The Formal Aspects of Structured Modeling

Arthur M. Geoffrion

Operations Research, Vol. 37, No. 1 (Jan. - Feb., 1989), 30-51.

Stable URL:
http://links jstor.org/sici?sici=0030-364X%28198901%2F02%2937%3 A1%3C30%3ATFAOSM%3E2.0.CO%3B2-1

Operations Research is currently published by INFORMS.

Your use of the JSTOR archive indicates your acceptance of JSTOR’s Terms and Conditions of Use, available at
http://www.jstor.org/about/terms.html. JSTOR’s Terms and Conditions of Use provides, in part, that unless you
have obtained prior permission, you may not download an entire issue of a journal or multiple copies of articles, and
you may use content in the JSTOR archive only for your personal, non-commercial use.

Please contact the publisher regarding any further use of this work. Publisher contact information may be obtained at
http://www jstor.org/journals/informs.html.

Each copy of any part of a JSTOR transmission must contain the same copyright notice that appears on the screen or
printed page of such transmission.

JSTOR is an independent not-for-profit organization dedicated to creating and preserving a digital archive of
scholarly journals. For more information regarding JSTOR, please contact jstor-info@umich.edu.

http://www.jstor.org/
Sun Jan 25 00:34:07 2004

~ ARTICLES

THE FORMAL ASPECTS OF STRUCTURED MODELING
ARTHUR M. GEOFFRION

University of California, Los Angeles, California
(Received May 1987, revision received August 1988; accepted September 1988)

Structured modeling is an approach to the development of a new generation of computer-based modeling environments.
This paper, which is part of a series, presents a formal development of the definitions and theory of structured modeling.

he author’s paper, “An Introduction to Struc-

tured Modeling” (Geoffrion 1987a), is an infor-
mal, example-based exposition of structured modeling
as an approach to the development of a new genera-
tion of computer-based modeling environments. It
gives a detailed motivation for and introduction to
structured modeling, its uses, and its connections
to other modeling approaches, systems, and fields.
Familiarity with the first three sections is desirable,
although not essential.

The present paper, in contrast, presents a complete,
formal development of structured modeling. The aim
of completeness makes some overlap with Geoffrion
(1987a) inevitable.

The first section briefly reviews the kind of modeling
environment which the author hopes to help bring
into being. It then motivates structured modeling as
a formalism for definitional systems, a modeling
approach of great generality.

The second section presents and illustrates the basic
definitions of structured modeling. The third gives
selected additional definitions and concepts that are
useful for reasoning about and communicating struc-
tured models.

The fourth section develops related theoretical re-
sults, and the final section gives a brief conclusion.

The mathematical prerequisites of this paper are
modest. Elementary directed graph theory is the main
area requiring some prior familiarity. The terminology
used is standard (node, arc, directed cycle and chain,
acyclicity, etc.). Multiple arcs (more than one arc
between a given pair of nodes) are permitted. The
term rooted tree means a finite, connected, directed

graph with no loops, only one node with outdegree 0,
namely the root, and all other nodes with outdegree
1. The nodes with indegree O are the terminal nodes.
The immediate descendants of any given node bear a
sibling relationship to one another. Every node in a
rooted tree has a unique rootpath that begins with the
node and ends with the root. Since arc orientation is
obvious under the above definition, one need not
bother to indicate orientation when drawing rooted
trees. When there is no danger of confusion, we may
say simply tree instead of “rooted tree.”

A tuple is a finite nonempty ordered collection of
components. A tuple is segmented when its compo-
nents are partitioned in a contiguous way with non-
empty segments. It is permissible for there to be but a
single segment.

A partition has the usual set theoretic definition. A
few other mathematical ideas are defined as the need
arises.

1. Motivation

The purpose of structured modeling is to provide a
foundation for computer-based modeling environ-
ments. As explained in Geoffrion (1989), the kind
of “modeling environment” we have in mind should:
1) nurture the entire modeling life-cycle, not just part
of it; 2) be hospitable to decision and policy makers,
not just to modeling professionals; 3) facilitate the
ongoing evolution of the models and systems built
within it; 4) enable all of its inhabitants to use the
same paradigm-neutral language for model definition;
and 5) facilitate good management of key resources,

Subject classification: Philosophy of modeling: a formalism for model description. Information systems, decision support systems: foundations for the
design of. Networks/graphs, theory: graph-based paradigm for model description.

Operations Research
Vol. 37, No. 1, January-February 1989

0030-364X/89/3701-0030 $01.25
© 1989 Operations Research Society of America

namely data, models, solvers, and knowledge derived
from these.

Such modeling environments should enable a sub-
stantial improvement in the productivity and quality
of model-based work, and also in the frequency with
which decision and policy makers turn to models for
assistance.

The design and construction of such modeling
environments is a very ambitious goal. As further
explained in Geoffrion (1989), realizing this goal
involves surmounting three main challenges:

1. designing a suitable framework for conceptual
modeling,

2. designing an executable modeling language that
supports this framework, and

3. designing software integration approaches able to
deal with the wide spectrum of components con-
stituting a modeling environment.

A conceptual modeling framework will not be suitable
unless it is formal, widely applicable, understandable
and natural for the main players at each stage of the
modeling life cycle, paradigm-neutral and yet com-
patible with most paradigms for modeling and model
manipulation, and consistent with “good” modeling
style. An executable modeling language should possess
these same properties.

Structured modeling provides a suitable framework
for conceptual modeling. We present that framework
in detail in Section 2. Elsewhere (Geoffrion 1988), we
present a modeling language called SML that supports
this framework. A research prototype modeling envi-
ronment based on SML, called FW/SM, is in an
advanced stage of development and will be described
in a future paper.

A few words are in order about the structured
modeling framework for conceptual modeling. It can
be viewed from several perspectives, some of which
have much in common with mathematical modeling
formalisms used in MS/OR, with data modeling for-
malisms used in data base theory, and with knowledge
representation formalisms used in artificial intelli-
gence. This point is discussed in Geoffrion (1987a, b,
1989). For example, as mentioned in Geoffrion
(1987a), the structured modeling framework can be
viewed as being based on discrete mathematics: it uses
a hierarchically organized, partitioned, and attributed
acyclic graph to represent a model instance or a class
of model instances, with particular attention given to
representing semantic as well as mathematical struc-
ture. Moreover, it is compatible with the fundamental
model manipulations of information retrieval, expres-

The Formal Aspects of Structured Modeling | 31

sion evaluation, solving a simultaneous system, and
optimization.

The structured modeling framework can be viewed
also as a formalism for definitional systems. We de-
velop this idea in some detail because it provides useful
motivation for much of what follows.

1.1. Definitional Systems

What is modeling? A very general answer is that it is
the process of giving sharp definition to “knowledge”
about some part of “reality.” It is in this sense that
one may choose to view modeling as constructing a
system of definitions. Sometimes an individual defi-
nition is called a model element.

A “definitional system” comprises, of course, a col-
lection of related definitions. Such a collection should
be written in a deliberate style that exhibits properties
appropriate to its intended uses. We shall explain five
properties exhibited by definitional systems written in
structured modeling style, but not until we introduce
two small examples of definitional systems.

There is a severe obstacle to be overcome in giving
these examples: we do not have access to a consistent
set of notational conventions for structured modeling.
The reason is that a notation cannot be described
properly before knowing what conceptual abstractions
it is designed to support, and even if it could be, the
only extant notation—SML (Geoffrion 1988)—would
take an excessive amount of space to explain. We
could appeal to the brief introduction to SML given
in Geoffrion (1987a), but we elect to keep this paper
self-contained by introducing a simple ad hoc nota-
tion. This notation is adequate only for the limited
purposes of this paper. We implore readers not to let
it influence their judgment of structured modeling.

The ad hoc notational conventions used here are as
follows.

» Each definition is numbered.

» Each definition includes an underlined key phrase
uniquely associated with that definition; it consists
of one or more words, with spaces between words
replaced by underscores.

If a given definition is directly conceptually depend-
ent on another definition, then the key phrase of the
other definition should appear, in capitals, in the
given definition. Otherwise, it should not.

» Only key phrases are capitalized.

The first example is not the sort that one ordinarily
thinks of as a “model,” but it seems appropriate to
begin with a tiny fragment of a definitional system
that overtly presents itself as such. It is adapted from

32 / GEOFFRION

a well known dictionary of mathematics (James and
Beckenbach 1976), and includes all of the definitions
needed to define a transitive relation.

1. A SET is a collection of particular things.

2. An ORDERED_PAIR is a SET with two members
for which one member is designated as the first
and the other as the second.

3. A RELATION is a SET of ORDERED_PAIRS
(x, y), it being said that x bears the RELATION to
y if and only if (x, y) is a member of the SET.

4. A TRANSITIVE_RELATION is a RELATION
with this property: if x bears the RELATION to y
and y bears the RELATION to z, then x bears the
RELATION to z.

The second example is an instance of an ordinary
Hitchcock-Koopmans transportation model with two
sources and three destinations. See Figure 1 of the
Appendix. The Appendix also contains numerous
other figures relating to this example. They are placed
there rather than in the main body of the paper to
avoid interrupting the flow of the main text.

