FW/SM: A Prototype Structured Modeling Environment

Arthur M. Geoffrion

Management Science, Vol. 37, No. 12 (Dec., 1991), 1513-1538.

Stable URL:
http://links jstor.org/sici?sici=0025-1909%28199112%2937%3A12%3C1513%3AFAPSME%3E2.0.CO%3B2-K

Management Science is currently published by INFORMS.

Your use of the JSTOR archive indicates your acceptance of JSTOR’s Terms and Conditions of Use, available at
http://www.jstor.org/about/terms.html. JSTOR’s Terms and Conditions of Use provides, in part, that unless you
have obtained prior permission, you may not download an entire issue of a journal or multiple copies of articles, and
you may use content in the JSTOR archive only for your personal, non-commercial use.

Please contact the publisher regarding any further use of this work. Publisher contact information may be obtained at
http://www jstor.org/journals/informs.html.

Each copy of any part of a JSTOR transmission must contain the same copyright notice that appears on the screen or
printed page of such transmission.

JSTOR is an independent not-for-profit organization dedicated to creating and preserving a digital archive of
scholarly journals. For more information regarding JSTOR, please contact support@jstor.org.

http://www.jstor.org/
Tue Aug 24 10:28:29 2004

MANAGEMENT SCIENCE
Vol. 37, No. 12, December 1991
Printed in U.S.A.

FW/SM: A PROTOTYPE STRUCTURED
MODELING ENVIRONMENT*

ARTHUR M. GEOFFRION

Anderson Graduate School of Management, University of California, Los Angeles,
Los Angeles, California 90024-1481

A research prototype implementation has been evolving for several years in parallel with the
vision, theory, language, and applicative aspects of structured modeling. The objective of this
article is to describe the capabilities of this implementation as it now stands, and to comment on
how it contributes toward fulfilling a previously published agenda for the development of a new
generation of modeling environments. The intended audience is all modeling system designers
and evaluators, including those who do not happen to take a structured modeling approach.
(STRUCTURED MODELING; MODEL MANAGEMENT SYSTEMS; DECISION SUPPORT
SYSTEMS)

1. Introduction

Structured modeling (SM) is a way of thinking about analytic models and the systems
which support them. It is based on the idea that an analytic model can be viewed as a
diagram of definitional dependencies among objects—each representing a distinct part
of the model—that are typed, grouped by similarity, and organized hierarchically. The
diagram includes a connection from one object to another object if the second object’s
definition depends directly on the first object’s definition. Moreover, the diagram is in-
tended to be computationally active in the sense that certain types of objects have as-
sociated mathematical expressions for computing their values.

Developing a model in the form of such a diagram is largely an exercise in objectivity.
In contrast, using a model for problem-solving, design, gaining insight, or other purposes
involves largely subjective intentions and agenda. These we choose to view as the “prob-
lems” or “tasks” associated with a model. Typical problems and tasks have to do with
drawing inferences, determining an acceptable solution, ad hoc query, and optimization.
Usually one or more computerized model manipulation tools need to be applied in order
to effectively solve the problem or execute the task at hand. For certain standardized
problems and tasks, these tools are highly developed and known as “solvers.”

Thus, structured modeling views models and model-based systems as having com-
putationally active definitional dependency diagrams as their central focus, with manip-
ulation by solvers and other tools to achieve desired purposes. This viewpoint is compatible
with the requirements set forth in Geoffrion (1989c¢) for a new generation of modeling
environments.

There are many potential advantages of this viewpoint, including the abilities to: deal
with a wide variety of models and modeling paradigms within a single unified and rigorous
formalism, provide easily communicable diagrams for any model to supplement its usual
diagram(s) (if any), keep track of important interdependencies among model parts that
many current modeling formalisms leave implicit, insulate solvers from model changes
and, conversely, exploit hierarchical organization as an approach to managing complexity,
describe a model in a way that is both straightforward to understand and computer
executable, and easily exploit relational database tools for data management.

* Accepted by Thomas M. Liebling; received June 1990. This paper has been with the author 6 months for
2 revisions.
1513

0025-1909/91/3712/1513%01.25
Copyright © 1991, The Institute of Management Sciences

1514 ARTHUR M. GEOFFRION

The theoretical foundation of SM has been formalized in Geoffrion (1989b), and a
model description language called SML (Structured Modeling Language) appears in Geof-
frion (1990a) and (1990b) (see also 1991a). A literature of more than 100 published and
unpublished works on SM has grown up during the last five years or so, but we make
no attempt here to survey it.

This article builds directly on the SM and SML papers just cited. Its purpose is to
describe and comment on the capabilities of FW/SM, the SML-based research prototype
implementation of SM developed at UCLA between 1986 and 1990.

Although SM provides the motivation and context of our discussion, this article is
designed to be of use not just to the SM community, but to modeling system designers
and evaluators of all persuasions. There are quite a few features of FW/SM that designers
and evaluators may find of particular interest. Some derive mainly from the underlying
SM framework or the design particulars of SML, such as:

¢ unusually comprehensive error-checking—in fact, exhaustive in a strong sense—for
the formal specification of general model structure, a feature that should help to
reduce the time needed to correctly implement, maintain, and enhance models

e some consistency checking of the natural language comments that SML encourages
for documenting formal model specifications, and also some consistency and com-
pleteness checking of formal specifications by reference to those comments

e automatic generation of several kinds of model reference documentation that facilitate
communication, debugging, model maintenance and evolution, and other essential
activities

e automatic generation of relational data table designs for model instance data, a
feature that facilitates relational database interfaces and achieves a kind of stan-
dardization that is essential for efficient implementation of several of FW/SM’s ca-
pabilities

e automatic evaluation (with warm restart) of indexed families of real- and logical-
valued expressions, a feature that facilitates debugging, “What If” studies, and other
kinds of model and results analysis

e a browser for the definitional dependency graph, an SM construct useful for visu-
alizing the general structure of any model

e complete independence between the general structure of a class of models and in-
stantiating data, a feature that promotes the reuse of each of these, conciseness, ease
of communication, dimensional flexibility, and other advantages

e complete independence between models and solvers, a feature that promotes using
multiple solvers with a single model, multiple models with a single solver, and con-
ceptual clarity.

Other features derive to a lesser extent from SM and SML, and to a greater extent

from how the special capabilities of the host implementation package were exploited:

e tightly integrated basic services (viz., business graphics, file management, LAN sup-
port, macros, outlining, a rich programming language, spreadsheets, tabular database,
telecommunications, and word processing) in addition to specialized modeling ca-
pabilities, a feature that promotes FW/SM’s usefulness over the whole modeling life
cycle rather than at just one part of it

e a menu-driven interface that lies dormant when not in use and thus does not interfere
with normal use of the host software package, a feature that illustrates how even
sophisticated modeling capabilities can be delivered via popular software

¢ the use of outlining, boldface, and underlining to simplify and enhance an underlying
modeling language which, for technical reasons, is restricted to ASCII characters

e a tree-oriented editor for navigation, editing, and display control of the hierarchical
structure of any model, a tool useful for managing the complexity of complicated
models.

FW/SM: A PROTOTYPE STRUCTURED MODELING ENVIRONMENT 1515

Finally, we mention FW/SM’s main solver interfaces, each of which involves connection
to a major external system:

e a fully automatic interface to a menu-driven commercial database system, a feature

that facilitates queries and report generation for data and results

e a fully automatic interface for linear and integer programming based on MPS format

problem files (no matrix generator need be written)

e a control table interface for generalized network flow optimization (no problem file

generator need be written)

¢ a fully automatic interface to a commercial Prolog system, a feature that facilitates

logic-based inferencing with respect to the most fundamental aspects of any model’s
general structure.

About half of these features are discussed at some length from the perspective of SML
in Geoffrion (1990b).

FW/SM has been useful on several levels. At one level, it has enabled experimentation
with SM concepts and with SML. At another, it has served as a vehicle for studying
implementation issues pertinent to the design of modeling environments. And at still
another level, experience with FW/SM has sharpened our vision of what an ideal modeling
environment should be like from a user perspective, and of SM’s prospects for helping
to attain that ideal.

This article largely avoids operational and implementation details, which are the subject
of separate documents (Geoffrion, Maturana, Neustadter, Tsai, and Vicuiia 1990a, b).

The organization of the balance of this article is as follows. The remainder of this
introduction surveys the other implementations of SM, reviews the basics of Framework
(the system on which FW/SM is built), and indicates what prior knowledge of SM is
presumed of the reader. §2 presents a descriptive overview of FW/SM’s functions from
the user viewpoint. §3 opines on the broader significance of selected aspects of FW/SM.
The final section reviews the requirements given in Geoffrion (1989c¢) for a new generation
of modeling environments and explains how FW/SM fulfills most of these within the
limitations of a research prototype.

1.1. Other Structured Modeling Implementations

The first implementation of SM ideas, LEXICON (Clemence 1984), was done in FOR-
TRAN on a mainframe and aimed mainly at supporting optimization for large linear
programming problems. The model schema and data are entered as batch files. A link
to an advanced optimization system was designed but not built.

IIS (for Integrated Information System, Farn 1985) was built on top of KnowledgeMan
(Micro Data Base Systems 1985) on an IBM PC and aimed mainly at demonstrating the
feasibility of a hybrid information/analytical modeling system. It includes a menu-driven
interface to LINDO (Schrage 1991) for a restricted class of linear programs.

Because LEXICON and IIS were developed early in the evolution of SM and had
quite special objectives, they support only a relatively small and nonstandard subset of
today’s SML.

ASUMMS grew out of a collaborative research effort involving several faculty and
graduate students (Ramirez 1990). It adopts SML as its model description language. The
architecture includes user, object, relational (INGRES), and physical layers. Model/solver/
data independence supports the reusability of software and models. Translators map
SML to SAS, IFPS, and 1-2-3. The hardware environment is a network that spans desktop
computers, a minicomputer, and two supercomputers. A successor to ASUMMS called
DAMS is now under way (Ramirez 1991).

