Indexing in Modeling Languages for Mathematical Programming

Arthur M. Geoffrion

Management Science, Vol. 38, No. 3 (Mar., 1992), 325-344.

Stable URL:
http://links jstor.org/sici?sici=0025-1909%28199203%2938%3 A3%3C325%3 AIIMLEM%3E2.0.CO%3B2-0

Management Science is currently published by INFORMS.

Your use of the JSTOR archive indicates your acceptance of JSTOR’s Terms and Conditions of Use, available at
http://www.jstor.org/about/terms.html. JSTOR’s Terms and Conditions of Use provides, in part, that unless you
have obtained prior permission, you may not download an entire issue of a journal or multiple copies of articles, and
you may use content in the JSTOR archive only for your personal, non-commercial use.

Please contact the publisher regarding any further use of this work. Publisher contact information may be obtained at
http://www jstor.org/journals/informs.html.

Each copy of any part of a JSTOR transmission must contain the same copyright notice that appears on the screen or
printed page of such transmission.

JSTOR is an independent not-for-profit organization dedicated to creating and preserving a digital archive of
scholarly journals. For more information regarding JSTOR, please contact support@jstor.org.

http://www.jstor.org/
Tue Aug 24 10:29:08 2004

MANAGEMENT SCIENCE
Vol. 38, No. 3, March 1992
Printed in U.S.A.

INDEXING IN MODELING LANGUAGES FOR
MATHEMATICAL PROGRAMMING *

ARTHUR M. GEOFFRION

Anderson Graduate School of Management, University of California,
Los Angeles, California 90024

Indexing structures are of fundamental importance to modeling languages for mathematical
programming as a device for mathematical abstraction, and because they facilitate achieving
conciseness, stability, and error-resistance. The aim of this article is to stimulate discussion of
such structures, especially the two most common kinds found in algebraic style languages: sets
and relations. We offer a taxonomy of set-based and relation-based indexing structures, a suite
of detailed examples illustrating this taxonomy, and a number of specific principles (some arguable
and some not) for incorporating indexing structures into modeling languages. We also examine
four modeling languages in detail with respect to their indexing capabilities: AMPL, GAMS,
LINGO, and SML. By attempting to work all of the illustrative examples in each language, we
are able to reach some conclusions concerning relative expressive power, economy of notation,
obedience to our principles of “good” language design, ease of data handling, and other criteria.
(MODELING LANGUAGE; MODELING SYSTEMS; MATHEMATICAL PROGRAMMING;
INDEXING STRUCTURES)

1. Introduction

Any algebraic modeling language aimed at mathematical programming applications
of realistic size and complexity must support the indexing of constants, variables, expres-
sions, and constraints. Indexing plays a critical role in language design, in the design of
modeling language translators that produce optimizer-ready data files, and in the way
users think about how to express applications in a particular language. Surprisingly, the
rapid proliferation of modeling languages in recent years has brought little if any con-
vergence with respect to indexing features or notation, discussion of the pros and cons
of difterent design options, or comparative language studies. Bisschop and Kuip (1991a,
b, ¢), are among the few papers in this vein. See also Chapter 3 of Maturana (1990),
and Chapter 1 and Appendix A of Witzgall and McClain (1985).

The time has come to take a close look at exactly what one means by “indexing”, to
develop normative guidelines for its use, and to make a comparative analysis of modeling
languages from the point of view of these guidelines.

We begin by developing in some detail “indexing structures’ based on sets and relations.
These are by far the most common kinds of indexing structures used by current languages.
This culminates in a reasonably comprehensive taxonomy that is the basis for the re-
mainder of the article. We illustrate it with a running example woven into the text, and
provide normative guidelines for its use in the context of algebraic mathematical pro-
gramming languages.

In the interest of keeping the focus on fundamentals, we largely avoid discussing and
illustrating most of the mathematical uses to which indexing structures typically are put.
In particular, we do not discuss mathematical operators, like summation, that commonly
incorporate indexing, although the design of such operators should benefit from a deeper
understanding of how indexing structures can and should be used. One happy by-product
of confining attention to fundamentals is that this article is not limited to linear pro-
gramming, or even to models intended for optimization. It is pertinent to a very broad

* Accepted by Thomas M. Liebling; received February 28, 1990. This paper has been with the author 7
months for 2 revisions.
325
0025-1909/92/3803/0325%$01.25

Copyright © 1992, The Institute of Management Sciences

326 ARTHUR M. GEOFFRION

class of models for economic, engineering, information systems, MS/OR, and other
applications, although we shall not pursue the broader implications here.

Once the taxonomy of common indexing structures is complete and normative guide-
lines are in place, we use them as the basis for a comparative analysis of several contem-
porary model definition languages for mathematical programming: AMPL (Fourer, Gay,
and Kernighan 1990), GAMS (Brooke, Kendrick, and Meeraus 1988), LINGO (Cun-
ningham and Schrage 1990), and SML (Geoffrion 1990b, 1991b, 1992). AMPL is chosen
for its modern design and possible future commercial importance for AT&T’s mathe-
matical programming systems. GAMS is chosen for its maturity, popularity, and venerable
status as a pioneering modeling language. LINGO is chosen for the attention it is likely
to receive as a companion to LINDO, which may be the most widely distributed of all
linear programming packages. SML, whose intended scope goes far beyond mathematical
programming applications, is chosen because of the author’s interest in better under-
standing an important aspect of its design.

A more complete version of this article (Geoffrion 1991a), which is available from
the author upon request, presents 25 small, formal examples spanning the taxonomy of
indexing structures. Slightly earlier versions of these examples also appear in Geoffrion
(1990a). All 25 examples have been attempted in all 4 languages, as documented in
detail in Geoffrion (1991a). The results have been used to evaluate these languages in
terms of relative expressive power, economy of notation, obedience to certain principles
of “good” language design, ease of data handling, and other criteria. We present these
results here.

It is our hope that others will undertake to work the suite of 25 formal examples in
other languages, thereby deepening the understanding of modeling languages and adding
to the store of materials supporting comparative language analysis. Such analysis is sorely
needed, given the rapid pace at which new languages are being designed and offered in
the marketplace. Indeed, as of this writing, work of this sort has already been completed
or is under way for five additional languages.

We now elaborate on the concept and importance of indexing as a notational device
for representing general structure, and on the concept and importance of general structure
itself. This introduction then concludes with a summary of the organization of the balance
of the paper.

Exhibit 1 presents part of a larger model used as a running example throughout much
of this paper. It follows the common practice of describing a mathematical programming
model—actually a model class—in five parts: indices, constants, variables, constraints,
and objective function. We address primarily the first of these parts, which therefore is
given in much greater detail than the other parts. Exhibit 1 is written in an ad hoc version
of ordinary algebra rather than in any particular modeling language. As we shall see, it
exemplifies bad as well as good modeling practice.

Importance of Indexing

An obvious reason for the importance of indexing is that it is accepted universally as
a standard part of ordinary algebraic notation, which is the notation in which most
mathematical programming applications are first made rigorous. Consequently, it is sup-
ported in one form or another by the overwhelming majority of model definition languages
for mathematical programming.

