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SOLVING BICRITERION MATHEMATICAL
PROGRAMS

Arthur M. Geoffrion
University of California, Los Angeles, California

(Received March 14, 1966)

It often happens in applications of mathematical programming that there
are two incommensurate objective functions to be extremized, rather than
just one. One thus encounters bicriterion programs of the form of equa-
tion (1),

maximize, ¢ x hlf1(z), f2(2)],
where & is an increasing utility function, preferably quasiconcave, de-
fined on outcomes of the concave objective functions fi and f2, and z is
a decision n-vector constrained to the convex set X. It is shown how such
programs can be numerically solved if a parametric programming al-
gorithm is available for the parametric subproblem

maximize, ¢ x a f1(x)+ 1 —a)f2(z). 0=a=xl)

A natural byproduct of the calculations is a relevant portion of the ‘trade-
off curve’ between fi and f.. Outlines of several algorithms for solving
equation (1) under various special assumptions and a numerical example
are presented to illustrate the application of the theory developed herein.
A useful extension is presented that permits nonlinear scale changes to
be made on the f;.

IN THIS paper we study bicriterion mathematical programs of the form
maximize, « x h[fi(2), f2(x)], (1)

where f1 and f; are real-valued concave criterion (payoff) functions of the
n-vector z of decision variables that are constrained to lie in a convex subset
X of E”, and b is a real-valued increasing (i.e., monotone nondecreasing in
each argument) ordinal utility indicator function defined on the pairs of
achievable values for f; and f,. We present a simple method for solving (1)
based on any known parametric programming algorithm for the parametric
subproblem

maximize,  x o fi(x) +(1—a)fo(z), (Ps)

where the parameter o varies over the unit interval. When f; and f» are

t This work was supported partially by the Office of Naval Research under Task
NR 047-041, Contract Nonr 233(75), and by the Western Management Science Insti-
tute under a grant from the Ford Foundation. Presented at the Twenty-ninth
National Meeting of the OPERATIONS RESEARCH SoCIETY OF AMERICA in Santa Mon-
ica, Calif., May 20, 1966.
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40 Arthur M. Geoffrion

linear and X is a convex polyhedron, for example, (1) is reduced essentially
to a standard parametric linear program even though 4 is nonlinear. Thus
parametric linear programming routines can be modified to solve this im-
portant class of nonlinear (even nonconcave) programs. A natural by-
product of the calculations is a relevant portion of the tradeoff-curve be-
tween f; and fe.

When 4 is also known to be quasiconcave (i.e., there is a diminishing
marginal rate of substitution between f; and f2), a property shared by most
utility functions arising in practice, it is shown how to substantially reduce
the amount of computational work necessary to solve (1). Some examples
of nonlinear programs that are or can be viewed as bicriterion programs
with quasiconcave h are:

A. maximize, ¢ x min{fi(z), fo(x)}.

B. maximize, . x fi(z)/f(z),
where f1(z) <0 and fa(z) >0 on X.

C. maximize, ¢ x a1lfa(2)]" +ualfa(z)],
where vy, v2, 81, 82>0 and fi(2), fo(z) >0 on X.

D. maximize, ¢ x — v1 exp [— fi(z)] — vz exp [—fol2)],
where v, 1:>0, fi2)=—2 ;z;qj (1=1, 2) and ¢;>0, ;=0;
this program is equivalent to

minimize, ¢ x 01 ] [;(g1,)% 402 [Ts( @)™

E. maximize, . x [fi(2)[f2(2)],

where >0 and fi(z), fo(2) >0 on X.

Example A is a special case of the commonly occurring Chebyshev
problem. Example B is a generalized ‘fractional programming’ problem
that has been extensively investigated for the special case in which f; and
f2 are linear and X is a convex polyhedron.” The other combinations of
sign restrictions can also be handled. Example C embodies an additive
utility function commonly used in the theory of consumer’s choice.” Ex-
ample D, in the equivalent form, arises in redundancy allocation and target-
assignment contexts.f A numerical example based on Example E is given
below.

In the next section, the necessary theory is developed. It is then used
to construct outlines of several algorithms for solving (1) under various
special assumptions on fi,fs,and X. They are based on parametric linear pro-
gramming,”” on WorLre’s method of parametric quadratic programming,[m

t Several methods for solving the linear fractional programming problem are
available, most of them based on linear programming techniques. For a brief guide
to the literature, see reference 9, p. 197. For a discussion of more general fractional
programs, see reference 8.