Several other specialized or partial implementations of SM exist. These include Chari
and Krishnan (1990) (a partial Prolog implementation of a logic-based alternative to
SML), Hill (1989) (translates model schemas from algebra to SML), Jones (1991) (a

1516 ARTHUR M. GEOFFRION

prototype SM specialization of a general graphics-based modeling system), Lenard (1987)
(built on top of KnowledgeMan, linear programming oriented), O’Dell (1988) (permits
graphic SML schema input and translates to relational database form), Park (1987) (IS
DOS-based), Worobetz and Wright (1991) (built on top of ORACLE, OR/SM has PC-
SAS as its primary solver), and Wyant (1988) (translates SML schemas from relational
database to graphic form). With the exception of Jones’ Networks/SM and Worobetz
and Wright’s OR/SM, the capabilities of each of these implementations have but a modest
intersection with the capabilities of FW/SM.

In addition, two new UNIX-based implementations are being or have been built at
UCLA as part of doctoral dissertations. One, Desai (1992), uses the extensible database
system EXODUS (Carey and DeWitt 1987) as its implementation platform. It will exploit
novel capabilities that go beyond what traditional database management systems offer,
including user-defined data types and access methods, enhanced integrity constraints,
and version management. The other, Vicuiia (1990), uses attribute grammars to specify
formally the complete static semantics of SML, and to generate a syntax-directed editor
with incremental type checking and immediate expression evaluation capabilities. It builds
on top of the Synthesizer Generator (Reps and’ Teitelbaum 1989).

1.2. Framework

FW/SM is built on top of Framework III, a well-known integrated multi-function
program that runs under DOS (Ashton-Tate 1988). One reason for this choice is that
Framework makes pervasive use of trees for organizational purposes, as does SM. Another
is that it offers many of the basic services needed for a true modeling environment,
including outlining, word processing, tabular database, spreadsheets, business graphics,
telecommunications, local area networking, and macro recording. It also includes a gen-
eral-purpose interpreted language called FRED that supports all of these functions. A
third reason for choosing Framework is that it can transparently run DOS batch files
and external programs in other languages, and can move itself temporarily to hard disk
or extended memory in order to make more room for loading and executing large pro-
grams. This makes it possible to achieve functionalities that would be awkward or inef-
ficient to achieve through Framework alone, and to interface Framework via files with
nearly any stand-alone program.

Prior familiarity with Framework would be helpful, but is not a prerequisite for reading
this article because we now briefly summarize the essential concepts needed in what
follows. The main ones are: the Framework desktop, the tree-oriented editor, and the
table editor.

The Framework user sees a full-screen “desktop” on which there may be one or more
“documents,” each of which may be “open” (displayed in a window that can be resized
and dragged) or “closed.” There are also ten pull-down menus, and short labels sitting
on the desktop that represent the disk drives and closed documents. The user’s current
selection is shown by a highlight that normally is on or in one of the labels, one of the
pull-down menus, or one of the open documents. The general feel is somewhat Macintosh-
like. Figure 1 shows an example in which there are two documents—BUDGET and
FEEDMIX—on the desktop, the second of which is open. Note that there are five disk
drives, plus a “Library” that holds abbreviations, macros, templates, and other tools;
clicking on any of these will reveal its contents.

Each document corresponds to one DOS file, and consists of a user-designed tree of
“frames.” A frame is just a kind of window. The root of the tree corresponds to the
document as a whole, each nonleaf node to a “containing frame,” and each leaf node to
a “word frame” containing text or a ““database frame” containing a table whose columns
can be named and specified as containing any of six data types (logical, numeric, string,
formula, date, and time). Leaf nodes can also be “spreadsheet frames” or “graph frames,”

FW/SM: A PROTOTYPE STRUCTURED MODELING ENVIRONMENT 1517

but these kinds are not needed in what follows. The display of a document toggles between
an indented outline of its tree called the “outline view,” and a ““‘content view’’ of its tree
based on a nested windows representation that reveals the contents of leaf frames. The
user can also zoom any leaf frame so that its window fills the screen.

The open FEEDMIX document of Figure 1 is in outline view, from which one can
see that its tree of frames has four first-level containing frames labeled “Schema Section,”

. ., “Activity Section.” The children of three of these four frames are hidden, but
“Elemental Detail Section” is seen to have six leaf frame children, namely “NUTR,”
..., “TOTCOST.” It happens that all six are database frames.

Framework’s tree-oriented editor, or outliner, for manipulating trees of frames plays
a key role. It has facilities to edit tree structure (create, delete, copy, and move nodes
and subtrees), to navigate (move toward or away from the root, move to a sibling), and
to control display (hide and unhide subtrees or node content). '

Framework’s table editor, which applies to database frames, also plays a key role in
FW/SM. It offers data entry in any of three views (so-called ‘“table,” “forms,” and
“dBASE” views), flexible copy and move operations, row selection (“filtering”) for any
table via logical expressions and many built-in functions, sorting, column resizing (which
can be used to hide columns temporarily), and the ability to compute a variety of column
statistics. Word processing facilities also apply to database frames, including the string
search, spelling checker, and automatic abbreviation expansion utilities.

Framework’s ability to communicate with other programs is facilitated by its file import/
export capabilities in 9 standard formats. It can export any frame or selected part thereof
as a file, and import any file as a frame.

Framework has many other capabilities that need not be described for an understanding
of what follows.

Except for those few cases in which control passes to an external program, FW/SM’s
user interface is Framework’s user interface. Thus FW/SM is no more difficult to use
than Framework.

1.3. Background Knowledge

Full comprehension requires prior exposure to SM at the level of §1-§3 of Geoffrion
(1987). It is not necessary to have detailed knowledge of SM theory or of SML beyond
what is explained there. Having a copy of that paper handy while reading this one will

» Schema Section <C:
» Elemental Detail Section <D:
- NUTR <E:
- MATERIAL
- ANALYSIS
-Q
- NLEVEL
- TOTCOST
» Reference Section
» Activity Section

VOV VOV

[BUDGET
[FEEDMIX]

/2

FIGURE 1. A Sample Framework Desktop.

1518 ARTHUR M. GEOFFRION

prove convenient, as frequent references will be made to its concepts and figures. Because
that paper is referenced so often in this one, we abbreviate its reference to “(MS 87)”.
Familiarity with Geoffrion (1989b) would be helpful but is not necessary.

2. Overview of FW/SM

This section describes the user interface and main capabilities of FW/SM. Most op-
erational and implementation details are omitted, but full details are available in Geoffrion,
Maturana, Neustadter, Tsai, and Vicuiia (1990a), in a series of internal technical docu-
ments (including Geoffrion, Maturana, Neustadter, Tsai, and Vicufia 1990b), and in a
companion paper on design and implementation (Neustadter, Geoffrion, Maturana, Tsai,
and Vicuna 1992). §3 appraises FW/SM’s significance.

FW/SM implements SML as specified in Geoftrion (1990a), and attempts to do so in
the spirit of the computer-based modeling environment vision presented in Geoffrion
(1989c¢) (more on that in §4). It runs on IBM PC/AT and PS/2 class machines under
DOS. After an orientation to the overall file and workspace structure of FW/SM as seen
by the user, we discuss the major components separately.

2.1. Overall Structure

FW/SM offers about 20 special functions beyond those of Framework as menu-
selectable processes. The names of these processes appear in italics (italics will henceforth
be reserved for this use) and will be underlined on first appearance. There is a modest
on-line help facility that covers all of the processes.

FW/SM involves four main sets of files:

FW/SM Programs code that implements the special functions of FW/SM

AUXIL Files model-specific intermediate files used by certain processes

Solvers a collection of solvers for model manipulation (presently retrieval, optimi-
zation, and logical inferencing)

Models model-specific “workspaces” in development or previously developed.

Each is discussed briefly.

FW/SM Programs. FW/SM'’s programs comprise about 70,000 lines of source code
in C, Framework’s FRED language, PASCAL, and three other languages. All programs
run in a way that is transparent to the user, who sees only a menu of FW/SM processes
that appears when a special key is pressed.

AUXIL Files. Certain processes which operate on a model schema produce outputs
that are not intended for user access, but that are needed by certain other processes.
Rather than generating these outputs afresh every time they are needed, FW/SM stores
them in a model-specific subdirectory of a subdirectory named AUXIL. This leads to
greater client process efficiency so long as the model schema does not change.

Solvers. Four solvers have been interfaced to date:

e Xtrieve, an interface and processor for database queries (Novell 1988)

e GENNET, an optimizer for generalized network flow problems (Brown and McBride
1984)

e LINDO, an optimizer for linear and integer programming problems (Schrage 1991)

e Arity Prolog, a language and processor for logic-based inferencing (Arity 1987).

In each case, there is an unmodified main executable file and associated custom interface
programs.

Clearly it is possible to interface other solvers with FW/SM for retrieval, solving si-
multaneous systems, optimization, inferencing, and other model manipulations.

FW/SM: A PROTOTYPE STRUCTURED MODELING ENVIRONMENT 1519

Models. The store of models will be unique to each installation and perhaps to each
user of a modeling environment like FW/SM. At the time of this writing, we maintain
a growing library of well over 100 models divided into eight categories: administrative,
database, economics, engineering, MS/OR, marketing, test, and miscellaneous. Many
are collected in Geoffrion (1990a). They run the gamut from very simple to moderately
complex.

Model files are stored in Framework’s internal format, and can be organized and stored
in any convenient DOS subdirectory structure. Each holds a single Model Workspace,
the four standard parts of which are the following first-level containing frames, or win-
dows, of the Framework document that appears on the desktop when a file is loaded. See
Figure 1.

“Schema Section” Here the user composes, browses, and maintains a single SML
schema.

“Elemental Detail Here the user loads, browses, and maintains the data tables—

Section” SML elemental detail tables—associated with a single schema.

“Reference Section” Holds system-generated reference documentation correspond-
ing to the schema and elemental detail; here the user browses
and manipulates these exhibits using Framework’s editors.

“Activity Section” Here the user invokes solvers and performs other model ma-
nipulations and related activities throughout the modeling life
cycle.

Only a Schema Section is mandatory if any of FW/SM’s special processes are to be
invoked. The user is free to add other first-level frames to supplement the four just
mentioned.

The Model Workspace is the primary face of the system seen by the user. We discuss

each of its sections individually.