The ubiquitous use of indexing in ordinary algebraic notation is not an accident. It
results from one of the greatest of all mathematical inventions, namely the use of symbols
as abstractions for specific numbers, strings, and other mathematical objects. An index
is a special kind of symbol that represents members of a set. Whereas nonindexed symbols
enable parts of a mathematical model to be “value independent,” indices and indexed

INDEXING IN MODELING LANGUAGES FOR MATHEMATICAL PROGRAMMING 327

EXHIBIT 1
Partial General Structure of a Production/Distribution Model

Indices, Sets, and Relations

weWwW Warehouses [I¥ contains between 10 and 12 members]

PEP Products, ordered by date of introduction (thus, P is an
ordered set)

feEF = {“h”, “n”} Factories, where “/”” denotes the original factory and “n”
denotes the new one (notice the lack of dimension
independence)

Wlcw Full-line warehouses

W2 = W-WI Partial-line warehouses

W3icw Co-located warehouses (adjacent to a factory)

W4 = WIUW3 Warehouses that are either full-line or co-located

W5 = WINw3 Warehouses that are both full-line and co-located

Pl cP Promotional products [P1 contains either 2 or 3 members]

P_OLDEST = {p€P: ord (p) = 1} Oldest product

WIP = W1 X P Stocking matrix for full-line warehouses

W2P = W2 X P Stocking matrix for partial-line warehouses [W2P contains
at least one (w,p) tuple for every w € (W — W1)]

FPcFXP Production possibilities for the factories

FP_HOME = {(f,p) € FP: f = “h”} Home factory production possibilities

W2PF = W2P«FP Replenishment lanes for the partial-line warehouses

FP_OK = {(f,p) € FP: PCOST,, < Acceptable production possibilities

1.2 Min {PCOST, over (', p) € FP}}

Constants

PCOSTy, for (f,p) € FP Unit production cost ($/ton)

PLIM;, for (f,p) € FP_OK Production limit (tons)

Variables

PRODy, for (f,p) € FP_OK Production quantity (pounds)

Constraints

PRODy, < 2000 PLIMy, for (f,p) € FP_OK Production limit constraints

Objeétive (to be minimized)
> PCOSTg, PRODg, + -+ - -

(f,p) € FP_OK

([] denotes additional definitional restrictions, * denotes the natural join operation, ord () denotes the
ordinal position of its index argument in the corresponding primitive index set.)

symbols enable them to be “dimension independent” (“‘population independent” would
be a more accurate term, but may not be as suggestive).

A model fragment is represented in a value independent way if it is represented sym-
bolically in such a manner that specific values are essentially absent for all of its value-
bearing mathematical objects, although some objects may incorporate a rule for calculating
their value. This pertains to values of all types: numeric, string, truth, etc. The partial
model given in Exhibit 1 is value independent. But it would fail to be so if, for example,
specific numerical values were given for some of the unit production costs.

A model fragment is represented in a dimension independent way if membership
details are essentially absent for all cohesive groups of entities, constants, and other
mathematical objects; that is, the identities of the particular mathematical objects in a
group are not given, although rules governing membership may be. “Cohesive group”
means a collection in which all members play a similar mathematical role.

The partial model given in Exhibit 1 is dimension independent except for index set
F, whose two members are specified. One may wonder also about index set W, whose

328 ARTHUR M. GEOFFRION

cardinality is bounded above and below, but it is dimension independent by the above
definition because the identity of its members is not specified. The cohesive groups evident
in Exhibit 1 are: W, P, F, W1-W5, P1, P_OLDEST, W1P, W2P, FP, FP_HOME, W2PF,
FP_OK, PCOST, PLIM, PROD, the production limit constraints, and the objective
function.

These two types of independence lift the burden of having to be specific about aspects
that are relatively unimportant for many purposes.

Thus, indices and other symbols are essential representational devices for achieving
mathematical abstraction. They enable working with an entire c/ass of models of interest
rather than with just one model instance that is specific as to all values and other details.
They enable concentration on general structure without distracting detail.

Importance of General Structure

The above discussion views general structure as a class of specific model instances at
a level of abstraction just high enough to achieve the value independence and dimension
independence of all (or nearly all) model parts. Exhibit 1 gives part of a general structure.
Appendix 1 of Geoffrion (1990a) or (1991a) gives many fully detailed, self-contained
examples of general structure. It is worth reviewing some of the reasons why this concept,
which depends to such a great extent on indexing structures, plays such a central role in
mathematical programming.

The root reason is that most practical applications of mathematical programming
involve many more than one model instance. Usually they all fall within what can usefully
be viewed as a single model class. Although only model instances can be optimized, the
natural focus of most model-related work is the model class, i.e., the general structure
of all (or nearly all) pertinent model instances. When a modeling activity does require
information about specific values or dimensions, such information can be supplied and
understood in the context of the general structure. See, for example, the “databases’ of
Appendix 1 of Geoffrion (1990a) or (1991a).

There are at least three other reasons for the importance of general structure: it provides
conciseness, stability, and the opportunity to avoid many kinds of errors.

General structure usually is much more concise than any of its model instances. It
may fit on a page or two, whereas a model instance may require many pages. It sweeps
away the confusing clutter of inessential detail.

General structure usually is far less volatile than its model instances. The product line
can change, unit production costs can change, and so on, without any impact at all on
the general structure of a well-designed model.

Conciseness and stability render a general structure much more useful for many pur-
poses than any of the model instances that it represents. They

e facilitate mathematical analysis, including deciding on amenability to solution (e.g.,

optimization) by any particular solver

o facilitate auditing and verification

o facilitate understanding and communication with other modeling professionals and

model sponsors

e enable a general structure and all work done in connection with it to be reused for

multiple specific model instances.

Error resistance is important because real mathematical programming models—es-
pecially large ones—are notoriously error prone. But if the modeler is able to give sharp
definition to the model class of interest, and if the modeling system is able to check
whether model instances fall within the specified class, then more errors will be detected
than if the model class of interest is less sharply defined. The crucial role that indexing
plays in this regard has been recognized by Bisschop (1988), among others.

INDEXING IN MODELING LANGUAGES FOR MATHEMATICAL PROGRAMMING 329

Organization

§2 explains the indexing structures to be treated in this article, namely primitive sets;,
derived sets, and relations. Within each of these, there is a basic option whether to specify
entirely by formula or to permit user discretion. The most important kinds of formulas
are discussed, and the main outcome is a taxonomy of indexing structures. Geoffrion
(1990a) contains a slightly abridged version of this material.

§3 takes up some issues in the design of algebraic modeling languages. We argue for
the presence of certain index-related features in modeling languages, and against the
presence of others. Our positions are cast in the form of a number of principles, called
tenets and rules, some of which are controversial.

§4 summarizes how four modeling languages—AMPL, GAMS, LINGO, and SML—
can or cannot express each of the 25 formal examples of Geoffrion (1990a) or (1991a).
Complete details are provided in Geoffrion (1991a).

The final section presents some conclusions concerning the absolute and relative success
of each of the four languages studied. It also offers some suggestions for the modeling
language research and development community.

2. A Taxonomy of Indexing Structures

As explained in §1, an indexing structure is an abstraction that facilitates representing
a group of similar mathematical objects, exclusive of any values or other internal details
that these objects might have. Indexing structures play a critical role in representing
general structure as this term is defined in §1. They admit (usually) many possible specific
instances, each of which gives full details about a group of mathematical objects.

