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I. INTRODUCTION

It is well established that the presence of learning-by-doing in an industry has an influence on firm behavior and market structure. In its presence, firms are willing to produce more than the short-term optimum with the expectation of improved productivity in the future. This has generally been posited to lead to increased market concentration (Spence [1981], Fudenberg and Tirole [1983]) although some studies (Petrakis, Rasmussen and Roy [1997]) have suggested conditions under which the presence of learning-by-doing may not lead to higher concentration. 

A different approach to studying the effect of learning on market structure is provided by Sutton [1998], who treats learning-by-doing as an endogenous sunk cost with the initial overproduction being the investment made by the firm to improve productivity, much as outlays for R&D and advertising. Sutton shows that the effect of learning-by-doing on concentration will be similar to that of the other endogenous sunk costs, and specifically that in industries with high rates of learning, the lower bound of concentration will tend to a strictly positive limit. 

While Sutton’s predictions about R&D and advertising have been tested in a number of different contexts (e.g., Sutton [1991], Davies and Lyons [1996], Sutton [1998], and Giorgetti [2003]), any large-sample testing of his prediction about learning-by-doing has not been possible due to data limitations, and the inability to obtain reasonably comparable estimates of learning rates for multiple industries. We apply the Olley-Pakes (OP) estimation method (Olley-Pakes [1996]) to an augmented production function and estimate learning rates in over 250 industries in the US manufacturing sector. We then test Sutton’s prediction that the lower bound of concentration will be higher in industries with higher rates of learning. We find that, controlling for R&D and advertising, industries with higher learning rates have a higher limiting concentration. Compared to industries in the lowest quartile of learning rates, the four-firm concentration ratio in industries in the highest quartile is higher by 8.36 percentage points in industries with low R&D and advertising, and by 14.19 percentage points in industries with high R&D and advertising. 

The results of this study add new evidence to the debate on the link between learning-by-doing and market structure by providing empirical support for Sutton's predictions and his treatment of learning-by-doing as an endogenous sunk cost. In addition, our study provides empirical estimates of learning rates covering most of the US manufacturing sector, which could be used as inputs into future studies of learning-by-doing. 

Before we turn to the details, we briefly comment on the interpretation of learning-by-doing as measured here. Learning-by-doing is commonly assumed to reflect passive learning that occurs simply from production experience.  Hence, active investments in R&D to improve productivity would not be typically classified as learning-by-doing. In this study, we estimate learning-by-doing as the improvement in total factor (revenue) productivity due to experience (proxied by cumulative output). Hence, our measured learning rates must be interpreted more broadly than the usual definition of learning-by-doing. They will not be limited to passive improvements alone, and will encompass among others, investments in efficiency-enhancing projects, product improvements, and increases in mark-ups. However, with our data, we cannot achieve a clean separation of these elements. Nonetheless, we believe that this broader interpretation does not detract from the main implications of the study. We discuss this aspect in greater detail in the latter part of this paper.

II. MEASURING LEARNING-BY-DOING

The traditional approach to measuring learning-by-doing for a product is to estimate a power-law function that relates the unit cost of production to experience. One disadvantage of this approach is that it requires detailed cost and production quantity data, which are not easily available for a large number of firms. Therefore, this study adopts a production function approach, and measures learning at the plant level using Census data.
 We write the log production function as:

(1) 



yijt=ajt+αjkijt+βjlijt+ λjxijt+εijt
Where y is the (log) current period real value added; k and l are (log) real capital stock and quantity of labor, respectively; x is (log) prior cumulative output, a measure of experience; α, β and λ are all positive and less than 1; ε is a plant-specific idiosyncratic term; and subscripts refer to plant i, industry j and year t. Here, λ, the coefficient on prior experience, denotes the industry learning intensity. Note that ajt captures any industry-wide improvements in productivity, say due to knowledge spillovers or innovations in the equipment used in the industry. 


Estimating Equation (1) using OLS provides biased estimates of the learning intensities (as well as of the other coefficients). Briefly, as Griliches and Mairesse [1998] explain in the case of a traditional two-factor production function, this bias arises because all factors relevant to production are not observed (e.g., managerial quality). Consequentially, the error term ε will be correlated with the observed inputs, and the coefficients on labor and capital will be biased (typically, the faster changing variable is biased upwards). This problem is also present in Equation (1). In addition, the presence of the cumulative output term is equivalent to adding (weighted) lags of the dependent variable on the right hand side. If the error term ε is persistent (i.e., past productivity shocks are correlated with current shocks), the cumulative output term will be correlated with ε and E[ε|x] ≠ 0. Another potential problem is that of survival, which may bias the prior cumulative output coefficient if firms with larger experience can survive more negative performance shocks.  

We estimate Equation (1) for each SIC 4-digit industry that has more than 50 plants.
 In order to address the problems of endogeneity and selection bias associated with OLS, we extend the Olley and Pakes [1996] approach to measure learning.
 With one additional supposition, the Olley-Pakes approach can be used to obtain consistent estimates of Equation (1). Broadly, this approach uses the assumption that the levels of some inputs are decided before production, and hence, assumes that these decisions are based only on information available before production. This implies that any new productivity shocks observed at production would be uncorrelated with these input decisions.  We extend this to cumulative output by assuming that prior cumulative output for a given time period is completely determined the period before.  We explain this below. 

Following the OP method, we decompose the error term ε into two components, and re-write the production function as: 

yijt=ajt+αjkijt+βjlijt+λjxijt +ωijt+ηijt


where ηijt is a completely exogenous error term and ωijt is the only heterogeneity that is not known to us (but known to the firm and incorporated into its decisions), and which can be written as: 

(2) 



ωijt=E[ωijt|ωijt-1] + ξijt where E[ξijt]=0




Hence, in any period, the firm has some information (through the term E[ωijt|ωijt-1]) that allows it to make a prediction about the next period’s ω, but the firm can never fully predict it (due to the presence of the unanticipated shock ξ). Assuming that capital at period t is completely decided at period t-1 when the firm knows only ωijt-1 and the expected value of ωijt, the decision about capital inputs at time t is uncorrelated with the unexpected change ξijt. So, we have 

(3) 



E[ξijt|kijt]=0



This moment condition can then be used to identify the capital coefficient αj using GMM estimation. 