2.2. Schema Section

We begin by recalling some facts about an SML schema. It is an outline-formatted
collection of genus and module paragraphs that describes the general structure of a class
of model instances (e.g., Figures 5, 7, and 10 of (MS 87)). Figure 2 shows the schema
for a simple feedmix model, to which we shall refer frequently in the balance of this
paper. It is an updated version of Figure 5 of (MS 87). A genus is simply a class of
similar elements, and a module is a collection of related genera or other modules. A
schema consists of a formal part (in boldface) and an informal part, called the interpre-
tation, documenting the formal part: module paragraph names begin with an ampersand;
the type of each genus (primitive entity, compound entity, attribute or variable attribute,
function, test) is declared within a pair of slashes; the definitional dependencies introduced
by each genus appear immediately after the genus name in a so-called generic calling
sequence delimited by parentheses; lower case letters not within a pair of slashes denote
indices; curly braces denote index sets; a colon announces an attribute’s type declaration;
a semicolon announces the generic rule, that is, the numeric or logical expression asso-
ciated, respectively, with a function or test genus; and key phrases in the interpretation
are underlined.

Although one could hardly guess it from Figure 2, we comment for future reference
that the generic rule sublanguage of SML is quite rich; one can see from Geoffrion
(1990a) or (1990b) that its expressive power is comparable to that of expressions in the
popular C language when the latter is restricted to its basic numeric, logical, and relational
types. (Of course, the language paradigms are quite different: SML’s generic rule sublan-
guage is function-oriented, whereas C is a statement-oriented imperative language.) Al-
ternatively, one could say that the expressive power is comparable to that of any of the

1520 ARTHUR M. GEOFFRION

&NUT_DATA NUTRIENT DATA
NUTRI/pe/ There is a list of NUTRIENTS.
MIN (NUTRi) /a/ {NUTR} : Real+ For each NUTRIENT there is a MINIMUM DAILY
REQUIREMENT (units per day per animal).

&MATERIALS MATERIALS DATA
MATERIALm /pe/ There is a list of MATERIALS that can be used for feed.
UCOST (MATERIALm) /a/ {MATERIAL} Each MATERIAL has a UNIT COST ($ per pound of
material).
ANALYSIS (NUTRi, MATERIALm) /a/ {NUTR} X {MATERIAL} : Real+ For each NUTRIENT-
MATERIAL combination, there is an ANALYSIS (units of nutrient per pound of material).

Q (MATERIALm) /va/ {MATERIAL} : Real+ The QUANTITY (pounds per day per animal) of each
MATERIAL is to be chosen.

NLEVEL (ANALYSISi., Q) /f/ {NUTR} ; @SUMm (ANALYSISim *Qm) Once the QUANTITIES are
chosen, there is a NUTRITION LEVEL (units per day per animal) for each NUTRIENT calculable from
the ANALYSIS.

T:NLEVEL (NLEVELi, MINi) /t/ {NUTR} ; NLEVELi >= MINi For each NUTRIENT there is a
NUTRITION TEST to determine whether the NUTRITION LEVEL is at least as large as the MINIMUM
DAILY REQUIREMENT.

TOTCOST (UCOST, Q) /f/ ; @SUMm (UCOSTm *Qm) There is a TOTAL COST (dollars per day per
animal) associated with the chosen QUANTITIES.

FIGURE 2. Feedmix Model Schema.

popular spreadsheet packages (e.g., 1-2-3™) if macro facilities are excluded, although
SML’s generic rule sublanguage has much more general indexing capabilities.

Given Framework’s frame orientation and its versatile outliner for organizing and
manipulating frames, it is natural to represent a schema’s hierarchical (tree) structure as
a Framework outline with the Schema Section itself as the containing frame corresponding
to the root. Then each module paragraph is also a containing frame, and each genus
paragraph is a word frame. With this approach, the outliner’s tree-oriented editing facilities
are well matched to the tasks of composing and editing a schema’s hierarchical structure.

What appears in Figure 2 actually is a variant of SML that exploits Framework’s word
processor and outliner to relieve the user of having to enter reserved words to mark the
end of the formal part of each paragraph, to mark the end of each paragraph, to delimit
key phrases, and to mark the end of the schema (Geoffrion 1990a). The transition from
boldface to nonboldface, the use of underlining, and the use of outlining cause the nec-
essary reserved words to be inserted automatically as a first step in processing the schema.

Two FW/SM processes associated with the Schema Section are of particular interest.
The first is SMLCheck, a fully automatic syntax and static semantics checker for the
formal part of all SML paragraphs. In addition to checking all syntax, it checks all of the
approximately 90 so-called “Schema Properties’ given in Geoffrion (1990a). These are
context-sensitive static semantic restrictions guaranteeing the integrity of SML schemas.
SMLCheck also produces an internal tabular representation of the schema that is needed
by many other processes, and stores it in a model-specific subdirectory of AUXIL.

Whereas SMLCheck applies to the formal part of an SML schema, INTERP_CK
applies to the interpretation part. It checks whether SML’s rules for key phrase syntax
and usage have been followed, and it generates an interactive dialogue aimed at identifying
key phrase variants. To use Figure 2 as an example, the user must indicate in response
to an INTERP_CK query that “NUTRIENT” in the MIN paragraph corresponds to
“NUTRIENTS” in the NUTR paragraph.

FW/SM: A PROTOTYPE STRUCTURED MODELING ENVIRONMENT 1521

As is true for all FW/SM processes, the user is responsible for invoking SMLCheck
and INTERP_CK by simple menu selection. They produce diagnostics that pinpoint
departures from the syntactic and higher order structure prescribed for SML schemas.

In addition, two other FW/SM processes operate on the Schema Section: FORMAT
sets frame formatting parameters so that printing and the other FW/SM processes will
operate correctly, and COSMET (for “Cosmetics) trims and sizes all frames to make
good use of screen space.

2.3. Elemental Detail Section

SML’s elemental detail tables, recall, provide the instantiating data for a single model
instance falling within the model class described by the associated schema. Figure 6 of
(MS 87) gives sample tables for the schema of Figure 2, and one of these is reproduced
near the end of this subsection.

In Framework, it is natural for each elemental detail table to be a database frame.
Framework’s table-oriented editor is well suited to most keyboard-oriented input and
editing tasks arising for elemental detail tables. Framework can import data from external
files, but it must be said that more efficient storage structures and links to external files
and databases will be needed for most real applications. We comment further on this
in §4.4.

Two FW/SM processes associated with the Elemental Detail Section are of particular
interest, and will be discussed further in §3. The first, EDGEN (for “Elemental Detail
Table Generator™), reads the schema in the Schema Section and creates skeletal elemental
detail tables in compliance with the Table Structuring Procedure and Table Naming
Conventions of Geoffrion (1990a). It is fully automatic unless the user opts to join tables
per Step 3 of the aforementioned procedure.

The second process, FcEval (for “Function Evaluator™), is a translator that creates a
batch-mode evaluator consisting of compiled C code for the generic rules of all function
and test genera (these are the objective and constraint expressions in the case of a math-
ematical programming model). This code, which is stored in a model-specific subdirectory
of AUXIL, can be executed at any time thereafter by invoking the Evaluate process.

FW/SM offers some additional processes applicable to the Elemental Detail Section.

L/E Utilities (L/E for “Loader/Editor”) is a collection of utilities that facilitates loading
and editing the element populations of genera by performing requested relation algebraic
operations (e.g., Date 1981) on elemental detail table stubs. (Recall from (MS 87) that
the ““stub” of an elemental detail table comprises the column(s) to the left of the vertical
double lines, and that it is the index for that table.) Included are utilities for:

e Sdifference (two stubs),

e intersection (two stubs),
union (two stubs),

Cartesian product (two or three stubs),
natural join (two stubs),

e projection (one stub).

In addition, a utility is provided for deleting rows with duplicate stub tuples. These
facilities are preparatory to the “smart loader/editor” discussed in §4.

Processes are needed to implement the “Table Content Rules” of Geoffrion (1990a),
which guarantee the integrity of the elemental detail tables. Two such processes have
been implemented to date, both of which pertain to Table Content Rule A. A_RULE
checks the validity of all identifiers appearing in the stub of elemental detail tables cor-
responding to externally indexed genera. Such an identifier is “valid” if it is defined in
the elemental detail table for its associated self-indexed genus. (Every SML genus is
unindexed like TOTCOST, or self-indexed like NUTR and MATERIAL, or externally

1522 ARTHUR M. GEOFFRION

indexed like all the rest in Figure 2.) UNIQUE looks for repeating tuples in the same
stub (these are not permissible). About nine more processes would be necessary to fully
implement the remaining Table Content Rules.

Finally, MATRIX transforms an elemental detail table with exactly two stub columns
and at least one value column into a two-dimensional array in a database frame. For
example, MATRIX can transform this elemental detail table associated with the feedmix
model’s ANALYSIS genus

NUTR MATERIAL \ l ANALYSIS
P std 4
P add 14
C std 2
C add 1
into the array
NUTR add std
P 14 4
C 1 2

or its transpose. Two-dimensional arrays are easier to interpret for some purposes than
the linearized version used by elemental detail tables.

2.4. Reference Section

There are many different kinds of reference documentation that one might want to
see in connection with a schema, whether it is newly composed or called up from the
model files. The same is true, although to a lesser extent, of elemental detail tables.
Instead of trying to anticipate and produce all of the documentation that might ever be
needed, FW/SM’s strategy is to produce several basic machine-resident documents con-
taining the essentials and let the user manipulate them interactively to obtain the specific
reports and analyses of interest.

The manipulation can be by Framework’s word processor for text documents, by its
outliner and word processor for outlines, and by its table editor and word processor for
tabular documents. In addition, Framework’s rudimentary graph editor can be used for
business graphs, although none of FW/SM’s special processes produce these.

The reference document names, the processes that produce them, and their basic type
are as follows:

Calling Sequence REFGEN Table
Genus Graph NETDRAW Graph
Genus/Module Summary EDGEN Table
Identifier Dictionary ID_DICT Table
Matrices

Adjacency Matrix REFGEN Table

Reachability Matrix REFGEN Table

Adjacency/Reachability Matrix REFGEN Table
Modular Outline REFGEN Text
Natural Language Summary REFGEN Text
Table Structure EDGEN Table
Topological Sort REFGEN Table

Space limitations permit only a brief introduction to these documents here. See the
Appendix of Geoffrion (1991b) for details.

The Calling Sequence document lists the direct definitional dependencies of each genus.

“Genus Graph” is the official name of the definitional dependency diagram. Figures
3,8, and 12 of (MS 87) and §3.3 thereof give examples and explain its importance for

FW/SM: A PROTOTYPE STRUCTURED MODELING ENVIRONMENT 1523

communication purposes. The NETDRAW process is an interactive implementation
that allows any one node of the genus graph to be displayed centrally on screen along
with all adjacent arcs and nodes. The genus graph can be “walked” with the cursor keys,
which move a highlight that can change the central node to one of its neighbors.

