
Operations Research Letters 49 (2021) 345–349

U

B
t
t
s
o
b
a
i
b
b
c
s
a
t
w
s
‘
t
t

s
P
a

A

f
(

h
0

Contents lists available at ScienceDirect

Operations Research Letters

journal homepage: www.elsevier.com/locate/orl

Computing the conditional entry-state distribution in Erlang loss
systems
Bobby S. Nyotta ∗, Fernanda Bravo, M. Keith Chen
CLA Anderson School of Management, Los Angeles, CA, United States of America

a r t i c l e i n f o

Article history:
Received 28 July 2020
Received in revised form 16 January 2021
Accepted 8 March 2021
Available online 18 March 2021

Keywords:
Erlang loss system
M/M/n/n queue
Birth–death Markov chain
State-dependent arrivals

a b s t r a c t

We consider an Erlang loss system with state-dependent arrival rates. Given the system is in steady-
state and there are j customers being served, the system operator may wish to know about the
distribution of arrival states for the j customers in service. Specifically, they may want the steady-state
probability that any given customer entered when the system had i servers busy, given j customers
are currently being served. We term this metric the conditional entry-state distribution and develop an
algorithm to compute it.

© 2021 Elsevier B.V. All rights reserved.
1. Introduction

Erlang loss systems, which are also known as finite-state,
irth–Death Markov chains or M/M/n/n queues, have a rich his-
ory in stochastic modeling and have applications to transporta-
ion, health care, and communications. We specifically consider
ystems where the Poisson arrival rate fluctuates with the state,
r the number of busy servers. State-dependent arrivals have
een used to model customer behavior related to price sensitivity
nd balking. This model, in its purest form, with constant, state-
ndependent arrival and departure rates, is extensively analyzed
y [6]. Brumelle [2] performs a comparable analysis, but models
oth state-dependent arrivals and departures, while we only
onsider the former. Burman [3] examines a similar Erlang loss
ystem while relaxing the Markovian service time assumption. In
ny of these systems, the operator may wish to know what is
he probability a customer entered when the system was empty,
hen the system had 1 customer, and so on, given the current
tate, or occupancy, of the system. We denote this metric as the
‘conditional entry-state distribution’’, where conditioning is on
he system’s current state. In this paper, we develop an algorithm
o compute its value.

One application of where this metric can be valuable is de-
cribed in [5]. The setting consists of an Erlang loss system with
oisson arrival rates that are a decreasing function of price. The
uthor is interested in finding the optimal entry fee to charge

∗ Correspondence to: 110 Westwood Plaza, Gold Hall, Suite 5.01, Los
ngeles, CA 90095, United States of America

E-mail addresses: bobby.nyotta.1@anderson.ucla.edu (B.S. Nyotta),
ernanda.bravo@anderson.ucla.edu (F. Bravo), keith.chen@anderson.ucla.edu
M.K. Chen).
ttps://doi.org/10.1016/j.orl.2021.03.005
167-6377/© 2021 Elsevier B.V. All rights reserved.
arriving customers at each state and develops an algorithm to
compute the prices that maximize the long-run average revenue
per unit time. Given any feasible set of prices, the system operator
may like to know where the revenue is coming from at each state,
so the operator would like to know the expected proportion of the
customers who pay the entry fee when the system is empty, has
1 customer, and so on.

In these queuing systems, many steady-state performance
statistics can be computed, such as the blocking probability, the
steady-state distribution, the expected number of busy servers,
and more. We refer the reader to [1] for further material on
computable system metrics. To the best of our knowledge, there
does not exist a tractable way to compute the metric we study.

Since this work relates to the expected state at which cus-
tomers enter, or arrive, to the system, the well-known ‘‘Poisson
Arrivals See Time Averages’’ (PASTA) property [8] and the re-
lated Conditional PASTA property [7] are both relevant. The latter
is pertinent since our metric also involves computing steady-
state, stationary values that are conditional on the system be-
ing in a particular state. However, their work does not provide
any method for computing any conditional metric, so this work
compliments their result.

The paper is organized as follows. Section 2 describes the
model. The algorithm and convergence proof follows in Section 3.
Numerical results are detailed in Section 4, and future directions
are summarized in Section 5.