Similarly, assuming that the prior cumulative experience of a firm at time t is completely determined at time t-1, it follows that prior cumulative output at time t is uncorrelated with the unexpected change ξijt. So, we have 

(4) 



E[ξijt|xijt]=0







which can be used to identify the learning coefficient λj. 

To estimate ωijt, we assume that capital investment is a strictly increasing function of ωijt, capital stock, and prior experience, i.e., iijt= f(ωijt, kijt, xijt), which can then be inverted to ‘back out’ the unobserved heterogeneity, i.e., ωijt = f-1(iijt, kijt, xijt), f-1 approximated using a higher-order polynomial.

Finally, in order to address potential endogeneity of exit decisions, we follow the OP approach and assume that plants exit when they observe a productivity shock below some threshold ω*. Analogous to the original OP approach, we use the exit decisions observed in the data, along with a probit regression to back-out this ω*. The specific steps used to estimate the learning coefficient are given in Appendix I. 

The OP approach, and consequentially, our approach, relies critically on the assumption that changes in productivity are exogenous to the firm. Hence, we cannot analyze the effect of R&D investments made by firms to improve productivity. With detailed data on plant-level R&D, it is possible to examine R&D in addition to other inputs (Doraszelski and Jaumandreu [2006]). However, data limitations constrain us from adopting that approach. Nonetheless, we perform some rough robustness checks to ensure that the results are not due solely to unobserved R&D. 

III. LEARNING-BY-DOING AND CONCENTRATION (BOUNDS APPROACH)

Given our empirical focus, we rely on Sutton [1998] for a formal treatment of how learning-by-doing may affect industry concentration. The predictions and underlying intuition from this model and Sutton’s broader arguments about the role of endogenous sunk costs are summarized here. Sutton explicitly discriminates between exogenous sunk costs such as equipment, which firms must invest in order to enter the market, and endogenous sunk costs, which firms can choose to invest in. Typical examples of such endogenous costs would be R&D and advertising. Investments in exogenous sunk costs are considered unrelated to market size. Hence, most models would predict that as market size increases, more firms would enter the market and concentration would decline. In the case of endogenous costs, however, the incentive for firms to invest is related to the size of the market. Specifically, firms find it more profitable to invest in such costs as the market size increases because a larger market allows the firm to spread the sunk costs over more output. To illustrate, suppose a firm can invest in an R&D project that involves an initial outlay of $X and increases its price-cost margin by $1 per unit. Then, if the firm can sell 1 million units, it would be willing to invest in that project as long as X is less than or equal to $1 million. On the other hand, if it can sell only 10,000 units, X will be at most $10,000. This implies that as market size increases, firms make larger investments in endogenous sunk costs, which, in turn, means that the number of firms that can profitably exist in a market may not necessarily increase with market size. Sutton [1991, 1988] also shows that in the presence of endogenous sunk costs, under fairly general assumptions, concentration will attain a strictly positive lower bound. Furthermore, these studies also show that decline of concentration with market size will be slower in industries with high endogenous sunk costs. Shiman [2008] provides a (relatively) non-technical explanation of the intuition behind Sutton’s theory. 

In the case of learning-by-doing, the critical idea is that it is analogous to other endogenous sunk costs such as R&D and advertising. In expectation of future improvements in productivity, firms make an initial investment through short-term overproduction. The value of this investment is not only a function of the rate of expected learning but also of the size of the market. As the market size increases, the incentive for firms to make this initial investment increases more than proportionately, and, accordingly, the extent of initial overproduction increases. This leads to two specific implications analogous to those about other endogenous sunk costs. First, it implies a strictly positive lower bound for concentration in industries with high learning. Second, it implies that the decline in concentration with market size is slower in industries with high learning. 

Following Sutton [1991] and Giorgetti [2003], we implement an empirical test of this bounds approach by estimating an equation of the following form:

(5)
ln(C/(100-C))jt= α 1 + Σλ=2-4 α λDλ + β1(1/ln(S/σ))jt + Σλ=2-4 βλDλ(1/ln(S/σ))jt+ 

γ0DR + γ1DR(1/ln(S/σ))jt + δ0DA + δ1DA(1/ln(S/σ))jt + εjt



Where C is the output share of the four, eight, or twenty largest firms (C4, C8 and C20), S/σ is the ratio of market size to setup cost (computed as S, the total deflated industry output, divided by σ, the product of the industry capital-output ratio and the output of the median size plant); Dλ is a dummy representing learning quartiles, DR and DA are dummy variables, which are 1 if the industry has a R&D (or advertising) intensity higher than the median, and zero otherwise, and subscripts j and t refer respectively to industry and year.
 

The two predictions from Sutton’s theory lead to two corresponding predictions about the coefficients in Equation (5). The first prediction, relating to a strictly positive lower bound for concentration in industries with high learning, can be seen in the coefficients on Dλ. Specifically, they should increase with learning intensity.  This can be seen by letting S/σ →∞ in Equation (5), which gives the limiting lower bound of concentrations: 

(6) 


ln(C/(100-C))jt= α 1 + Σλ=2-4 α λDλ + γ0DR + δ0DA


Hence, we can calculate the limiting concentration in any learning quartile λ=j as: 

(7) 


C∞, λ=j = z/(1+z); where z=exp(α λ=j +γ0 + δ0) 


if DR and DA are 1, and 

(8) 


C∞, λ=j = z/(1+z); where z=exp(α λ=j) 


if DR and DA are 0.  Hence, if the lower bound of concentration increases with learning, the coefficients on Dλ should be higher in the higher learning quartiles. The second prediction, that the decline in concentration with market size is slower in industries with high learning, can be tested by examining the coefficients on the interaction terms βλDλ(1/ln(S/σ))jt. If the prediction is correct, we should see that βλ is significantly more negative for the higher learning quartiles. 

We use quantile regressions of the fifth percentile to estimate the above equation. This approach follows Giorgetti [2003], and is preferred due to its simplicity of computation and its robustness to outliers.
 To maximize the use of available information, we perform our statistical analysis at the industry-year level, and test our results using clustered standard errors at the industry level.