1 By an appropriate change of variables,[1l Example D can also be cast as a
linearly separable concave program.
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and on any method of parametric concave programming that yields a con-
tinuous optimal solution function for (P,) (e.g., reference 5). A numerical
example is given. Finally, it is shown that the advantages of a quasicon-
cave h hold under a weaker condition than quasiconcavity.

DEVELOPMENT

In ApprTION to the assumptions stated in the first paragraph, it will be
convenient to avoid questions of the attainment of suprema by assuming
throughout this paper that the feasible region X is compact (closed and
bounded) and nonempty as well as convex, that the f; are continuous as
well as concave' on X, and that  is continuous as well as increasing in f;
and f», on the attainable payoff set f[X]. We denote by f the vector-valued
function (f1, f2), and by f[X] the image in E* of X underf. A pointz’e X is
said to be efficient if and only if there does not exist another point z’ ¢ X such
that fi(z") = fi(z"), =1, 2, with strict inequality holding for at least one 7;
in other words, if and only if f(2°) is in the admissible set. The set of
optimal solutions of (P,) for a fixed value of a is denoted by X*(a), and
any n-valued function z*(a) on [0, 1] that satisfies z*(a) e X*(a) for each
a is called an optimal solution funciion of (P,).

The first two lemmas provide the primary motivation for a computa-
tional approach to solving (1) in terms of the parametric program (P,).
Lemma 1. At least one point at which h[f(x)] achieves its mazimum over X
18 efficient.

Proof. By the compactness of X and the continuity of f and 4, (1) has
at least one optimal solution 2°. Similarly, there exists a point =" that
maximizes fi(z)+fo(z) over X subject to the additional constraints
fi(z)=f«(2"),i=1,2. Now 2’ is easily seen to be efficient, for the contrary
contradicts the choice of z'. Finally we observe that ' must also solve
(1); for 2’ is feasible in (1), and fi(z") = f«(2°), s=1, 2, implies, by the fact
that & is increasing, that A[f(z")]=h[f(<")].

Lemma 2. If 2° s efficient, then there exists a scalar o in the unit interval such
that z° is an optimal solution of (Pao).

Proof. The proof uses the concavity of f and convexity of X in an
essential way, and is an application of a basic separation property of convex
sets (see, e.g., reference 10, p. 217).

Lemmas 1 and 2 imply
TaEOREM 1. An optimal solution of (1) is found among the optimal

t A function f(z) on a convex set X is said to be concave if z!, 22 e X, x'722,
imply fltet+ (A—i)z2]2 ¢ (') + A —1)f (?) for all 0<i<1l. An important property of
concave functions is that a nonnegative linear combination of such functions is
always concave. This property is not shared by quasiconcave functions (cf. foot-
note p. 46).
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solutions of (P) for some o in the unit interval. More precisely, if o is
optimal in
maximizeq ¢ 10,1 H(a), (2)

where we define H(a) on the unit interval by
H(a)=maximum, . x+@ hf(x)], (3)

then (1) 4s solved by any point z e X*(o™) satisfying hlf(z)]=H(a™).

That H(a) is well-defined follows from the nonemptiness and compact-
ness of X and the continuity of f and h, which imply that A[f(z)] is con-
tinuous on the nonempty and compact set X *(«). H(a) achieves its maxi-
mum by Lemmas 1 and 2 or by the fact that it can be shown to be an upper
semicontinuous function on the compact set [0, 1].

The computational usefulness of (2) depends primarily on how readily
H(a) can be computed on the unit interval. If it can be computed easily,
then (2) is likely to be a quite efficient means of solving (1), for finding the
maximum of H(a) is but a one-dimensional maximization problem. Be-
fore taking up the question of how to compute H (o), we point out an easy
partial converse of Lemma 2 that partly justifies the assertion made earlier
concerning the availability of a portion of the tradeoff-curve between f; and
f2 as a by-product of the calculations for solving (1) : Every point of X *(«)
is efficient when a satisfies 0<a <1, and some point of X*(«) is efficient
when a=0 or 1.