Figure 3 exemplifies the Genus/Module Summary. The NAME column contains all
genus and module names in schema order. The SEQ_NO and PATH columns provide
two reference numberings of these names, one strictly sequential and the other with
hierarchical structure encoded in a standard way. The TYPE column indicates genus
type, with modules listed as “m.” The TABLE column gives the name of the elemental
detail table, if any, corresponding to each genus. Finally, the KEY PHRASE column
gives the first underlined key phrase, if any, in the interpretation part of each genus and
module paragraph.

Sorting is a very useful manipulation of the Genus/Module Summary. Sorting on
NAME produces an alphabetized dictionary of genus and module names, on TYPE
produces a list of the modules and a list of the genera grouped by type, on TABLE
produces an alphabetized list of tables and the genera associated with each, and on KEY
PHRASE produces an alphabetized list of key phrases. Filtering via logical expressions
can also be useful.

The Identifier Dictionary gives an exhaustive list of all identifiers appearing in the
stubs of elemental detail tables corresponding to self-indexed genera.

The matrices capture the structure of the genus graph and all module graphs (defined
in Geoffrion 1989b). Row and column orders are determined by the schema. The con-
vention is “column depends definitionally on row”; thus, reading by columns indicates
which row genera definitionally influence a given column genus, and reading by rows
indicates which column genera a given row genus influences. The Adjacency Matrix
portrays only direct definitional dependence as reflected in generic calling sequences,
while the Reachability Matrix portrays all indirect dependencies (definitional dependence
is a transitive relation). The Adjacency/Reachability Matrix uses a coding that indicates
both. It follows from the above conventions that, in view of the no-forward-reference
property of SML schemas, all three matrices are necessarily upper triangular.

To mention but one possible use of one of these matrices (the Reachability Matrix):
if a definitional or value error is discovered in a particular attribute genus, then one can
tell at a glance which other function or test genera could possibly be affected.

REFGEN actually produces all three matrices as word frames. However, the DBREF
process converts them automatically to database frames. Thus one may manipulate the

NAME SEQ_NO PATH TYPE TABLE KEY PHRASE
&NUT_DATA 1 1 m NUTRIENT_DATA
NUTR 2 1.1 pe NUTR NUTRIENTS
MIN 3 1.2 a NUTR MINIMUM_DAILY_REQUIREMENT
&MATERIALS 4 2 m MATERIALS_DATA
MATERIAL 5 2.1 pe MATERIAL MATERIALS
UCOST 6 2.2 a MATERIAL UNIT_COST
ANALYSIS 7 2.3 a ANALYSIS ANALYSIS
Q 8 3 va Q QUANTITY
NLEVEL 9 4 f NLEVEL NUTRITION_LEVEL
T:NLEVEL 10 5 t NLEVEL NUTRITION_TEST
TOTCOST 11 6 f TOTCOST TOTAL_COST

FIGURE 3. Genus/Module Summary for Feedmix Model.

1524 ARTHUR M. GEOFFRION

matrices using either Framework’s word processor alone on a word frame or together
with Framework’s table editor on a database frame.

The concept of a Modular Outline was introduced in §2 of (MS 87) and illustrated
in Figures 4, 9, and 14 of that article. It is automatically available as Framework’s “outline
view” of the Schema Section, to which there is easy toggle access at all times. This gives
a concise representation of the schema’s hierarchical structure, and is useful for com-
munication and documentation. Subtree hiding/unhiding can be accomplished easily
using Framework’s outliner, and is a particularly useful manipulation. For example, in
an on-line briefing one may start with everything hidden except the top level of the
hierarchy, and selectively unhide and re-hide detail as appropriate. In addition to this
version of the Modular Outline, REFGEN produces a word frame containing an enhanced
Modular Outline that appends the free indices, if any, to each genus name.

The Natural Language Summary was introduced in §3.3 of (MS 87) and illustrated
in Figure 15 of that article. As explained here, it is identical to the schema except that it
replaces the formal part of each genus paragraph (everything but the interpretation part)
by the genus name with free indices appended as in the enhanced Modular Outline
produced by REFGEN. The Natural Language Summary associated with a schema is
especially useful for communication and documentation at a nonmathematical level
because it suppresses mathematical details.

The Table Structure document gives the names of all elemental detail tables, in order,
and their columns. It also gives the “type” of each table, a technical attribute defined in
Geoffrion (1990a).

The Topological Sort document contains the so-called “topological labels” discussed
at length just after Proposition 7 of Geoffrion (1989b).

2.5. Activity Section

The Activity Section is the venue of choice for most user interactions with solvers.
FW/SM provides one process for retrieval, two for optimization, and one for logical
inference. They are discussed in that order.

Retrieval. Three illustrative queries that could arise in connection with feedmix models
are:

(a) List the materials in decreasing order of unit cost.

(b) List the materials used in quantity greater than 1 pound per day per animal and

with unit cost greater than 2 dollars per pound.

(c) List the materials with above average analysis in those nutrients for which the

current mix fails the nutrition test.
The ability to answer such queries is important, over a modeling application’s life cycle,
in order to gain full advantage of the information that resides in the Elemental Detail
Section.

Queries that involve but a single elemental detail table warrant distinction from those
that involve more than one. The first query above involves just one elemental detail
table, while the other two involve two tables. Most queries involving a single table can
be answered easily with the help of Framework’s table editor. But queries involving
multiple tables are awkward for Framework, and best handled via FW/SM’s interface to
the commercial database system Xtrieve (Novell 1988).

The XtrieveQuery process automatically exports the elemental detail tables to Xtrieve
in a suitable format, invokes Xtrieve with proper initial conditions, and deposits the user
in the menu-driven Xtrieve query interface. Upon exiting, the user returns automatically
to FW/SM. _

Xtrieve is a quasi-relational system, and so is able to answer most of the usual relational
queries, including those that involve multiple tables. The full power of Xtrieve is available
to the user, including:

FW/SM: A PROTOTYPE STRUCTURED MODELING ENVIRONMENT 1525

browsing, sorting, joining, reformatting, and relational selection via complex logical
conditions

¢ the usual aggregate functions for calculating column statistics

e access to a data dictionary summarizing the design of all tables

e the ability to edit the data in any table and to define new tables that may or may

not be based on the original elemental detail tables (this does not induce any changes
in the Elemental Detail Section, although that would be an easy capability to install)

e arecorder for commonly used keystroke sequences

e various file management and printing facilities, including table export in three for-

mats.

Optimization. Usually there are many possible optimization problems that a user
could pose with respect to a given structured model. The user must, therefore, specify a
particular optimization problem to be solved. Different interface styles are possible by
which the user may make this specification. One way in which they may differ has to do
with how much the user needs to know about the layout of the file(s) required by the
intended solver. FW/SM has one solver interface that requires the user to know nothing,
and another that requires the user to know a lot.

The MPS_Interface process for solving linear and integer programs is fully automatic.
The user need only prepare a word frame in the Activity Section titled MPS that contains
the keyword MINIMIZE or MAXIMIZE followed by the name of the unindexed function
genus corresponding to the objective function. The process assumes that the variables
coincide with the variable attribute elements, and, unless otherwise stipulated, that the
constraints coincide with the test elements (i.e., they must all evaluate to TRUE). For
example, the frame

MPS 1l

" MINIMIZE TOTCOST

would specify the standard linear programming problem for the feedmix model.

MPS_Interface does the following:

1. Read the schema, elemental detail tables, and MPS frame.

2. Verify that the specified problem is indeed a linear program, possibly with some
integer variables, after evaluation of all (possibly nonlinear) expressions that do not
depend on the variable attribute values.
Construct an appropriate standard MPS input file.
Run LINDO.

5. Import the optimal solution back into Framework with all variable values clearly

identified (LINDO’s 8 character name length limitations are handled automatically).

This process could be adapted easily to interface any optimizer that accepts standard
MPS input files. Also, it can be commanded to stop after step 3, to allow manual control
of the solution process from this point on. An extension to nonlinear programming
would not be difficult.

The other solver interface, GENNETFW, is for the generalized network flow optimizer
GENNET (Brown and McBride 1984). It requires a schema-specific control table in the
Activity Section, a nonprocedural device by which the user maps the elemental detail
tables into a GENNET input file. This input file organizes the data for arcs in records
whose fields are: Tail Node, Head Node, Unit Cost, Upper Limit, Lower Limit, Multiplier.
There are conventions for representing the node conservation conditions in records of
this same form, including both equality and interval supplies and demands. The user
must know these conventions, but they are of no concern here.

An important point is that the control table need never be changed so long as the
schema remains the same; inserting, deleting, or updating rows in the elemental detail
tables affects neither the content nor the size of the control table. Figure 4 illustrates this

W

1526 ARTHUR M. GEOFFRION

TAIL HEAD COST U L M
LINK.PLANT LINK.CUST LINK.COST
PLANT.PLANT PLANT.PLANT PLANT.SUP -1
CUST.CUST CUST.CUST CUST.DEM CUST.DEM

FIGURE 4. GENNETFW Control Table for Transportation Model.

table for the classical transportation model appearing in Figures 10 and 11 of (MS 87).
The syntax is straightforward, and the column headings are standard for all GENNETFW
control tables. Each line generates a group of arcs or node conservation conditions. The
first line can be interpreted as follows: generate arcs for all rows in table LINK, with the
tail nodes taken from the PLANT column and the head nodes taken from the CUST
column; use unit costs from the COST column of table LINK, infinite upper flow limits,
zero lower flow limits, and no gains or losses on the flows. The second and third lines
generate interval supplies at the plants and equality demands at the customers.

GENNETFW does the following:

1. Read the elemental detail tables and the control table.

2. Construct the GENNET input file specified by the control table.

3. Run GENNET.

4. Import the optimal solution back into Framework with all variable values clearly
identified (GENNET’s requirement for consecutive integer node names is handled
automatically).