IV. DATA AND SAMPLE SELECTION

Our analysis is conducted in two stages.  First, we use plant-level data from the US Census Bureau to estimate the learning intensities for each industry.  Then, we employ these estimated industry learning intensities as independent variables in the industry-year level specification, Equation (5). The primary plant-level sample for our study is obtained from confidential micro-data at the establishment level from the Censuses of Manufacturing and the Annual Surveys of Manufactures over the period 1972 to 1996. These surveys and censuses collect information on inputs and outputs used in the production process, and have been used in a number of studies of productivity and production function estimation. Additional details on these censuses and surveys are provided in Appendix II. 

One of the main concerns in any study at the plant level is that plants within an industry may have a heterogeneous product mix, thereby blurring industry definitions. Hence, to ensure homogeneity within an industry, establishments whose largest SIC-4 segment accounted for less than 75% of total output are eliminated. We also drop any establishments that are in SIC 2-digit code 27 (publishing) as well as any establishments that have gaps of more than five years between consecutive observations. The resulting sample used to estimate learning rates by industry is an unbalanced plant-level panel containing data on output, value added, labor, and capital for 613,625 plant-years covering 168,583 plants. 

To examine the impact of learning-by-doing on concentration, we then use the estimated learning intensities in industry-year level regressions (Equation 5). Due to Census disclosure restrictions, we are not able to obtain learning estimates and/or sunk cost indices for some industries (mainly in SIC-2 industries 20 and 21); these are excluded from the sample. In addition, given that our learning rates are estimated with error, we exclude industries with very imprecise learning estimates. Specifically, if adding (or subtracting) 1.96 times the standard error to the estimated learning rate moves an industry from the first (fourth) to the fourth (first) quartiles, the industry is excluded.
 Also, we eliminate industries that end with a 9 since these industries tend to be very heterogeneous.
 At the end of this process, we had 255 SIC-4 industries with 1,103 industry-year observations for our analysis.
 

The construction of the production function variables largely follows that in Olley-Pakes [1996] and Bahk and Gort [1993]. Appendix II describes how the variables are constructed. The concentration ratios are obtained from public use data from the US Census Bureau. The industry sunk cost index is constructed using plant level data, and follows the definition adopted by Sutton [1991]. Specifically, it is defined as the product of industry capital output ratio and the output of the median size plant in the industry. The two endogenous sunk costs, R&D and advertising, are measured as the ratio of these expenditures to total revenues. These data are obtained from Compustat. Given the sparseness of these data, we form these intensities at the three-digit level and assume that industries with missing R&D and advertising data have a low intensity of these sunk costs.
 

[Place Table I approximately here]

Descriptive statistics are provided in Table I, Panel A. Table I, Panel B provides a simple overview of the relationship of the three endogenous sunk costs, and their link to concentration (C8). Among other data, the table presents the 5th percentile of C8 for low-learning industries (the first number in the top row of each cell) and high-learning industries (the first number in the bottom row of each cell).  In each of the four cells, the 5th percentile of C8 exhibits an increase when we move from the low-learning to the high-learning industries, e.g., from 9% to 36% in the high- R&D and high-advertising industries.  Thus, learning appears to be positively correlated with the lower bound of C8. A similar effect is found for R&D. In three of four moves from a low- R&D to a high-R&D industry, the 5th percentile exhibits an increase. For example, among low-advertising, low-learning industries, moving from the low-R&D cell to the high-R&D cell increases the 5th percentile of C8 from 10% to 24%. Advertising, however, does not appear to have any consistent effect on the lower bound. 

V. RESULTS

 [Place Table II approximately here]

Table II provides a summary of the learning rates within each SIC 2-digit industry category, based on the OP method. (Table A1 in the Online Supplement available at the Journal’s editorial Web site presents estimates of learning rates at the SIC-4 industry level). It is evident that the rate of learning exhibits considerable heterogeneity across industries.
 The mean learning rate is 0.288, which is very close to the median (0.279). These numbers are more meaningful when seen as progress ratios.  The mean progress ratio is approximately 81.9% (2-0.288), i.e., a doubling of cumulative output reduces unit cost to 81.9% of the initial level. This is in line with prior studies (e.g., Dutton & Thomas [1984], Lieberman [1984] and Benkard [2001]). 

[Place Figure 1 approximately here]

Turning to the link between market structure and learning-by-doing, Figure 1 plots the relation between producer concentration (logit transformation of C8/100), and the inverse logarithm of Sutton's sunk cost index, for low-learning and high learning industries. The latter classification is based on the lowest and highest quartiles of the estimated learning rates. The smooth lines represent the corresponding predicted values from quantile regressions (5th percentile) of the logit transformation of (C8/100) on the inverse logarithm of Sutton’s sunk cost index. As is evident from Figure 1, the lower bound of concentration (measured by the 5th percentile) is higher in high-learning industries. Furthermore, Figure 1 shows that concentration declines more slowly in high-learning industries.

[Place Table III approximately here]

We tested the patterns in Figure 1 more formally by estimating Equation 5 using quantile regressions (Giorgetti [2003]) of the 5th percentile of concentration. The first column of Table III presents results for C4 and the next two columns present tests of C8 and C20. Our primary interest when examining Sutton’s first prediction is in the coefficients on the learning quartile dummy variables (α2-α4) and, in particular, the coefficient on the highest quartile (α4).
 Irrespective of the concentration measure, these coefficients are positive and their magnitude increases with the learning quartile. The highest-learning quartile always has a significantly higher coefficient than the lowest-learning quartile (3.63 for C4 to 4.26 for C20). Wald tests of the other (pair-wise) differences among these coefficients show that the 5th percentile of concentration in the highest-learning quartile is also significantly higher than the second highest-learning quartile. Together, these confirm Sutton’s first prediction that the lower bound of concentration increases with the intensity of learning-by-doing. 