Exhibit 2 summarizes the proposed taxonomy of indexing structures. We must now
rationalize this taxonomy.

There are three major categories: primitive sets, derived sets, and relations. Sets and
relations are by far the most commonly used kinds of indexing structures, although
occasionally one encounters others, such as trees (Bisschop and Kuip 1991b, Hiirlimann
1987), which will not be discussed here.

The term “set” is used in its standard mathematical sense, and so is an unordered
collection of distinct objects. Without loss of generality, we assume henceforth that the
objects constituting a set are distinct identifiers representing (i.e., in 1:1 correspondence
with) external entities of some sort. Such identifiers need only be nominal in character,
although some languages allow them to be more than nominal. In Exhibit 1, the sets are
W, P, F, WI-WS5, P1, and P_OLDEST.

Some modeling languages represent a set as an ordered collection of identifiers. Order
is not necessary so long as identifiers are distinct, but it does add to the expressive power
of sets as indexing structures (e.g., time periods are naturally ordered) and it does-enable
certain useful kinds of access mechanisms (e.g., taking predecessors of the index for a
set of time periods enables time-lagged access). Certainly there is no loss of generality
when an unordered collection is represented by an ordered one. In Exhibit 1, P is an
ordered set.

The distinction between a primitive set and a derived one is that the latter is defined
in terms of other (primitive or derived) sets—for example, by subsetting—whereas the
former is defined ab initio. A derived set can be viewed as a special kind of relation, but
we choose to retain the concept of a derived set because it is such an important and
common special case. In Exhibit 1, the primitive sets are W, P, and F; the others are
derived.

The term “relation” also is used in its standard mathematical sense; an n-ary relation
onsets Sy, . . ., S, is an unordered set of ordered n-tuples drawn from the #-fold Cartesian
product S| X -+ X S,. Most of the relations used in this article are binary (n = 2).

330 ARTHUR M. GEOFFRION

EXHIBIT 2
Taxonomy of Indexing Structures

PRIMITIVE SET
Define by “Formula”
User Input

Ungqualified
Qualified
Bounded Set Size
Other

DERIVED SET (unary relation)
Define by Formula
Elementary Set Operations
Difference
Union
Selection
Compound Set Operations
Intersection
Other
Ordinal Selection
Value-Driven Set Membership
Other
User Selection
Unqualified
From Previously Defined Set
From Newly Defined Set
Qualified
Bounded Set Size
Other

RELATION
Define by Formula
Elementary Relational Algebra Operations
Cartesian Product
Difference
Union
Projection
Selection
Compound Relational Algebra Operations
Intersection
Natural Join
Other
Transitive Closure
Ordinal Selection
Ordinal Selection with Offsets
Value-Driven Set Membership
Other
User Selection
Unqualified
From Previously Defined Relation
From Newly Defined Relation
Qualified
Function
Inclusive
Irreflexive
Other

OTHER

Each part of an n-tuple is called a “component”. In Exhibit 1, the relations are W1P,
W2P, FP, FP_HOME, W2PF, and FP_OK.

We view all relations as being derived from primitive sets, derived sets, and/or other

INDEXING IN MODELING LANGUAGES FOR MATHEMATICAL PROGRAMMING 331

relations. There is no need for the concept of a “primitive relation,” since a unary primitive
relation can be viewed as a primitive set, and an n-ary primitive relation with » > 1 can
be viewed as being constructed from the Cartesian product of primitive sets.

It follows from our assumption concerning primitive sets and from the ways in which
derived sets and relations are constructed that the members of a derived set are always
identifiers first introduced by a primitive set, and that the same is true of each component
of each tuple of a relation. Derived sets and relations can thereby inherit order from
primitive sets (none of the modeling languages known to this writer use any other kind
of order).

Within the three major categories of indexing structures, the taxonomy provides for
two fundamentally different options:

(A) define by “formula” (in the broadest sense of the word; e.g., W2 and FP_HOME

of Exhibit 1)

(B) user input or selection (e.g., W and W1 of Exhibit 1).

The first option fully specifies a particular indexing structure as part of a model’s general
structure, while the second specifies it only partially within general model structure. The
second requires further specification as part of the detailed data by which a specific model
instance is determined, while the first does not.

The types of formulas which are useful depend on the kind of indexing structure.
We consider the most basic types of formula for each kind in turn. Then we take up
option (B).

Primitive Sets Defined by Formula

There are a few types of commonly occurring primitive sets (identifiers included)
which some modeling language designers have thought worth building into their languages
via keywords or simple formulas.

For example, 1..N and 1:N, where NV is an integer, are popular ways to denote the
first N positive integers as the identifiers of a primitive set.

Primitive index set F of Exhibit 1 is defined by enumeration, which can be viewed as
a particularly simple kind of formula.

Derived Sets Defined by Formula: Elementary and Compound Set Operations

The most common way to define a set in terms of other sets is via binary operations
like difference, union, and intersection. The first two are elementary operations, while
the third can be defined in terms of the first. There is also an important elementary set
operator that is unary rather than binary, that is, it operates on just one set. Called
selection, we do not give a separate discussion here because it is a special case of the
relation algebraic operator of the same name discussed in detail below. For a similar
reason, we do not discuss here value-driven set membership.

See W2, W4, and W5 in Exhibit 1 for examples.

Relations Defined by Formula: Relational Algebra

The mathematics of defining relations by formula is well developed, largely as a result
of the ascension of relational database theory. We have a choice of at least three main
notational systems: relational algebra, tuple relational calculus, and domain relational
calculus (e.g., Ullman 1982). It is a beautiful result that all three systems, different as
they appear to be, are equivalent in expressive power.

We choose relational algebra in this article as the main notation for defining relations
by formula. Relational algebra has five elementary operations: Cartesian product, dif-
ference, union, projection, and selection. They are independent in that none can be
compounded from the other four. We assume that the reader is familiar with these
operations (e.g., Ullman 1982). Among the important compound operations are inter-

332 ARTHUR M. GEOFFRION

section and natural join. The latter is built by composing Cartesian product, selection,
and projection (e.g., p. 155 of Ullman 1982).

In Exhibit 1, WI1P is defined by a Cartesian product, FP_HOME by selection, and
W2PF by a natural join.

There are also formulas that cannot be represented equivalently by composing ele-
mentary operations. A well-known case is transitive closure.

Another possibility is value-driven set membership, which is commonly used by some
languages but dangerous because it violates strong dimension independence (to be ex-
plained in §3). Unlike the other definitions by formula, it involves values other than
identifier values. Exhibit 1’s FP_OK provides an example. Neustadter (1989) discusses
the merits and demerits of this kind of formula in detail.

An Ordinal Version of Relation Algebraic Selection

Selection accepts or rejects particular tuples from a relation by a formula that evaluates
to true or false for each tuple. In the context of indexing structures, the formula involves
at least one comparison operator (“=", “< >”, “<” “<” “>” “="") with constant or
identifier operands, and such comparisons may be compounded using logical operators
(AND, OR, NOT).

Since primitive sets can be ordered without loss of generality, and especially since
many modeling languages presume them to be so, it is possible and desirable to add an
additional kind of expressive power to selection formulas: allow all kinds of comparisons
based on ordinal identifier position (instead of identifier value) in the primitive set that
defines it. This can be done using notation that is very similar to what is commonly used
in relation algebraic selection formulas. We call this the ordinal selection operation.
Naturally, one may not compare the ordinal positions of identifiers defined by different
primitive sets.

