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IN AN article™ in this JOURNAL in 1963, Evererr observed that if 20 is optimal in

maximizezex f(x) — Z:Zb i (), )

where the m constants u; are nonnegative ‘multipliers’ and f and the g; are arbi-
trary real-valued functions defined over an arbitrary set X, then a? also maximizes
f(x) over all zeX satisfying g;(x) <g:(2%) (=1, ---,m).f Thus to solve

maximizezex f(x) subject to g;(r)<b; (=1, ---,m), 2

where the b; are given constants (it is convenient to think of the b; as the amounts
of available resources) it is sufficient to find nonnegative multipliers «;® such that—
and this we call Everett’s Condition—a corresponding optimal solution 2° of (1)
can be found that satisfies ¢;(2°) =b;(¢=1, ---, m). If such multipliers exist and
a convenient mechanism for finding them is available, then solving (2) by solving
(1) may be computationally convenient. For many problems of practical interest,
however, such multipliers do not exist; but there may still be multipliers for which
the g;(z°) approximate the b; closely enough for 2° to be a useful approximate
solution to (2). This approach amounts to reducing (2) to a problem without the
¢; constraints.

The kth step (k=2) of the iterative procedure implicitly suggested by Everett
for finding an (approximate) solution to (2) is [here u=(u;, - - -, Um)]:

(k.1) Based on knowledge of !, !, ---, w*™ 2% choose multipliers u;*=0
(=1, .-+, m) in an attempt to satisfy Everett’s Condition.

(k.2) Solve (1) with v =u* for an optimal solution z*.

(k.3) If g;(x¥) is ‘sufficiently near’ b;, t=1, ---,m, then stop; 2* is sufficiently
near to being optimal in (2). Otherwise, go to step k1.

Step 1 is the same as the general step, except that it begins with an arbitrary w!
(guessed on the basis of past experience with a similar problem, say). It is assumed

t This observation is Fverett’s ‘Main Theorem’ [reference 4, p. 401].
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that some method is available for performing substep (%.2).1 How to perform
substep (k.1) when m =2 was left largely unresolved by Everett, and stimulated
the present note.f

The main purpose of this note is to indicate how one might approximate the
desired multipliers by means of linear programming. First, however, we weaken
Everett’s Condition slightly so that his approach can be applicable to problems
with ineffectual constraints. A relation then becomes apparent to the saddle-
point condition of Kumn Anp Tucker®! for nonlinear programming. Since
Everett’s approach seems most competitive with other known methods for certain
discrete allocation problems, we consider this case in some detail. It will be seen
that Everett’s method, when the multipliers are found by linear programming, be-
comes essentially the Simplex method with a ‘column-generating’ feature applied
to an approximation of (2). TFinally, we point out a relation to the so-called de-
composition method of concave programming®! for continuous allocation prob-
lems.

WEAKENING EVERETT’S CONDITION

IN CERTAIN problems with ineffectual constraints, Everett’s Condition is unneces-
sarily restrictive in that, when a multiplier is zero, it is not necessary to require
that the corresponding constraint be satisfied with strict equality. All that is
needed is to find 2° and ° such that

(i) 29 is optimal in (1) with u =u?, and

(i) u*=0 and ;>0 (resp.=0) implies g;(z%) =b; (resp.=<by), t=1, -+, m.
It is easily shown that if these conditions are satisfied, then z° is optimal in (2).
We shall henceforth deal with this slightly modified version of Everett’s condition.

It is of interest to note that (i) and (ii) are equivalent to the requirement that

(29, u%) be a saddle-point of the Lagrangian

Lz, u) =f(@) — 2 i7 wilgi(@) —bi, ie,,
Lz, u?) <L(a® u°) < L(x% w) forall — zeX and u=0.

Thus Everett’s approach is seen to be essentially the attempt to construct a saddle-
point for L(z, u). Kuhn and Tucker!® and others have given conditions on (2)
that guarantee the existence of such a saddle-point. The basic condition for Euclid-
ean spaces is that X be a convex set, f a concave function, and the g; convex
functions which satisfy any one of a number of mild qualifications.! Similar
conditions for more general spaces are known (see, e.g., reference 7). Unfortunately,
such conditions do not cover the case in which X is discrete, the situation of greatest
interest to Everett and perhaps the one in which his (modified) approach is most
promising.

t Throughout this paper we assume, as Everett did implicitly in his, that (1)
achieves its maximum for any set of nonnegative multipliers. A sufficient condition
for this when X CRn is that X be closed and bounded and f and the g; be continuous.
Similar sufficient conditions exist for more general spaces (e.g., reference 2, p. 69).
See also the footnote, on p. 1151.