Now we use these examples to illustrate five desir-
able properties of a definitional system. Please keep in
mind that the examples just presented do not neces-
sarily exhibit these properties, but a structured model
rendering of them would do so.

Correlation

The first desirable property is that definitions should
be correlated, that is, definitional interdependencies
should be explicit. This property is the reason why
capitalization was used as it was in our ad hoc nota-
tion. Consider, for instance, the first example. The
following diagram of definitional dependency is easy
to construct from the definitions given. There is a
node for each such concept and a directed arc each
time one concept participates in the definition of
another.
TRANSITIVE_RELATION

A

RELATION

ORDERED_PAIR

A

SET
Figure 10 is a similar diagram for the other example.

One advantage of making all definitional depend-
encies explicit is that it facilitates tracing the origins
of any definition as far back as one wishes. Another
advantage is that it facilitates tracing the impacts of
any definition to even the most remote reaches of the
definitional system.

In the context of modeling, tracing origins often
arises in the course of developing documentation,
designing explanations for others, and looking for
reasons why something unexpected happened. Trac-
ing impacts often arises in the course of trying to
determine what might have to be changed as a con-
sequence of some particular desired change or cor-
rection. In particular, the maintenance, evolutionary
development, and integration of models become
vastly easier when the interdependencies among
model elements are formalized.

Structured modeling always requires full correlation
of model elements. The construct which formalizes
definitional dependencies is the calling sequence (to
be defined in Section 2).

Acyclicity

The second desirable property is that definitional in-
terdependencies should be acyclic when graphed as
above, that is, the definitional dependency graph
should exhibit no directed cycles.

This property avoids the obvious pitfalls associated
with circular definitions. For instance, in the context
of the first example, it would be disconcerting if, while
following a thread of definitions back from the starting
point “transitive relation,” one came upon a prior
concept that depended on the concept of a transitive
relation!

Structured modeling requires that there be no di-
rected cycles among definitional dependencies. It also
takes pains to assure that acyclicity will propagate to
higher order aspects of the formalism; Propositions 2
and 5 of Section 4 establish this.

Classification

The third desirable property of a definitional system
is that each definition should fall into one of a small
number of classes that arise from the definitional
formalism itself rather than from any particular ap-
plication of the formalism. For example, some defi-
nitions (such as SET in the first example) depend on
no other, and hence are “primitive,” while all other
definitions are “nonprimitive.” Also, some definitions
(such as DAL _SUP in the second example) are value-
bearing while others are not, and the value either can
be user supplied or calculated in terms of prior

definitions (such as DAL_SUP and TOTAL_COST,
respectively, in the second example).

There are at least two reasons for recognizing differ-
ent classes of definitions. First, classification is a con-
venience for the user because different classes of defi-
nitions are sometimes used in different ways. For
example, a definition that is classified as value-bearing
with a noncalculated value presents a data acquisition
responsibility for the user that other classes of defini-
tions do not inflict. Second, the functionality of soft-
ware aimed at supporting definitional systems depends
on the classes of definitions to be supported. If value-
bearing definitions with calculated values are to be
supported, for example, a syntax for a suitable class
of expressions is required along with a mechanism to
evaluate the expressions found in such definitions.

Structured modeling recognizes five classes—it calls
them types—of definitions: primitive entity, com-
pound entity, attribute, function, and test (all to be
defined in Section 2). These are the terminal nodes of
the following tree:

Classification Tree Type Name

Primitive Primitive Entity
Nonprimitive
Value-Bearing
Calculated
Logical-Valued Test
Not Logical-Valued Function
User-Supplied Attribute

Not Value-Bearing Compound Entity

The difference between function type and test type is
minor: the latter has values restricted to True and
False. There is no type that is both primitive and
value-bearing because the existence of a value implies
its association with something, and that something
can be assumed without loss of generality to be
not value-bearing.

Grouping

The fourth desirable property is that similar defini-
tions should be grouped. Formally, this amounts to
a partition in which all definitions in a given cell
are “similar” enough for modeling purposes. See, for
example, the ten groups of definitions in Figure 1:
{1, 2}, {3, 4}, {5, 6, 7}, {8, 9, 10}, and so on.

The main advantage of grouping is that the working
dimensionality of the definitional system can be re-
duced by suppressing (temporarily) the detailed defi-
nitions within the partition cells. This enables general
structure to be seen without the burden of repetitive
detail. This is particularly important when, as is usu-
ally the case in real applications, dimensions are large

The Formal Aspects of Structured Modeling | 33

owing to the appearance of many definitions that are
only slight variations of one another. Grouping makes
it easier to see what is going on, and also points the
way to efficient data structures for coping with masses
of detail. For instance, in the context of the second
example, there will still be 10 groups of definitions no
matter what the number of plants or customers.

Moreover, grouping is an essential step toward
the critical need to express entire classes of model
instances; for example, the class of all Hitchcock-
Koopmans transportation models or the class of all
classical feedmix models. For analytical and commu-
nication purposes, we need to be able to express such
model classes in a dimension-free and data-free way.
Grouping enables this if one replaces an entire popu-
lation of similar model elements by a single generic
representative.

Structured modeling groups definitions through
generic structure satisfying the criterion of generic
similarity. Each group is called a genus. These are
stepping stones toward the concept of a model schema,
which turns out to be a powerful way to express most
important classes of model instances. All four con-
cepts will be defined in Section 2.

Hierarchy

Last, but by no means least, among the desirable
properties of a definitional system is that the groups
referred to above should be organized hierarchically,
that is, the groups should be identified with the ter-
minal nodes of a tree.

See, for example, the hierarchy of Figure 1: two
groups are combined under the category “supply
data,” two under the category “customer data,” three
under the category “transportation data,” and the last
three under no category at all. Thus, the tree has a
root node (corresponding to the whole model), three
interior nodes (corresponding to the three categories),
and ten terminal nodes (corresponding to the ten
groups). This is a very simple hierarchical organiza-
tion. In more complex systems of definitions there
can be a much richer tree imposed on the groups of
definitions. Major categories can have subcategories,
which, in turn, can have subsubcategories, and so
on. Figure 16 of Geoffrion (1987a) contains a more
realistic example.

The main advantage of hierarchical structure is that
it is accepted universally as a way to deal with com-
plexity.

Structured modeling achieves hierarchical structure
through the concept of modular structure with a
monotone ordering (both concepts to be defined in
Section 2).

34 / GEOFFRION

This concludes our discussion of five desirable prop-
erties of definitional systems. In summary, they should
be correlated, acyclic, classified, grouped, and hierar-
chical. The structured modeling framework for con-
ceptual modeling possesses all five properties.

2. The Core Concepts of Structured Modeling

This section presents the core concepts of the struc-
tured modeling framework as a collection of formal
definitions. They are organized under five headings:
elemental structure, generic structure, modular struc-
ture, model instances, and model classes. Elemental
structure formalizes the first three desirable properties
of definitional systems discussed in Section 1, namely
correlation, acyclicity, and classification. Generic
structure formalizes the fourth property, grouping,
and modular structure formalizes the property of
hierarchical organization.

Commentary is interspersed to explain the intent of
the definitions, but this commentary does not amend
or augment the formal framework in any way. The
second example of Section 1, which is expanded in
the Appendix, illustrates all the definitions. We call it
simply “the example.”

The reader is forewarned that some of the defini-
tions may seem a bit baroque by comparison with
analogous definitions in ordinary mathematics. The
reason, in most cases, is that we are trying to capture
formally more semantic information than mathemat-
ical models usually do.

2.1. Elemental Structure

As explained in Section 1, a model is viewed as a
definitional system in which each definition is called
an element. There are five element types; these are
presented in the first five definitions.

1. A primitive entity element is undefined mathemat-
ically.

This represents a primitive definition concerning a
distinctly identifiable entity. The intended scope of an
“entity” is close to that of the noun as a part of speech:
person, place, thing, action, concept, event, quality,
state, etc. Every model must have at least one primi-
tive entity element. Each is introduced at the discre-
tion and convenience of the modeler without, how-
ever, a presumption that it necessarily represents
something irreducible or unanalyzable (as pointed out,
for example, in Section 1.5 of Sowa (1984), such a
presumption would raise serious philosophical ques-
tions). Elements 1-2 and 5-7 of the example (see
Figure 1) would be modeled as primitive entities.

2. A compound entity element is a segmented tuple of
primitive entity elements and/or other compound en-
tity elements.

This represents a definition that references one or
more entities already defined. The definition estab-
lishes a new entity that is dependent on other extant
entities, often in the form of a relationship or associ-
ation among them. A compound entity element can
represent a member of a set or relation in the sense of
discrete mathematics, and even the set or relation
itself. Like the primitive entity element, it is not value-
bearing. Elements 11-15 of the example would be
modeled as compound entities.

3. An attribute element is a segmented tuple of entity
elements together with a particular value in some
range.

This allows a value-bearing property to be defined
in connection with an entity or a collection of entities.
“Value” is not necessarily numerical (the range set or
space is arbitrary).

Elements 3-4, 8-10, and 16-25 of the example
would be modeled as attributes. All have the real
numbers as their range. Note that no value is specified
for elements 16-20 in Figure 1.