To be more precise about the definition of ordinal selection, one can say that all
identifiers are effectively aliased to the integers corresponding to their ordinal positions
in the primitive sets that originally define them. (Equivalently, for the purposes of ordinal
selection, all primitive sets are viewed as having the consecutive positive integers starting
with unity as aliases for their identifiers.) These aliases are used in place of actual identifiers
in all comparisons of a selection formula, and the only constants allowed in a comparison
are integers corresponding to ordinal identifier positions. For every comparison, both
operands must refer to the same primitive set. The compounding of comparisons using
logical operators is allowed as in ordinary selection.

Thus, ordinary selection is supplemented for derived sets and relations by replacing
each identifier by its ordinal position in its defining primitive set, and by interpreting all
constants as references to ordinal position. Exhibit 1’s P_OLDEST provides an example.

There is a more expressive version of ordinal selection that we call ordinal selection
with offsets. Offsets means that addition and subtraction of integers representing ordinal
displacement are permitted. For example, if i and j are alias indices, then i = j — 2 or
ord (i) = ord (j) — 2 would mean that i is the predecessor of the predecessor of j in the
defining primitive set. One should be very careful when using an offset, as it may require
the ordering over a primitive set to have stronger properties than meet the eye; in terms
of measurement theory, graduating from ordinal selection without offsets to ordinal se-
lection with offsets is like graduating from an ordinal scale to a difference scale (cf.
Clemence 1990).

User Selection

Now consider the user-input-or-selection option rather than the define-by-formula
option.

For the Primitive Set/ User Input branch, the most common alternative is to input a
primitive set explicitly, identifier by identifier. This can be unqualified, that is, with no

INDEXING IN MODELING LANGUAGES FOR MATHEMATICAL PROGRAMMING 333

constraints whatever; or it can be qualified, such as having to observe a limit on the
number of set members. In Exhibit 1, P and W, respectively, represent these two pos-
sibilities.

The Derived Sets/ User Selection branch also can be divided into unqualified and
qualified options. We distinguish two suboptions of the unqualified option according to
whether an unconstrained selection is made

(a) From a Previously Defined Set (e.g., W1 in Exhibit 1), or

(b) From a Newly Defined Set that is defined by formula specifically for the purpose

of providing the menu for user selection. Usually the formula defines as tight a
superset of the desired set as can be expressed conveniently.
A “previously defined set” can be any primitive or derived set, and the formula defining
a “newly defined set” can incorporate any previously defined primitive or derived set.
For the qualified option, suboptions can be defined according to the nature of the con-
straints that must be observed. One possibility is the bounded set size option (e.g., P1 in
Exhibit 1).

We adopt a similar development of the Relation [User Selection branch. It divides into
unqualified and qualified options, and the first of these subdivides further into From a
Previously Defined Relation and From a Newly Defined Relation (e.g., FP in Exhibit 1),
where “relation” includes sets as well as relations of arity greater than one. Some of the
suboptions under the qualified option are inclusive (e.g., W2P in Exhibit 1), which requires
that the selection must include certain designated members; function, which is a common
special kind of relation; and irreflexive, which is another common special kind of relation.

This completes the discussion of Exhibit 2.

Tlustrative Examples

The taxonomy of Exhibit 2 has been partially illustrated by reference to Exhibit 1. It
is illustrated much more systematically, in fact completely, by a suite of 25 formal ex-
amples given in Appendix 1 of Geoffrion (1990a) or (1991a). In each case, the general
structure is presented, in plain but careful language, separately from a database that
instantiates it. A second database is given in most cases that violates the general structure,
as a test of the discriminating power of modeling languages.

Those examples were designed with these criteria in mind:

(1) span the taxonomy of indexing structures

(2) be simple yet obviously of practical relevance

(3) exercise the main indexing capabilities of the model definition languages of interest

(4) be nonredundant, but build on one another when possible

(5) bring out clearly the important points requiring discussion in a thorough study

of indexing (e.g., six of them have general structures claimed in §3 to be so un-
desirable that no “good” modeling language should be able to represent them).

3. Issues in the Design of Modeling Languages

This section considers some of the design issues that arise for mathematical program-
ming modeling languages in connection with indexing structures. Partly to express our
views and partly to provoke discussion, we take a strong position on most of these issues
in the form of “tenets” (when arguable) and “‘rules” (when indisputable). One of the
conclusions which emerges, which some will find surprising, is that ordinary algebra (e.g.,
Exhibit 1) obeys only one of the tenets and none of the rules unless these are incorporated
as explicit semantic restrictions.

Support for General Structure

The first issue has to do with the degree of support a language provides for general
model structure as distinct from specific model instances. We consider this to be an issue

334 ARTHUR M. GEOFFRION

related to indexing structures because, as explained in §1, indexing structures play a
critically important role in making it possible to express the kinds of general structures
that arise in practical mathematical programming models. Since general structure by
itself (i.e., without any instantiating data) is so useful, again as explained in §1, the first
basic tenet is:

Tenet 1. A good modeling language should be able to represent the general structure
of a class of models separately from any specific model instance.

General structure does not specify particular values nor enumerate the populations of
various cohesive groups of objects. Instantiating data supply all of this detail, preferably
as a low-redundancy supplement to general structure.

Tenet 1 is universally accepted in the neighboring field of database theory (e.g., Ullman
1982), and is gaining favor in the mathematical programming community.

Strong Dimension Independence

At the core of our second issue is a stronger version of the dimension independence
concept explained in §1. Strong dimension independence means that not only are the
identities of specific objects unknown at the level of general structure for all cohesive
groups of entities, constants, and other mathematical objects, but these identities do not
depend on the particular values of the constants or other value-bearing mathematical
objects that must be supplied to instantiate the general structure. In other words, group
membership details are independent of instantiating data values.

When strong dimension independence does not hold, general structures and hence
the indexing structures that help represent them are unstable to the degree that group
membership-determining values are unstable. Since exogenously supplied values often
are the most volatile aspect of applied mathematical programming models, such structures
are often unstable and hence less useful than alternative structures that do obey strong
dimension independence.

To illustrate this kind of instability, consider the case where a constant K helps to
determine the membership of an index set .S that is used to index a group G of constants.
If the value of K is volatile, then .S will inherit this volatility and changes in K will lead
to the deletion and creation of members of G’s population. Should one throw away a G
value when it corresponds to a member that is deleted as a result of a change in K?
Perhaps it will be needed later when a compensating change occurs in the value of K.
How should one acquire a G value when a new member of G is created as a result of a
change in K? This could be vexing once the data development phase of a modeling
project is finished.

The instability is exacerbated when K is a variable rather than a constant, for the
whole point of making something a variable rather than a constant is that its value is
subject to discretionary change, possibly under algorithmic control. Matters get still worse
when K is a function.

If S indexes a group of variables or constraints whose population is rendered unstable
by such dependencies, then no conventional algorithm would be able to optimize over
them because the optimization problem itself would become unconventional or even
ill-posed.