Computing H(a)

Let a be fixed in the unit interval. It might be feared that computing
H(a), when (P,) does not have a unique optimal solution, requires not
only finding all optimal solutions of (P,) in order to get X *(a), but also
solving a maximization problem of the same form as (1) itself; for it was
noted that X*(e) is a nonempty and compact subset of X, and from the
convexity of X and the concavity of a fi(z)+(1—a)fe(x) it follows that
X*(a) is also convex. Fortunately, however, it turns out that computing
H(a) is not nearly so difficult as this observation would seem to indicate.
The results of the following theorem show that H(a) can usually be com-
puted on [0, 1] with little, if any, extra work beyond finding by parametric
programming any optimal solution function z*(a) of (P,) on [0, 1].
TueoreM 2. Let 2¥(a) be any optimal solution function for (P.) on [0,
1] that is continuous everywhere except possibly for a finite number of stmple
discontinuities interior to the unit interval. For each point o’ of discontinuity,
define £*(a’) and F*(a’) as the left-hand and right-hand limits of x*(a) at
o, respectively. Then

(i). H(a)=h{flz*(a)]} at every point of continuity in [0, 1].
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(ii). If ' is a point of discontinuity then
H(a") =maximum, . o1 h{fltz*(o’) +(1—2t) ()]} (3.1)
and H(o') =maximum, . p.q1 h{tflz*(a")]+(1—=0)fF*()]}. (3.2)

This theorem applies to all parametric programming algorithms known
to the author in the sense that when they are applicable to (P.), they all
produce an optimal solution function *(«) that is continuous everywhere
on the unit interval except possibly for a finite number of simple discon-
tinuities.? These discontinuities can be taken to be interior to theunit
interval without loss of generality because of Lemma, 5 below, which implies
that 2*(«) can be replaced by its right-hand limit at 0 and left-hand limit
at 1 if a discontinuity exists at either of these points. Note that to compute
H(a) for a point of discontinuity one has a choice of solving either of the
two one-dimensional maximization problems (3.1) and (3.2).

The burden of the remainder of this subsection is to establish the results
of Theorem 2.
It is convenient to write (3) in the alternate form

H () =maximumy ¢ six+@1 h(¥y), (4)

Whel;e f[X*(a)] is the image of X*(«) under f and ¥ is a generic element
of I".
Lemma 3. For each fized value of o satisfying 0<a<1, f[X*(a)] is either
a singleton or a compact line segment of nonzero length in E° with normal
(o, 1—a). In the latter case, if f(x') and f(2°) are the endpoints of the line
segment, then fliz'+(1—t)a’]=tf(x")+(1=t)f(a’) for all t satisfying
0=t=1.

Proof. Let 0<a<1 be fixed. By definition, X*(a) is the optimal
solution set of (P,). Hence

afi(z)+(1-a)fo(z) =v(a)

for all z e X*(a), where v( ) is the optimal value of (P,). Hence f[X*(a)]
is a subset of the line {y= (1, ¥2) € B*: ayi+(1—a)ya=v(a)}. Suppose
that f(z')#f(z’), where z', 2" ¢ X*(a). Let ¢t be any real number in
the unit interval. Then [i2'4+(1—t)2’]e X*(a) by convexity, and
filta'+(1=t)a 1= tf (") +(1—=2t)fi(2*), =1, 2, by concavity. Hence

v(a) =afilta’ + (1—1)2"]+ (1 —a)falte’ +(1—1)a’]
2 aftfi(2") +(1—1)fi(a")]

t In fact one suspects that the exploitation of possible continuity in the optimal
solution of (P,) as « varies is necessary for a successful parametric programming al-
gorithm.
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+(1—a)[tfa(z") +(1—t)fa(a)]
=tlafi(e") +(1—a)fe(z")]
+(1=8)[afi(a”) + (1 —a)fo(a)]
=w(a)+(1—t)v(a) =v(a),
from which it follows (recall that 0<a<1) that
fltz' +(1=0)a’| =¢f (") + (1= 8)f (2").

It remains only to show that f[X*(«)] is compact. This follows immedi-
ately from the continuity of f and the compactness of X *(a).

This lemma implies that to compute H(«) for fixed « satisfying 0<a<1
it is sufficient to know at most two points in X *( ) : any one point if f[X *(a)]
is a singleton, and any two points z* and z* that each map into a different
endpoint otherwise. In the first case, from (4) we see that H(a) =h[f(x)]
for any z ¢ X*(a); and in the second case, we have

H(a)=maximum, , o5 hftf(z") +(1—1)f(z")] (5)
or, interestingly enough, the alternative
H(a)=maximum, . o, h{f[te'+(1—1)2"]}. (6)

Lemma 4. If (@) is any optimal solution function for (Ps) on [0, 1],
then filz*(a)] {resp. falz* (@)1} is monotonically nondecreasing (resp. non-
increasing) on [0, 1].

The routine proof is omitted.

LemMA 5. X™*(a) is an upper semicontinuous mapping* on [0, 1].

