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ABSTRACT 
 

Testing the CAPM boils down to testing the mean/variance efficiency of the market 
portfolio. Numerous studies have examined the mean/variance efficiency of various 
market proxies by employing sample parameters, and have concluded that these 
proxies are inefficient.  Shrinkage methods do not seem to help.  These findings cast 
doubt about one of the cornerstones of modern finance. This study adopts a reverse-
engineering approach: given a particular market proxy, we find the minimal 
variations in sample parameters required to ensure that the proxy is mean/variance 
efficient. Surprisingly, slight variations in parameters, well within estimation error 
bounds, suffice to make the proxy efficient. Thus, many conventional market proxies 
could be perfectly consistent with the CAPM and useful for estimating expected 
returns. 
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INTRODUCTION 
 

Testing the Capital Asset Pricing Model (CAPM) is equivalent to testing the 

mean/variance efficiency of the market portfolio (see Roll [1977] and Ross [1977]). 

The efficiency of the market portfolio has very important implications regarding the 

debate over passive versus active investing, and regarding the use of betas for pricing 

risky assets. Many studies that have examined the mean/variance efficiency of various 

market proxies have found that these proxies are inefficient, and typically far from the 

efficient frontier1. Moreover, it is well known that portfolios on the efficient frontier 

typically involve many short positions2, which implies, of course, that the positive-by-

definition market portfolio cannot be efficient. These results hold both when the 

sample return parameters are employed, and when the return parameters are adjusted 

by various shrinkage methods.3 This constitutes a very dark cloud hanging over one of 

the most fundamental models of modern finance. In light of this evidence, should the 

CAPM be taken seriously by financial economists, or is it just a pedagogical tool for 

MBA classes, grossly inconsistent with the empirical evidence?   

This paper shows that a small variation of the sample parameters, well within 

their estimation error bounds, can make a typical market proxy efficient. Thus, the 

empirically measured return parameters and the market portfolio weights are perfectly 

consistent with the CAPM using a typical proxy. How is this possible, and how can it 

be reconciled with the many previous studies that have shown that the market proxy is 

                                                 
1 See, for example, Ross [1980], Gibbons [1982], Jobson and Korkie [1982], Shanken [1985], Kandel 
and Stambaugh [1987], Gibbons, Ross, and Shanken [1989], Zhou [1991], and MacKinlay and 
Richardson [1991]. 
2  As shown, for example, by Levy [1983], Green and Hollifield [1992], and Jagannathan and Ma 
[2003]. 
3 Jagannathan and Ma [2003] show that constraining the weights of the minimum-variance portfolio to 
be non-negative is equivalent to modifying the covariance matrix in a way which typically shrinks the 
large elements of the covariance matrix. When this shrinkage is employed, however, only a small 
number of assets are held in positive proportions (and the rest have  weights of zero). This is, again, not 
an encouraging result for the hope of finding an efficient market portfolio by employing shrinkage 
techniques. 
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inefficient? While most studies suggest various variations of the return parameters 

relative to the sample parameters and check whether these variations lead to an 

efficient market proxy, we take a reverse approach: we first require that the return 

parameters ensure that the market proxy is efficient. Given this requirement, we look 

for parameters that are as “close” as possible to their sample counterparts. 

Surprisingly, parameters that make the market proxy efficient can be found very close 

to the sample parameters.  Hence, minor changes in estimation error reverse previous 

negative and disappointing finding for the CAPM. 

We hasten to add that the efficiency, or lack thereof, for a market proxy can 

never be a definitive test of the macro CAPM, which requires the market portfolio of 

all assets, including real-estate, human capital, etc. Nonetheless, it would be 

reassuring if typical proxies could be shown to be less inefficient than previously 

believed. 

This paper is organized as follows. The next section introduces the methods 

employed. Section II describes the data and the results. Section III discusses 

implications for asset pricing. Section IV concludes. 