Logical Inference. One popular approach to logic-based inference is via the Prolog
language, all implementations of which incorporate an inference engine. FW/SM’s
PrologQuery process enables this kind of inference to be accomplished with respect to
the basic structural information of an SML schema. It does this by automatically trans-
lating this information into Prolog predicates (facts and rules), exporting these along with
certain other “‘stock” predicates to Arity Prolog (Arity 1987), invoking Arity Prolog with
proper initial conditions, and depositing the user in the command-driven Arity Prolog
environment. The full power of Arity Prolog is available to the user for answering ad
hoc or pre-packaged logical queries based on the available schema information. Upon
exiting, the user returns automatically to FW/SM.

The basic structural information available for inferencing is the following: all genus
and module names, the type of each genus, all definitional dependencies (including, for
each, which component of the calling genus’ generic calling sequence does the calling),
and the schema’s hierarchical structure (including the order for each sibling set). The
approach used for translating this information into fact-type predicates suitable for Prolog
was devised by Chari (1988). No additional details of an SML schema, nor any of the
information in elemental detail tables, are translated into predicate form. It would have
been straightforward to do so, but this would have been only marginally useful to our
research program.

Inferencing capabilities are expanded by the “stock™ predicates mentioned earlier.
These rule-type predicates, also devised by Chari (1988), capture the relevant schema-
related core concepts of Geoffrion (1989b). It is not so much the final predicates corre-
sponding to these rules that are of use—for these must be satisfied by any SML schema
that passes SMLCheck—but rather the various preparatory predicates introduced to fa-
cilitate defining the final predicates.

As an example for those familiar with Prolog, suppose that one wishes to list all primitive
entity genera that contribute directly or indirectly to the definition of a particular genus
“gname.” To do this, one could define the predicate

FW/SM: A PROTOTYPE STRUCTURED MODELING ENVIRONMENT 1527

call_pe(X, Y) :- gcalls_ms(X, Y), agt(Y, pe)
and then run it in the form
call_pe(gname, Y).

Here agi(Y, pe) is a fact-type predicate which says that genus Y is of primitive entity
type, and gcalls_ms(X, Y) is a preparatory predicate which is true if genus X definitionally
depends directly or indirectly on genus Y.

PrologQuery offers a radically different alternative from the Reference Section for
accessing selected Schema Section details for purposes of ad hoc query and reporting.
These approaches are complementary.

3. Significance of FW/SM

The previous section gave a factual description of the overall structure of FW/SM and
the function of each of its special processes. This section, by contrast, is opinionated. It
discusses certain features of FW/SM in terms of their broader significance, with particular
attention to the implications of FW/SM for designers and evaluators of modeling systems
and environments.

We incorporate into this discussion many of the lessons learned from the FW/SM
project, but leave to the companion paper Neustadter et al. (1992) most of the more
technical lessons.

This section takes a top-down approach, beginning with Framework’s desktop envi-
ronment and continuing with the model collection, the interfaced solvers, the overall
design of Model Workspaces, and some of the processes.

3.1. Framework’s Desktop Environment

The decision to build the prototype on top of Framework not only had a profound
effect on overall system architecture, but it also largely determined the user interface and
what basic services would be available to the user. We leave a discussion of the first effect
to the companion paper cited above. ’

Framework’s user interface—reminiscent of Macintosh’s and with a strong flavor of
direct manipulation (Shneiderman 1987)—has proven to be easy to use and appropriate
to the demands of analytical modeling, at least within the limited range of our experience.
This positive assessment is consistent with the current strong commercial trend toward
graphical user interfaces, both in general and in the particular case of analytical modeling
software.

Framework’s basic services also have proven, in our trials, to be convenient and com-
patible with the demands of analytical modeling. As advocated in (MS 87) and Geoffrion
(1989c), a modeling environment should support as much of the full modeling life cycle
as possible; this in turn requires

. . a high degree of sofiware integration, especially with respect to tools and utilities for com-
munication (e.g., business graphics, telecommunications, and word processing or even desktop
publishing), for organizing things and ideas (e.g., configuration and version control, database
management, file management, outlining, and project management), and for quantitative analysis
(e.g., data acquisition, interactive data analysis, graphics, mathematical, spreadsheet, and statistical
programs). (Geoffrion 1989c)

Framework certainly exhibits the requisite degree of software integration, although it
does not provide all the services just listed. It does provide outlining, word processing,
table editing, file management, macros, and a rich built-in programming language. These
have been essential. It also provides spreadsheet modeling, business graphing, and tele-
communication facilities, which have proven useful on occasion; and LAN support,
which we happen not to have used as yet.

1528 ARTHUR M. GEOFFRION

It would be possible to integrate some of the missing services into FW/SM, but it is
not necessary to do so for FW/SM users to appreciate the value of well-integrated access
to tools and utilities like the ones provided. A few workaday examples will underscore
this point: (1) Framework’s outliner is superb for navigation, editing, and display control
of the hierarchical structure that organizes the genus paragraphs in the Schema Section;
(2) Framework’s table editor is indispensable for working with the tables in the Elemental
Detail Section, and for manipulating the documents in the Reference Section; (3) Frame-
work’s copy, move, and cut-and-paste facilities find regular use as a way to transfer
material among different parts of a Model Workspace, and between Model Workspaces
and external files and documents being written with Framework’s word processor.

Two other points deserve mention. One is that FW/SM behaves exactly like Framework .
until the user decides to invoke one of its processes by calling up the special menu. This
style, which leaves the user in full control of a familiar commercial software package
rather than having to learn a totally unfamiliar modeling system, may turn out to be one
of the few avenues leading to much broader acceptance of modeling tools. FW/SM shows
that even sophisticated modeling capabilities can be delivered in this way. In a word,
FW/SM illustrates a “piggyback’ approach to modeling environment design and imple-
mentation which saves the cost of implementing the host package’s services.

The second point is that modern word processors offer format and font capabilities
like outlining, boldface, italics, underlining, subscripts, and superscripts that can be har-
nessed to improve the readability of model description languages that, for technical reasons
having to do with their processing, are limited to a linear string of standard characters.
As explained in §2.2, FW/SM exploits some of these capabilities in order to relieve the
user of having to enter certain reserved words that serve purely technical purposes. It
seems inevitable that format and font options will increasingly be exploited to enhance
modeling language readability.

3.2. Model Collection

DOS subdirectories have proven satisfactory for physically organizing our collection
of models. We also use a simple structured model for conceptually organizing this col-
lection. For each Model Workspace, it contains the filename, origin, category, maintainer,
domicile, and date of last revision. For maximum usefulness this model should, of course,
be maintained automatically by the modeling environment instead of requiring manual
updating as at present.

One of the three major design challenges posed in Geoffrion (1989c) is that a modeling
environment should be based on a conceptual modeling framework of great generality.
As explained there (see also (MS 87) and Geoffrion 1989b), structured modeling responds
to that challenge by formalizing a general class of definitional systems, for which SML
furnishes a notation. The diversity of the more than 100 models in our collection con-
firms the alleged generality. A printed extract from this collection is available in
Geoffrion (1990c).

Some of our models are SML translations of models appearing in the works of other
authors. These permit comparisons between SML and FW/SM on the one hand, and
alternative modeling styles and systems on the other. A few examples:

e the static Mexican steel industry model from Kendrick, Meeraus, and Alatorre (1983)
enables comparison with GAMS (Brooke, Kendrick, and Meeraus 1988) for economic
planning

e the production model from Ellison and Mitra (1982), Lucas, Mitra, Darby-Dowman
(1983), and Hiirlimann and Kohlas (1988) enables comparisons with the UIMP,
CAMPS, and LPL systems for linear programming

e the distribution model from Fourer, Gay, and Kernighan (1990) enables comparison
with AMPL

FW/SM: A PROTOTYPE STRUCTURED MODELING ENVIRONMENT 1529

e the comprehensive accounting model from LeBlond and Cobb (1985) enables com-
parison with 1-2-3

e the educational database example from Chapter 27 of Date (1981) enables compar-

isons with relational, hierarchical, and network database systems

e the shipping industry example from Hammer and McLeod (1981) and the world

traveler example from Hull and King (1987) enable comparisons with semantic
database systems.

Having the ability to express models from different modeling paradigms in a single
language, rather than in disparate languages, makes it easier for FW/SM users to link
together disparate models to form a more comprehensive model ((MS 87), Geoffrion
1989a). This extends the evident benefits of being able to compose new models by starting
" with existing ones, much as one might compose a routine business letter by modifying
a previous one.

3.3. Interfaced Solvers

FW/SM’s automatic interfaces with commercial-quality solvers for retrieval, optimi-
zation, and inference conform to the sharp separation of models and solvers advocated
in (MS 87).

FW/SM shows that a modeling environment can support a wide variety of solvers;
e.g., it does not have to cater only to optimizers. This enables synergies that are not
possible with just one solver or even one category of solvers. Indeed, we believe that the
ability to manipulate a given model in a wide variety of ways will be one of the char-
acteristics that distinguish today’s modeling systems from tomorrow’s modeling envi-
ronments.

3.4. Model Workspace

The division of each Model Workspace into four main sections (windows) has worked
out largely as intended. This is particularly true for the Schema Section, Elemental Detail
Section, and Reference Section. For example, the cleavage between the Schema Section
and the Elemental Detail Section helps to fulfill the objective of general structure/detailed
data independence as advocated in (MS 87).

However, the Activity Section has not been as exclusive a focus for model manipulation
activities as originally expected. There seem to be two main reasons for this. First, the
XtrieveQuery and PrologQuery processes transport the user to the interactive user inter-
faces which these external solvers provide. Second, it is often convenient to create ad-
ditional frames outside of the Activity Section for a variety of ad hoc purposes, rather
than creating these same frames within the Activity Section containing frame.

This experience suggests that it may be appropriate for modeling systems and envi-
ronments to accommodate a good deal of flexibility as to how users organize model
manipulation activities.

3.5. The Processes

We now comment on the significance of some of FW/SM’s processes.

One point that applies to many of the processes is that they have been implemented
so as to advance the important objective of general structure/instantiating data indepen-
dence. Specifically, SMLCheck, INTERP_CK, REFGEN, NETDRAW, EDGEN, FcEval,
and PrologQuery all work in the absence of any detailed data. Not all extant modeling
systems exhibit this sort of independence. For example, GAMS, a leading modeling
system for mathematical programming, requires detailed data before a GAMS schema
can be processed in any way.