2. Model

We consider an M/M/n/n queuing system with state-
dependent arrival rates. This system can be modeled as a finite-

state, birth-and-death Markov chain with state-space S = {1, . . . ,

https://doi.org/10.1016/j.orl.2021.03.005
http://www.elsevier.com/locate/orl
http://www.elsevier.com/locate/orl
http://crossmark.crossref.org/dialog/?doi=10.1016/j.orl.2021.03.005&domain=pdf
mailto:bobby.nyotta.1@anderson.ucla.edu
mailto:fernanda.bravo@anderson.ucla.edu
mailto:keith.chen@anderson.ucla.edu
https://doi.org/10.1016/j.orl.2021.03.005

B.S. Nyotta, F. Bravo and M.K. Chen Operations Research Letters 49 (2021) 345–349

n
s

t
s

e

Ω
W
u
f

g

t
s
w
a
k
p

L

f
T
c
o

T
T
a

} representing the number of busy servers. We consider the
ystem in steady-state, denote the current state as Z ∈ S, and use
the indexes i, j, k to refer to arbitrary states. Customers arrive to
the system according to a Poisson process with a state-dependent
rate, i.e., for Z = k the arrival rate is λk > 0. Service times for an
individual server are exponentially distributed with rate µ, so we
use µk = k · µ to denote the service rate of the entire system in
state k.

We are interested in computing the steady-state probability
that an in-service customer joined the system when there were
i servers busy, given the system is currently in state j. Namely,

Pr[In-service customer entered in state i|Z = j], ∀i, j ∈ S.

We refer to the above probability as the conditional entry-state
probability. To compute it, we define Ωij ∈ R+ to be the expected
number of in-service customers (out of j currently being served)
who arrived when the system was in state i. To recover the con-
ditional entry-state probability, we simply compute Ωij/j, hence
hereafter we focus on obtaining Ωij. Since Ωij = 0 when either
j = 0 or i = n, we focus on i ∈ S\{n} and j ∈ S\{0}. Thus, for each
state j, we define the column vector Ωj = [Ω0j, . . . , Ωn−1,j] ∈ Rn

+
,

and we note that the entries of Ωj sum to j:
∑n−1

i=0 Ωij = Ω⊤j 1 = j,
where 1 is the vector of all ones. Finally, we define the matrix
Ω = [Ω1, . . . , Ωj, . . . , Ωn] ∈ M = {Y ∈ Rn×n

+ :
∑

i Yij = j, j =
1, . . . , n}, where Y is an arbitrary matrix in the set M, which
contains matrices with positive entries where the entries of the
jth column sum to j.

2.1. System dynamics

We now describe how to analytically compute Ωij by applying
the conservation flow principle that is typically used to compute
steady-state probabilities in Markov chains.

Before deriving the system of equations for Ωij, we first intro-
duce some additional probabilities. The steady-state probability
of a given state j can be expressed as

πj = pj,j−1 · πj−1 + pj,j+1 · πj+1 ∀j ∈ S \ {0}

where pi,k is the probability of transitioning to i from k and πk are
the steady-state probabilities. Next, we define ‘‘j ← i’’ to mean
‘‘Enter j from i’’. Using Bayes’ rule we can then derive

Pr[j← j− 1|Z = j] =
pj,j−1 · πj−1

pj,j−1 · πj−1 + pj,j+1 · πj+1
=

µj

λj + µj
(1)

The last equality is obtained by making two observations. First,
ransitions out of state j are with probability pj−1,j =

µj
λj+µj

to
tate j − 1 if a departure occurs, or with probability pj+1,j =
λj

λj+µj
to state j + 1 if an arrival happens instead. Second, using

the reversibility property of M/M/n/n queuing systems [4], which
implies that pj,j−1 =

µj
λj+µj
·

πj
πj−1

and pj,j+1 =
λj

λj+µj
·

πj
πj+1

. For ease of
xposition we hereafter define αj :=

µj
λj+µj

and α = [α0, . . . , αn],
and note α0 = 0 and αn = 1.

