 1,..., m}. The
Comprehensive Theorem subsumes this case if we write X as {x : g;(x) = 0,
j=1,.,mand — 37, g,(x) = 0}. Assumption Q, is satisfied if and only if
all constraints are linear; and the directions # of concern in Q, are those for
which Vgi(%) ru=0,j =1,..., m

Corollary 6 is a Lagrange Multiplier Theorem, and Corollary 7 examines
the linear constraints case.
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COROLLARY 6. Let the f; and g; be continuously differentiable on some
neighborhood of x°, and let Qg hold at x°. If x° is L p.e., then

VoA - f(2%) 4 - £(x%)] = 0

for some A€ At and p € R™,

Proor. The Comprehensive Theorem asserts 222 L 4 pur

ti =T — V1 -

CorOLLARY 7. Let the g; be linear, and the f; concave. Then each of the

following conditions is necessary and sufficient for x° to be properly efficient:
(i) *° maximizes A - f(x) subject to g(x) = O for some X € A+;
(ii) 0 is feasible, and maximizes X - f(x) + p - g(x) over all x for some

Ae At and p € R™;
(iii) there exists u° € R™. such that (x°, pi°) is a saddlepoint of the function

Fx, ) = A% f(x) + p - g(%)

LA

Jor some A’ € A*; ie.,
F(x% p) = F(a% 10 = F(x, p°)
Jor all x € R* and p € R™.

If, in addition, the f; are continuously differentiable, then a fourth equivalent
condition is:

(iv) a0 satisfies
VoA %)+ g(a)] =0, g(x%) =0,
for some A e A+ and p € R™.

The proof follows directly from the Comprehensive Theorem.
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