Check General Structure (SMLCheck). With the array of compiler-construction tools
now available, especially for important classes of context-free grammars (e.g., Aho, Sethi,

1530 ARTHUR M. GEOFFRION

and Ullman 1986), it is now commonplace for the context-free component of a modeling
language to be defined formally and used as the basis for the lexical and syntactic analysis
parts of their implementation. Thus lexical and syntactic error-checking have become
routine, and SMLCheck does indeed accomplish this for SML.

But SMLCheck does much more than this: it checks the SML Schema Properties.
Surprisingly, these properties are exhaustive in an important sense. Proposition 2 of
Geoffrion (1990a) shows that a schema which satisfies all Schema Properties is guaranteed
to represent a genuine class of structured models meeting certain desirable qualifications.
A Schema Section that satisfies all Schema Properties may not fulfill all of the intentions
of the modeler, but at least it is internally consistent and free of essentially all errors that
can be checked for in the absence of domain-specific knowledge and meta-knowledge
not expressible in SML.

This result is possible only because SML was designed to support an explicit semantic
framework, that is, a notation-free conceptual formalism for modeling (Geoffrion 1989b).
Such a result is not possible for a language whose semantic framework is implicit, as is
the usual case.

A modeling environment like FW/SM whose checks on general model structure are
potentially exhaustive in the sense described should make it easier and quicker to achieve
correct models than is possible in a modeling environment whose checks are ad hoc and
not necessarily exhaustive. This same point applies with respect to FW/SM’s potential
enforcement of exhaustive checks on model instance data, to which we now turn.

Check Instantiating Data (4_RULE and UNIQUE). The significance of A_RULE
and UNIQUE is that they represent some of the Table Content Rules, which play the
same sort of role with respect to elemental detail tables as Schema Properties play with
respect to a schema.

Proposition 1 of Geoffrion (1990a) essentially asserts that, if a Schema Section passes
SMLCheck and a corresponding Elemental Detail Section abides by all Table Content
Rules and has 100% fill for all attribute value columns, then the result must be a genuine
structured model instance. This model instance may or may not fulfill all of the intentions
of the modeler, but—to repeat a comment made with respect to Proposition 2—at least
it is internally consistent and free of essentially all errors that can be checked for in the
absence of domain-specific knowledge and meta-knowledge not expressible in SML.

FW/SM does not enforce all Table Content Rules at present, although there is no
technical reason why it could not be made to do so. However, there is another imple-
mentation using a more advanced software development technology for which the en-
forcement of all Table Content Rules has been designed and largely implemented (Vicufia
1990). It also implements the enforcement of all Schema Properties. This shows that it
is possible for a structured modeling environment to enforce syntactic and semantic
restrictions, on both general structure and data, that are complete in the sense of the two
propositions cited above.

Check Documentary Comments (/NTERP_CK). SML imposes certain mild conven-
tions on the interpretation part of genus and module paragraphs (see Appendix 5 of
Geoffrion 1990a or §2 of Geoffrion 1990b). This encourages modelers to be conceptually
precise, and enables INTERP_CK to perform several checks on the consistency between
the formal and informal parts of a schema. These checks can detect some kinds of in-
consistency and incompleteness in the formal part, and inconsistency in the informal
part. We believe that schemas which pass these checks are generally higher in quality,
more useful, more maintainable, more readable, and better documented than those pre-
pared without documentary comments obeying such conventions.

Our experience has been consistent with this belief. Taking the time to write interpre-
tations for all schema paragraphs usually pays dividends, most obviously in terms of

FW/SM: A PROTOTYPE STRUCTURED MODELING ENVIRONMENT 1531

model quality. We have often had the experience of writing a schema quickly without
any interpretation at all, only to discover mistakes later when going back and filling in
the interpretations. Consequently, we recommend that modeling system designers consider
providing for plain language documentation with a mild but purposeful discipline that
is machine-checkable.

Generate Skeletal Tables (EDGEN). The elemental detail table designs created by
EDGEN constitute a relational database scheme (e.g., Date 1981). This sets the stage for
the elemental detail tables to be supported by a relational database system. This is an
important opportunity, although FW/SM does not truly exploit it since FW/SM’s database
frames and table editor do not constitute a true ‘“relational database system.” The
XtrieveQuery process, which we discuss later, comes much closer.

For reasons that are widely accepted by the database community, it is desirable for
the data tables in a modeling environment to be free of insertion, deletion, and update
anomalies arising from functional dependencies (e.g., Date 1981). Those produced by
EDGEN essentially are; see Neustadter (1990) for a comprehensive treatment of this
result.

The fact that EDGEN is automatic confers several advantages. One is that the modeler
need expend no effort deciding how to organize instantiating data. This also removes
opportunity for error. Another is that standardized table design rules give all models a
common “look and feel.” A third is that it facilitated the implementation of FW/SM’s
data-driven processes.

Compile Generic Rules into C (FcEval) and Execute (Evaluate). One of the things
that distinguishes analytical modeling from data modeling is the frequent occurrence of
mathematical expressions, especially indexed families of expressions. In structured mod-
eling, these families are represented by indexed function and test genera. The generic
rule of each such genus gives a typical expression that applies: with appropriate specializing
changes, to each element. It is necessary to be able to evaluate all these expressions.

Since the advent of spreadsheets, users are unlikely to be satisfied with any modeling
system or environment that fails to provide the immediate feedback of a resident evaluator.
Nor should they be, for immediate evaluation is one of the most useful of all debugging
tools for both models and results derived by model manipulation (e.g., optimization). It
is also an essential facility for answering “What If” questions, for doing many kinds of
model analysis and results analysis, and for generating reports. To give just one example,
it is important in most applications of optimization to be able to recalculate the complete
consequences of making manual overrides to the “optimal’ solution determined by the
solver. See (MS 87 for further motivation.

FcEval automatically produces a suitable resident evaluator. It compiles each generic
rule into executable code that computes the value of every element of its genus. This
code runs whenever the Evaluate process is invoked. Note the following points:

1. FcEval separates compilation based on general structure from execution based on
instantiating data. Thus, it need only be invoked once so long as the Schema Section
is not changed in a way that could affect generic rule evaluation, and arbitrary edits
can be made to the elemental detail tables (insertions, deletions, and updates of all
kinds) without having to reinvoke FcEval. This “‘warm restart” capability contributes
to the efficiency of Evaluate in the usual case where only some of the data change
from evaluation to evaluation. Moreover, FcEval produces compiled C code rather
than interpreted code, which would be less efficient.

2. Evaluate puts evaluation results into the elemental detail tables where they are
readily accessible to the user, to Framework’s table editor, and to other processes.

The FcEval compiler was one of the most time-consuming of all processes to implement
because, as noted in §2.2, the generic rule sublanguage is quite expressive.

1532 ARTHUR M. GEOFFRION

The equivalent of FcEval is unusual in today’s modeling systems. For example:

e Database systems can conveniently handle only the simplest kinds of mathematical
expressions.

e Spreadsheet packages usually rely on interpreted rather than compiled code, and
require laborious individual entry of expressions in an indexed family unless it hap-
pens to be possible to use.the copy command to generate the proper family of
individual expressions from a single family member.

o AMPL (Fourer, Gay, and Kernighan 1990) has no resident evaluator, relying instead
on whatever optimizer it is linked to. In any case, nonprogrammer users must re-
compile model structure and data ab initio if even a single edit is made to the data,
and the results of optimizer-executed evaluation are likely to be in a flat file format
of limited direct utility. (It is noteworthy that extensions of AMPL’s operating en-
vironment are in progress which include development of capabilities similar to res-
ident evaluation.)

o GAMS (Brooke, Kendrick, and Meeraus 1988) does have a resident evaluator but,
like AMPL, nonprogrammer users must recompile model structure and data ab
initio if even a single edit is made to the data. Moreover, evaluation results are
presented in a flat file format of limited direct utility.

A resident evaluator with the properties mentioned in points 1 and 2 above is likely
to be an important component of the next generation of modeling systems and envi-
ronments.

Generate Reference Documentation. FW/SM’s REFGEN, ID_DICT, EDGEN, and
NETDRAW processes produce an unusually wide variety of reference documents, as
mentioned in §2.4. Bear in mind that these documents relate only to the model itself,
and are distinct from the kinds of reports produced by solvers (e.g., optimizers produce
reports pertaining to an optimal solution).

FW/SM’s reference documents are useful for many purposes, including helping mo-
delers see aspects of a model from different viewpoints, debugging model specifications,
quickly answering common kinds of queries concerning general structure or details,
facilitating communication, and mitigating the ubiquitous problem of inadequate doc-
umentation for both modeling and nonmodeling professionals.

Most mature modeling systems can produce some sort of reference documentation.
By comparison, FW/SM has two main advantages. The first derives from its having been
built on top of an integrated package like Framework. Users do not require much computer
expertise in order to be able to do useful and sometimes quite sophisticated manipulation
of the documents, which are all machine-resident as word frames or database frames
(except for NETDRAW’s display). Users don’t need to know an operating system and
have a stable of utilities and specialized editors, as they probably would with a Unix-
based modeling environment like ANALYTICOL (Childs and Meacham 1985). They
just need to know Framework, which was designed for users with limited computer
expertise.

The significance of this advantage is not that it encourages future modeling environ-
ments to be built using a particular integrated package, but rather that it has enabled us
to confirm through personal experience the importance, in the realm of reference doc-
umentation, of the kind of software integration called for in the quote given in §3.1.

The second advantage of FW/SM is that it is based on a conceptual modeling framework
that gives a central role to capturing definitional dependencies when specifying the general
structure of a model. Thus it is possible for FW/SM to produce documents that cannot
be produced without this kind of information, namely (at present): the Calling Sequence
report, the Topological Sort, the Adjacency and Reachability Matrices, and (a version
of) the Genus Graph. We remark that definitional dependency information is valuable

FW/SM: A PROTOTYPE STRUCTURED MODELING ENVIRONMENT 1533

not only to enable certain kinds of reference documentation, but also for such uses as
integrated modeling (see §3.2 of (MS 87)) and model maintenance and evolution, the
efficiency of which depends importantly on knowing all implications of any given change.

Export Tables and Invoke Menu-Driven Query Interface (XtrieveQuery). The
XtrieveQuery process demonstrates the possibility that similar automatic interfaces to
relational DBMSs may be achievable for any modeling environment that separates its
specification of general structure from its specification of instantiating data, and that
organizes its data in relations with predictable structure. The desirability of such interfaces
was argued in (MS 87).