We now proceed to write the system of equations to compute
Ωi,j. We do this by conditioning on the two events that can lead to
the system reaching state j: (1) from j−1 when an arrival occurs
or (2) from j + 1 when a departure occurs. Thus, the expected
number of customers in state j who entered in state i (Ωi,j) can
be expressed as a combination of: (1) the expected number of
existing customers in state j−1 who first arrived when the system
was in state i (Ωi,j−1) and the expected number of new customers
into j who enter the system in state i (I[i = j − 1]) and (2)
the expected number of existing customers in state j + 1 who
first arrived when the system was in state i (Ωi,j+1) minus the
departing customers from state j+ 1 who first arrived when the
346
system was in state i (1
j+1 · Ωi,j+1, where 1

j+1 is the probability
that any of the existing customers depart from the system, which
is due to the memoryless property of exponential service times).
Namely,

Ωij =
(
Ωi,j−1 + I[i = j− 1]

)
· Pr[j← j− 1|Z = j]

+

(
Ωi,j+1 −

1
j+ 1

·Ωi,j+1

)
· Pr[j← j+ 1|Z = j]

=(Ωi,j−1 + I[i = j− 1]) · αj

+

(
Ωi,j+1 −

1
j+ 1

·Ωi,j+1

)
· (1− αj) (2)

We extend this flow conservation between Ωij, Ωi,j−1, and
i,j+1 to matrix form in Eq. (3) with the function g : M ↦→ M.
e define ej as the unit vector with a 1 in the jth component, and
se it to capture an arrival from state j− 1 so the system evolves
rom having j− 1 to j servers busy.

(Y) =

⎧⎪⎨⎪⎩
α1(e1)+

1−α1
2 Y2 if j = 1

αj(Yj−1 + ej)+ (1− αj) j
j+1Yj+1 if 1 < j < n

Yn−1 + en if j = n
(3)

To understand the intuition in g , consider the general case of
1 < j < n: the function mixes the distribution at j − 1 while
considering an arrival into j (i.e., Yj−1+ej), and the distribution at
j+1 considering the potential departures (i.e., j

j+1Yj+1). We note g
can be applied to any Y ∈M and for each column Yj, g computes
a convex combination of two vectors that sum to j. This means
g(Y) maps to an element of M.

3. An algorithm to compute the conditional expected entry
state

Next, we present an algorithm to compute Ω . To simplify
notation, we define the function f (Y) = g(g(Y)) = Y ′ and note
hat f : M ↦→ M. The output Y ′ = [Y ′1, . . . , Y

′

j , . . . , Y
′
n] has

everal unique, structural properties, such as its columns Y ′j are
eighted, linear sum of the columns of Y , where the coefficients
re polynomial functions of α (Property A.1). Lemma 1 states a
ey property that f is a contraction mapping. For readability, all
roperties and proofs are available in the Appendix.

emma 1. The function f :M ↦→M is a contraction mapping.

We next present a simple algorithm that repeatedly applies
to any matrix in M until the desired tolerance ϵ is reached.
hen, in Theorem 1 we show that the algorithm converges to the
orrect value of Ω , and in Theorem 2, we give an upper bound
n the algorithm’s iteration limit.

Algorithm: Computing the Conditional Expected Entry State
Input: ϵ > 0, Y ∈M
Compute Y ′ = f (Y)
while d(Y , Y ′) = ||Y − Y ′||∞= maxi,j{|Yij − Y ′ij|} > ϵ do

Set Y = Y ′
Compute Y ′ = f (Y)

end
Output: Y ′

Theorem 1. For all Y ∈ M, as ϵ → 0, the algorithm converges
to Ω .

Theorem 2. For all ϵ ∈ (0, 1) and Y = [Y1, . . . , Yn] ∈ M, where
Yj =

j
n ·1, the algorithm terminates in at most logA(ϵ)+1 iterations.

he parameter A = maxj=1,...,n{Hj(α)}, where Hj(α), defined in
able A.1, is the maximum absolute difference in the estimate of Ωj
fter one iteration.

B.S. Nyotta, F. Bravo and M.K. Chen Operations Research Letters 49 (2021) 345–349

a
t
o
i
l
b
t
m

4

e
F
e
f
ϵ

w
t
a
w
U

Theorem 2 presents an upper bound on the number of iter-
tions the algorithm runs until convergence. However, we note
hat the bound is not tight. This is because A, the upper bound
n the rate at which the distance d decreases in each iteration,
s bounded above by n−1

n and approaches 1 when n becomes
arge, so logA(ϵ) becomes large. When A does equal its upper
ound of n−1

n , the term log n−1
n
(ϵ) is concave increasing in n. In

he next section, we observe that the numerical performance is
uch better.