 
 
 

I. METHODS 
 

Given a market proxy, m, we look for the “minimal” variation of sample 

parameters that would make it mean/variance efficient. Denote the vector of market 

proxy portfolio weights by xm, and denote the vector of sample average returns and 

the vector of sample standard deviations by samμ and samσ , respectively. Csam denotes 

the sample covariance matrix, and samρ  denotes the sample correlation matrix.  
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 The objectives being sought are an expected return vector μ  and a covariance 

matrix C that on the one hand make portfolio m mean/variance efficient, and on the 

other hand are as close as possible to their sample counterparts. For simplicity, when 

considering the covariance matrix C we allow variation only in the standard 

deviations, while retaining the same sample correlations:     
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Allowing the correlations to vary as well introduces technical difficulties, but can 

only make the results stronger, as it allows more degrees of freedom in the 

optimization procedure described below. 

 In order to obtain the parameters ( )σμ ,  that are “closest” to their sample 

counterparts, ( )samsam ,σμ , we define the following distance measure D between any 

parameter set ( )σμ ,  and the sample parameter set: 
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where N is the number of assets, and 10 ≤≤α  is a parameter determining the relative 

weight assigned to deviations of the means relative to deviations of the standard 

deviations. Recall that the larger the standard deviation of a given asset’s returns, the 

larger the statistical errors involved in estimating this asset’s parameters, and the 

larger the confidence intervals for these parameters. This is the rationale for dividing 

the deviations in (2) by sam
iσ  - the resulting distance measure “punishes” deviations in 

the parameters of assets with low standard deviations more heavily than similar 

deviations in assets with higher standard deviations. The ultimate test of whether a set 
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of parameters ( )σμ ,  can be considered as “reasonably close” to the sample 

parameters is the proportion of parameters that deviate from the standard estimation 

error bounds around their sample counterparts, and the size of those deviations. 

Intuitively, a parameter set is “reasonably close” when 95% or more of the parameters 

are within the 95% confidence intervals of the sample parameters (Below we also 

employ the more formal Bonferroni [1935] multiple-comparison test). The choice of 

the distance measure D in eq.(2), and its minimization in the optimization problem 

described below, are designed to minimize the statistical significance of the deviations 

between μ  and σ  and their sample counterparts. 

 To find the set of parameters ( )σμ ,  that make the proxy m mean/variance 

efficient and are closest to the sample parameters, we solve the following 

optimization problem: 

 
Optimization Problem 1: 
 
Minimize ( ) ( )( )sam,,,D σμσμ  
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where q>0 is the constant of proportionality, and rz is the zero-beta rate. Both q and rz 

are free variables in the optimization. Thus, there are 2N+2 variables in the 

optimization: N s'μ , N s'σ , q and rz. Any set of these 2N+2 parameters satisfying (i) 

makes the proxy portfolio mean/variance efficient (see, for example Roll [1977]). We 
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are looking for the set of parameter vectors ( )** ,σμ that satisfy this mean/variance 

efficiency condition and are closest to the sample parameters4. 

 Our approach is different from the approach employed in previous studies, 

such as Black, Jensen, and Scholes [1972] and Gibbons, Ross, and Shanken [1989], 

for example, in two main regards. First, we are not required to assume the existence of 

a risk-free asset. Second, and more importantly, the standard approach looks at the 

adjustment to the empirical average returns required to make the market proxy 

efficient (i.e. the stocks' alphas), and asks whether these adjustments are statistically 

plausible. In contrast, we are looking at simultaneous adjustments to the average 

returns and the standard deviations (and could, in principle, include adjustments to 

the correlations as well). Thus, while the standard approach examines the statistical 

plausibility of a single vector of alphas, we examine a multitude of vectors of average 

return and standard deviation adjustments. This allows us many more degrees of 

freedom relative to the standard approach, and explains why we find that only small 

adjustments are required to make the market proxy efficient. 

In some situation one may have beliefs about the proxy portfolio’s ex-ante 

mean and standard deviation, and would like to find the set of parameters that are 

closest to the sample parameters, and at the same time ensure that the proxy portfolio 

is mean/variance efficient with the pre-specified mean and standard deviation. 

Denoting the pre-specified mean and standard deviation by 0μ   and 0σ , respectively, 

the optimization problem solved in this case is: 

Optimization Problem 2: 
 
Minimize ( ) ( )( )sam,,,D σμσμ  

           
                                                 
4 This optimization problem is similar in spirit to Sharpe's [2007] "reverse optimization" problem. Levy 
[2007] employs an analogous technique to find mean/variance efficient portfolios that have all-positive 
weights.  This approach was first used in a very innovative paper by Best and Grauer [1985].  
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Subject to:    
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where, again, xm is the vector of a given proxy’s portfolio weights. 