The coefficient on the sunk cost term (1/ln(S/σ)) is significantly positive throughout, consistent with earlier findings that concentration declines as the magnitude of market size relative to setup costs increases. More pertinently, the rate of decline in concentration appears to depend on the learning quartile. In all the regressions, the coefficients on the interaction terms (Dj*(1/ln(S/σ)) become more negative relative to the lowest-learning quartile as the estimated learning rate increases. Wald tests of the other pair-wise differences show that the decline in concentration in the highest-learning quartile is also lower (significant at the 10% level) than in the second-highest learning quartile. These results imply that the decline in concentration associated with an increase in market size is less steep in industries with high learning, in accord with Sutton’s second prediction. Together, the estimates of the learning quartile dummy variables and the interaction terms appear to confirm Sutton’s predictions that differences in the industry concentration-relative market size relation are dependent on the extent of learning-by-doing. 

The coefficients on the R&D terms are consistent with theory and prior findings. As observed in Sutton [1998] and other studies, industries with high R&D intensity have a significantly higher bound as well as a less steep decline in concentration with market size. However, unlike Sutton [1991], we do not find a positive effect of advertising on concentration. The effect is negative and insignificant in two of three specifications. While we do not have an explanation for this difference, we suspect that it may be due, in part, to the exclusion of industries in SIC 20 (food products) owing to Census disclosure restrictions, and/or due to the broad coverage of industries in our study.
 Another potential problem could be the presence of measurement errors in the Compustat advertising data.
 

[Place Table IV approximately here]

The implications of the findings in Table III are more clearly seen in Table IV. It presents the limiting concentration as implied by the coefficients in Table III.
 Compared to the lowest-learning quartile, the limiting concentration in the highest-learning quartile is higher irrespective of the R&D and advertising intensity. Not surprisingly, the presence of other endogenous sunk costs increases the difference in the limiting concentration. Based on C4, the difference between the highest- and lowest-learning quartiles is about 8.36 percentage points in industries with low R&D and advertising compared to 14.19 percentage points in industries with high R&D and advertising. The same pattern is found when other measures of concentration are used. 

VI. ROBUSTNESS CHECKS

We perform a number of checks to ensure the robustness of our results. At the outset, it is important to note that we rely on the rank ordering of industries (as is implicit when creating quartiles) rather than on the individual learning estimates themselves. Hence, any changes to the production function specifications that do not change the ranking of the estimates (even though they may change the estimated learning coefficients) will not affect the results from the second stage. Broadly, we look at two potential types of errors, possible mismeasurements of the learning rates and errors in the learning-concentration link. Of these, the first is considered in detail in separate studies (Balasubramanian [2007]; Balasubramanian and Lieberman [2006]).
 Among the more important checks, we adopt alternative estimation approaches to measure learning. Specifically, we (a) drop the selection correction in the OP approach (OPNS) (b) use an extension of Ackerberg, Caves, and Frazer [2005] described in Appendix A12 (Online Supplement), (ACF) and (c) apply OLS. These alternative estimates are highly correlated with the baseline OP method used in our study. More formally, the Spearman’s rank correlations among OLS, OP, and ACF estimates range from 0.53 (OPNS-ACF) to 0.68 (OLS-ACF) and all are statistically significant at the 0.01% level. The two OP estimates are even more highly correlated (Spearman’s rank correlation of 0.83). We also examine the impact on the rank ordering of industries of using alternative samples, other measures of experience (including organizational forgetting), alternative capital stock measures, R&D investments by the firm, alternative production function forms, and of allowing for inter-temporal and inter-cohort variations in learning rates. We find that the rank ordering of industries is generally robust to these potential problems. We present a discussion of these problems in Appendix A2 (Online Supplement), and return to some of the more important issues in the next section. 


A second set of checks is performed to examine the robustness of the results in Table III. First, we check if the results are robust to quantiles other than the 5th percentile – the 1st, 10th, 25th and 50th percentiles. Along the lines of the theoretical predictions, the lower bounds as measured by the 1st and 10th percentiles are generally similar to the baseline results. They are statistically significant for C4 and C8. Also, as expected, we find no patterns for the 25th and 50th percentiles. These results are presented in Table A3 of the Online Supplement to this paper. Table A4 in the Online Supplement presents the analysis at the SIC-4 industry level instead of the industry-year level. The pattern of results is similar to that in Table III. Next, we omit industries with missing R&D and advertising data (assigned in the baseline regressions to the low intensity category). The results remain robust (Table A5 in Online Supplement). Tests of robustness to the exclusion of imprecise estimates in the baseline, and excluding outliers instead of imprecise estimates are presented in Tables A6 and A7 in the Online Supplement.
 The pattern of results is similar to that found in the baseline regressions. Table A8 (Online Supplement) uses learning rates based on alternative estimation approaches discussed above. The patterns of results are slightly different from the baseline results but industries in the higher learning quartiles continue to exhibit a higher limiting concentration than industries in the first quartile of learning. Table A9 in the Online Supplement presents robustness to using four quartiles of R&D and advertising instead of two classes in the baseline. Another potential concern is that in some industries markets are effectively local rather than national. Table A10 (Online Supplement) limits the analysis to markets whose scope can be reasonably defined as national, based on average shipping distance. The results remained qualitatively similar. 

VII. COMMENTS AND CAVEATS

Our results shed new light on the link between learning-by-doing and market structure. Analogous to the two widely-studied endogenous sunk costs, R&D and advertising, learning-by-doing is associated with an increase in the lower bound of concentration, and a lower rate of decline in concentration with relative market size. This is consistent with the predictions of Sutton [1998], and suggests that learning-by-doing has characteristics of an endogenous sunk cost.

Sutton [1998] identified three potential hurdles to cross-industry studies of learning-by-doing: spillovers, institutional factors, and unobserved process innovation. We comment on these below.  

The empirical specification estimated above does not directly measure the influence of spillovers across firms (i.e., learning from the experience of other firms). However, it does capture a part of spillovers through the industry-year dummy variables in Equation 1, which pick up the average industry-wide productivity improvements. If spillovers are widespread in an industry, it is very likely that the effects are manifested as improvements in industry-average productivity. Hence, to that extent, our learning estimates are net of spillovers. Moreover, the effect of spillovers on industry structure is the opposite of learning-by-doing; they reduce concentration (Ghemawat and Spence [1985]). For any remaining spillovers (that are not captured by industry-wide productivity improvements) to bias the results in our favor, they must systematically be higher in industries with low observed learning. As a rough check, we estimate spillovers (by industry) by adding a cumulative industry-SMSA  output term to Equation 1 (as a measure of the experience of the firm’s spillover pool).
 The ranking of the learning estimates do not change significantly when the spillover terms are included in the specifications. Changing the definition of the spillover pool to the industry level (instead of industry-SMSA) does not affect this result. 