. Numerical experiments

In this section we numerically demonstrate the speed and
fficacy of our algorithm in computing the metric of interest Ω .
or several system sizes n ∈ {2, 5, 10, 25, 50, 100, 250}, we gen-
rate 50 random instances where µ ∼ U(0, 5) and λk ∼ U(0, 10)
or k = 0, . . . , n. For each instance, we run the algorithm with
= 10−12 and initial point Y = [Y1, . . . , Yk, . . . , Yn] ∈ M,
here Yk = 1 · k

n , and we record the number of iterations and
ime to convergence. We also simulate the system for 25,000
rrivals and compute Ω using the second half of the simulation,
hen the system is in steady-state. We denote this value Ω sim.
sing the output of the algorithm, Ω , and Ω sim, we compute two

metrics: the maximum and the mean absolute deviation between
the Ω and Ω sim. Experiments are run in Python 2.7 on a Dell
Inspiron 13 with 16 GB of RAM and an Intel Core i7 1.8 GHz
processor.

For each value of n, we report the average and standard
deviation over the 50 random instances in Table 1. These re-
sults show the algorithm and simulation return values very close
to each other. However, as n increases, the simulation rarely
reaches some states in steady-state, so reliably computing Ω sim

ij
is challenging (and impossible when state j is never reached).
This is evident in the last two columns of Table 1 where the
deviation between Ω and Ω sim increases with n because Ω sim.
The algorithm is never victim to this issue and always converges
to the true value of Ω , which is why we can run the algorithm
for all n but can only simulate for n ≤ 25.

Table 1 also shows that the algorithm computes Ω faster than
the simulation method. To capture the algorithm’s convergence
speed, in Fig. 1 we report the algorithm’s average distance by
iteration over 50 random instances. The figure shows that the
algorithm converges rapidly for several values of n. We note that
there is a ‘‘kink’’ and speed-up around the n/2th iteration.

One potential interpretation is related to the structure of Y ′ =
f (Y). Per Property A.1, Y ′j has two components: a weighted sum of
the columns of Y and a vector Cj. With each iteration, the weights
on the columns of Y approach 0, so the influence of Y effectively
vanishes after many iterations. The vector Cj is a function of α.
After one iteration, Cj is only a function of αj−1, αj, and αj+1, but
after two iterations, Cj is a function of αj−2, . . . , αj+2. It takes at
most n/2 iterations for Cj to be a function of all α1, . . . , αn. Once
Cj depends on all αj, the vector finally captures the entire system’s
dynamics, so the convergence rate increases after this iteration.

5. Future work and extensions

An area for future work is to improve the bound we present
for the algorithm’s iteration limit. One approach worth exploring
involves deriving an analytical expression to compute any value
in the Cauchy sequence converging Ωij. This is different from our
approach which shows a contraction modulus less than 1 exists.
Two possible extensions include the cases with finite capacities
(i.e. M/M/n/L queues with L > n) and with infinite capacity
(i.e. L = ∞).
347
Table 1
Comparison of algorithm and simulation.
n Iterations Algorithm

time in
seconds

Simulation
time in
seconds

maxij |Ωij −Ω sim
ij |

1
n2

∑
ij |Ωij −Ω sim

ij |

2 24.66 0.26 50.42 0.009 0.007
(4.03) (0.05) (1.24) (0.006) (0.005)

5 57.34 1.00 67.19 0.084 0.020
(14.28) (0.25) (2.37) (0.039) (0.006)

10 68.78 2.02 92.43 0.914 0.100
(22.22) (0.65) (4.04) (0.395) (0.034)

25 84.44 5.45 159.92 1.247 0.275
(27.2) (1.76) (7.86) (0.505) (0.014)

50 99.00 12.22 – – –
(31.74) (3.92) – – –

250 200.66 125.79 – – –
(26.57) (16.58) – – –

Standard deviation values are shown in parenthesis.

Fig. 1. Mean convergence rate with shaded standard deviation for various n.
Note. We report average distance values for all iterations up until the quickest
random instance terminates.

Acknowledgments

The authors thank The Easton Technology Management Center
and The Price Center for Entrepreneurship and Innovation at
the UCLA Anderson School of Management for supporting this
research.

Appendix. Properties of f and proofs

Property A.1. Let X ∈M and X ′ = f (X).

1. (Affine Structure) Each column in X ′ has the form: X ′j =
Cj+

∑n
l=1 bj,l ·Xl, where Cj ∈ Rn

+
and bj,l ∈ R+ are polynomial

functions of α = [α1, . . . , αn].