Most of the data “coefficients” and decision “vari-
ables” of conventional models are represented in
structured modeling as attribute elements. It is delib-
erate that structured modeling does not observe the
customary distinction between “coefficients” and
“variables.” The reason is simply that this distinction
tends to be unstable in some phases of most models’
life cycle (e.g., in connection with statistical estima-
tion, sensitivity analysis, and what-if analysis). How-
ever, Definition 16 does provide for some attribute
elements to be classified as “variable” in the sense
explained there.

4. A function element is a segmented tuple of elements
together with a rule that associates a particular value
in some range to this tuple—more precisely, in the
case of value-bearing elements, to the values of these
elements provided these values fall within a prescribed
domain.

This is an extension of the attribute element concept
in that function and test elements (see the next defi-
nition) can participate in the defining tuple, and the
value can be conditional, that is, it can depend on the
values of the value-bearing elements involved.

The domain and range are sets or spaces, with no
presumption concerning their mathematical structure.
Note that the notion of a “rule” used here is an abstract
one; any notational system for structured modeling

(e.g., Geoffrion 1988) would have to supply a mathe-
matical or other representation that is computable.

Element 26 of the example would be modeled as a
function element. Its rule is a linear function whose
domain is a pair of real vectors of identical dimension,
and whose range is the real numbers.

5. A test element is like a function element, except
that it has a two-valued range {True, False}.

Test elements facilitate defining the logical aspects
of a model. One common use is to take account of
the equality and inequality constraints often encoun-
tered in conventional models: a test element can be
set up for each constraint to indicate whether or not
it is satisfied.

Elements 27-31 of the example would be modeled
as test elements. The rules for 27 and 28 correspond
to linear inequalities viewed as logical expressions,
while the rules for 29-31 correspond to linear equali-
ties viewed as logical expressions. These five elements
are not thought of as “constraints” in the usual sense
of linear programming, but rather as indicators of
whether or not the constraints hold for a given set
of numerical transportation flows.

6. The segmented tuple portion of an element is called
its calling sequence. An element B is said to call
another element A if A appears in B’s calling sequence.
A calling sequence segment has the obvious definition.

The definitional interdependencies among the ele-
ments of a model are a central focus of structured
modeling. The calling sequence is the principal ab-
straction of these dependencies. The segmentation of
a calling sequence identifies the different roles played
by different calls. Here the term “role” is used in an
application context-dependent sense. Calls that play a
similar role normally are put in the same segment.

Note that primitive entity elements, such as ele-
ments 1-2 and 5-7 in the example, do not have a
calling sequence. See Figure 2 for a representative
selection of calling sequences for the other elements.
For example, element 27 calls element 3 in its first
calling sequence segment, and calls elements 16, 17,
18 in its second segment. A comment is in order
concerning element 21: why is its tuple not (1; 5)? The
answer is that, although 21 does indeed refer to DAL
and to PITTS, the purpose of 21 is to describe a
property associated with the transportation link DAL _
PITTS; element 11 is, therefore, the proper reference.
Of course, 11 refers to 1 and 5, so 21 refers indirectly
to 1 and 5.

Two conventions are necessary for a collection
of elements to properly represent definitional

The Formal Aspects of Structured Modeling | 35
dependencies:

a. First, if the semantic interpretation of a given ele-
ment involves some other recognized element, then
that other element should appear at least indirectly
in the calling sequence of the given element. An
“indirect” call is one where the indirectly called
element is in the calling sequence of an element in
the calling sequence, or in the calling sequence of
an element in the calling sequence of an element
in the calling sequence, etc.

b. Second, no calling sequence should contain an
element that is patently irrelevant to the calling
element’s semantic interpretation.

These conventions are not imposed formally in the
modeling framework; they pertain only to the in-
tended manner of use.

7. A collection of elements is closed if, for every ele-
ment in the collection, all elements in the calling
sequence of that element are also in the collection.

Closure is essential to the integrity of definitional
dependency information. Clearly, the example’s col-
lection of 31 elements is closed.

8. A closed collection of elements is acyclic if there is
no sequence {E1, . .., En} such that E1 calls E2, . . .,
En — 1 calls En, where n> 1 and En = E1.

Our concern is exclusively with systems of elements
whose definitional dependencies involve no circular
references. This avoids problems of indeterminacy
such as arise in circular systems of definitions. Acy-
clicity is essential in much of what follows.

While acyclicity clearly forbids any element to ap-
pear in its own calling sequence, it is neither possible
nor desirable to exclude self-reference from the in-
tended meaning of an element.

One way to see that the example’s 31-element col-
lection is acyclic is to look at Figure 1: the only
references from one element B to another element A
occur when A4 precedes B in the list.

9. An elemental structure is a nonempty, finite, closed,
acyclic collection of elements.

This is the first major part of the definition of a
structured model. Nonemptiness avoids trivialities.
Finiteness avoids inessential technical difficulties, al-
though an extension to models with an infinite num-
ber of elements probably could be made that would
be satisfactory for most purposes. The rationale for
closedness and acyclicity already has been given.

36 / GEOFFRION

It is evident from the foregoing that the definitional
system of Figure 1 can be formalized as an elemental
structure.

2.2. Generic Structure

Generic structure enables similar elements to be
grouped together.

In the context of model aggregation, a very impor-
tant role of generic structure is to identify maximal
sets of elements within which aggregation can take
place.

10. A generic structure is defined on an elemental
structure as a collection of partitions, one for each of
the five types of elements. The associated mutually
disjoint and exhaustive element sets are called genera
(the plural of genus).

All the elements of a given genus are supposed to
be alike except for the details, and it should be mean-
ingful and natural to speak of a “generic” element.
The sense in which elements are alike is difficult to
formalize. Yet all large, realistic models seem to pos-
sess structure that invites the grouping of model com-
ponents. One manifestation of this is the ubiquitous
use of indices in conventional mathematical models.
Indices greatly simplify notation by exploiting such
structure.

Not every possible generic structure is useful. We
have found it wise to limit consideration to generic
structures satisfying the next property. It says, roughly,
that the elements in a genus should not be too different
in terms of which other elements they depend upon.
This acts to limit the allowable coarseness of the
generic structure.

11. A generic structure satisfies the generic similarity

property if the following is true for every genus (other
than primitive entity genera): all elements in the genus
have the same number of calling sequence segments,
all calls in a given segment are to elements in the same
genus, and all elements call the same genera in corre-
sponding calling sequence segments.

When this property holds, one can speak in the
obvious sense of one genus “calling” another, and of
a “genus’ calling sequence.”

A natural generic structure for the example is indi-
cated by the element groupings of Figure 1. For ex-
ample, the primitive entities are partitioned into plants
and customers. That generic structure is shown in
Figure 3, with each cell (genus) named for future
reference.

Note that a partition can have but a single cell (e.g.,
the compound entity partition); and a cell can have

just one element (e.g., $). Note also that a transpor-
tation model with 10,000 customers would still have
only 10 genera.

Generic similarity can be checked by studying Fig-
ure 2, whose rows are grouped by genus. Consider
genus T:SUP. Both of its elements have two calling
sequence segments, the calls in each segment are al-
ways to the same genus, the first segment calls only
SUP for both elements, and the second segment calls
only FLOW for both elements. Thus, generic similar-
ity holds for this genus. Similar checks work for the
other genera.

2.3. Modular Structure

Modular structure is designed to recognize the hier-
archical “conceptual structure” by which groups of
genera take on higher semantic meaning. As elements
are organized into genera, so may genera be organized
into conceptual units (modules), which, in turn, may
be organized into higher level conceptual units, etc.,
until the whole becomes the model itself as the root
module. In this manner, models of arbitrary complex-
ity can be rendered more manageable through mean-
ingful hierarchical organization.

12. A modular structure is defined on a generic struc-
ture as a rooted tree whose terminal nodes are in 1:1
correspondence with the genera. The nonterminal
nodes are called modules. The default modular struc-
ture corresponds to the simplest possible such rooted
tree, namely the one with only one module (the root).

Since the default modular structure is always per-
mitted, it is never limiting to assume that a given
generic structure has a modular structure associated
with it.

One possible modular structure for the example is
indicated by the indentation used in Figure 1. It has
three modules. That structure is shown explicitly in
Figure 4, in which each module has been given a short
name beginning with an ampersand.

The logic of this modular structure is that part of
the model has to do with sources of supply, part with
customers, and part with transportation. Each of these
parts can be thought of as a distinct conceptual unit.

The default modular structure, by contrast, omits
&SDATA, &CDATA, and &TDATA, and has
&TRANS as the root and all 10 genera as terminal
nodes.

The next definition orders the modular structure
tree in a way that ties modular structure closely to the
underlying calling relationships among the genera.
The full significance of this ordering will not be

apparent until Definition 23 of Section 3 and
Propositions 5-7 of Section 4.

13. A monotone ordering of a modular structure de-
fined on a generic structure satisfying similarity is
specified by an orvder for each sibling set. These orders
are extended in the usual way to obtain a strict partial
order over all nodes except the root whereby any two
nodes can be compared so long as neither lies on the
rootpath of the other. This strict partial order is mon-
otone in the following sense: if genus B calls genus A,
then A comes before B in the strict partial order.