The potential problem of inter-industry heterogeneity in institutional factors is one that we cannot address. However, this is a problem only if these factors are aligned such that they increase concentration in high-learning industries, and decrease it in the low-learning ones. There is no reason to believe that this may be true although we cannot completely rule it out.
 On the contrary, Sutton [1998] cites two high-learning industries where institutional factors decreased the effect of learning on concentration. 

Sutton [1998] observes that it is difficult to discriminate between learning-by-doing and process innovation since both involve improvements to the production process. This concern goes directly to the heart of what should be (and what is being) measured as learning-by-doing. Traditionally, learning-by-doing refers to improvements in technical efficiency due to production experience.  The implicit assumption is that workers and firms learn in a passive manner by repeatedly performing tasks, much as a student would get better at calculus (or playing the violin) by repeatedly solving problems in calculus (or practicing the violin). Hence, any innovations from outside the production process that improve performance would not be considered learning-by-doing. 

This narrow but conventional view of learning-by-doing assumes that cost reductions arise with growth in cumulative production like ‘manna from heaven’.  Some have challenged this view, suggesting that learning-by-doing is mostly an active process consisting of activities that might otherwise be classified as R&D.  For example, Sinclair, Cohen, and Klepper [2000] found that specific R&D efforts identified through production experience, rather than the production experience itself, are responsible for productivity improvements.  Similarly, Lieberman [1984] noted that learning curves are steeper when firms are more R&D intensive, lending support to the idea that the learning process tends, at very least, to be augmented by R&D.  

 The estimation of learning intensities in this study does not make any distinction between passive and active learning. As measured here, any process improvements (e.g., resulting from R&D activity) that are correlated with the growth of cumulative output also would be observed as learning-by-doing. Any increases in mark-up that occur as firms gain experience are similarly measured as learning-by-doing.  Experience may allow a firm to improve its products, or to better coordinate production with customer demand, thereby enabling it to charge a higher price.  With the given data, we cannot hope to achieve a clean (or even an approximate) separation of these components of learning-by-doing. Instead, we emphasize a broader interpretation of learning-by-doing that encompasses these elements. 

It is important to note that this broader interpretation does not contradict the assumptions in Sutton’s endogenous sunk cost theory. Any additional investments in process innovation projects or in learning about the demand side are still endogenous, and have the same effect on the lower bound of concentration as pure learning-by-doing. 
 Thus, our findings are agnostic to whether the sunk costs associated with learning arise from R&D-type activities or more passive forms of learning.

A final comment pertains to the level and type of learning measured in our study. In contrast to many prior studies that measure learning at the industry level (e.g., Lieberman [1984]) or at the product level (Benkard [2001]), we estimate the average plant-level learning in an industry. Hence, it is possible that there are industries where each new product (or model) undergoes a process of extensive learning but the measured learning at a plant manufacturing these products is not as high.  For example, this characterizes the airframe industry (SIC 3721), where significant learning has been documented for new products (e.g., Benkard [2001]) even though our study finds relatively modest learning at the plant level.  Conceivably, high rates of product level learning may also have a significant impact on producer concentration beyond that of plant (or firm) level learning.

VIII. CONCLUSIONS

We examine the link between market structure and learning-by-doing. We estimate learning rates in more than 250 SIC-4 industries using the Olley-Pakes [1996] method and establish a fairly robust rank ordering of industries based on learning. We then test Sutton’s bounds approach using quantile regressions of the 5th percentile and investigate whether the lower bound of concentration increases with the rate of learning. Controlling for R&D and advertising intensity, we find that the limiting concentration is higher in industries with high learning rates. We also find support for another prediction from Sutton’s approach that the rate of decline in concentration with market size is slower in these industries. 

Together, the results from our study provide new empirical evidence on a long unanswered subject - the relationship between learning-by-doing and market structure. They also establish that learning-by-doing has characteristics of an endogenous sunk cost like R&D and advertising. 

Finally, our learning estimates and the rank ordering of industries based on learning can be independently useful to other researchers interested in addressing questions related to inter-industry differences in learning-by-doing.  
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FIGURE 1: Learning-by-Doing and Market Structure

TABLE I: Sample Description

A: Summary Statistics

See text for detailed variable definitions and data sources.

	Variable
	N
	mean
	sd
	p25
	p50
	p75

	
	
	
	
	
	
	

	Learning rates
	1103
	0.280
	0.150
	0.201
	0.272
	0.357

	ln(S/σ)
	1103
	8.06
	1.32
	7.12
	8.03
	8.94

	Advertising intensity
	1027
	0.014
	0.019
	0.003
	0.007
	0.016

	R&D intensity
	1027
	0.019
	0.019
	0.005
	0.013
	0.026

	C4*
	1103
	34.29
	17.60
	21
	32
	46

	C8*
	1103
	46.19
	20.11
	32
	46
	63

	C20*
	1103
	63.57
	20.99
	49
	65
	81


*Multiplied by 100 for presentation purposes
B: Concentration and learning

The table presents the 5th percentile and median of C8 along with the number of observations in that cell. The top row in each cell refers to low-learning industries (below the 25th percentile), and the bottom row refers to high-learning industries (above the 75th percentile). The numbers in parentheses refer respectively to the 5th percentile of C8, median C8, and the number of observations. For example, the top-left cell can be read as follows: within industries that have high R&D and advertising intensity, the 5th percentile of C8 and median C8 in low-learning industries are 9 and 51 compared to 36 and 59.5 respectively in high-learning industries; 52 observations are those of low-learning industries while 98 belong to high-learning industries. 