Proof of Lemma 1. For all X, Y ∈M, we first define the distance
metric ∆ = d(X, Y) = maxi,j{|Xij − Yij|} = ∥X − Y∥∞. We note
that (M, d) is a non-empty complete metric space. Equivalently,
∆ = maxj{∆j} where ∆j = d(Xj, Yj). Let X ′ = f (X), Y ′ = f (Y),
and ∆′ = d(X ′, Y ′). To show that f is a contraction on M, we
show that for all X, Y ∈ M, ∃ 0 ≤ q < 1 s.t. ∆′ ≤ q · ∆. Since
∆′ = maxj{∆′j}, we will show that for all j, ∃ 0 ≤ q < 1 s.t.
∆′ ≤ q ·∆.
j

B.S. Nyotta, F. Bravo and M.K. Chen Operations Research Letters 49 (2021) 345–349

T
E

E

able A.1
xpressions for X ′j and Hj(α).

j X ′j Hj(α)

1 α1 · e1 + 1
2 (1− α1)α2 · e2 + 1

2 (1− α1)α2 · X1 +
1
3 (1− α1)(1− α2) · X3

1
2 (1− α1)α2 +

1
3 (1− α1)(1− α2)

2 α1α2·e1+ 2
3 (1−α2)α3·e3+

(
1
2 (1−α1)α2+

2
3 (1−α2)α3

)
·X2+

1
2 (1−α2)(1−α3)·X4

1
2 (1− α1)α2 +

2
3 (1− α2)α3 +

1
2 (1− α2)(1− α3)

2 < j < n− 1 αjαj−1 · ej−1 +
(

j
j+1 (1− αj)αj+1 + αj

)
· ej + αjαj−1 · Xj−2+

(
j−1
j (1− αj−1)αj

+
j

j+1 (1− αj)αj+1

)
·Xj +

j
j+2 (1− αj)(1− αj+1) · Xj+2

αjαj−1 +
j−1
j (1− αj−1)αj +

j
j+1 (1− αj)αj+1 +

j
j+2 (1− αj)(1− αj+1)

n− 1 αn−2αn−1 · en−2 + αn−1 · en−1 + n−1
n (1− αn−1) · en + αn−2αn−1 · Xn−3

+

(
n−2
n−1 (1− αn−2)αn−1 +

n−1
n (1− αn−1)

)
· Xn−1

αn−2αn−1 +
n−2
n−1 (1− αn−2)αn−1 +

n−1
n (1− αn−1)

n αn−1 · en−1 + en + αn−1 · Xn−2 +
n−1
n (1− αn−1) · Xn αn−1 +

n−1
n (1− αn−1)

To illustrate how we derive X ′j , consider the case j = 1: Let g(X)j be the value of the jth column after one application of g . With this, X ′1 = f (X)1 = g(g(X))j . By
q. (3), X ′1 = α1(e1)+

1−α1
2 g(X)2 , and g(X)2 = α2(X1 + e2)+ (1−α2) 23X3 . Combining this, we get X ′1 = α1(e1)+

1−α1
2 (α2(X1 + e2)+ (1−α2) 23X3), the expression above.
s

(

The proof has four steps: (1) we upper bound ∆′j by a constant
times ∆. (2) we show this constant is a function of α. In (3)
and (4), we show this constant is always strictly less than 1,
proving f is a contraction.

(1) Upperbound on ∆′j . For an arbitrary j, we can find an
upperbound on ∆′j as follows:

∆′j = max
i
|X ′ij − Y ′ij| = max

i
|Cij +

n∑
l=1

bj,l · Xil − Cij −

n∑
l=1

bj,l · Yil|

= max
i
|

n∑
l=1

bj,l · (Xil − Yil)|

≤ max
i

n∑
l=1

|bj,l| · |Xil − Yil|

≤

n∑
l=1

|bj,l| ·max
i
|Xil − Yil|

=

n∑
l=1

bj,l ·∆l ≤

n∑
l=1

bj,l ·∆

The second and last equality in the above equation come from
Property A.1. This shows that ∆′j ≤

∑n
l=1 bj,l ·∆, where

∑n
l=1 bj,l ∈

R+. If
∑n

l=1 bj,l < 1 for all j, then f is a contraction.