Proof. Apply Theorem 4 of sec. 1.8 of DEBrEU,™ p. 19, to (P.).
LemMa 6. Let 2*(a) be an optimal solution function for (P,) that is con-
tinuous on the unit interval except possibly for a finite number of simple dis-
continuities. At each ao satisfying 0<ay<l:

A. If ¥(a) is continuous al ao, then fIX *(a0)] is a singleton;;

B. If z*(a) has o simple discontinuity at oo, then z*(ap)=
liMaaa- () and (o) =liMgea,+ z*(a) are both in X*(a),
and f[X*(a0)] is @ compact line segment (possibly of zero length)
with end points flz*(o0)] and fIE*(o)].

At the endpoints of the unit interval:

C. limesor (@) is in X*(0) and is efficient;

D. limg.i- z*(a) s in X*(1) and is efficient.

t The definition of upper semicontinuity for set-valued functions that we use
is that of Debreu.[8] As applied to X*(a), upper semicontinuity at «, € [0, 1] means

<ai>—a, where o €[0, 1], and <z*(a?)>—a?, where z*(a’) ¢ X*(a?), implies:
20 e X* ().
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Proof. Let () be continuous at ap satisfying 0 < ap < 1. Suppose,
contrary to A, that there exists 2° ¢ X™ () such that f(2°)=flz*(a)].
Since f(2°) and f[z*( )] must both lie on a line through f(2°) with normal
(an, 1—ay), either fi(z") <filz*(a0)] or filz* ()] <fi(z"). In the first case,
by the continuity of fl[x*(a)] at ap there exists a number & satisfying & <ap
such that filz*(&)]>f1(2°). But this contradicts the monotonicity of f
proved in Lemma 4. A similar contradiction can be obtained in the second
case. This proves part 4.

Let 2*() have a simple discontinuity at a point ap satisfying 0<ap<1.
By Lemma 3, f[X *(ao)] is a compact line segment. Denote limaa,- z*( o)
[resp. liMa,a+ 2 ()] by 2*(a0) [resp. #*(an)]. From Lemma 5, 2*(a0)
and Z*(ao) are in X*(an). It remains to show that f[z* ()] and f[5* ()]
are the endpoints of f[X*(a)]. Suppose the contrary. Then there exists
2’ € X™(aw) such that fi(2°) <filz*(a0)] and fo(2®) > folz*(w)], or filE™(ao)]
<fi(2*) and fo[£*(a0)]>fo(z"). We shall consider the first case and con-
struct the contradiction that there exists a value of « such that

afi(2") +(1—a)fe(2’)>a fila™(a)]+(1 —a)falz™()].

A similar construction leads to a contradiction for the second case.
For all a ¢(0, 1), we have
alfi(2") —file*(a)} +(1—a) {fa(2") —filz* ()]}
= (a—arta) {fi(z") —file* ()} + (1 —a+as—ao) {f2(2") —folz™ ()]}
= (a—ao) {fi(2") —filz* ()] +fale™ ()] —fa(a")}
+{aol f1(2") —file™ (@) ]+ (1 —a0) [fa(a") —folz™()]]}

2 (a—a0) {fu(2") —file™ () [H+-Aale* ()] —fa(2")},
where the last inequality follows from the fact that the quantity in large
curly brackets is nonnegative [recall that z° solves (Pay)]. By the left con-
tinuity of flz*( )] at ao and the fact that {fi(2") —filz* ()]} and {felz™(a0)]
—fa(2")} are both negative, the desired inequality is established for all « less
than but sufficiently near ap. 'This completes the proof of part B.

Finally we prove part C. A similar argument proves part D. By
Lemma 5, £%(0)=lim,,o" 2*(«) is in X*(0). Suppose that £*(0) is not
efficient. Then there exists a point 2° ¢ X such that fi(2°) >£[Z%(0)] and
fo(2*) =£:[Z%(0)] {since £*(0) solves (Py), fa(2’) >fo[Z*(0)] is impossible}.
Thus z° ¢ X*(0). Let >0 be such that f;(z")>fi[z*(&)]. This contra-
dicts the monotonicity of f; established in Lemma 4.

Theorem 2, except for part (i) for a=0 or 1, is established by parts A and
B of Lemma 6 in conjunction with Lemma 3. For =0 or 1, part (i) is

established by parts C and D of Lemma 6 in conjunction with the easy
result that H(a)=h[f(z)] for any efficient z ¢ X*(a) when =0 or 1.
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The Case in Which h is Quasiconcave

In this subsection we introduce the additional hypothesis that A is
quasiconcave ' on the convex hull' F of the admissible payoff set. Quasi-
concavity is a weaker property than concavity, and is almost universally
assumed as a property of utility indicator functions in consumer demand
theory of traditional economic analysis. Five examples of quasiconcave A
were given in the Introduction.