	
	Hi R&D
	Lo R&D

	Hi Adv
	(9, 51, 52)

(36, 59.5, 98)
	(15.5, 38.5, 60)

(21, 47, 49)

	Lo Adv
	(24, 62, 56)

(35, 57, 65)
	(10, 37, 83)

(18, 45.5, 50)


Table II:  Heterogeneity in Learning Rates

	SIC
	Description
	Mean
	P25
	P50
	P75

	20
	Food and kindred products
	0.361
	0.297
	0.368
	0.417

	22
	Textile mill products
	0.256
	0.153
	0.271
	0.365

	23
	Apparel 
	0.285
	0.204
	0.278
	0.329

	24
	Lumber and wood products
	0.223
	0.175
	0.207
	0.249

	25
	Furniture and fixtures
	0.261
	0.218
	0.252
	0.304

	26
	Paper and allied products
	0.235
	0.254
	0.284
	0.378

	28
	Chemicals and allied products
	0.417
	0.350
	0.419
	0.522

	29
	Petroleum refining
	0.350
	0.268
	0.360
	0.432

	30
	Rubber and misc. plastic
	0.282
	0.223
	0.275
	0.356

	31
	Leather and leather products
	0.154
	0.103
	0.172
	0.216

	32
	Stone, clay, concrete 
	0.290
	0.221
	0.290
	0.377

	33
	Primary metal industries
	0.229
	0.201
	0.239
	0.276

	34
	Fabricated metal (excl. machinery)
	0.257
	0.200
	0.244
	0.299

	35
	Machinery (incl. computers)
	0.286
	0.218
	0.284
	0.351

	36
	Electrical and electronic equipment
	0.304
	0.241
	0.301
	0.379

	37
	Transportation equipment
	0.263
	0.174
	0.253
	0.305

	38
	Measuring instruments
	0.356
	0.284
	0.354
	0.423

	39
	Misc. manufacturing industries
	0.272
	0.189
	0.262
	0.315

	ALL
	
	0.288
	0.208
	0.279
	0.366


Note: Learning rates are estimated at the SIC 4-digit level. P25, P50 and P75 are the 25th, 50th and 75th percentile of learning rates within a SIC 2-digit industry.  

TABLE III: Learning-by-doing and Lower Bounds of Concentration

	
	Parameter
	C4
	C8
	C20

	Constant                    
	[α1]
	-5.99
	-6.18
	-6.08

	
	
	(0.92)***
	(1.02)***
	(1.23)***

	Learning Quartile 2 (D2)
	[α2]  
	1.43
	1.86
	1.52

	
	
	(1.25)
	(1.34)
	(1.56)

	Learning Quartile 3 (D3)
	[α3]  
	2.41
	2.77
	2.59

	
	
	(1.18)**
	(1.28)**
	(1.54)

	Learning Quartile 4 (D4)
	[α4]   
	3.63
	4.15
	4.26

	
	
	(1.07)***
	(1.14)***
	(1.37)***

	1/ln(S/σ)                  
	[β1]
	26.48
	31.86
	37.11

	
	
	(5.96)***
	(6.75)***
	(8.47)***

	D2*(1/ln(S/σ))
	[β2]
	-9.93
	-12.63
	-10.54

	
	
	(9.13)
	(9.67)
	(11.43)

	D3*(1/ln(S/σ))
	[β3]
	-13.75
	-16.10
	-14.94

	
	
	(8.01)*
	(8.82)*
	(10.83)

	D4*(1/ln(S/σ))
	[β4]
	-22.40
	-26.16
	-26.80

	
	
	(7.33)***
	(7.78)***
	(9.55)***

	RND (DR)
	[γ0]
	2.06
	2.07
	1.89

	
	
	(0.69)***
	(0.74)***
	(0.91)**

	DR*(1/ln(S/σ))
	[γ1]
	-11.80
	-11.48
	-9.91

	
	
	(5.08)**
	(5.54)**
	(6.96)

	ADV (DA)
	[δ0]
	-1.46
	-1.03
	-0.56

	
	
	(0.67)**
	(0.69)
	(0.73)

	DA *(1/ln(S/σ))
	[δ1]
	11.72
	8.80
	5.22

	
	
	(5.14)**
	(5.29)
	(5.70)

	N
	
	1,101
	1,103
	1,103

	Wald Tests (Bootstrapped p-values in parentheses)

	(α2= α3)
	
	0.98

(0.37)
	0.91

(0.45)
	1.07

    (0.41)

	(α3= α4)
	
	1.22

(0.17)
	1.38

(0.15)
	1.67

(0.13)

	(α2= α4)
	
	    2.20

  (0.02) **
	2.28

(0.02) **
	2.74

(0.01)***

	(β2= β 3)
	
	3.83

(0.66)
	3.46

(0.71)
	4.41

(0.67)

	(β 3= β 4)
	
	8.65

(0.20)
	10.07

(0.17)
	11.85

(0.16)

	(β 2= β 4)
	
	12.48

(0.11)
	13.53

(0.09)*
	16.26

(0.07)*

	
	
	
	
	


Note: This table presents tests of Sutton [1998]’s bounds approach (as applied to learning-by-doing) using quantile regressions (Equation 5). The dependent variable is the logit transformation of C4/100, C8/100, or C20/100. (D) represents a dummy variable. Learning rate is divided into four quartiles. R&D and advertising intensity are divided into two classes based on the median. Bootstrapped standard errors clustered by industry. 