The reader may think that the exacerbation discussed in the last two paragraphs can
be avoided by forbidding K to be anything but a constant, but this is a hopeless tactic in
any practical sense because virtually any ‘“‘constant™ can be viewed as a variable or even
as a function if one takes a broad enough view of it. There is only a tenuous line between
the roles of constants and variables. In real applications, it is common for a particular
numerical quantity to play each of these roles at different times. As an old saying puts
it, “One person’s constant is another person’s variable.” If a constant is allowed to help

INDEXING IN MODELING LANGUAGES FOR MATHEMATICAL PROGRAMMING 335

determine group membership, then safeguards are required to stop someone from deciding
to treat it as a decision variable, thereby destabilizing group membership to the point of
uselessness.

These observations strongly suggest that it is inadvisable to formulate general structures
containing a group whose membership depends on the value of any constant, variable,
or other value-bearing mathematical object unless that value is part of the general structure
itself. A second exception can be made for terminal groups of expressions or constraints—
“terminal” in the sense that such a group is dedicated in purpose and cannot be used to
determine the membership of any other group. Thus, a second basic tenet is

Tenet 2. A good modeling language should not be able to represent a general structure
that violates strong dimension independence, except possibly for terminal groups of
expressions or COnstraints.

The partial general structure of Exhibit 1 violates this tenet. The root of the problem
is the value-driven index relation FP_OK: its membership is determined by the values
of the PCOST constants. Consequently, the members of the PLIM group of constants,
the PROD group of variables, and an associated group of constraints are all dependent
on the values of the PCOST constants. In terms of the discussion of a few paragraphs
ago, one may make these identifications:

K <« PCOST,
S <« FP_OK,
G < PLIM.

Note that changes in PCOST require changes to be made in PLIM, an inconvenience
that clearly is an artifact of the chosen representation for general structure (there is no
inherent connection between PCOST and PLIM). One might argue similarly that PCOST
changes induce unnecessary changes in group membership for PROD and for the asso-
ciated constraints, although it could be counterargued that this is the deliberate intention
of introducing FP_OK in the first place (i.e., to ensure that production only occurs for
factories that are within 20% of the least cost factory for each product).

The real problem with using FP_OK to index PROD and the production limit con-
straints is that it causes the general structure to be unnecessarily fragile. One way to
reveal this fragility is to consider a general structure change that would transform PCOST
into a variable or even a function. As pointed out earlier, constants and variables often
change identities in the course of real applications, so there is nothing bizarre about such
a change in general structure. Suppose that the production processes have an adjustment
variable Vj, that influences PCOSTy,. Then PCOSTy, becomes a function of Vy,, say
PCOSTy, (Vi,). Worse, FP_OK becomes a function of V, say FP_OK(V), thereby be-
coming intractable as an indexing structure for PLIM, PROD, and the associated con-
straints.

The most obvious remedy for PLIM, PROD, and the associated constraints is to adopt
a new relational indexing structure that is either FP itself, or some subset of FP that can
be shown to contain FP_OK for all V" of possible interest; moreover, a new set of con-
straints will be required to guarantee PRODy, = 0 for (f, p) & FP_OK (these constraints
can be written in conventional form with the help of auxiliary 0-1 variables).

Notice that the remedy involves major changes in general structure that are, once
again, an artifact of having chosen (in Exhibit 1) a representation of general structure
that violates strong dimension independence. These difficulties, as well as the inconvenient
dependence of PLIM on PCOST, could have been avoided easily by using an equivalent
representation of general structure that obeys strong dimension independence. Both rep-
resentations would lead to identical optimization problems assuming that a suitably

336 ARTHUR M. GEOFFRION

capable “presolve” routine is used, thereby deflating any counterargument to the effect
that optimization performance would suffer as a consequence of abiding by strong di-
mension independence.

Tenet 2 is violated by AMPL, GAMS, LINGO, and other modeling languages known
to this writer, and so must be viewed as controversial. The thrust of private communi-
cations with several language developers has been that the practical advantages of setting
this tenet aside may outweigh the arguments in its favor. See Neustadter (1989) for
further discussion of the pros and cons of Tenet 2.

Like Tenet 1, this one also evokes related ideas in database theory. It is suggestive of
a draconian enforcement of some high normal form found in relational database nor-
malization theory (e.g., Chapter 7 of Ullman 1982), which aims to establish principles
of database design that preclude instabilities (update anomalies) resulting from data
dependencies.

Proper Use of Identifiers

Identifiers, as mentioned in §2, need only be nominal. We believe that they should
not be any more than that, at least within the context of purely set- and relation-based
indexing structures, although this view is not universal among modeling language de-
signers.

Tenet 3. In a good modeling language, identifiers should be arbitrary and play a purely
nominal role, that is, they should not have a value used for computational purposes
other than identification. Moreover, in keeping with Tenet 1, particular identifiers
should not appear explicitly in general structure.

This tenet seeks to preserve the fundamental mission of set- and relation-based indexing
structures as a purely organizational device that enables dimension independence. An
identifier may be a string composed from some alphabet of characters, or be an integer,
but the properties which one normally associates with such domains (e.g., order or cardinal
value) should not be recognized properties of identifiers in the context of indexing struc-
tures; that kind of overloading would be, we believe, undesirable. Any identifier whose
value matters should be replaced by a nominal identifier together with an indexed value-
bearing attribute. To violate Tenet 3 is to confuse the role of an indexing structure with
the things being indexed, and to open the door to violations of Tenets 1 and 2.

It is not inconsistent with Tenet 3 for an identifier to be referred to implicitly in general
structure in terms of its ordinal position in its defining primitive set.

Exhibit 1 violates the second part of this tenet because particular identifiers are given
for F, and because one of these appears in the definition of FP_HOME.

Domain Integrity

In order for set union and set difference operations to make sense, one must be able
to compare an identifier in one set operand with an identifier in the other set operand.
A notion of equality is needed. Unfortunately, the arbitrariness of primitive set domains
raises a difficulty. For example, different abbreviations might be used for the same external
entity in two different primitive sets, leading to the erroneous conclusion upon comparison
that the identifiers stand for different entities; or particular identifiers in distinct sets
might happen to be identical and yet stand for quite different entities.

A resolution of this difficulty is

Rule 1. Every modeling language should prohibit set union, set difference, and com-
pounds involving these (such as intersection) unless both set operands are drawn from
the same domain.

A “domain” is simply a parent set. Ordinary algebra, which Exhibit 1 uses in an ad
hoc way, does not enforce this rule (or any of the others given subsequently); however,

INDEXING IN MODELING LANGUAGES FOR MATHEMATICAL PROGRAMMING 337

Exhibit 1 itself happens to use set difference, union, and intersection correctly. This
reveals a shortcoming of ordinary algebra as a modeling language. For example, nothing
prevents one from appending a derived set W U F to Exhibit 1 even though this could
easily produce nonsensical results.

Domain compatibility difficulties arise also for elementary and compound relational
algebra operations. In fact, the difficulties are even greater because relational algebra (and
also tuple relational calculus and domain relational calculus) permits particular identifiers
and constants to be used in formulas and permits “<” and “<” type comparisons of
identifiers. We now examine the difficulties in some detail.

The nature of the difficulty for the union and difference operations is the same as for
derived sets, and its resolution is the same.

Rule 2. Every modeling language should prohibit taking the union or difference of two
relations (of the same arity), and compounds involving these (such as intersection),
unless corresponding pairs of components are drawn from the same domain.