The definition of the usual extension of sibling set
orders referred to in the definition is as follows (e.g.,
p. 77 of Aho, Hopcroft, and Ullman 1983): if N1 and
N2 are sibling nodes and N1 comes “before” N2, then
N1 and all of its descendants come before N2 and all
of its descendants.

Figure 5 shows one possible order for each sibling
set for the modular structure of Figure 4. Figure 6
shows them as a directed graph along with their usual
extension, which clearly is a strict partial order. It is
easy to verify directly with the help of Figure 6 that
this strict partial order is monotone.

To help the reader reconstruct the dashed lines in
Figure 6, we remark that three of them are generated
by taking (N1, N2) equal to (&SDATA, &CDATA)
when extending the sibling orders: the arc from CUST
to &SDATA stipulates that N1 comes before all de-
scendants of N2, the arc from &CDATA to SUP
stipulates that all descendants of N1 come before N2,
and the arc from CUST to SUP stipulates that all
descendants of N1 come before all descendants of N2.
No other possible choices for N1 and N2 lead to arcs
not already explicit or implicit (by transitive closure)
in Figure 6.

Monotone-ordered modular structures may seem
technically burdensome but, as explained near the end
of Section 4, there is a very simple way to deal with
them in practice.

2.4. Model Instances

All of the components necessary to define a structured
model are now at hand.

14. A structured model is an elemental structure to-
gether with a generic structure satisfying similarity
and a monotone-ordered modular structure.

Structured models are not always specified in com-
plete detail. The next two definitions recognize this
possibility.

The Formal Aspects of Structured Modeling | 37

15. A completely specified structured model requires
explicit enumeration and specification of- all elements
in detail, including all calling sequences, attribute
values, and function and test element rules (but not
values),; a generic structure satisfying similarity; and a
monotone-ordered modular structure. Otherwise, a
structured model is said to be incompletely specified.
A completely specified elemental structure has the
obvious definition.

Unless otherwise indicated, the term “structured
model” means a completely specified structured
model.

16. Attribute elements whose values are discretionary,
and, hence, likely to change or to be placed under
solver control, may be designated as variable attri-
butes; these may be entire attribute genera or arbitrary
subsets thereof. An A-partially specified structured
model or elemental structure is one that is completely
specified except for the values of its variable attribute
elements.

Variable attribute element values play much the
same role as “variables” in many kinds of conven-
tional models. Note that omitting values for attribute
elements does not cast into doubt generic similarity,
nor does it interfere with the specification of a
monotone-ordered modular structure.

In practice, models are incompletely specified when
first formulated. The degree of specification gradually
increases as details are settled and data are developed
until the degree of specification reaches a “final” level
(usually either complete or A-partial) appropriate to
the intended purpose. Usually the final level of speci-
fication is attained more than once; there may be a
succession of models over time (as in data base appli-
cations) or a variety of model cases to be studied (as
in many management science applications), but all of
these are simply different specifications of the same
basic model.

17. Evaluation is the task of determining the values
of the function and test elements of an elemental
Sstructure.

Because of elemental structure acyclicity, evalua-
tion always can be performed in a single pass based
on the order resulting from a topological sort. See
Proposition 4 in Section 4 and the subsequent discus-
sion. Alternatively, one-pass evaluation can be guided
by the modular outline defined in Section 3.

A structured model itself provides no means for
performing evaluation. This is a task requiring some
mechanism external to the model. Ideally, such a

38 / GEOFFRION

mechanism should be an integral part of a structured
modeling system.

Evaluation can turn out to be an ill posed task. To
illustrate, an attribute value may not fall within the
domain of definition of a function element’s rule, or
a rule may inadvertently involve division by zero. We
wish to preclude this possibility by assuming hereafter
the following property unless it is explicitly dropped.

18. An evaluateable elemental structure is one whose
specification, if not complete, can be completed so that
all function and test element argument values are in
their respective domains, and so that evaluation is a
mathematically well posed task.

The running example provides an illustration of a
structured model: the 31 elements of Figure 1, together
with the generic structure of Figure 3 and the
monotone-ordered modular structure of Figures
4 and §S.

Elements 16-20 would all be treated as variable
attribute elements in the context of the standard op-
timization problem usually associated with this model,
namely finding values for all transportation flows so
as to minimize TOTAL_COST subject to a positive
outcome for all of the tests defined in elements
27-31.

This structured model is incompletely specified ow-
ing to the absence of values for the FLOW elements,
i.e., the model is A-partially specified. To be com-
pletely specified, the missing attribute element values
would have to be supplied.

Evaluation is straightforward: given nonnegative
values for the FLOW elements, one may calculate the
value of $ and the values of the elements of T:SUP
and T:DEM in any order. Any such model is evalu-
ateable because there is no way for the arguments of
the rules of $, T:SUP, and T:DEM to violate the
domains over which evaluation is a mathematically
well posed task.

2.5. Model Classes

Practical and theoretical applications of models typi-
cally involve not a single model instance with partic-
ular data, but rather an entire class of model instances
that are very similar in character. To put it another
way, many uses of models require focusing on the
general form of a model rather than on the data
needed to specify a particular model instance. The
notions of “general form” and “model class” are really
one, and can be formalized as follows. This definition
makes no presumption concerning evaluateability.

19. A model schema is any prescribed class of struc-
tured models that satisfies isomorphism in this sense:
given any two models in the class, their modules and
genera can be placed in 1: 1 correspondence in such a
way that: a) node adjacency is preserved in the mod-
ular structure trees, b) corresponding genera have the
same number of calling sequence segments and call
corresponding genera from each segment, and c) cor-
responding genera are of identical element type.

Perhaps the easiest way to specify a model schema
is via an incompletely specified structured model,
where the nature of the incompleteness is controlled
carefully. For example, it is easy to see that any
A-partially specified structured model can be viewed
as a model schema. In most applications, however,
the model schemata of greatest interest involve more
than simply omitting some element values; for in-
stance, it is common to leave indefinite even the
number of elements in certain genera.

Note that the definition of a model schema has
nothing to do with the ordering (monotone or other-
wise) of a modular structure tree. The isomorphism
requirements do not mention ordering because it is
only the existence of a monotone ordering that is
important in most model classes arising in practice,
and not the particular ordering chosen for what may
be subjective reasons.

We conclude this section with some examples of a
model schema. One is the A-partially specified struc-
tured model mentioned at the end of Section 2.4. Any
complete specification of attribute values yields a
structured model in the class associated with the A-
partially specified model. The technical requirements
of Definition 19 are met trivially.

A slightly more general model schema is obtained
by allowing the one just mentioned to have any mon-
otone ordering whatever for the modular structure of
Figure 4. (As will be seen later, there are exactly 24
monotone orderings.) Since the only change is to allow
alternative orderings of the modular structure tree, we
see from the comment following Definition 19 that
the isomorphism requirements are still satisfied.

A still more general model schema is obtained by
allowing any subset of all possible transportation links
to exist. Note that this makes the element population
of the LINK genus arbitrary. Whatever choice may be
made for this population, the obvious compensating
changes must be made in the genera which call LINK
directly, and these changes induce others in the genera
which call those genera. A moment’s reflection shows
that the isomorphism requirement of Definition 19
still holds.

Finally, a model schema more general than any of
those above can be obtained by allowing not only the
population of LINK to be arbitrary, but also the
populations of PLANT and CUST. The obvious in-
duced changes must be made in the genera that call
PLANT or CUST directly or indirectly, in order for
the result to be a genuine structured model. Although
it is easy to see that the requirements of Definition 19
hold, it is not so easy to specify this model schema
much more formally than the quite informal and
ambiguous description just given. A suitable nota-
tional system is needed for structured models and
model schemata. As mentioned elsewhere, that is the
subject of Geoffrion (1988).

3. Associated Concepts and Constructs

The previous section presented the core concepts of
structured modeling. Here we give definitions of sev-
eral associated concepts and constructs that do not
extend the modeling framework in a formal sense, but
which facilitate working with it.

The first definition enables one to tailor model
views that contain just the right level of detail for the
intended target audience or conceptual analysis.

20. A view of a modular structure is any subtree (i.e.,
a subgraph of the original rooted tree that is also a
rooted tree) that keeps the original root and that does
not separate original siblings (i.e., if two nodes have
the same parent in the original tree, then they are
either both in or both out of the subtree). A view always
inherits an ordering from the modular structure if the
modular structure has one. The master view corre-
sponds to the subtree that is the original tree itself.
Synonyms for “master view,” “view,” and “node of a
subtree” are, respectively, master conceptual structure,
conceptual structure, and conceptual unit.

Every view other than the master view constitutes
a simpler hierarchical conceptual structure than the
master view. The simplification takes place by com-
bining conceptual units from the bottom up in their
natural hierarchical order.

It should be noted that the term “view” has another
meaning in the literature on data base management
systems (e.g., Ullman 1982).

Examples of Definition 20 and the next two defi-
nitions will be given after Definition 23.

The next definition is preparatory to the one
following it.

21. Associated with every view is a genus partition
with one cell for every terminal node of the subtree,

The Formal Aspects of Structured Modeling | 39

the genera in the cell corresponding to a given terminal
node are the descendants of that node, that is, those
genera whose rootpath in the original tree includes the
given terminal node.