An immediate consequence of this additional hypothesis, in the presence
of our previous assumptions, is that A[f(x)] is now quasiconcave on X (see
e.g., Berag,”p. 207). Although (1) now becomes susceptible to various
direct (nonparametric) approaches to quasiconcave programming, the ap-
proach represented by Theorem 1 can be very efficient when an efficient
parametric programming algorithm is available for ( P,)—especially in view
of Theorem 3 below. Theorem 3 establishes the unimodality of H(«),
thereby enabling attention to be restricted to a subset of the unit interval
when (2) is being executed.

Lemma 7. Let ¢ solve (Pa’), i=0, 1, 2, where 0=o' <a’<a’<1. Then
there exists a number t, 0=t=<1, such that

fi(@") 2tf(@") +(1=0)f (). (1=1,2)

Proof. Denote f(z*) by f%,4=0,1,2. We assume that f° does not co-
incide with either f* or f*, for otherwise the conclusion of the lemma would
be trivially true. Suppose that the conclusion is false. Then there does
not exist a number {=0 that satisfies the following system of inequalities:

thH =) S (R =11, (M)
' —f) S (1), (8
t<1. 9)

By a standard theorem on nonnegative solutions to linear inequalities there
exist nonnegative real numbers si, s;, and s such that

(f =1 s+ (fe' —f2) s+ 8320, (10)

and (=) s+ (f2' = F2") 81452 <0. (11)
Multiplying (11) by —1 and adding the result to (10), one obtains

(' =) s+ (f2 =) > 0. (12)

Using the fact that s3=0, from (11) one obtains

1 h(y) is quasiconcave on the convex set F if and only if {y ¢ F:h(y)=k} is a con-
vex set for all real k. An equivalent definition is that hlty'4+(Q—t)y?=Min {h(y'),
h(y?)} for all 1, y2 in F and 0<¢<1. For further discussion, see reference 1.

1 The convex hull of a subset of Euclidean space is the smallest convex set con-
taining that set.
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(F*=1") s+ (f —f2") 8> 0. (13)

Now s; and s; cannot both vanish. Dividing (12) and (13) by (si+s2),
recalling that s;, s2=0, and defining £ as s;/(s1+s2), one obtains

(Fi' =)+ (' —f2") (1—£) >0, (14)
(i —1O)e+ (R —1")(1—£)>0, (15)
and 0 <¢Z1.

Define vj(a)Eaflj‘!—(l_a)f2j, j=0,1,2. By the definitions of 2,
1=0,1,2, v;(e’) Zv(o’) for j=0, 1,2 and k>¢j. Thus

w(a') —vo(e') 20, (16)
n(a’) —n(a’) 20, (17)
va( @) — () 20, (18)
va(a’) —vo(a’) 0. (19)
Now (14) and (15) may be written as
vi(€) —vo(§)>0. (20)
va( &) —vo(£)>0. (21)

By the linearity of v1(a) —ve(a) in &, (16), (17), and (20) imply that <o’
(recall that a'<a’). Similarly, (18), (19), and (21) imply that &>a’.
This contradiction implies that the conclusion of the lemma must be true.
TuEOREM 3. Assume that h is quasiconcave on F. If xz*(a) is any
optimal solution function of (P.) on [0, 1], then h{f[z*(a)]} is unimodal on
[0, 1].

Proof. Let 0=d'<a’<a’<1, and let z°e X*(a°), 4=0,1,2. By
Lemma 7, there exists a number ¢, 0=¢=<1, such that

F(2") Ztf(a") +(1—t)f«(2"), i=1, 2.
Thus hf(2*)1Z hltf(2") +(1—8)f(a")]
2 min {A[f(a")], hlf (")},

where the first inequality holds because A is increasing and the second be-
cause it is quasiconcave. This shows that h{f[z*(«)]} is unimodal on [0, 1].

It is of some interest to note that the proofs of Theorem 3 and Lemma 7
do not make use of the concavity of the f; or the convexity of X.

EXEMPLARY ALGORITHMS

IN THIs section we apply the theorems of the last to show how known
parametric programming algorithms can be used to solve (1) in the manner
suggested by Theorem 1. For illustrative purposes we choose parametric
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linear programming, Wolfe’s method of parametric quadratic programming,
and the author’s method of parametric concave programming. The algo-
rithms presented below are given in outline form, with no attempt made to
give details of the most efficient organization of the computations.