There is no difficulty at all for Cartesian product or for projection.

The selection operation is where the main difficulties occur. We intend the discussion
which follows to apply not only to relations, but also to derived sets (which are unary
relations).

As mentioned in §2, selection accepts or rejects particular tuples from a relation by a
comparison-based formula that evaluates to true or false for each tuple. Such formulas
make some presumptions about underlying structure:

(1) Ifan “=" or ““< > comparison is made between two components of a tuple, or
between a component of a tuple and a constant, then it is presumed that both
operands are drawn from the same domain.

(2) Ifa““<” or “<” or “>” or “=" comparison is made between two components of
a tuple, or between a component of a tuple and a constant, then it is presumed
that both operands are drawn from the same ordered domain.

The first presumption calls for a resolution similar to Rule 2, namely

Rule 3. Every modeling language should prohibit “=" and ‘< > comparisons in a
selection formula unless both operands are drawn from the same domain.

The second presumption calls for a slightly stronger resolution, namely

Rule 4. Every modeling language should prohibit “<”, “<”,“>" and “=" comparisons
in a selection formula unless both operands are drawn from the same ordered domain.

Note that a domain’s order could derive either from identifier value or from ordinal
identifier position in the defining primitive set. For example, a defining primitive set { 3,
4, 1} would yield the order 1 < 3 < 4 under the first approach, but 3 <4 < 1 under the
second. Relational algebra, which provides the context for this discussion, adopts the
first approach.

It warrants emphasis that Rules 3 and 4 pertain to ordinary selection, and not to
ordinal selection.

An important addendum to this discussion comes about because Tenet 3 covers some
of the same ground as Rules 3 and 4. The key observations are that “<”, “<”, “>”, and
“>" comparisons imply a “computational role” for the identifiers involved, and that
making an “="’ or “< >’ comparison with a constant implies that the constant actually
is an identifier. Thus, Tenet 3 yields restrictions on the use of ordinary selection.

Tenet 34. To be consistent with Tenet 3, a modeling language must restrict ordinary
selection formulas in the context of indexing structures to prohibit all “<>, “<”, “>”,
and “=" comparisons, and to prohibit “="" and ‘< > involving constants.

338 ARTHUR M. GEOFFRION

Note that the only comparisons which Tenet 3A permits in the context of indexing
structures are “="" and “< > when both operands are identifiers (recall that, by Rule
3, both operands must be from the same domain, so a notion of equality is available that
1s independent of the particular identifiers).

Notice also that Rule 4 will be satisfied in the context of indexing structures if the first
part of Tenet 3A is.

Rules 1-4 apply not only to indexing structures, but also to any other mathematical
expressions using elementary set operations or relational algebra operations that a mod-
eling language may allow.

Rules 3-4 and Tenet 3A severely restrict the use of selection formulas in the context
of indexing structures, as well they should. We comment that ordinal selection (described
in §2) rehabilitates ordinary selection for derived sets and relations simply by replacing
each identifier by its ordinal position in its defining primitive set, and by interpreting all
constants as references to ordinal position. This is fully consistent with Tenet 3.

The last six examples of Appendix 1 of Geoffrion (1990a) or (1991a) illustrate all of
the tenets and rules given in this section.

4. Applying the Four Languages to the Formal Examples

Appendices 2-5 of Geoffrion (199 1a) work the suite of 25 formal examples in AMPL,
GAMS, LINGO, and SML. We omit all details, and give here only a summary of the
results.

The examples can be grouped into three categories according to their main purpose:

(A) test the expressive power of a language under the constraint that no tenet or rule
of §3 may be violated
(B) test the degree of tenet obedience of a language with respect to the views expressed
by the tenets of §3 (these are arguable)
(C) test the degree of safety of a language with respect to the domain integrity re-
quirements expressed by the rules of §3 (these are not arguable).
There are 23 examples in category (A), 4 in category (B), and 2 in category (C) (the
total number exceeds 25 because there are “corrected” and “‘preferred” versions that we
count separately).
See Exhibit 3 for a summary of the testing on category (A) examples. The possible
outcomes are as follows each time one of these examples is attempted with one of the
languages: '

Perfect The language can represent the general structure perfectly while honoring all
tenets and rules.

Superset The language cannot represent the general structure perfectly while honoring
all tenets and rules, but it can represent a superset of the given model class.

Relative The language cannot represent the general structure perfectly while honoring
all tenets and rules, but it can represent a nonsuperset relative of the given
model class.

In cases where the outcome is not perfect, and where a database with mistakes is available,
it is also of interest to note how many of the mistakes the language specified against.
This information is summarized briefly in Exhibit 3 by “n/m”, which means that n out
of m mistakes are specified against.

A comment is in order concerning the superset entries of Exhibit 3. The basic idea is
that, if a language’s expressive power is not sufficient to allow representing a given model
class exactly, then the next best alternative is to identify a tight superset and to represent

INDEXING IN MODELING LANGUAGES FOR MATHEMATICAL PROGRAMMING 339

EXHIBIT 3
Summary of Language Performance Relative to Expressive Power (Geoffrion 1991a)
EXAMPLE AMPL GAMS LINGO SML
1 Perfect Perfect Perfect Perfect
2 Perfect Perfect Perfect Perfect
3 Perfect Perfect Perfect Perfect
4 Perfect Perfect Perfect Perfect
5 Superset 1/3* Perfect Perfect Perfect
6 Perfect Perfect Perfect Perfect
7 Perfect Perfect Perfect Perfect
8 Perfect Perfect Perfect Perfect
9 Perfect Perfect Perfect Perfect
10 Perfect Perfect Perfect Perfect
11 Perfect Perfect Perfect Perfect
12 Perfect Perfect Perfect Perfect
13 Perfect Perfect Perfect Perfect
14 Perfect Perfect Superset 0/2 Perfect
15 Perfect Perfect Perfect Perfect
16 Superset 1/3* Perfect Perfect Perfect
17 Perfect Perfect Perfect Perfect
18 Perfect Perfect Perfect Perfect
19 Superset 1/2 Relative 1/2 Superset 2/2 Superset 1/2
20 Preferred Perfect Superset Relative Perfect
22 Preferred Superset 0/2* Perfect Perfect Perfect
23 Preferred Perfect Perfect Perfect Perfect
24 Corrected Perfect Perfect Perfect Perfect

* AMPL enhancements made in the summer of 1990 enable reclassification to “Perfect”.

that in the language instead. A superset is preferable to a subset, or to any set that omits
some of the model instances in the given model class, because a superset does not forbid
any of the model instances in the given model class. Moreover, the superset should be
as tight as possible in order not to include any more illegal (with respect to general
structure) model instances than necessary. Ideally, one seeks the tightest possible superset,
and usually this superset is obvious.

Exhibit 4 abstractly depicts the situation just discussed. Suppose that the class of model
instances associated with a given general structure corresponds to all points inside an
ellipse, and that a given modeling language can represent only a model class whose model
instances correspond to the points inside a rectangle. Then the problem of finding a tight
superset is the problem of finding a small rectangle containing the ellipse.

Exhibit 4 also indicates two points, one inside the ellipse and the other outside. These
represent the model instances associated with the two databases that are given for each
example. The first yields a legitimate model instance, but the second does not because
it includes one or more mistakes that violate the associated general structure.