1 We would like to thank Davip McGArVEY for encouraging our interest in this
question.
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FINDING THE MULTIPLIERS BY LINEAR PROGRAMMING

WHEN (2) 18 a linear programming problem, i.e., when X is the nonnegative orthant
of E™ and f and the g; are linear functions, then it is not difficult to show that
(20, u°) satisfies conditions (i) and (ii) above if and only if 2° solves (2) and ° solves
the dual of (2). The u, are often interpreted as the ‘dual prices’ associated with
(2), and are produced as an automatic by-product of the computational solution of
(2). Dropping the assumption of linearity now, and observing that the burden of
substep (k.1) is to approximate such prices on the basis of the data u, 2, - - -, u*7,
2%1, it seems natural to use linear programming to compute the prices correspond-
ing to a linearized version of (2) over the convex hull of the grid (z, ---, 2% 7%,
The resulting linear program, the dual prices of which are required at substep
(k.1), is:
maximizex, 0 O iy Aef(zf) subject to Ine=1,

SE I Ngi@h) b, @=1, .-, m).

Substep (k.1 LP): Solve (3) for the dual prices uo*, w:*, - - -, un* corresponding
to the m+1 constraints.

®3)

By linear programming theory, u,*=0 (=1, ---, m). The significance of u"
will become apparent below.
Discrete Case

If X={&, ---, é~}, where N is a finite positive integer, then Everett’s pro-
cedure using (k.1 LP) is very close to the Simplex method for the linear program-
ming problem

maximizex,>0 > i1 Nif(€;) subject to ¥Ni=1,
T NgE) b G=1, -0, m).
The subproblem (1), which now takes the form

maximizege (z,, - - -, ty) S(E) — oo ui gi(8), (5)

does nothing more than determine (by the usual Simplex criterion) which new
variable to bring into the basis at the kth iteration.t This permits the economy of
carrying explicitly at one time no more than m+1 of the N columns corresponding
to the ;. The usual Simplex termination signal occurs at the first step %, such that

maximumee g, ---, ey) LfE) — 2127 u g:(5)] Sut (6)

(actually the maximum will =wus*). Thus in the finite discrete case Everett’s
procedure becomes precisely the Simplex method applied to (4) with a ‘column-
generation’ feature if substep (k.3) is replaced by

Substep (k.3 LP): If (6) holds, stop. Otherwise, go to step k1.

4)

t In practice one probably would not solve (5) completely at every step, particu-
larly in the early steps or when VN is very large; from the theory of the Simplex method
it is known that it is enough to find a & that gives a value greater than u.* to the
maximand.
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Since (4) is a finite linear program, Everett’s procedure with substeps (k.1 LP)
and (k.3 LP) is finitely convergent to the optimal solution N;*, j=1, ---, N, of (4).

This method has been used to advantage by GiLMORE aND Gomory.[®! In
their problem a £&; was a cutting pattern, and the subproblem a knapsack problem.

The question arises regarding the relation of the optimal solution of (4) to
the original problem (2). Harking back to Everett’s discussion of his method in
terms of ‘payoff-constraint space,” we see that if the points [f(£;), g1(£5), - - -, gm(€5)]
eR™(j=1, ..., N) are sufficiently dense near the boundary of their convex hull,
then some of the policies &; corresponding to A\;*>0 (and there will be no more
than m +1 of these) will be good approximate solutions to (2).

Note that it is not necessary to store all of the &; corresponding to the basic
\; as the calculations proceed, but only the corresponding f(&;) and g,(§,), ©=1,
-«+,m. After termination, the ‘basic’ £; can be recovered if desired by utilizing
the fact that they ‘price out’ to 0. That is, they achieve the maximum ue* =uk?
in (6). In fact all of the £; that achieve u* in (6) are ‘used’ by some optimal
solution of (4). If it is desired to examine the £; used in near-optimal solutions of
(4), then one should recover the £; that satisfy

JE) = T8 ud* gi(E) 2ue* —e )

for some suitably small € >0.

A possibly useful interpretation of (4) is the following: it is the extension of (2)
from pure to mixed (randomized) strategies with f and the g; replaced by their
expectations. In this interpretation, A;* is the probability of utilizing allocation £;.
When mixed strategies have a legitimate and acceptable interpretation, then (2)
should have been written as (4) in the first place.f

Continuous Case

If X is not a finite discrete set, then the analysis of the previous case is compli-
cated by the fact that there are an infinite number of variables in (4). Neverthe-
less, Everett’s procedure using substep (k.1 LP) is almost exactly the so-called
decomposition procedure for nonlinear programming.’1!  When X is a bounded
convex set and f is concave and the g; are convex functions, then the sequence
(35T Aty converges®® to an optimal solution of (2) as k—.
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Let, P4, Pp, and P4Pp denote the transition probability matrices of finite
Markov chains A, B, and the ‘product chain’ AB. It is demonstrated
by counterexamples that the sets of recurrent, periodic, and transient
states of A and B cannot be simply related to the corresponding sets of
AB.

ET R4, Rg, and R4 denote the recurrent states of finite Markov chains with
transition probability matrices P4, Pp, and P4Pp, respectively. Then the
following statements are, in general, false:

RaNRsCR4s, 1)
Ra4URBCR4s5, 2)
BapCR4NRp, 3)
R4sCR4URp, @)
R4N R4p0, ®)
RN R 4570, ©)
RasN (R4 URg)>#0, )
Ri4=Rp implies R =R p. 8)

The case

010 001 001
Ps=[100), Ps={001) P.Ps=[00 1)
010 100 001

with R, =(1, 2), Rg=(1, 3), and R,5=(3), provides a counterexample to (1-3).