 

The next section presents solutions to these optimization problems with empirical 

equity data in order to ascertain how large the deviations from the sample parameters 

must be in order to ensure mean/variance efficiency. 

 

II. DATA AND RESULTS 

Our demonstration sample consists of the 100 largest stocks in the U.S. market 

(according to December 2006 market capitalizations), which have a complete monthly 

return records over the period January 1997 - December 2006 (120 return 

observations). Columns (2) and (4) in Table I report the sample average returns and 

standard deviations for 30 of these stocks (the complete information for all 100 stocks 

is given in Table AI in the Appendix). The average sample correlation is 0.24.  
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Following previous research (e.g., Stambaugh [1982]), we examine a market 

proxy whose weights are market capitalizations, in this case of the 100 stocks as of 

December 2006, 

∑
=

= 100

1j

mi

jfirmofcapmarket

ifirmofcapmarketx . 

The proxy portfolio and the sample mean/variance frontier are shown in Figure 1 by 

the triangle and thin line, respectively. As the figure illustrates, the proxy portfolio is 

far from the efficient frontier when the sample parameters are employed. This is 

consistent with previous studies. 

To solve Optimization Problem 1 numerically, we implement Matlab’s 

fmincon function, which is based on the interior-reflective Newton method and the 

sequential quadratic programming method.  

The solution ( )** ,σμ  is given in Columns (3) and (5) of Table I. The t-values 

for the expected returns *μ are given in Column (6). These t-values reveal that the 

difference between the sample average return,  sam
iμ , and *

iμ  is non-significant at the 

95% level for all stocks (this is true not only for the 30 stocks shown in the table, but 

for the other 70 stocks as well). Column (7) provides the ratio ( ) ( )22 sam
i

*
i σσ   for 

each stock. The 95% confidence interval for this ratio is the range [0.790-1.319]. 5 

                                                 
5  The ratio 

2

21

σ

s)n( −  is distributed according to the 2
1−nχ distribution, where 2σ is the population 

variance, 2s is the sample variance (or ( )2samσ in the notation used in this paper), and n is the number of 
observations. We have 120 monthly return observations, hence n=120.  As we are looking for the 95% 
confidence interval for 22 σs , we need to find the critical values 1c  and 2c  for which 

( ) 02501
2
119 .cP =>χ ,  and  ( ) 02502

2
119 .cP =<χ . For large n, 122 2 −− nnχ  can be approximated by the 

standard normal distribution.  Thus, the critical values 1c  and 2c  satisfy 961111922 1 .c =−⋅−   and 

961111922 2 .c −=−⋅− , which yield:  61501 .c =  and 2902 .c = . Thus, the 95% confidence interval for 
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The values in Column (7) reveal that for all stocks the ratio ( ) ( )22 sam
i

*
i σσ  is well 

within this range (and this is also true for the 70 stocks not shown in the table). Thus, 

the solution ( )** ,σμ  to the optimization problem is very close to the sample 

parameter set in the sense that none of the parameters is significantly different from 

its sample counterpart. 

More formally, as we have 2N=200 parameters, we are simultaneously testing 

200 hypotheses (each stating that the given parameter is not different than its sample 

counterpart at the 5% significance level). The Bonferroni [1935] test states that we 

should reject the multiple-comparison hypothesis at the 5% level if any one of the 

parameters is significantly different than its sample counterpart at the (5/200)% level 

(see also Miller [1991]). As none of our parameters is significantly different at the 5% 

level, of course none is significant at the much lower (5/200)% level, and we cannot 

reject the multiple comparison hypothesis. 