(2) Expressing
∑n

l=1 bj,l as a Function of α. For the general
case when n ≥ 5, the columns in the output matrix X ′ = f (X)
for an arbitrary X ∈ M fall into one of five categories based
on the column number j: left columns (j = 1, 2), right columns
(j = n− 1, n), and interior columns (2 < j < n− 1). Using Eq. (3)
and f , we derive the expressions for X ′j in terms of α and present
them in Table A.1. We also define the function Hj =

∑n
l=1 bj,l as

a function of α. We note when n = 2, we use columns X ′1 and
X ′n. When n = 3, we use columns X ′1, X

′

n−1, X
′
n. For n = 4, we use

columns X ′1, X
′

2, X
′

n−1, X
′
n.

(3) Showing Maximum Value of Hj is Strictly Less Than
1. For the five cases described in Table A.1, we want to show
maxα∈[0,1]n:0<αk<1{Hj(α)} < 1. We refer to this as Problem A
and denote zA its optimal value and α∗A its maximizer. However,
problem A’s feasible region is not a compact set due to the strict
inequalities on α. Relaxing the strict inequalities in A, we have
maxα∈[0,1]n:0≤αk≤1{Hj(α)}, which we refer to problem B. We define
zB and α∗B similarly. Since A’s feasible region is strictly contained
within B’s, we have zA ≤ zB, and since B’s feasible region is
compact, we can solve for z and α∗. If we show that z < 1
B B B

348
or zA < zB = 1 for all j, then we have shown f is a contraction.
Below, we compute zB and α∗B for each case.

j = 1: zB = max0≤α1,α2≤1
{
H1(α1, α2)

}
=

1
2 since ∂H1

∂α2
=

1−α1
6 ≥

0, so α∗B = (0, 1) and zB = 1
2 .

j = 2: zB = max0≤α1,α2,α3≤1
{
H2(α1, α2, α3)

}
=

2
3 since ∂H ′2

∂α1
=

−α2
2 ≤ 0, ∂H ′2

∂α2
=
−α1
2 −

α3
6 ≤ 0, and ∂H ′2

∂α3
=

1−α2
6 ≥ 0. Therefore,

α∗B = (0, 0, 1) and zB = 2
3 .

2 < j < n− 1: zB = max0≤αj−1,αj,αj+1≤1
{
Hj(αj−1, αj, αj+1)

}
= 1

ince ∂Hj
∂αj−1

=
αj
j ≥ 0 and ∂Hj

∂αj+1
=

j(1−αj)
(j+1)(j+2) ≥ 0, so α∗j−1,B =

α∗j+1,B = 1. Then ∂Hj
∂αj
=

j−2
j(j+2) +

αj−1
j −

αj+1·j
(j+2)(j+1) > 0, so α∗B =

1, 1, 1) and zB = 1.
j = n− 1: zB = max0≤αn−2,αn−1≤1

{
Hn−1(αn−2, αn−1)

}
= 1 since

∂Hn−1
∂αn−2

=
1
nαn−1 ≥ 0, which implies α∗n−2,B = 1. When αn−2 > 1

n ,

we have ∂Hn−1
∂αn−1

=
αn−2
n−1 −

1
n(n−1) > 0. Therefore, α∗ = (1, 1) and

zB = 1.
j = n: zB = max0≤αn−1≤1

{
Hn(αn−1)

}
= 1 since ∂Hn(αn−1)

∂αn−1
=

1
n ≥

0, so α∗n−1,B = 1 and zB = 1.

(4) Final Step. For j = 1, 2, zB < 1, so we are done for those cases.
However, for the cases j > 2, zB = 1. All of the solutions in these
cases are corner solutions where the elements of α∗B take either
0 or 1. Since problem A’s feasible region is strictly contained in
B’s, the corner solution α∗B cannot be reached in A. Therefore,
zA < zB = 1 for all j ∈ {1, . . . , n} and f is a contraction. □

Proof of Theorem 1. From Lemma 1 and the Banach fixed-point
theorem, we know there exists a unique Y ∗ ∈ M such that
Y ∗ = f (Y ∗) and d(Y ∗, f (Y ∗)) = ∥Y ∗− f (Y ∗)∥∞ = 0. We also know
d(Y , Y ′) ≥ d(Y ′, Y ′′) ≥ · · · > 0, where Y (k)

= f ◦k(X) for k ∈ Z+.
For each application of f , or as k→∞, the distance d successively
decreases. Therefore as ϵ → 0, the algorithm converges to Y ∗.