Parametric Linear Programming

In this subsection we assume that f; and f, are linear and that X is de-
termined by linear inequality constraints, so that parametric linear pro-
gramming™ can be used to produce an optimal solution function z*(«) for
(P,) on [0,1]. TItis well known that z*(a) will be piecewise constant, and
that without loss of generality it can be assumed to be of the form

t*(a)=2" for o'Sa<a™, (¢=0,---,N),

wherep‘0<a1< ... <a"<1 (N finite and possibly 0) are the points of dis-
continuity and we have put =0 and «"'=1. Also, *(1)=2". Thus
by Theorem 2 we have H(o)=nh[f(z")] for o'<a<a™™ ¢=0,---,N,
H(0) =h[f(z")], and H(1)=h[f(z")]. If N=0, then obviously z° is opti-
mal in (1). If N=1, then we have z(a')=2"" and Z*(a’)=2"' for
i1=1, - - -, N; consequently, (3.1) and (3.2) become

H(o') =maximum; ¢ @, b{fliz""+(1—1)2]}, (22)
H(a') =maximum, ¢ 0,5y hltf(2") +(1—8)f(z")], (23)

fori=1,---,N. Sincez*(a) is piecewise constant we see that when N 1,
H(a) achieves its maximum at a point of discontinuity «™; therefore the
point t*2* 4 (1—t*)z™ is optimal in (1), where t* satisfies H(a™)=
R{fIt* ™ (1—t*)2™)} or, alternatively, H(a™)=h[t*f(z™*")4(1—¢*)
f(z™)] [ef. (5) and (6)]. We thus obtain the following algorithm.

Algorithm 1

Step 1. Solve (P,) by parametric linear programming to obtain «' and
z*, i=0, - - -, N, computing the quantities H(a'), i=1, ---, N by
(22) or (23) as the calculations progress. If N=0, stop; 2° is
optimal in (1). If N=1, then go to siep 2.

Step 2. Let H(a™) be the largest of the quantities computed at step 1.
Then t*z™ 4 (1—t*)z™ is optimal in (1), where ¢* is defined as in
the text so as to achieve H(a™). Stop.

If h is quasiconcave, then because of the consequent monotonicity of

H () it is rarely necessary to solve (P,) on the entire unit interval, or to

compute all of the H(a®). In Algorithm 2, which exploits the quasicon-

cavity of hin the obvious way, it is assumed for simplicity of exposition that
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the parameter « increases, starting from the value 0. A similar algorithm
can easily be constructed to cover the more general case in which « has an
arbitrary starting value and can decrease as well as increase [the closer the
starting value is to the one that maximizes H(a), the less work is required
to solve (1) by this approach]. This same remark applies to Algorithm 4.

Algorithm 2

Step 1. Solve (Py) to obtain 2’. Put I = 0 and [=1.

Step 2. Solve (P,) by parametric linear programming as « increases above
o' until either a=1 or &'*" is encountered. In the first case, go to
step 4; in the second, determine z'** and go to step 3.

Step 3. Compare h[f(z")] with A[f(z")]:

a. If Klf(z")]<hlf(z")], increase I by 1, put I=1I, and return to
step 2;

b. If Alf(z")]=h[f(z™")], increase I by 1 and return to step 2;

c. If hlf(2")]>Rlf(z"™)], increase I by 1 and go to step 4.

Step 4. If I=0, stop; 2° is optimal in (1). If I=1, then H(a')>hlf(z")]
for at most one 7, I <2<1. If strict inequality is achieved for no
such 7, then 2 is optimal in (1); if strict inequality is achieved for
ix, then "™ 4 (1—t*)z™ is optimal in (1), where t* achieves the
maximum in (22) or (23). Stop.

REMARK. In both of these algorithms, a one-dimensional maximization

problem [(22) or (23)] must be solved each time an H(<') is required. Fre-

quently these one-dimensional problems are trivial; in linear fractional

programming, for example (Example B in the Introduction with f; and f.

linear), H(a") is just the larger of fi(z*)/fa(z*) and fi(z™™)/fo(z*). But

even when they are not, various methods are available,"™ such as Fibon-
nacci search when 4 is quasiconcave.