The genus partition identifies the genera constitut-
ing the smallest conceptual units associated with a
view. For the master view, the genus partition has
exactly one genus per cell.

It is desirable for conceptual structures to inherit
the lack of circular references in the underlying ele-
mental structure. This is the concern of the next
definition.

22. Given a modular structure defined on a generic
Structure satisfying similarity, a view is acyclicity-
preserving if the associated genus partition has the
property that no subset of its cells can be arranged in
a sequence {C1, . .., Cn} such that some genus in C1
calls some genus in C2, ..., some genus in Cn—1
calls some genus in Cn, where n > 1 and Cn = C1.
The modular structure itself is said to be acyclicity-
preserving if every possible view is acyclicity-
preserving.

Next we present an equivalent representation of
modular structure that is particularly useful. It dis-
plays all modules and genera along a single dimension
in such a way that there are no forward references (see
Proposition 6 in Section 4).

23. The modular outline of an ordered modular struc-
ture (whether monotone or not) is the indented list
representation corresponding to the preorder traversal.
The outline for any view is defined similarly.

Both of the concepts involved here, namely in-
dented list representation of a tree and preorder tra-
versal for ordered trees, are standard in computer
science (e.g., Knuth 1973, pp. 309 and 334). In simple
terms this means that all nodes of the modular struc-
ture tree are listed vertically, one to a line, with the
indentation of each node proportional to the length
of its rootpath; the root node is listed first, the nodes
of each subtree are contiguous and begin with the
root of the subtree, and siblings are always listed
in their given order.

Other equivalent representations of the modular
structure tree as an indented list are possible. For
example, postorder or inorder traversal could be used.
However, those representations appear less natural for
present purposes than the one based on preorder
traversal.

We now illustrate Definitions 20-23, beginning with
the last of these.

40 / GEOFFRION

The preorder traversal of the ordered modular struc-
ture of Figure 5 is: &TRANS, &SDATA, PLANT,
SUP, &CDATA, CUST, DEM, &TDATA, LINK,
FLOW, COST, $, T:SUP, T:DEM. The corresponding
indented list representation is the modular outline
shown in Figure 7. In all, there are 24 monotone
orderings of the modular structure of Figure 4. Six
can be generated from Figure 7 by permuting the last
three genera. These six can be doubled by permuting
the &SDATA and &CDATA modules. Twelve more
can be generated by reversing the positions of FLOW
and COST.

If Figure 7 is the master view, then eight other views
are possible, as shown in Figure 8. They all inherit a
monotone ordering. To illustrate an interpretation,
View 2 chooses not to preserve the details of LINK,
FLOW, and COST in support of the conceptual unit
&TDATA. Its subtree is shown in Figure 9.

The genus partition associated with View 2 (Figure
8) is:

{PLANT]} {SUP} {CUST} {DEM}
{LINK, FLOW, COST} {$} {T:SUP} {T:DEM}.

For View 5 it is

{PLANT] {SUP} {CUST, DEM}
{LINK, FLOW, COST} {$} {T:SUP} {T:DEM}.

It is easy to see that the master view is acyclicity-
preserving by looking at the modular outline. One
genus can call another genus only if the second genus
is higher on the list; this obviously precludes a calling
cycle. A similar argument suffices to show that all
other views are also acyclicity-preserving. Since all
views are acyclicity-preserving, the modular structure
itself (Figure 4) is acyclicity-preserving.

Of course, in practice one does not have to enu-
merate all possible views in order to prove that a
modular structure is acyclicity-preserving. Instead,
one devises a monotone ordering and applies Propo-
sition 7 of Section 4.

The remaining definitions focus on graphs and mat-
rices that, in the main, represent the definitional
dependencies in different ways.

24. The element graph of an elemental structure is an
attributed directed graph with a node for every element
and an arc from element B to element A if element A
calls element B (more precisely, there is an arc for
every such call). Every node has an attribute denoting
its type (primitive entity, compound entity, attribute,
function, or test). Every non-entity node has another
attribute giving its value, every attribute node has
another attribute giving its range, and every function

and test node has an attribute giving its rule. Every
arc has two attributes; the first identifies the calling
sequence segment to which it corresponds, and the
second identifies its position within the segment.

The element graph vividly portrays the cross-
references among elements. More than that, it is a
precisely equivalent representation of an elemental
structure. Since the collection of elements is acyclic,
it follows, of course, that the element graph is acyclic
in the usual graph theoretic sense.

Figure 10 shows the element graph for our example.
Notice that it is acyclic. The diagram in Section 1.1
also is an element graph.

25. The genus graph of a generic structure satisfying
similarity is a directed graph with a node for every
genus and an arc for every segment of every genus
(primitive entity genera excepted) directed from the
genus being called to the calling genus.

The genus graph portrays cross-references among
genera. It is a far more manageable portrayal than the
element graph for most purposes. Figure 11 shows the
genus graph for the example.

26. The module graph corresponding to a view of a
modular structure is a directed graph with a node for
every cell of the associated genus partition and an arc
from cell A to cell B (where A and B are distinct) if
and only if some genus of cell B calls some genus of
cell A.

The module graph portrays cross-references among
the smallest conceptual units of a view. It takes the
place of the genus graph for presentations of a struc-
tured model based on views other than the one pro-
vided by the default modular structure. The module
graph corresponding to the master view of any mod-
ular structure coincides with the genus graph with
multiple arcs removed (i.e., at most one arc is allowed
between each pair of nodes). Figure 12 shows a module
graph.

Element, genus, and module graphs are related to
one another through the notion of condensation. If G
is a directed graph and P is a partition of the nodes of
G, then the condensation of G' with respect to P is a
graph having a node for every cell of P and an arc
from cell i to distinct cell j if and only if G has an arc
from some node of cell i to some node of cell j (see,
e.g., Harary, Norman, and Cartwright 1965). It is
evident that a genus graph with multiple arcs elimi-
nated is always the condensation of an element graph,
without attributes, with respect to the generic struc-
ture. Similarly, a module graph is always the conden-
sation of a genus graph with respect to the genus

partition associated with the corresponding view.
Clearly, Figure 11 is a condensation of Figure 10, and
Figure 12 is a condensation of Figure 11.

The last two definitions are based on standard con-
cepts from graph theory.

27. The adjacency matrix corresponding to an ele-
ment graph, a genus graph, or a module graph is a
square matrix with a row and column for every node
of the graph and a “1” in row i and column j if there
is an arc from the node of row i to the node of column
J; all other entries are zero. (Informally: “column calls
row.”)

An adjacency matrix is an alternative representation
of a graph that is easier to produce typographically;
however, it ignores the attributes of an element graph
and the possibility of multiple arcs for element and
genus graphs. It is well suited to tracing the references
to or from any given node. Choosing (if possible) the
row/column order so that a triangular matrix results
usually is advantageous. When a monotone ordering
of the modular structure is available, using the corre-
sponding preorder traversal sequence necessarily re-
sults in an upper triangular matrix for the element
graph, genus graph, and all module graphs.

The adjacency matrix for the module graph corre-
sponding to a given view is easy to determine once
the adjacency matrix for the genus graph is available.
Any view can be specified by listing the modules that
are terminal nodes in the view’s subtree. The associ-
ated genus partition is easy to identify from this list of
modules thanks to the indentation structure of the
modular outline. The genera of each cell of the genus
partition are all contiguous in the modular outline
and will correspond, therefore, to adjacent rows and
columns of the genus adjacency matrix (assuming that
the preorder traversal sequence corresponding to the
ordering is used as usual to establish row/column
order). One sees easily that the rows and columns of
the genus graph’s adjacency matrix can be aggregated
by Boolean summation to obtain the desired module
graph adjacency matrix (a final step is necessary: zero
out any 1’s on the diagonal).

The example’s element graph adjacency matrix is
as shown in Figure 13 when the rows and columns
are ordered in the same sequence as the original
elements in Figure 1. Each column indicates which
elements the column element calls, and each row
indicates which elements call the row element. Row
and column spaces have been introduced to preserve
the genus-grouping of the original elements. Observe
that this matrix is upper triangular; this verifies
acyclicity.

The Formal Aspects of Structured Modeling | 41

Figure 14 gives the genus graph’s adjacency matrix.
Figure 15 gives the adjacency matrix for the module
graph corresponding to the second view; it can be
obtained either by inspection of Figure 12 or from the
Boolean summation procedure mentioned before.

28. The reachability matrix corresponding to an ele-
ment graph, a genus graph, or a module graph is a
square matrix with a row and column for every node
of the graph and a “1” in row i and column j if there
is a directed path from the node of row i to the node
of column j; all other entries are zero. By convention,
diagonal entries are taken to be unity.

The reachability matrix of an element graph can be
read two ways: 1) by columns to determine all the
elements referenced directly or indirectly by the col-
umn element, and 2) by rows to determine all the
elements that directly or indirectly reference the row
element. Similar statements can be made about the
reachability matrices of genus and module graphs.

A reachability matrix is easy to calculate from the
corresponding adjacency matrix using Warshall’s pro-
cedure (e.g., page 132 of Berztiss 1975) or variants
that are still more efficient.