See Exhibit 5 for a summary of the testing on category (B) examples. The possible
outcomes are as follows each time one of these examples is attempted with one of the
languages:

Obey The language cannot represent the general structure accurately even if all tenets
are ignored.

Disobey The language can represent the general structure accurately.

An “obey” outcome does not prove that a language always observes the tenet being
tested. A ““disobey” outcome, on the other hand, does prove that a language does not
always obey the tenet being tested.

See Exhibit 6 for a summary of the testing on category (C) examples. The possible

340 ARTHUR M. GEOFFRION

EXHIBIT 4
Abstract Portrayal of a Model Class (Ellipse) and a Superset Representation

le

2,

¥

outcomes are as follows each time one of these examples is attempted with one of the
languages:

Safe The language recognizes that the general structure is potentially ill-posed.

Unsafe The language fails to recognize that the general structure is potentially ill-
posed.

5. Conclusion: How the Four Languages Compare

Some conclusions emerge from Exhibits 3, 5, and 6.

1. Expressive Power Exhibit 3 suggests that, when the languages are used in a manner
consistent with all of the rules and tenets of §3, they rank as follows in terms of increasing
expressive power with respect to general structure:

AMPL (19), LINGO (20), GAMS (21), SML (22).

The number in parentheses is the number of the 23 category (A) examples for which
the result is “perfect.” By looking at the pattern of nonperfect results in relation to the
category tree, we can better understand the nature of the strengths and weaknesses of
each language. AMPL’s only weakness is in the area of ordinal selection, which is by
design because it chooses to make its sets unordered. (Note. Enhancements to AMPL
made during the summer of 1990 overcome this weakness, raising the score from 19 to
22.) LINGO lacks the ability to take transitive closures. GAMS’ weaknesses are negligible.
SML’s one failure, shared by the other three languages, was on an index tree example
(#19) which falls outside the scope of ordinary mathematical indexing with sets and
tuples.

2. Tenet Obedience Exhibit 5 suggests that the languages rank as follows in terms of
increasing obedience to Tenets 1-3 and 3A:

AMPL (0), LINGO (1), GAMS(2), and SML (4).

The number in parentheses is the number of the 4 category (B) examples for which the
result is “Obey.” What can be concluded in general about the four languages? We defer
discussion of Tenet 1 to a later conclusion owing to its subtlety. AMPL disobeys Tenets

EXHIBIT 5

Summary of Language Performance Relative to Tenet Obedience
(Geoffrion 1991a)

EXAMPLE AMPL GAMS LINGO SML
20 Disobey Disobey Disobey Obey
21 Disobey Obey Disobey Obey
22 Disobey Obey Obey Obey

23 Disobey Disobey Disobey Obey

INDEXING IN MODELING LANGUAGES FOR MATHEMATICAL PROGRAMMING 341

EXHIBIT 6

Summary of Language Performance Relative to Domain Integrity
(Geaffrion 1991a)

EXAMPLE AMPL GAMS LINGO SML
24 Unsafe Safe Unsafe Safe
25 Unsafe Safe Unsafe Safe

2, 3, and 3A. For the other languages one must examine the structure of the languages
themselves. LINGO also disobeys Tenets 2, 3, and 3A, but Tenet 3 is a near miss: it
obeys the part of Tenet 3 about identifiers playing a purely nominal role, but one of the
examples (#21) shows that it disobeys the part about precluding explicit reference to
identifiers in the general structure. GAMS disobeys Tenet 2. But it obeys Tenets 3 and
3A in general unless a modeler uses the value-driven set membership construct (per-
missible under its rejection of Tenet 2) as a workaround. Clearly the author’s own lan-
guage, which always obeys all of the tenets, is at an unfair advantage here; the arguments
leading to the tenets are susceptible to counterarguments by the designers of the other
languages.

3. Domain Integrity Exhibit 6 suggests that the languages rank as follows in terms
of increasing safety with respect to the domain integrity requirements stated in Rules
1-4:

AMPL/LINGO (0), GAMS/SML (2).

The number in parentheses is the number of the 2 category (C) examples for which the
result is “Safe.” Not only are GAMS and SML safe for these particular examples, but
an examination of the structures of these languages also shows that they are safe in
general. However, in the case of GAMS and LINGO, safety can be compromised for
any of the rules by using the value-driven set membership construct condoned by these
languages but condemned by Tenet 2.

Other conclusions emerge from looking at the details presented in Geoffrion (1991a)
in more detail.

4. Model Instances Are Easy For category (A) examples, the languages seldom had
any difficulty representing specific model instances; the major exception was the one
example (#19) designed to illustrate a nonstandard indexing structure. Only LINGO had
difficulty with any other specific model instances (namely, the preferred version of #20).
The telling challenge for a modeling language is not whether it can represent model
instances, but whether it can represent general structures of the type that arise in target
applications.

5. Schema Economy Economy of schema notation is a common criterion for judging
modeling languages. Readability considerations aside, more succinct notation is better
than less succinct notation. A simple measure of notational economy is the average
number of lines needed to represent the general structure for the category (A) examples,
ignoring the fact that some languages achieve a perfect representation while others achieve
only an imperfect one. The languages rank as follows by this measure, in order of increasing
economy:

LINGO (6.7), GAMS (6.0), AMPL (4.3), and SML (4.0).

The number in parentheses is the average number of lines per example. For all examples
in all languages, we have made an effort to make good use of a maximum line width of
65 characters, to use consistent naming conventions, and to achieve comparable standards
of readability. We do not count more than two consecutive lines of comments. The
developers of all four languages have had an opportunity to suggest improvements, and
these have been adopted whenever appropriate.

342 ARTHUR M. GEOFFRION

6. Schema Readability Readability of schema notation is another common criterion
for judging modeling languages. We refrain from offering any pronouncement as to how
the languages compare by this criterion. This is not for lack of opinion, but rather because
there appears to be no fair way to quantify the judgment. The organization of the ap-
pendices of Geoffrion (1991a) makes it easy for readers to form their own opinions by
comparing all four languages side by side on identical examples.

7. Ease of Data Handling Turning now from schema to database, it is of interest to
know how well the database lends itself to support by modern database technology. If
one accepts the currently dominant relational paradigm, then all data should be in tables
(relations), tables should have distinct names, columns within each table should have
distinct names and definite domains, and the tables themselves should be normalized
(Ullman 1982). Only SML was designed with this in mind and achieves it (Geoffrion
1990b), although the other languages probably can be adapted for use with a relational
database system. The other languages do offer special features designed to economize on
data entry when done by hand, and do exploit the visual simplicity of two-dimensional
arrays.

8. Structure /Data Separation Tenet 1 deserves special discussion. The only examples
that test it (#20 and #21) address whether it is possible to include specific identifiers in
general structure. The results show that the answer is yes for AMPL, GAMS, and LINGO.
The results also show that users have the option of deferring the mention of specific
identifiers to the database. This raises the question of how strongly a language discourages
the commingling of general structure and instantiating database. The answer is that the
languages rank as follows, in order of least to greatest discouragement of commingling:

GAMS, LINGO, AMPL, SML.