Parametric Quadratic Programming

In this subsection we assume that fi(z) is linear, that fo(x) is a negative
semidefinite quadratic form, and that X is determined by linear inequality
constraints. Then (P,) can be solved on [0, 1] by Wolfe’s method of para-
metric quadratic programming (his so-called ‘long form’),"" among others,
for an optimal solution function 2*(a) that is continuous on [0, 1]. By
Theorem 2, H(a) =h{flz*()]} on [0, 1], and therefore the point z* in the
image of [0, 1] under 2*(a) which maximizes k[f(x)] is also optimal in (1).
Now from Wolfe’s results it follows easily that this image set is of the form
UL, 77, 27, where z7, z°*! is a line segment in E" with endpoints = and
™ and N is a positive integer. The points z'(s=0, 1, ---, N+1) are
determined serially, in order of increasing superscript, from the modified
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Simplex procedure employed by Wolfe ' [z'=z*(a’) for certain o’ satisfying
0=0'<a' <+ <a”<a""=1]; a termination signal accompanies the de-
termination of "', Putting these observations together, we obtain

Algorithm 3

Step 1. Solve (P,) on [0, 1] to obtain #°, i=0, 1, - - -, N+1, com-
puting the quantities

n‘=maximumo < <1 A{fI 2774+ (1—\)2} (24)

as the calculations proceed.
Step 2. If »™ is the largest of the n° (ties are immaterial) then
N (1—=2\*)2z™ is optimal in (1), where \* achieves
the maximum in (24). Stop.
If & is quasiconcave, then h{f[z*(a)]} is unimodal, and an improved
version of Algorithm 3 can be constructed that bears much the same relation
to it as Algorithm 2 does to Algorithm 1:

Algorithm 4

Step 1. Solve (P,) and obtain 2". Put [=1 and I =0.
Step 2. If I=N-+1, go to step 4; otherwise, determine 2" and go to Step 3.
Step 3. Same as Step 3 of Algorithm 2.
Step 4. Compute the quantities n°, defined by (24), I £¢=<I. Terminate as
in Step 2 of Algorithm 3.

The remark following Algorithm 2 is appropriate here also with regard
to computing the 7', especially when h is quasiconcave---for then
R{f\z" 4 (1—N\)z]} is unimodal in A on [0, 1].

More General Parametric Concave Programming

When X is determined by concave inequality (=) constraints and cer-
tain additional hypotheses are satisfied, the author’s algorithm™ can be
used to solve (P,) on [0, 1]. The 2*(a) so produced is continuous on [0, 1].
By Theorems 1 and 2, z*(a™) solves (1), where o* maximizes h{flz*(a)]}
on [0, 1]. When % is quasiconcave, the unimodality of A{flz*(a)]} simpli-
fies the search for o™,

NUMERICAL EXAMPLE

IN THIS section we give a numerical illustration of what amounts to Algo-
rithm 2, based on Example E of the Introduction with linear f’s and con-
straints. It will be of interest to note that the (unique) optimal solution is

t Actually, Wolfe’s algorithm is addressed to a reparameterized version of (P.),
but this causes no essential difficulty.
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not an extreme point of the convex polyhedral feasible region, and therefore
could not be found by any algorithm that considers only vertices (cf. refer-
ence 12). We shall make free use of the mechanics of parametric linear
programming, the main computational tool. The problem we shall solve is:

maximize[32 — 40+ 23z — 72,]"*[32 — 102, — 4@+ 73— 7], subject to
the usual nonnegativity constraints and the following linear equality con-
straints given in detached coefficient form:

X1 Xy X3 X4 x5 X6 = rhs.
2 —0.37 0.37 o 4 9.08
b 3 —0.91 —1I.91 o 5 8.44
1 —1 —0.97 —o0.07 I —1I 1.88
I 1 —0.81 0.19 o I 4.04

Following Example E, we put
fi(z) =382—40x,+ 2325 — T4,
Jo(x) =32—10x — 4o+ 725 — T4,
h(fy, f2) = A1 I2).

The parametrie program (P,) is, in this case, a parametric linear program
(0=a=1) with the above linear constraints:

maximize( - 10$1 '—'4152‘{"71133— 7$4) +OL( 10181—' 363:2—{— 161153) .

Solving (Po), we get (using one popular form of ‘simplex tableau’)
Tableau 1.

TABLEAU 1
%1 X2 X3 X4 X5 X6 = rhs.
1 o —23/50 27/50 o o 132/50
o 1 —65/100 35/100 o o 60/100
) o 1/25 1/25 I o 16/25
o o 15/50 —35/50 o 1 40/50
o o 1/5 1/5 o o

The final basic solution z° is also optimal for « in an interval [0, «'], where
one easily computes o' =0.0278. Hence

H(e)=hlf(«")]=(8)*’(16/5)=12.8 on [0, 0.0278),
for  fi(z") =32—40(60/100)+23(0) —7(0) =8,
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Fao(2°) =32—10(132/50) —4(60/100)+7(0) —7(0) =16/5.
At «=0.0278, the bottom row becomes

o o 5/18 o o c

and to solve (P,) for «>0.0278 one pivots on the (2, 4) element of the
tableau above to obtain Tableau 2.