The example’s element graph reachability matrix is
shown in Figure 16 when the rows and columns are
ordered in the same sequence as for Figure 13. Each
column tells which elements are called directly or
indirectly by the column element; for instance, ele-
ment 21 directly or indirectly calls elements 1, 5, and
11. Each row tells which elements directly or indirectly
call the row element; for instance, element 1 (repre-
senting the plant in Dallas) is called directly or indi-
rectly by 15 other elements.

Figure 17 gives the genus graph reachability matrix,
and Figure 18 gives the module graph reachability
matrix corresponding to Figure 12.

4. Some Theoretical Results

This section develops some elementary but useful
results about the definitions of the previous two sec-
tions. The first result confirms a rather obvious fact.

Proposition 1. In an elemental structure with a generic
structure satisfying similarity, no element calls another
element in the same genus.

Proof. Suppose, to the contrary, that some element
in genus G calls another element in G. Then, by
generic similarity, every element in G calls another
element in G. By the finiteness of the number of
elements of G, this implies that there is a cycle

42 / GEOFFRION

of elemental calls among the elements of G, which
violates elemental structure acyclicity. Thus, the sup-
position must be false.

In structured modeling, elemental structure is al-
ways acyclic. This acyclicity propagates to generic
structure so long as generic similarity holds, and to
modular structure so long as a monotone ordering is
used. The next result and Proposition 5 establish this
claim.

Proposition 2. Genus graphs are always acyclic.

Proof. Recall that a genus graph is defined only
when there is a generic structure satisfying generic
similarity, and that a generic structure, in turn,
presumes an elemental structure. Suppose that
the genus graph contains a directed cycle, say
{G1, G2, ..., Gn—1, G1} where G1 calls G2, which
calls G3, . .., which calls Gn = G1. We wish to show
that an elemental cycle must then exist, for this would
contradict the acyclicity of the elemental structure
and, thereby, demonstrate that the supposition must
be false. Take any element in G1 and trace a directed
chain through the elements in G2, G3, ..., and so on,
back to Gn = G'1 again. This may be done by suppo-
sition and the generic similarity property. If the
terminal element in G1 is the starting one, an elemen-
tal cycle has been found. If the terminal element is
not the starting one, then by the similarity property,
another directed elemental chain can be constructed
that starts at the terminal element just found and ends
in G1. If any element of the new chain coincides with
any element of the earlier chain, then an elemental
cycle has been found. If not, the chain can be contin-
ued in a like manner. Eventually, since there is but a
finite number of elements, some element must be
encountered again, thereby establishing an elemental
cycle.

One can view Proposition 2 as demonstrating that
the calls among genera induce a strict partial order
over all genera. Thus, the last sentence of Definition
13 can be rephrased informally as: “This partial order
is monotone in that it is consistent with the partial
order induced by calls among genera.”

The genus graph of Figure 11 is acyclic, in accord-
ance with Proposition 2.

A well known and important property of acyclic
directed graphs is that their nodes can be classified
into ranks such that nodes of rank r (» > 1) have
incoming arcs only from nodes of lower rank includ-
ing at least one node of rank » — 1. The classification
is unique.

Element and genus graphs can be ranked, for both
are acyclic. The next result shows that these rankings
are consistent when viewed in terms of elements.

Proposition 3. Consider an elemental structure to-
gether with a generic structure satisfying similarity.
The rank of any element based on the element graph
is identical to the rank of the element’s genus based
on the genus graph.

Proof. It suffices to show that the genus-based ranking
of all elements coincides with the element-based rank-
ing for all » > 0, where r denotes genus rank. Clearly
this is true for » = 1, for which the genera simply
partition the primitive entity elements (which all have
element rank 1). Suppose it is true for all r less than
or equal to R, where R is a fixed positive integer. To
see that it is true for R + 1, consider any element of
genus rank R + 1. This element must call some
element whose genus rank is R, and all of its other
calls must be to elements of genus rank R or less.
Hence, this element must call some element whose
element rank is R, and all of its other calls must be to
elements of element rank R or less. It must, therefore,
be of element rank R + 1.

Corollary 1. Consider an elemental structure together
with a generic structure satisfying similarity. For every
genus, all of its elements must be of the same type and
elemental rank.

Proof. Consider any two elements in any given genus,
say el and e2. The definition of generic structure
guarantees they are of the same type. Proposition 3
guarantees they both have the same elemental rank as
genus rank. Since both elements are in the same genus,
it follows that both elemental ranks must be the same.

It is convenient to record here the rankability of
genus graphs.

Proposition 4. When generic structure satisfies simi-
larity, all genera can be classified uniquely into ranks
in such a manner that

(i) rank one genera call no other genera, and

(ii) r> 1, every genus of rank r calls at least one genus
of rank r — 1, possibly other genera of rank
less than r — 1, but no genus of rank greater
thanr— 1.

Classifying genera by rank is a simple matter. Rank
1 consists of all primitive entity genera. Rank 2 con-
sists of all genera which call only primitive entity
genera. Rank 3 consists of all remaining genera which

only call genera of ranks 1 and 2. In general, rank r
consists of all remaining genera which call only pre-
viously classified genera.

Evaluation can be done in one pass rank by rank,
in ascending order. This is a fact of considerable
computational significance.

Classifying nodes by rank is really just a kind of
topological sort, namely the one which uses the fewest
possible distinct node labels. (A topological sort of an
acyclic directed graph produces a node sequence such
that if there is an arc from node 4 to node B, then
node 4 comes before node B in the sequence; see, e.g.,
Knuth 1973, p. 258ff.) While any topological sort
enables evaluation to be done sequentially in a single
pass, this particular sort maximizes the opportunities
for parallel computation (an opportunity that future
computers are likely to be able to exploit).

These ideas can be illustrated with the example of
the Appendix. The genus ranks are easy to see from
the genus graph (Figure 11). The topological sort first
identifies PLANT and CUST, as these have no incom-
ing arcs. After “dropping” the outgoing arcs of these
two genera, the topological sort then identifies SUP,
LINK, and DEM as having no incoming arcs. And so
on. The result is as follows.

Rank Genera

1 PLANT, CUST
2 SUP, LINK, DEM
3 COST, FLOW

4 $, T:SUP, T:DEM

We turn now to the topic of module graph acyclic-
ity. Recall Definitions 22 and 26. Consider any view
of a modular structure defined on a generic structure
satisfying similarity. Clearly the corresponding module
graph will be acyclic if and only if the view is acyclicity-
preserving. The next result shows that acyclicity always
obtains for a structured model. Thus, the acyclicity of
Figure 12 is no accident.

Proposition 5. Module graphs for structured models
are always acyclic.

Proof. Consider any view of any structured model.
Suppose that this view is not acyclicity-preserving.
Then there is a sequence of cells {C1, . .., Cn} of the
associated genus partition such that some genus in C1
calls some genus in C2, ..., some genus in Cn—1
calls some genus in Cn, where n > 1 and Cn = C1.
This cycle has an image in the modular outline. Be-
cause the genera of each cell of the genus partition
occupy consecutive positions in the list, the image of

The Formal Aspects of Structured Modeling | 43

the cycle clearly is inconsistent with the no-forward-
reference property of the outline. Thus, the supposi-
tion must be erroneous and the desired result is at
hand.

The property used at the end of the last proof
deserves to be formalized.

Proposition 6. If genus B calls genus A in a structured
model, then A comes before B in the modular outline.

Proof. Consider any structured model. Suppose that
genus B calls genus A. Then, by the definition of
monotone ordering, the node corresponding to genus
A must come “before” the node of genus B in the
usual partial order extension of the sibling orders. But
it is well known that a preorder traversal of the nodes
of an ordered rooted tree preserves the usual partial
order extension of the sibling nodes, that is, if node
N1 comes before node N2 in the usual partial order
extension, then N1 comes before N2 in the preorder
traversal sequence. Thus, genus 4 comes before genus
B in the indented list representation corresponding to
the preorder traversal.

The acyclicity of Figure 12 is consistent with
Proposition 5, and Figure 7 is consistent with Propo-
sition 6.

Consider an elemental structure, together with a
generic structure satisfying similarity and a modular
structure. It is natural to wonder about the existence
of a monotone ordering and how to construct one, for
without a monotone ordering there can be no struc-
tured model.

Existence is in doubt because it is easy to find
situations in which no monotone order exists. One
can verify that such a situation is the following: let
there be three genera, with genus C calling genus B
and genus B calling genus 4; and let 4 and C (but not
A and B and C) be siblings in the modular structure.

The following result gives two characterizations of
when a monotone ordering exists. One is primarily of
theoretical interest, while the other is simple and
constructive.

Proposition 7. Consider an elemental structure, to-
gether with a generic structure satisfying similarity
and a modular structure. The following are equivalent:

(1) a monotone ordering exists;
(ii) the modular structure is acyclicity-preserving;
(iii) for every sibling set of the modular structure tree,
no subset of the siblings can be arranged in a
sequence {S1, ..., Sn} such that some genus

44 / GEOFFRION

descendant of S1 calls some genus descendant of
S2, ..., some genus descendant of Sn—1 calls
some genus descendant of Sn, where n > 1 and
Sn = S1.