(Please insert Table I and Figure 1 about here) 

To confirm that the parameters ( )** ,σμ  make the proxy portfolio 

mean/variance efficient, one can examine the efficient frontier and the location of the 

proxy portfolio in the mean-standard-deviation plane with these parameters. These are 

illustrated by the bold line and the star in Figure 1. The figure shows that with the 

parameters ( )** ,σμ  the proxy portfolio lies on the efficient frontier. It is interesting to 

note that while the modified parameters  ( )** ,σμ  do not have a big impact on the 

expected return or the standard deviation of the proxy portfolio (the star is located 

very close to the triangle), they do have a big effect on the shape of the frontier. Why 

is the modified frontier much flatter than the sample frontier? 
                                                                                                                                            

22 σs is given by  6150119290 22 .s. <⋅< σ  or: 26617580 22 .s. << σ . Alternatively, this range can be 

also stated as 31917900 22 .s. << σ . 
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The explanation can be found in Figure 2, which shows the adjustment to the 

expected return, sam
i

*
i μμ −  , as a function of the sample average return, sam

iμ . The 

figure reveals that high sample returns tend to get negative corrections ( )sam
i

*
i μμ < , 

while the opposite holds for low sample returns. Thus, the cross sectional variation of 

*
iμ  is smaller than the cross sectional variation of sam

iμ , which explains why the 

frontier is flatter (recall that in the limiting case where all expected returns are 

identical, the frontier becomes completely flat – it is a horizontal line). Figure 2 shows 

that the corrections to the sample means implied by the optimization are reminiscent 

of standard statistical shrinkage methods. However, unlike the standard shrinkage 

methods, the method employed here ensures that the proxy is mean/variance 

efficient.6 

 (Please insert Figure 2 about here) 

There is excellent intuition behind such a result when one recalls two facts (a) 

the efficient frontier itself is the result of an optimization; it gives the minimum 

variance for each level of mean return, and (b) sample parameter estimates are equal 

to true population parameters plus estimation errors.  An efficient frontier computed 

using sample estimates optimizes with respect to sampling errors in addition to true 

parameters, so assets with over-estimated means are likely to be weighted too heavily 

in frontier portfolios and vice versa for assets with under-estimated means.  This 

suggests that an efficient frontier computed using population parameters, if they were 

only known, would fall well inside the frontier computed using sample estimates, at 

                                                 
6 One may wonder whether the adjustment sam* μ−μ is similar for stocks that are relatively highly 
correlated with one another. In order to check this, we calculate the sample return correlation for each 
pair of stocks (i,j), and examine the relation across pairs between this sample correlation and the 
difference between the adjustments of the two stocks, i.e. ( ) ( )sam

j
*
j

sam
i

*
i μ−μ−μ−μ .  We find no such 

relation (R2=0.009), i.e. pairs that are more highly correlated are not more likely to have similar 
adjustments. 
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least at most points.  The main exception would be near the global minimum variance 

portfolio, whose weights do not depend on mean returns; indeed, such a relation is 

exactly what we see depicted in Figure 1. 

The implication of these results is quite striking. In contrast to “common 

wisdom”, they show that the empirical proxy portfolio parameters are perfectly 

consistent with the CAPM if one allows for only slight estimation errors in the return 

moments. The reason that most previous studies have found that the market proxy is 

inefficient, even when various standard shrinkage methods have been employed, is 

that the variation of the parameters necessary to make the proxy portfolio efficient is 

very specific. While this variation is in the spirit of shrinkage, it is specifically 

designed to ensure the efficiency of the proxy portfolio, and thus it is fundamentally 

different than the standard statistical shrinkage methods. 

With the solution ( )** ,σμ  to Optimization Problem 1 the proxy portfolio has 

a monthly expected return of 1.4% and a standard deviation of 4.6% (see Figure 1), 

which are very close to its sample values, 1.5% and 4.6%. These values were 

produced by the optimization (given the proxy portfolio weights). In some situations 

one may have beliefs about the proxy portfolio’s ex-ante return parameters, and may 

wish to look for solutions that are consistent with these beliefs. For example, suppose 

one would like to find vectors μ  and σ  such that the proxy portfolio is efficient and 

has an expected return and a standard deviation of %20 =μ  and %40 =σ , 

respectively. Are such index values compatible (in a statistical sense) with the sample 

parameters and with a mean/variance efficient index? To answer this question, 

Optimization Problem 2 can be solved with %20 =μ   and %40 =σ . We will 

consider the solution ( )** ,σμ  compatible with the sample parameters if 95% or more 

of the parameters are within the 95% confidence intervals of their sample counterparts. 
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Of course,  %20 =μ   and %40 =σ  is just one example. A more complete picture 

would scan the mean/variance plane and map the range of proxy portfolios’ return 

parameters, 0μ   and 0σ , that are compatible with the CAPM and the sample returns 

and market proxy weights.  