***: Significant at 1%; **: Significant at 5%; *: Significant at 10%. 

TABLE IV: Learning-by-doing and Limiting Concentration

	
	C4
	C8
	C20

	At low R&D and advertising intensity
	
	
	

	Learning Quartile 1 (D1)
	0.25%

(0.23%)
	0.21%

(0.21%)
	0.23%

(0.28%)

	Learning Quartile 2 (D2)
	1.04%

(0.83%)
	1.32%

(1.08%)
	1.04%

(0.97%)

	Learning Quartile 3 (D3)
	2.71%

(2.15%)
	3.20%

(2.83%)
	2.97%

(3.01%)

	Learning Quartile 4 (D4)
	8.61%

(4.81%)*
	11.57%

(5.91%)**
	14.02%

(8.18%)*

	At high R&D and advertising intensity
	
	
	

	Learning Quartile 1 (D1)
	0.45%

(0.53%)
	0.58%

(0.73%)
	0.86%

(1.33%)

	Learning Quartile 2 (D2)
	1.87%

(2.17%)
	3.64%

(4.37%)
	3.83%

(5.01%)

	Learning Quartile 3 (D3)
	4.83%

(4.77%)
	8.55%

(8.06%)
	10.40%

(10.43%)

	Learning Quartile 4 (D4)
	14.64%

(9.54%)
	27.02%

(16.3%)*
	38.19%

(22.8%)*


Note: This table presents the limiting concentrations computed using the estimated coefficients from Table III. To illustrate, the limiting concentration for the highest learning quartile in low R&D and advertising industries is computed in the first column as z/(1+z) where z=
e(-5.99+3.63). The limiting concentration for the highest learning quartile in high R&D and advertising industries is computed in the first column as z/(1+z) where z=e(-5.99+3.63+2.06-1.46). Additional details are provided in the text. Clustered standard errors are in parentheses. 

APPENDIX I: OP METHOD ALGORITHM
Step 1: Obtain the labor coefficient: Regress using OLS, yt on labor (lt), and a third degree polynomial of it, kt and xt.  This gives the estimated labor coefficient β*.  To avoid clutter, subscripts i and j are dropped.

Step 2: ‘Back out’ the unobserved heterogeneity: Obtain the predicted values of (yt- β*.lt), which are unbiased estimates of αkt+λxt+ωt.  Call these predicted values φ*t.  

Step 3: Selection correction: Obtain the predicted values from a probit regression of an exit dummy on a third degree polynomial of it, kt and xt.  Call these predicted values P*t
Step 4: Estimate the capital and learning coefficients: Use a non-linear regression of the following form: φ*t = αkt+λxt+third-degree polynomial in (φ*t-1-αkt-1-λxt-1) and P*t-1
APPENDIX II: DATA DESCRIPTION AND VARIABLE DEFINITIONS
I. DATA DESCRIPTION
Since 1972, the US Census Bureau has conducted a Census of Manufacturing (CM) every five years (there were two previous Censuses in 1963 and 1967).  These censuses collect detailed plant-level data from all US manufacturing establishments (i.e., plants) with at least one employee.  The data collected generally include the value of plant shipments, materials and energy inputs, employment, production hours, payments to labor, book values of physical assets, capital expenditures, inventories and whether the establishment is part of a single plant firm or of a multi-plant firm. In addition, the US Census Bureau also performs an Annual Survey of Manufactures (ASM) that collects similar data from a sample of US manufacturing establishments.  In particular, the annual surveys are designed to get an overview of the sector during the inter-census years and hence, place considerable weight on large plants and plants belonging to multi plant firms.  All multi-plant firms and plants with more than 250 employees in the previous Census are usually covered.  To account for new entrants, a sample of new entrants is added to the ASM sample every year based on other administrative data. The data collected in the ASM are similar to the CM. The Census Bureau has collated the data from all these censuses and surveys and linked them through a longitudinal identifier to create a dataset (sometimes called the Longitudinal Research Database or LRD), which it makes available to researchers at Census Research Data Centers, subject to access restrictions and disclosure constraints.  The most important disclosure constraint is that no data that can identify or relate to a single firm or plant can be disclosed.  Hence, statistics such as the median, minimum, or maximum are not presented.  For further details on this dataset, CM or ASM, refer to the US Census Bureau website.

II. VARIABLE DEFINITIONS
Real Output

For any year before 1996, Real Output is defined as the sum of shipments (deflated using the industry shipment deflator in the CES-NBER database developed by Bartelsman, Becker, and Gray [2000] and the difference between year-beginning and year-ending deflated work in process and deflated finished goods inventories (the year-beginning inventory is deflated using the previous year’s industry shipment deflator and year-end inventory deflated using the current year deflator).  Following the Census Bureau documentation, output for industries 2032, 2033, 2035, 2037, 2038, 2085, 2091, 2111, 2121, 2131, and 2141 was defined to be the sum of deflated shipments and the difference between year-beginning and year-ending deflated work in process inventories.  Similarly, for industry 3731, output is defined to be the deflated shipments.  For years including and after 1996, due to the unavailability of inventory data, output is simply defined to be the deflated shipments.

Real Value Added

Real value added is defined as the difference between real output and real materials.

Labor Hours 

Labor hours are defined in production worker equivalents.  Labor hours for any establishment are computed by dividing the total wage bill for the establishment by the average hourly wage for production workers in that establishment.  The total wage bill includes salaries and wages, supplementary labor costs, and other legally required labor compensation (e.g., insurance).

Real Materials 

Real materials are defined as the sum of deflated cost of material purchases, external contract work, fuel, and electricity.  For years before 1997, fuel and electricity are deflated using the energy deflator and the others using a materials deflator. 

Real Capital Stock and Capital Investment 

This study uses the perpetual inventory approach to compute real capital stock. Separate stocks are computed for buildings (or structures) and machinery.  Real capital stock (kt) in any given year, say for machinery, is computed as kt=(1-d)kt-1+It-1 + Rt where d is an industry-year specific depreciation rate for machinery, I is the capital investment in machinery (deflated by an industry-year specific investment deflator for the year t-1) and R is the capitalized value of capital equipment rentals.  Depreciation rates are obtained from Chiang [2004] who bases his computations on BEA estimates, and Davis, Schuh and Haltiwanger [1996].  Capital investment in machinery also includes investments in all used capital equipment (irrespective of machinery v. buildings) since the relevant variables are not well populated.  The capitalized value of capital equipment rentals is obtained by dividing the rental expenditure by industry-year specific equipment rental prices obtained from the same source as above.  This computation is performed separately for buildings and machinery. Some establishments are not observed in their first year of operation. Following Bahk and Gort [1993], capital stock in the first year (initial capital stock) is defined to be the book value of the assets at the end of the year deflated by an industry-year specific capital equipment deflator.  This is defined separately for buildings and machinery where the decomposition is available.  In case such a decomposition of year-end asset values is not available (1973, 1988-91, and 1993-1997), all initial capital stock is assigned to machinery. If an establishment is not observed every year, following Olley-Pakes [1996], gross investment is imputed linearly, i.e., IIt=0.5*(IOt+IOt-k)*(k-1), where IIt is the imputed investment for period t-k+1 to t-1, and IOt is the actual observed investment in period t.  