Proof. To see that i=»ii, consider any view. As
observed just prior to Proposition 5, it is acyclicity-
preserving if its module graph is acyclic. Acyclicity of
the module graph follows from Proposition 5, which
applies because of i. To see that ii=iii, consider any
sibling set of the modular structure tree and any view
whose terminal nodes include this sibling set. Since
the modular structure is acyclicity-preserving, this
view is also acyclicity-preserving, which implies iii by
definition because the siblings are among the view’s
terminal nodes. Finally, to see that iii=>i one observes
that iii implies a topological sort is possible for each
of the sibling sets of the modular structure tree; that
is, it is possible to arrange each sibling set in a sequence
{S1, S2, ...} such that some genus descendant of Si
calls some genus descendant of Sj (i and j distinct)
only if j < i. Obviously, this constructs a monotone
ordering.

The constructive procedure used in the last part of
the proof is important because it gives a simple way
to construct monotone orderings when they exist for
a given modular structure: just attempt a topological
sort of each sibling set. If this succeeds for all sibling
sets, the resulting topological labeling yields one or
more monotone orderings (but not necessarily all
possible monotone orderings). If the attempt fails for
some sibling set, then no monotone ordering exists.
This procedure can be implemented efficiently using
only the adjacency matrix of the genus graph and the
modular outline (the order need not be monotone).

We now apply this procedure to the example. The
construction considers the sibling sets one by one.
These sets are

1. &TRANS

2. &SDATA, &CDATA, &TDATA, $, T:SUP,
T:DEM

3. PLANT, SUP

4. CUST, DEM

5. LINK, FLOW, COST.

The topological sort of the first sibling set is trivial,
and yields the label 1 for &TRANS.
A topological sort of the second sibling set yields

1 &SDATA, &CDATA
2 &TDATA
3 §, T:SUP, T:DEM

because the genera of &SDATA and &CDATA call
no other genera outside their modules; the genera of
&TDATA call only genera in &SDATA and
&CDATA,; and the genera of $, T:SUP, and T:DEM
call genera in &TDATA.

A topological sort of the third sibling set yields

1 PLANT
2 SUP.

Similarly, a topological sort of the fourth sibling set
yields

1 CUST
2 DEM

and of the fifth sibling set yields

1 LINK
2 COST, FLOW.

The results of these topological sorts are summa-
rized in Figure 19. This topological labeling makes it
clear that a monotone order will result if

* &SDATA and &CDATA precede &TDATA
* & TDATA precedes $, T:SUP, and T:DEM

¢ PLANT precedes SUP

e CUST precedes DEM

¢ LINK precedes FLOW and COST.

However, three multiple choice options remain:

» pick an order for &SDATA and &CDATA
» pick an order for $, T:SUP, and T:DEM
» pick an order for FLOW and COST.

These options generate all 2 X 6 X 2 = 24 monotone
orderings.

Although explicit topological labeling can be useful,
experience shows that monotone orderings of sensible
modular structures are not difficult to devise. Suppose
that one has an elemental structure together with a
generic structure satisfying similarity. It is no problem
at all to write down a plausible modular structure tree
that is ordered, and this can always be done in outline
form—that is, using an indented list representation
based on the preorder traversal sequence. If there are
no forward references among general in the modular
outline, then the order used for the modular structure
tree is monotone. The converse is also true. Thus, the
practical task of designing a monotone-ordered mod-
ular structure can be viewed as an exercise in sensibly
arranging all genera in outline form in such a way that
there are no forward references among them.

The final result is a simple one but, in view of
Proposition 7, it does settle (in the affirmative) the
question of the existence of a monotone-ordered

modular structure for any given elemental structure
together with a generic structure satisfying similarity.

Proposition 8. For any elemental structure together
with a generic structure satisfying similarity, the
default modular structure is necessarily acyclicity-
preserving.

Proof. Only one view is possible for the default
modular structure. The definition of “acyclicity-
preserving” reduces, in this case, to the requirement
that the genus graph must be acyclic. It is, by Propo-
sition 2.

5. Conclusion

The basic concepts of structured modeling, introduced
informally and used in Geoffrion (1987a), have all
been developed here formally after being motivated
in terms of definitional systems. In addition, we have
obtained some associated theoretical results for use in
future work.

The Formal Aspects of Structured Modeling | 45

Various extensions of the formal modeling frame-
work given here may be achievable. Some possibilities
are suggested in the last section of Geoffrion (1987a).

This paper is part of a series. Readers who find this
conceptual modeling framework of interest may wish
to examine the complete notational system in
Geoffrion (1988) for expressing structured models and
model schemata. That notational system is used by a
research prototype implementation that will be the
subject of another paper.

APPENDIX

Exhibits for an lllustrative Transportation Model

A 2 X 3 Hitchcock-Koopmans transportation model
is represented by the definitional system shown in
Figure 1, which uses the ad hoc notational conven-
tions explained in Section 1.1. In addition, grouping
and indentation are used for organizational purposes.
The identical model appears in Geoffrion (1987a).

Supply Data

1. There is a plant in Dallas called DAL.
2. There is a plant in Chicago called CHI.

3. DAL has a supply capacity (DAL_SUP) of 20,000 tons.
4. CHI has a supply capacity (CHI_SUP) of 42,000 tons.

Customer Data

5. There is a customer in Pittsburgh called PITTS.
6. There is a customer in Atlanta called ATL.
7. There is a customer in Cleveland called CLEV.

8. PITTS has a demand (PITTS_DEM) of 25,000 tons.
9. ATL has a demand (ATL_DEM) of 15,000 tons.
10. CLEV has a demand (CLEV_DEM) of 22,000 tons.

Transportation Data

11. There is a transportation link (DAL_PITTS) from DAL
to PITTS.

12. There is a transportation link (DAL_ATL) from DAL
to ATL.

13. There is a transportation link (DAL_CLEV) from DAL
to CLEV.

14. There is a transportation link (CHI_PITTS) from CHI
to PITTS.

15. There is a transportation link (CHI_CLEV) from CHI
to CLEV.

16. There can be a nonnegative transportation flow in tons
(DAL_PITTS_FLOW) over DAL_PITTS.

17. There can be a nonnegative transportation flow in tons
(DAL_ATL_FLOW) over DAL_ATL.

18. There can be a nonnegative transportation flow in tons
(DAL_CLEV_FLOW) over DAL_CLEV.

19. There can be a nonnegative transportation flow in tons
(CHI_PITTS_FLOW) over CHI_PITTS.

20. There can be a nonnegative transportation flow in tons
(CHI_CLEV_FLOW) over CHI_CLEV.

21. The DAL_PITTS cost rate is $23.50 per ton (DAL_
PITTS_COST). -

22. The DAL_ATL cost rate is $17.75 per ton (DAL_
ATL_COST).

23. The DAL_CLEV cost rate is $32.45 per ton (DAL_
CLEV_COST). -

24. The CHI_PITTS cost rate is $7.60 per ton (CHI_
PITTS_COST).

25. The CHI_CLEV cost rate is $25.75 per ton (CHI_
CLEV_COST). -

26. Thereisa TOTAL_COST associated with all transportation
flows equal to DAL_PITTS_FLOW Xx DAL_PITTS_
COST +...+ CHI_CLEV_FLOW X CHI_CLEV_COST.

27. The DALLAS_SUPPLY_TEST determines whether the
total transportation flow leaving Dallas, namely DAL_
PITTS_FLOW + DAL_ATL_FLOW + DAL_CLEV_
FLOW, is less than or equal to DAL_SUP.

28. The CHICAGO_SUPPLY_TEST determines whether the
total transportation flow leaving Chicago, namely CHI_
PITTS_FLOW + CHI_CLEV_FLOW, isless than or equal
to CHI_SUP.

29. The PITTSBURGH_DEMAND_TEST determines
whether the total transportation flow arriving at Pittsburgh,
namely DAL_PITTS_FLOW + CHI_PITTS_FLOW,
exactly equals PITTS_DEM.

30. The ATLANTA_DEMAND_TEST determines whether
the total transportation flow arriving at Atlanta, namely
DAL_ATL_FLOW, exactly equals ATL_DEM.

31. The CLEVELAND_DEMAND_TEST determines
whether the total transportation flow arriving at Cleveland,
namely DAL_CLEV_FLOW + CHI_CLEV_FLOW,
exactly equals CLEV_DEM.

Figure 1. Definitions for a simple transportation model.

46 / GEOFFRION

Element Calling Sequence
3 (1)
4 2
8 (5)
etc. etc.
11 (1;5)
etc. etc.
16 (11)
etc. etc.
21 (11)
etc. etc.
26 (16, 17, 18, 19, 20; 21, 22, 23, 24, 25)
27 (3; 16, 17, 18)
28 (4; 19, 20)
29 (8; 16, 19)
etc. etc.

Figure 2. Elements and their calling sequences (with
semicolons separating segments).