A DBMS interface gives access to a query interface and query processor for efficiently
answering a wide variety of questions with respect to a model’s data, optimal variable
values (if an optimizer has been invoked), and other calculated values. The lack of such
query capabilities in most extant modeling systems constitutes one of the greatest
anachronisms of contemporary modeling practice.

Perform Optimization (MPS_Interface and GENNETFW). The MPS_Interface and
GENNETFW processes suggest that optimization-oriented modeling systems like those
for the AMPL (Fourer, Gay, and Kernighan 1990), GAMS (Brooke, Kendrick, and
Meeraus 1988), and LINGO (Cunningham and Schrage 1991) languages may have the
potential to evolve into modeling environments that support much more of the modeling
life cycle than just the optimization phase. This would bring about a qualitative im-
provement in their usefulness.

FW/SM’s two optimization interfaces are not designed for large-scale problem solving,
but—as pointed out in §2.5—they do enable experimentation with two different design
positions about how much the user is required to know. It is not clear at this time which
style of interface is best in which circumstance. There are advantages to requiring the
user to understand both the model and the desired solver well enough to be able to fill
out a simple control table linking the two. On the other hand, there are advantages to
minimizing the work required of the user. '

Whichever interface style is adopted, no computer programming skill should be required
of the user, and it should be easy to switch optimizers if more than one is available that
applies to the model at hand. These are properties that surely will be found in all successful
modeling environments of tomorrow.

Export Basic Schema Structure and Invoke Arity Prolog (PrologQuery). Support for
the model formulation process is one of the weak links of today’s modeling systems.
This process requires a great deal of ad hoc reasoning about partial or interim model
structures, and much additional ad hoc reasoning takes place with respect to the general
structure of models as they are instantiated, communicated, solved, and used in various
other ways throughout the modeling life cycle. Thus there is a clear need for the kind of
logical inference capabilities that PrologQuery makes available for ad hoc reasoning about
the most fundamental aspects of general model structure. Such capabilities are unusual
among contemporary modeling systems, except perhaps for those based on logic modeling
(e.g., Bhargava 1990, Chari and Krishnan 1990, Krishnan 1991).

FW/SM'’s simultaneous support for logical inference together with solvers for retrieval
and optimization presages the advent of modeling environments that offer inferencing
capability in addition to the more usual solution capabilities around which current mod-
eling systems are built.

4. Conclusion

The main task of this section is to appraise the degree to which FW/SM fulfills the
vision presented in Geoffrion (1989c) for a new generation of modeling environments.
That article, it should be noted, only mentions structured modeling in passing.

1534 ARTHUR M. GEOFFRION

The article argues that a modeling environment needs five properties in order to achieve
the primary goals of higher quality, higher productivity, and greater popularity for model-
based work. It should:

(1) nurture the entire modeling life cycle, not just part of it

(2) be hospitable to decision- and policy-makers, not just to modeling professionals

(3) facilitate the maintenance and ongoing evolution of the models and systems built

within it

(4) enable all of its inhabitants to “speak” the same paradigm-neutral language for

model definition

(5) facilitate good management of key resources, namely data, models, solvers, and

results derived from these.
The article goes on to detail the design implications of these properties, and thence to
infer three major design challenges:

(A) the need for a general conceptual framework for modeling

(B) the need for an executable model description language based on this framework

(C) effective software integration covering (i) linkable libraries of data sources, models,
solvers, and derived results, (ii) programs that achieve the necessary kinds of ““ex-
ecutability,” and (iii) the tools and utilities needed for total life cycle support of
modeling work.

We discuss each of these challenges.

4.1. Challenge A: Conceptual Framework

(MS 87 and Geoffrion (1989b) put forth structured modeling as an answer to Challenge
A. This framework is demonstrably general in applicability, rigorous, paradigm-neutral
and yet compatible with most modeling paradigms in MS/OR, and suitable for use as a
foundation for meeting Challenge B. See, for example, the discussion of §3.2 of the
present article. These are four of the six requirements that Geoffrion (1989c) lists for a
framework to meet Challenge A. A fifth is that it should be “understandable and natural
for the main players at each stage of the modeling life cycle.” It is too soon in the history
of structured modeling to reach a definitive judgement on this requirement, but the
appearance of FW/SM and a comprehensive SML tutorial (Geoffrion 1990b) set the
stage for a proper evaluation.

The final requirement is that the conceptual modeling framework should be compatible
with “good” modeling style. We believe that structured modeling meets this admittedly
subjective requirement, and arguments to this effect have been made elsewhere. Some
of the reasons: it separates general structure from instantiating data, separates models
from problems from solvers, exploits repetitive structure (that is the main task of genera),
organizes models hierarchically in modules, and documents interdependencies.

FW/SM'’s role with respect to Challenge A is to offer the opportunity for hands-on
experimentation with one possible realization of the structured modeling framework,
thereby enabling individuals to judge for themselves this framework’s potential with
respect to the six requirements.

4.2. Challenge B: Executable Modeling Language

Geoffrion (1990a) puts forth SML as an answer to Challenge B and studies its theoretical
adequacy. We mentioned two of the results of that study in §3.5 of the present article.

Geoffrion (1989c¢) points out that five of the six requirements relating to Challenge A
also apply to any executable modeling language aspiring to support the chosen modeling
framework. Because SML was designed specifically to support the structured modeling
framework, it was possible to design SML so that it satisfies these requirements to about

FW/SM: A PROTOTYPE STRUCTURED MODELING ENVIRONMENT 1535

the same degree as the structured modeling framework satisfies them in the context of
Challenge A.

FW/SM proves that SML is “executable,” but does it provide the necessary function-
ality? Geoflrion (1989c) lists four desirable kinds of functionality as error-trapping, au-
tomatic documentation, solver interface setup, and a smart loader/editor for detailed
data. We discuss each in turn.

Error-Trapping. The theory behind the SMLCheck process shows that syntactic and
semantic error-trapping can be complete in an important sense at the level of model
classes, as explained in §3.5. A similar statement holds relative to error-trapping at the
level of detailed data, although FW/SM is as yet quite incomplete in this regard. Vicufia
(1990) shows that complete error-trapping is possible at both levels.

Automatic Documentation. Thanks to REFGEN and a few other processes, FW/SM
can automatically produce a variety of useful kinds of model documentation.

Solver Interface Setup. FW/SM’s ability to automatically set up easy, no-programming
interfaces to external solvers for optimization, query, and logical inference is demonstrated
by the GENNETFW, MPS__Interface, XtrieveQuery, and PrologQuery processes.

Smart Loader/Editor. A smart loader/editor for detailed data should be set up au-
tomatically, be customized to the general model structure at hand, and should offer: (a)
data structures able to hold elemental detail table data, together with a passive interface
for entry and editing, and (b) an active interface for data entry and editing. The active
interface should be able to: (b1) automatically create genus element populations that are
fully defined in terms of other genus element populations (e.g., enter a Cartesian product
where the general structure calls for one), (b2) diagnose what operations are needed to
achieve a state of internal data consistency, and (b3) carry out, or at least assist in per-
forming, the needed operations. FW/SM offers (a) via EDGEN. It does not yet offer (b).
The technology of FcEval can be adapted to achieve (bl). Function (b2) is possible
because SML aims to make all definitional dependencies explicit via the generic calling
sequence, and because the Table Content Rules of Geoffrion (1990a) constitute a
comprehensive characterization of internal data consistency (as explained in §3.5 of
this article). Function (b3) can build on functions (bl) and (b2). Detailed design is
under way.

In summary, FW/SM’s main role with respect to Challenge B is to demonstrate that
most (perhaps all) of the necessary executability can be achieved, and to enable SML’s
worth to be judged on the basis of hands-on experience.

4.3. Challenge C: Software Integration

FW/SM illustrates one possible approach to achieving the level of software integration
called for by Challenge C. Namely, add new modeling capabilities to a popular software
package that already provides a highly integrated set of services needed by any modeling
environment. The first three sections of this article show that FW/SM adequately meets
Challenge C at the level of a research prototype.

The companion paper on FW/SM’s implementation (Neustadter et al. 1992) discusses
FW/SM’s approach to software integration from a programming viewpoint. More gen-
erally, it would appear that the technical problems posed by Challenge C are rapidly
being mitigated by intense commercial activity in the software development community
aimed at database connectivity, graphical user interfaces, interoperability, multitasking,
networking, and more advanced application development tools and operating systems.

4.4. Closing Comments

It should go without saying that the modeling environment ideals presented in Geoffrion
(1989c) are not immutable, but rather serve as a point of departure. We agree strongly

1536 ARTHUR M. GEOFFRION

with the viewpoint expressed in Barstow et al. (1984) in the context of programming (not
modeling) environments. The following quote from the editors’ closing chapter is equally
applicable in the present context:

The process of developing programming environments is highly experimental. We have no hope
of abstractly defining the “ideal” programming environment, which can then be implemented.
Our best strategy, in fact our only viable one, is to continue to develop environments, experiment
with them to identify those aspects which are either helpful or useless, and to incorporate these
lessons into the next experiment.

We have approached FW/SM in this spirit. We have used it to confirm theoretical
results (e.g., various results about the internal consistency of SML), to probe conjectures
(e.g., concerning the generality of SML and the usefulness of hierarchical structure for
managing complexity), to test the feasibility of design options (e.g., three major options
for designing a resident evaluator for function and test genera), and to demonstrate
structured modeling ideas to outsiders in quest of their feedback. We have also used it
to experimentally guide the evolution of our ideas about modeling environments. In fact,
SML itself and the vision presented in Geoffrion (1989c) were influenced to a considerable
degree by experience with an evolving FW/SM.

Our plans for FW/SM’s future include extending its capabilities, using it to study the
learnability and effectiveness of SML for various classes of users, and studying the ap-
plicability of FW/SM and the ideas it incorporates to practical modeling work and to
the evolutionary improvement of other modeling systems. Our experience with FW/SM,
together with the experience of others who are presently exploring alternative design
concepts and implementation technologies, will guide our future efforts relative to FW/
SM and new research prototypes.

The first successor prototype entered development in July of 1991. It is being pro-
grammed in C++ and OSF/Motif under UNIX on a Sun SPARCstation, relies heavily
on a commercial database system, adopts the object-oriented paradigm where applicable,
and places great emphasis on extensibility—especially with respect to the incorporation
of new solvers.