Next, we show Y ∗ = Ω . Assume that Y ∗ ̸= Ω . Embedded
within f is g , which uses steady-state transition probabilities to
model the flow between states, so we know g(Ω) = Ω , which
means that f (Ω) = g(g(Ω)) = Ω . If Y ∗ ̸= Ω , then f (Y ∗) ̸= Y ∗
and d(Y ∗, f (Y ∗)) > 0, which is impossible since Y ∗ is the fixed
point of the contraction mapping f . Therefore Y ∗ = Ω and the
algorithm converges to the correct Ω as ϵ → 0. □

Proof of Theorem 2. If d1 is the distance after the first iteration of
the algorithm and q is the number of subsequent iterations until
the distance reaches the stopping tolerance ϵ, then the algorithm
terminates when d1 · Aq < ϵ, where A = maxj=1,...,n{Hj(α)} ∈
(0, 1). Note that Hj(α) (see Table A.1) is the upper bound on
the rate at which the distance decreases in successive iterations.

B.S. Nyotta, F. Bravo and M.K. Chen Operations Research Letters 49 (2021) 345–349

R
a
t
t
i

earranging the expression, we have q < logA(ϵ/d1), so the
lgorithm terminates in, at most, logA(ϵ/d1)+ 1 iterations. When
he input matrix is Y = [Y1, . . . , Yj, . . . , Yn] ∈M, where Yj =

j
n ·1,

hen the distance d1 = d(Y , Y ′) → 1 as n → ∞. Applying this
nsight, we know the algorithm terminates in at most logA(ϵ)+ 1
iterations. □

References

[1] A.O. Allen, Probability, Statistics, and Queueing Theory, Academic Press,
2014.
349
[2] S.L. Brumelle, A generalization of erlang’s loss system to state dependent
arrival and service rates, Math. Oper. Res. 3 (1) (1978) 10–16.

[3] D.Y. Burman, Insensitivity in queueing systems, Adv. Appl. Probab. (1981)
846–859.

[4] F.P. Kelly, Reversibility and Stochastic Networks, Cambridge University Press,
2011.

[5] D.W. Low, Optimal dynamic pricing policies for an m/m/s queue, Oper. Res.
22 (3) (1974) 545–561.

[6] L. Takacs, On erlang’s formula, Ann. Math. Stat. 40 (1) (1969) 71–78.
[7] E.A. Van Doorn, G. Regterschot, Conditional PASTA, Oper. Res. Lett. 7 (5)

(1988) 229–232.
[8] R.W. Wolff, Poisson arrivals see time averages, Oper. Res. 30 (2) (1982)

223–231.

http://refhub.elsevier.com/S0167-6377(21)00046-8/sb1
http://refhub.elsevier.com/S0167-6377(21)00046-8/sb1
http://refhub.elsevier.com/S0167-6377(21)00046-8/sb1
http://refhub.elsevier.com/S0167-6377(21)00046-8/sb2
http://refhub.elsevier.com/S0167-6377(21)00046-8/sb2
http://refhub.elsevier.com/S0167-6377(21)00046-8/sb2
http://refhub.elsevier.com/S0167-6377(21)00046-8/sb3
http://refhub.elsevier.com/S0167-6377(21)00046-8/sb3
http://refhub.elsevier.com/S0167-6377(21)00046-8/sb3
http://refhub.elsevier.com/S0167-6377(21)00046-8/sb4
http://refhub.elsevier.com/S0167-6377(21)00046-8/sb4
http://refhub.elsevier.com/S0167-6377(21)00046-8/sb4
http://refhub.elsevier.com/S0167-6377(21)00046-8/sb5
http://refhub.elsevier.com/S0167-6377(21)00046-8/sb5
http://refhub.elsevier.com/S0167-6377(21)00046-8/sb5
http://refhub.elsevier.com/S0167-6377(21)00046-8/sb6
http://refhub.elsevier.com/S0167-6377(21)00046-8/sb7
http://refhub.elsevier.com/S0167-6377(21)00046-8/sb7
http://refhub.elsevier.com/S0167-6377(21)00046-8/sb7
http://refhub.elsevier.com/S0167-6377(21)00046-8/sb8
http://refhub.elsevier.com/S0167-6377(21)00046-8/sb8
http://refhub.elsevier.com/S0167-6377(21)00046-8/sb8

	Computing the conditional entry-state distribution in Erlang loss systems
	Introduction
	Model
	System dynamics

	An algorithm to compute the conditional expected entry state
	Numerical experiments
	Future work and extensions
	Acknowledgments
	Appendix. Properties of f and proofs
	References