Genus
Partition of
primitive entities: {1, 2} PLANT
{5,6, 7} CUST

Partition of
compound entities:

Partition of
attribute elements: {3, 4} SUP
(8,9, 10} DEM
{16, 17, 18, 19,20} FLOW
{21, 22,23, 24,25} COST

{11,12,13, 14,15} LINK

Partition of

function elements: {26} $
Partition of
test elements: {27, 28} T:SUP
{29, 30, 31} T:DEM
Figure 3. Generic structure (satisfying generic
similarity).
PLANT
&SDATA<
sup
CUST
&CDATA <
DEM
/ LINK
&TRANS &TDATA \ FLOW
COST
$
T :SUP
T :DEM

Figure 4. Modular structure.

Module Sibling Sequence of Module Children
&TRANS &SDATA, &CDATA, &TDATA, $, T:SUP,
T:DEM
&SDATA PLANT, SUP
&CDATA CUST, DEM
&TDATA LINK, FLOW, COST
Figure 5. Sibling orders for the modular structure of
Figure 4.
&SDATA
A PLANT
» SUP
A
&CDATA :
]
A > CUST
>» DEM
A
&TDATA :
]
* LINK
FLOW
COST
:
;
T:SUP
T :DEM

Figure 6. Sibling orders (solid lines only) and the
extended order (solid and dashed lines)
based on Figure 5.

&TRANS

&SDATA
PLANT
SUP

&CDATA
CUST
DEM

&TDATA
LINK
FLOW
COST

$

T:SUP

T:-DEM

Figure 7. Modular outline corresponding to Figure 5.

The Formal Aspects of Structured Modeling | 47

View 2 View 3 View 4 View 5
&TRANS &TRANS &TRANS &TRANS
&SDATA &SDATA &SDATA &SDATA
PLANT PLANT &CDATA PLANT
SUP SUP CUST SUP
&CDATA &CDATA DEM &CDATA
CUST &TDATA &TDATA &TDATA PLANT
DEM LINK LINK $ &SDATA <
&TDATA FLOW FLOW T:SUP Sup
$ COST COST T:DEM
T:SUP $ $ SCDATA < CUST
T:DEM T:SUP T:SUP DEM
T:DEM T:DEM &TRANS
&TDATA
View 6 View 7 View 8 View 9
&TRANS &TRANS &TRANS &TRANS ¥
&SDATA &SDATA &SDATA T:SUP
&CDATA &CDATA &CDATA
CUST &TDATA &TDATA T:DEM
DEM LINK $. .
STDATA FLOW T-SUP Figure 9. Modular subtree for View 2.
$ COST T:DEM
T:SUP $
T:DEM T:SUP
T:DEM

Figure 8. The possible views associated with Figure 7
(excluding the master view).

1 2 5 6 7
Figure 10. Element graph without attributes.

48 / GEOFFRION

T:SUP $ T:DEM
A

T:SUP $ T:DEM

COST FLOW

SUP LINK DEM §TDATA

PLANT cusT PLANT CusT
Figure 11. Genus graph. Figure 12. Modular graph for View 2 of Figure 8.

2 22 233
6 7178 201

=
N)
lw
|
o
o
N
[[o¢]
%]
o
[
[\
(98]
AsS
0
o
N
[o?)
%)
o
H
N
(98]
>
0

S T T
2 .. <1 . .. o e . e e T
« e e e e e e e e e T . .

W
.
D
.
.
D
D
.
.
.
.
.
.
.
.
.
.

5 . . P e N T T e e e e .
6« e . T T T T T T e e e e e e
7 <« . . e

o v
.
.
.
.
.
.
.
.
.
.
.
.
.
=

et e
S e

1 S L
e T
5 A T

16 ¢ ¢ ¢ 6 e e 6 e e e e e e e e

17 ¢ ¢ o 6 e e e e e e e .
18 v ¢ v v e e e e e e e
19 ¢ ¢ o o e e e e e e e

.

.

.

.
e L

3

23 o o . . e .
24« . . o . .
25 . . .« .« o . o e .

.
.
.
.
.
.
.
RPR R e
.

26

A

28 o . . .« .o . e e e e e e e e e . e e e e . e e e e
29 o o e o o . e e e e e e e e e e o e e . o« . o o .
30 . . .« . . e . .« o . e e e e e e e e e e e e e . . o . .
31 . . .« o e . o« o . e e e e o o e o e e e e e e . .« . .« .

Figure 13. Element graph adjacency matrix associated with Figure 10 (“.” replaces “0”).

The Formal Aspects of Structured Modeling | 49

PLANT SUP CUST DEM LINK FLOW COST § T:SUP T:DEM
PLANT . 1 . . 1
SUP 1

CUST . . . 1 1
DEM 1
LINK 1 1 . . .
FLOW 1 1 1
COST 1 . .
T:SUP

T:DEM

Figure 14. Genus graph adjacency matrix associated with Figure 11.

PLANT SUP CUST DEM &TDATA $ T:SUP T:DEM
PLANT . 1 . 1 . . .
SUP 1

CUST . . . 1 1 . . .
DEM 1
&TDATA : 1 1 1
T:SUP

T:DEM

Figure 15. Module graph adjacency matrix associated with Figure 12.

50 / GEOFFRION

11
12
13
14
15

16
17
18
19
20

21
22
23
24
25
26

27
28

29

31

-
0o

o
Job>

[

. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
- .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .

Figure 16. Element graph reachability matrix associated with Figure 13 (.

jon
o
I~
|oo
o
o -
}—J

e
D e
O T

O T T
e T
e T T
O T
s T T
O
B
T
T B
O T e

PRREPRRE RRPRPPP

PRRERP

(=)

N

S Y

e

|00

” replaces “0”).

PLANT 1 1

SUP
CUST
DEM
LINK
FLOW
COST
$
T:SUP
T:DEM

PLANT SUP CUST DEM LINK FLOW COST § T:SUP T:DEM

1 1 1 1 1
1 1
. 1 1 1 1 1 1 1
. 1 . . .

. 1 1 1

1

e b e

1

o b et et e o

Figure 17. Genus graph reachability matrix associated with Figure 11.

o N

e

o w

(%

e

e

Pt o

(S

The Formal Aspects of Structured Modeling | 51

PLANT SUP CUST DEM &TDATA $ T:SUP T:DEM

PLANT 1 1

SUP . 1 .
CUST . . 1
DEM . .
&TDATA

$

T:SUP

T:DEM

1 1 1 1
. . 1 .
1 1 1 1
. . . 1
1 1 1 1
1 .
. 1

Figure 18. Module graph reachability matrix associated with Figure 12.

Label Module or Genus
1 &TRANS

&SDATA
&CDATA
&TDATA
$

T:SUP
T:-DEM

PLANT
SUP

CUST
DEM

LINK
FLOW
COST

NN —= = N= WWWN — -

Figure 19. Topological labeling of the modular
structure of Figure 4.

Acknowledgment

The foundations of structured modeling emerged early
in this decade from my efforts to develop a broadly
applicable theory of model aggregation. During and
since those early days, I received much valuable input
from students and colleagues. The students (most of
whom have since graduated) include E. Brehm, S.
Chari, A. Dechter, C. K. Farn, V. Francis, S. Gokhale,
A. Jain, S. Jain, C. Jones, M. Shimony, and G. Zall.
The colleagues include G. Bradley, P. Chen, R.
Dembo, G. Diehr, D. Dolk, H. Greenberg, J. Jackson,
M. Lenard, J. Mamer, G. Wright, and P. Zipkin. All
have my lasting appreciation.

This work was supported partially by the National
Science Foundation, the Office of Naval Research,

and the Navy Personnel Research and Development
Center (San Diego).

References

AHO, A. V., J. E. HOPCROFT AND J. D. ULLMAN. 1983.
Data Structures and Algorithms, Addison-Wesley,
Reading, Mass.

Berzriss, A. T. 1975. Data Structures: Theory & Practice,
Ed. 2. Academic Press, New York.

GEOFFRION, A. 1987a. An Introduction to Structured
Modeling, Mgmt. Sci. 33, 547-588. [A version that
includes a section on implementation is available as
Working Paper No. 338, Western Management Sci-
ence Institute, University of California, Los Angeles,
revised March 1988.]

GEOFFRION, A. 1987b. Modeling Approaches and Sys-
tems Related to Structured Modeling. Working Pa-
per 339, Western Management Science Institute,
University of California, Los Angeles (February).

GEOFFRION, A. 1988. SML: A Model Definition Lan-
guage for Structured Modeling. Working Paper 360,
Western Management Science Institute, University
of California, Los Angeles (May).

GEOFFRION, A. 1989. Computer-Based Modeling Envi-
ronments. To appear in Eur. J. Opntl. Res.

HARARY, F., R. Z. NORMAN AND D. CARTWRIGHT. 1965.
Structural Models: An Introduction to the Theory of
Directed Graphs. John Wiley & Sons, New York.

James, R. C, aND E. F. BECKENBACH (eds.). 1976.
James/James Mathematics Dictionary, Ed. 4. Van
Nostrand Reinhold, New York.

KNuTH, D. E. 1973. The Art of Computer Programming,
Vol. 1: Fundamental Algorithms, Ed. 2. Addison-
Wesley, Reading, Mass.

Sowa, J. F. 1984. Conceptual Structures: Information
Processing in Mind and Machine. Addison-Wesley,
Reading, Mass.

ULLMAN, J. D. 1982. Principles of Database Systems,
Ed. 2. Computer Science Press, Rockville, Md.