TABLEAU 2
X1 X2 X3 X4 X5 Xe = rhs.
I —54/35 19/35 o o ) 60/353
) 100/35 —65/35 1 o o 60/35
° —4/35 4/35 o 1 o 20/35
o 2 —1 o o 1 2
o o 5/18 o o o

We find that this basic solution z' is optimal for 0.0278<a=<0.053=cd".
Hence H(a)=h[f(z')]=(20)**(20/7)=21.1 on (0.0278, 0.053).

Since H(a) has not yet decreased, we continue. At o’, the bottom row
dictates a pivot on the (1, 3) element, which results in Tableau 3.

TABLEAU 3
%1 X2 x3 X4 X5 X6 = rhs.
35/19 —54/19 1 o o ) 60/19
65/19 —46/19 o I o o 144/19
—4/19 4/19 o o 1 o 4/19
35/19 —16/19 o o o 1 98/19
o 0.52 o o o o

We find that the basic solution z* is optimal for 0.053<a=<0.0736=2a".
Hence

H(a)=(51.6)"°(1.05)=14.55 on (0.053, 0.0736).

From what we have determined about H () thus far, in light of its uni-
modality, we deduce that it achieves its maximum at either o' =0.0278 or
o?=0.053. Arbitrarily examining o’ first, by calculus we easily find from
(22) that t*=0.75 and H(o’)=22. Thus ¢*=a’=0.053, and the solution
to our example is given by
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&*=0.752'+0.25¢" = (1.29, 0, 0.79, 3.18, 0.48, 2.79),

where 2' and z* are obtained from the last two tableaus. Note that z* is
not an extreme point of the feasible region.

AN EXTENSION

For soME applications (e.g., in stochastic programming), it is necessary
to have the following generalization of Theorem 3, since no amount of
ingenuity will suffice to allow the program of interest to be written in the
form (1) with the requisite assumptions satisfied. It does not require & to
be quasiconcave, although h must still be nondecreasing.

TueorEM 3A. Assume that h[fi(z), fo(x)] can be written u[pi(fi(z)),
p2(fo(2))], where u is nondecreasing, quasiconcave, and continuous on the con-
vex hull of the image of X under [pi1(f1), p2(fe)l, and pr and ps are sirictly in-
creasing and continuous functions on the image of X under (f1, f2) such that
p1(f1) and pa(f2) are concave on X. If 2* (o) is any optimal solution function
of (Pa) on [0, 1), then h{flz*(a)]} s unimodal on [0, 1].

Proof. Let o, o, and o satisfy 0=o' <a’<o’£1, and let z° e X*(a°),
i=0,1,2. Iff(2’)=f(z") or f(a") = f(2"), then obviously A[f(z°)] = min
{R[f(z)], h[f(z")]}. We shall show that this conclusion holds when
f(2”)#f(a") and f(2°) #f(2’), thereby showing that A{f[z*(«)]} is unimodal
on [0, 1].

To proceed we must observe that under our assumptions on p; and ps,
the parametric program

(Q)\)ma'Ximize:c ex A pl[fl(x)]_*-( 1_)\)p2[f2(x)]

has the same properties as (P,) does, if A is viewed as taking the place of «
and pi(f;) is viewed as taking the place of f;, 2=1,2. Hence Lemmas 2
through 7 also hold for (@) as well as (P.), with the obvious changes in
notation.

If 0<a'<a<1, then 2' and 2° must be efficient, with respect to f; and
fa, and therefore also with respect to pi(fi) and p2(f2), in view of the strictly
increasing nature of p; and p,. By Lemma 2 applied to (@), " and 2° solve
that program for some \' and \° in the unit interval. Applying Lemma 5
to (P,) in view of o' <o, the fact that f(2°) #f(2"), the strictly increasing
nature of p; and p,, and Lemma 5 to (@), in that order, it follows that
N<A\’. If o' =0, then since p. is increasing z' solves (Qy) with A=0. Thus
for 0=<a'<a’<1 we have proved the existence of \' and \° satisfying
0=\ <\’ =1 such that z* solves (@) for\’,7=0, 1. Similarly we can prove
that for 0< o’ <o’ £1 there exists \* satisfying A’ <A\*<1 such that 2’ solves
(@) for .

The remainder of the proof follows exactly that of Theorem 3, with
(@) taking the place of (P.).
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Most of the results of this paper can be generalized to the case of more
than two f;. The computational advantages of the present approach seem
to diminish sufficiently rapidly with increasing dimension, however, so as
not to warrant an explicit treatment of the more general case here.
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