Prior Cumulative Output


Prior cumulative output is defined as the sum of real output till the end of the previous period, i.e., Xt=sum(y1, y2…yt-1)=Xt-1+yt-1 (and set to 0 in the first year).  If an establishment is not observed every year, output is linearly imputed.
 
Footnotes

� A similar approach is adopted by Bahk and Gort [1993].


� Note that estimating the production function industry-by-industry precludes the possibility that differences in returns to scale are being spuriously captured as learning.  


� We also use a similar extension of the approach outlined by Ackerberg, Caves, Frazer [2005] and OLS to obtain estimates of learning rates. These estimates are highly correlated with the OP learning rates. Results based on these estimates are presented in Table A8 in the Online Supplement.


� The asymmetric treatment of learning (divided into 4 quartiles) and the other endogenous costs (divided into 2 classes) is driven mainly by the need to maintain adequate numbers of observations in each cell.  We test and confirm the robustness of our results to this decision. Refer to the section on robustness checks.


� Robustness to use of alternative quantiles is discussed in the robustness checks section.


� These standard errors are obtained by bootstrapping the second-stage sample (see next section for definition), with replacement, clustered by industry 1000 times. 


� We test and confirm the robustness of our results to this exclusion. Refer to the section on robustness checks.


� For the sake of completeness, however, learning rates from these 45 industries are included in the Online Supplement Appendix A1. As additional checks, we use data from Syverson [2004] to exclude industries in the top 10% of industry diversification as measured by the Gollop-Monahan [1991] diversification index (which uses heterogeneity in input use to compute a measure of diversification) and re-estimate Equation 5. The results are qualitatively similar.


� Of these, two observations have a C4 of zero; hence, these observations are dropped from tests of the lower bound of C4.


� Refer to the section on robustness checks for discussion of robustness of our results to this decision.


� As discussed in the robustness checks discussion and Appendix A2 of the Online Supplement, we examine if the rank ordering of industries was sensitive to the choice of estimation approach and sample. We use a number of other estimation approaches and samples to establish the robustness of the learning. While the individual coefficients vary in magnitude across the different methods and samples, the ranking of industries based on the learning rate are highly correlated. 


� Note that the coefficient on the lowest quartile is subsumed in the constant (intercept) term.


� Sutton [1991] examined the effect of advertising based on industries in food and drinks.


� While we cannot completely eliminate this problem, or the problem of inadequate coverage, we perform a few robustness checks to provide greater confidence in the results. We re-estimate Equation (5) with advertising alone (i.e., excluding both learning and R&D). We find that advertising still does not exhibit any significant relation. We then estimate Equation (5) for only those industries that have an advertising intensity below the median advertising intensity (0.37% of industry sales).  Presumably, the impact of advertising on market structure will be minimal, if any, in these industries. We find our results on learning are qualitatively similar in this subset of industries (Table A11 in the Online Supplement). In this analysis, R&D shows a modest impact on the limiting concentration even in the low learning industries (about 3% on C4, and 4% on C8 and C20). This impact is comparable to the effect of learning (moving from the lowest to the highest quartile) in low R&D industries (5% on C4, and 6% on C8 and C20).


� As expected, because concentration is very skewed (it is roughly log-normal), the standard errors for concentration are larger than those for log transformations of concentration, the dependent variable in the regressions.


� The primary level of aggregation in those studies is SIC-3. Given the computational effort and administrative difficulties in obtaining Census disclosure for multiple results of the same nature, many of these robustness checks are limited to the SIC-3 level. The learning rates at the SIC-3 level are significantly correlated with those at the SIC-4 level (Spearman’s rank correlation coefficient: 0.67). 


� Outliers are defined as industries in the top and bottom 2% of measured learning rates.


�SMSAs or Standard Metropolitan Statistical Areas are broadly defined by the Census Bureau as a central urbanized area (e.g., New York or Los Angeles) with its adjoining areas of high population density, and serve to indicate contiguous geographic areas with strong social and economic ties. 


� Sutton attempts to rule out such errors by using industry fixed effects with data from multiple countries. However, we do not have such data. Further, estimating learning rates requires data over long periods of time, and we cannot precisely estimate learning rates over time within each industry. As a rough robustness check, we analyze industries in SIC-1 digit codes 2 and 3 separately (assuming the institutional factors within these sets of industries will be the same). The pattern of results is the same in both sets of industries but the results are statistically weaker in SIC-1 digit code 2. 


� Nonetheless, as additional checks, we re-estimate the learning coefficients in Equation (1) after including firm-level R&D from Compustat (at the SIC-3 level) as an additional input. The rank correlation between this set of learning coefficients and our original estimates is about 0.67 and statistically significant at the 0.01% level.  We also re-estimate the results in Table III using four quartiles of R&D and advertising (instead of two classes), and obtain similar results. Using 10 deciles of R&D and advertising did not make a substantive difference to the results. 


Also, a few additional facts provide some assurance that unobserved R&D is not solely driving the results. As indicated earlier, we are relying on the rank-ordering of industries rather than on the learning estimates. Moreover, we use a fairly broad categorization scheme, focusing mostly on the difference between the first and fourth quartiles, thereby increasing the threshold measurement error required to cause misclassification. Also, while we find that the high-learning industries (above the 75th percentile) tend to be in the high R&D and advertising category, there are a number of low-learning industries (below the 25th percentile) also in the high R&D and advertising category (Table I). This finding, combined with R&D controls in Equation (1) implies that to bias the results in our favor, the high-learning industries within the high R&D category must have (much) higher levels of unobserved R&D than the low-learning industries within the high R&D category. There is no a priori reason to expect this.


�We also use two additional samples–one in which establishments with any gaps are eliminated, and another in which establishments with a gap between two consecutive survey years more than three years are eliminated.  The resulting learning rates are highly correlated with our baseline rates. 
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