In closing, it should be said that evolving research prototypes of this complexity are
very difficult to sustain in a university setting. The demands for professional skills, financial
resources, and sheer patience are severe. Nevertheless, it is this writer’s firm belief that
research on modeling environments requires experimental developments of this sort if
it is to achieve its full potential for success.'

! Partially supported by the National Science Foundation, the Office of Naval Research, Ketron Management
Science, Inc., and Shell Development Company. The views contained in this report are those of the author and
not of the sponsors.

I'am pleased to acknowledge the excellent design and impiementation work done by Sergio Maturana, Laurel
Neustadter, Yao-Chuan Tsai, and Fernando Vicufia. Their comments on a draft of this paper also were invaluable,
as were those of Richard Ramirez and Gordon Wright.

References

AHO, A. V., R. SETHIAND J. ULLMAN, Compilers: Principles, Techniques, and Tools, Addison-Wesley, Reading,
MA, 1986.

ARITY, “Arity Prolog Version 5.0,” Arity Corporation, 30 Domino Drive, Concord, MA 01742, 1987.

ASHTON-TATE, Framework III, Ashton-Tate, 20101 Hamilton Ave., Torrance, CA 90502, 1988.

BARSTOW, D. R., H. E. SHROBE AND E. SANDEWALL (EDS.), Interactive Programming Environments, McGraw-
Hill, New York, 1984.

BHARGAVA, H., “A Logic Model for Model Management: An Embedded Languages Approach,” Ph.D. Thesis,
The Wharton School, University of Pennsylvania, 1990, 163 pp.

BROOKE, A., D. KENDRICK AND A. MEERAUS, GAMS: A User's Guide, The Scientific Press, Redwood City,
CA, 1988.

FW/SM: A PROTOTYPE STRUCTURED MODELING ENVIRONMENT 1537

BROWN, G. G. AND R. D. MCBRIDE, “Solving Generalized Networks,” Management Sci., 30, 12 (December
1984), 1497-1523.

CAREY, M. J. AND D. J. DEWITT, “An Overview of the EXODUS Project,” Database Engineering, 10, 2 (June
1987), 47-54.

CHARI, S., “Knowledge Representation Using Structured Modeling,” Ph.D. Thesis, Anderson Graduate School
of Management, UCLA, 1988, 225 pp.

AND R. KRISHNAN, “Towards a Logical Reconstruction of Structured Modeling,” Working Paper 7-
89, Decision Systems Research Institute, SUPA, Carnegie-Mellon University, October 1990, 42 pp.;
Decision Support Systems, (to appear).

CHILDS, C. AND C. R. MEACHAM, “ANALYTICOL—An Analytical Computing Environment,” AT&T Tech.
J., 64, 9 (November 1985), 1995-2007.

CLEMENCE, JR., R. D., “LEXICON: A Structured Modeling System for Optimization,” Master’s Thesis, Naval
Postgraduate School, Monterey, CA, June 1984.

CUNNINGHAM, K. AND L. SCHRAGE, LINGO Optimization Modeling Language, University of Chicago, Chicago,
1991, 110 pp.

DATE, C. J., An Introduction to Database Systems. Vol. 1, (Third Ed.), Addison-Wesley, Reading, MA, 1981.

DEsAL S., “Extensible Database Systems as a Platform for Modeling,” Ph.D. Thesis in progress, Anderson
Graduate School of Management, UCLA, 1992,

ELLISON, E. F. D. AND G. MITRA, “UIMP: User Interface for Mathematical Programming,” ACM Trans. Math.
Software, 8, 3 (September 1982), 229-255.

FARN, C. K., “An Integrated Information System Architecture Based on Structured Modeling,”” Ph.D. Thesis,
Graduate School of Management, UCLA, 1985.

FOURER, R., D. M. GAY AND B. W. KERNIGHAN, “A Mathematical Programming Language,” Management
Sci., 36, 5 (May 1990), 519-554.

GEOFFRION, A. M. (MS 87), “An Introduction to Structured Modeling,” Management Sci., 33, 5 (May 1987),
547-588.

, “Reusing Structured Models via Model Integration,” Proc. Twenty-Second Annual Hawaii Internat.

Conf. System Sciences, held in Kailua-Kona, January 1-3, IEEE Computer Society Press, Washington,

1989a, 601-611. To be reprinted in R. Blanning and D. King (Eds.), Current Issues in Decision Support

Systems, IEEE Computer Society Press.

, “The Formal Aspects of Structured Modeling,” Oper. Res., 37, 1 (January-February 1989b), 30-51.

——, “Computer-Based Modeling Environments,” European J. Oper. Res., 41, 1 (July 1989c¢), 33-43.

, “SML: A Model Definition Language for Structured Modeling,” Working Paper 360, Western Man-

agement Science Institute, UCLA, revised August 1990a, 129 pp.

, “The SML Language for Structured Modeling,” Working Paper 378, Western Management Science

Institute, UCLA, August 1990b, 160 pp. Two-part extract Oper. Res., (to appear).

, “A Library of Structured Models,” Informal Note, Anderson Graduate School of Management, UCLA,

revised August 1990c, 274 pp.

, “Indexing in Modeling Languages for Mathematical Programming,” Working Paper 371, Western

Management Science Institute, UCLA, revised July 1991a, 180 pp. Extract to appear in Management

Sci. Portions appeared as “A Taxonomy of Indexing Structures for Mathematical Programming Modeling

Languages,” in Proc. Twenty-Third Annual Hawaii Internat. Conf. System Sciences, held in Kailua-

Kona, January 2-5, 1990; Vol. III, IEEE Computer Society Press, Washington, 463-473.

, “FW/SM: A Prototype Structured Modeling Environment,” Working Paper 377, Western Management

Science Institute, UCLA, revised July 1991b, 36 pp.

, S. MATURANA, L. NEUSTADTER, Y. TSAIAND F. VICUNA, “User Documentation for FW/SM Release
X90-09,” Anderson Graduate School of Management, UCLA, December 1990a, 100 pp.

, , X AND , “Technical Documentation for FW/SM,” Anderson Graduate
School of Management, UCLA, April 1990b, 102 pp.

HAMMER, M. AND D. MCLEOD, ““Database Description with SDM: A Semantic Database Model,” ACM Trans.
Database Systems, 6, 3 (September 1981), 351-386.

HiLL, D. S., “A Prototype for Converting Linear Programming Models to Structured Modeling Graphs,” Master’s
Thesis in Information Systems, Naval Postgraduate School, March 1989, 137 pp.

HuLL, R. AND R. KING, “Semantic Database Modeling: Survey, Applications, and Research Issues,” ACM
Comput. Surveys, 19, 3 (September 1987), 201-260.

HURLIMANN, T. AND J. KoHLAS, “LPL: A Structured Language for Linear Programming Modeling,” OR
Spektrum, 10 (1988), 55-63.

JoNEs, C. V., “Attributed Graphs, Graph-Grammars, and Structured Modeling,” Ann. Oper. Res., (1991) (to
appear).

KENDRICK, D. A., A. MEERAUS AND J. ALATORRE, The Planning of Investment Programs in the Steel Industry,
The Johns Hopkins University Press, Baltimore, MD, 1983.

1538 ARTHUR M. GEOFFRION

KRISHNAN, R., “PDM: A Knowledge-Based Tool for Model Construction,” Decision Support Systems, (1991)
(to appear).

LEBLOND, G. T. AND D. F. COBB, Using 1-2-3, (Second Ed.), Que Corporation, Indianapolis, 1985.

LENARD, M., “An Implementation of Structured Modeling Using a Relational Database Management System,”
paper presented at Second Annual Conf. Integrated Modeling Systems, University of Texas, Austin,
October 1987, 20 pp.

Lucas, C., G. MITRA AND K. DARBY-DOWMAN, “Modeling of Mathematical Programs: An Analysis of Strategy
and an Outline Description of a Computer Assisted System,” Report TR/09/83, Department of Math-
ematics and Statistics, Brunel University, UK, October 1983.

MICRO DATA BASE SYSTEMS, KnowledgeMan, Micro Data Base Systems, Inc., P.O. Box 248, Lafayette, IN
47902, 1985.

MS 87. See Geoftrion (1987).

NEUSTADTER, L., “On the Structure of Data in SML Models,”” Research Paper, Anderson Graduate School of
Management, UCLA, March 1990, 62 pp.

, A. GEOFFRION, S. MATURANA, Y. TSAI AND F. VICUNA, “The Design and Implementation of a
Prototype Structured Modeling Environment,” Ann. Oper. Res., Model Management, B. Shetty (Ed.),
(1992) (Forthcoming).

NOVELL, Xtrieve: Interactive Query Manual, Novell Development Products Division, 6034 W. Courtyard, Suite
220, Austin, TX, 1988.

O’DELL, D. D., “The Design and Implementation of a Visual User Interface for a Structured Model Management
System,”” Master’s Thesis in Information Systems, Naval Postgraduate School, March 1988, 170 pp.

PARK, J. Y., “A Computer-Aided Tool for Decision Support Model Building Based on Structured Modeling,”
Master of Engineering Thesis, Korea Advanced Institute of Science and Technology, December 1987,
57 pp. plus appendices.

RAMIREZ, R., “The ASUMMS Project: An Overview,” Dept. of Decision and Information Systems, Arizona
State University, January 1990, 10 pp.

, “Architecture and Implementation of the DAMS System,” ISUMMS Technical Report No. 4, lowa
State University, July 1991, 44 pp.

REPS, T. W. AND T. TEITELBAUM, The Synthesizer Generator, Springer-Verlag, New York, 1989.

SCHRAGE, L., LINDO: An Optimization Modeling System, (4th Ed.), Scientific Press, Redwood City, CA, 1991.

SHNEIDERMAN, B., Designing the User Interface, Addison-Wesley, Reading, MA, 1987.

VICURA, F., “Semantic Formalization in Mathematical Modeling Languages,”” Ph.D. Thesis, Computer Science
Department, UCLA, June 1990.

WOROBETZ, N. D. AND G. P. WRIGHT, “Data Model Representation and Implementation in OR/SM, a Model
Management System,” draft working paper, Krannert Graduate School of Management, Purdue Uni-
versity, 1991, 47 pp.

WYANT, M. A., “Design and Implementation of a Prototype Graphical User Interface for a Model Management
System,” Master’s Thesis in Information Systems, Naval Postgraduate School, March 1988, 98 pp.