GAMS actually requires commingling because its translator will not run, for example,
unless all necessary data are given before each derived set or relation is declared. LINGO,
a direct descendant of a language that totally commingles general structure and database,
depends on its @FILE facility in order to separate general structure and database. This
facility essentially provides the “include file” feature found in many standard programming
languages. The approach is really one in which structure and data are thought of as being
commingled, but can be separated if desired. AMPL’s posture is strongly that structure
and data ought not to be commingled, although exceptions are possible. SML’s posture
is the same, and no exceptions are possible. ‘

The above observations and conclusions suggest some general points for language

designers to keep in mind. Two are as follows.

o First, pay less attention to providing language features that mimic the powers of
conventional mathematical notation. It is fine to provide modelers with features that
they already know how to use, but avoid those which are dangerous because they
are error-prone or lead to general structures that are less useful than those built from
“safer”” features. The consequences of excessive expressive power can be as adverse
as the consequences of inadequate expressive power.

e Second, pay more attention to providing language features that strengthen the dis-
tinction between general structure and model instance. Almost any language can
represent almost any model instance (not necessarily well). But it takes an exceptional
language to represent a real life model class with accuracy, clarity, economy, and
lack of unnecessary contamination by instance or solver details.

In closing, we reiterate that an avowed purpose of this article is to stimulate discussion

of indexing structures. We hope that, over time, there will emerge:

(a) consensus on which indexing structure characteristics are good and bad in which
contexts for algebraic mathematical programming modeling languages

INDEXING IN MODELING LANGUAGES FOR MATHEMATICAL PROGRAMMING 343

(b) an improved taxonomy along the lines of Exhibit 2 that treats not only sets and
relations, but also other useful kinds of indexing structures

(c) an enlarged set of formal examples like those of Geoffrion (1990a) or (1991a)
that illustrate the improved taxonomy and the full indexing power of all leading
languages

(d) solution sets like those of Appendices 2-5 of Geoffrion (1991a) for the enlarged
set of examples, and also similar solution sets for other significant languages (the
development of such solution sets is already taking place: for Lisp by Lin and
Ramirez 1990, for LSM by Krishnan 1990, for MPL by Kristjansson 1990, for
SQL by Ramirez 1990, and for ULP by Witzgall 1990)

(e) standards for indexing structure design and notation that offer improved func-
tionality, greater error resistance, and fewer unnecessary obstacles to learning and
use

(f) comparative language analyses, along the lines of the early part of this section,
that will be useful to evaluators of the languages of today and to designers of the
languages of tomorrow.’

! Partially supported by the National Science Foundation, the Office of Naval Research, Ketron Management
Science, Inc., and Shell Development Company. The views expressed are those of the author and not of the
sponsor.

I am pleased to acknowledge the helpful comments and assistance provided by Bob Fourer, Tony Hiirlimann,
Sergio Maturana, Alex Meeraus, Laurel Neustadter, Yao-Chuan Tsai, and Fernando Vicuiia. In addition, I
appreciate David Gay’s help with AMPL and Linus Schrage’s help with LINGO.

References

BIsSCHOP, J., “Language Requirements for A Priori Error Checking and Model Reduction in Large-Scale Pro-
gramming,” In G. Mitra (Ed.), Mathematical Models for Decision Support, NATO ASI Series F, Springer-
Verlag, Berlin, 1988, 171-181.

AND C. Kuip, “Representation of Time in Mathematical Programming Modeling Languages,” Dept.

of Applied Mathematics, University of Twente, The Netherlands, February 1991a, 13 pp.

AND , “Hierarchical Sets in Mathematical Programming Modeling Languages,” draft paper,

Dept. of Applied Mathematics, University of Twente, The Netherlands, April 1991b, 19 pp.

AND , “Compound Sets in Mathematical Programming Modeling Languages,” Dept. of Applied
Mathematics, University of Twente, The Netherlands, June 1991¢c, 15 pp.

BROOKE, A., D. KENDRICK AND A. MEERAUS, GAMS: A User’s Guide, The Scientific Press, Redwood City,
CA, 1988.

CLEMENCE, R. D., JrR., “A Type Calculus for Mathematical Programming Modeling Languages,” Ph.D. Dis-
sertation, Naval Postgraduate School, Monterey, CA, 1990.

CUNNINGHAM, K. AND L. SCHRAGE, “The LINGO Modeling Language,” University of Chicago, September
1990, 113 pp.

FOURER, R., D. GAY AND B. KERNIGHAN, “AMPL: A Mathematical Programming Language,” Management
Sci., 36, 5 (May 1990), 519-554.

GEOFFRION, A., “A Taxonomy of Indexing Structures for Mathematical Programming Modeling Languages,”
Proc. Twenty-Third Annual Hawaii Internat. Conf. System Sciences. Vol. 111, (held in Kailua-Kona,
January 2-5), IEEE Computer Society Press, Washington, 1990a, 463-473.

, “SML: A Model Definition Language for Structured Modeling,” Working Paper 360, Western Man-

agement Science Institute, UCLA, revised August 1990b, 129 pp.

, “Indexing in Modeling Languages for Mathematical Programming,” Western Management Science

Institute, Working Paper 371, UCLA, revised July 1991a, 180 pp.

, “FW/SM: A Prototype Structured Modeling Environment,” Management Sci., 37, 12 (December

1991b), 1513-1538.

, “The SML Language for Structured Modeling,” Oper. Res., 40, 1 (January-February 1992).

, S. MATURANA, L. NEUSTADTER, Y. TSAI AND F. VICURNA, “User Documentation for FW/SM Release
X90-09,” Anderson Graduate School of Management, UCLA, December 1990, 100 pp.

HURLIMANN, T., LPL: A Structured Language for Modeling Linear Programs. Vol. 865, Ser. V, Peter Lang,
Bern, Switzerland, 1987. (Later versions of LPL exist.)

KRISHNAN, R., “Indexing Examples in LSM/L4,” Informal Note, Decision Systems Research Institute, Carnegie
Mellon University, November 1990, 33 pp.

344 ARTHUR M. GEOFFRION

KRISTJANSSON, B., Personal communication, Maximal Software, Arlington, VA, October 1990.

LiN, E. AND R. RAMIREZ, “Indexing in Modeling Languages for Mathematical Programming: A LISP Imple-
mentation of Indexing Structures,” Dept. of Decision and Information Systems, Arizona State University,
September 1990, 33 pp.

MATURANA, S., “A Translator Writing System for Algebraic Modeling Languages,” Ph.D. Dissertation, Anderson
Graduate School of Management, UCLA, 1990.

NEUSTADTER, L., “Value-Driven Sets in Modeling Languages: An Analysis,” Anderson Graduate School of
Management, UCLA, October 1989, 19 pp.

RAMIREZ, R., “Indexing in Modeling Languages for Mathematical Programming: A SQL Implementation of
Indexing Structures Using ORACLE,” ASUMMS Informal Note No. 4, Dept. of Decision and Information
Systems, Arizona State University, November 1990, 35 pp.

ULLMAN, J. D., Principles of Database Systems, (2nd Ed.), Computer Science Press, Rockville, MD, 1982.

WITZGALL, C., Personal communication, National Institute of Standards and Technology, Gaithersburg, MD,
May 1990.

AND M. McCLAIN, “Problem and Data Specification for Linear Programs,” NBSIR 85-3125, U.S.

Department of Commerce, National Bureau of Standards, National Engineering Laboratory, Gaithersburg,

MD, April 1985, 113 pp.