Figure 3 shows the results of this analysis. For each combination of pre-

specified proxy portfolio parameters ( 0μ , 0σ ) we solve Optimization Problem 2. The 

points scanned are shown by the circles in the mean/variance plain. If the resulting 

optimal parameter set ( )** ,σμ  is found to be statistically compatible with the sample 

parameters, ( )samsam ,σμ , and with the CAPM (mean/variance efficiency of the index), 

the point is marked as a filled circle; if not, it is left transparent. For example, the 

point ( %20 =μ , )%40 =σ , (indicated by a down arrow in Figure 3), is indeed 

consistent with the sample parameters and the proxy being efficient. In contrast, the 

point to the left, ( %20 =μ , )%.9530 =σ , is not consistent. The figure shows that the 

range of possible proxy portfolio return parameters that can be made simultaneously 

consistent with the CAPM and the sample parameters is in fact quite large. The proxy 

portfolio expected return can be as small as 0.5% or as large as 2%, and the standard 

deviation can be as small as 4% or as large as 5%.  These are percent per month.  

(Please insert Figure 3 about here) 

It would be interesting to redo this analysis using indexes with even more 

individual assets, but there are technical difficulties.  When the number of assets 

exceeds the number of time series observations, the correlation matrix is singular, 

which produces some instabilities in the optimization problem. We can, however, 

partially investigate this issue by varying the number of assets for N<100 and looking 
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for any trend in the range of proxy portfolio return parameters consistent with the 

CAPM.   

For example, repeating the analysis for the 50 largest stocks (instead of the 

100) yields the results shown in Figure 4. These results are comparable to those 

obtained with 100 stocks in the range of proxy portfolio return parameters consistent 

with the CAPM is roughly similar. To investigate in more detail possible systematic 

effects of the number of assets, we repeat this analysis for N=10, 20, …, 100 stocks. 

For each value of N we measure the area of admissible proxy portfolio parameters 

(estimated by the polygon containing the admissible points, see, for example the 

polygon in Figure 4). The results are shown in Figure 5. Although the area is an 

approximation of the precise area of admissible points, because of the discreteness of 

the points, (and as indicated by the error bars in Figure 5), Figure 5 shows that the 

area does not seem to change systematically with the number of assets. Thus, the 

results seem robust to the identity of stocks and to the number of stocks contained in 

any market index proxy. 

(Please insert Figures 4 and 5 about here) 

 

III. IMPLICATIONS FOR ASSET PRICING  

AND PRACTICAL USE OF THE CAPM 

 The Security Market Line (SML) formula is probably the most widespread 

method for estimating the cost of capital and for pricing risky assets. Using beta and 

the SML formula for estimating the expected return, rather than employing the sample 

average return directly, is usually justified on the basis that the statistical estimation of 

beta is more stable than that of the average return. However, when there are questions 

about how well the SML relationship holds empirically, there are serious doubts about 
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employing betas for pricing.7  While we cannot prove that the SML relationship holds 

empirically with the ex-ante parameters, our analysis does provide another reason for 

employing betas for estimating the cost of capital.   

 Suppose that the CAPM holds with the true ex-ante parameters ( )** ,σμ , and 

that the empirically measured parameters are ( )samsam ,σμ . The true and sample betas 

of stock i are given respectively by:  

mm

N

j
ij

*
j

*
imj

*
i Cx'x

x∑
== 1

ρσσ
β      (3a)  

m
sam

m

N

j
ij
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j
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imj
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i xC'x

x∑
== 1

ρσσ
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where mx  denotes the market portfolio weights. The true cost of equity of firm i is *
iμ . 

If one employs the observable sam
iβ in the SML formula instead of the correct *

iβ , 

how accurate will be the resulting cost of capital estimate? In other words, how close 

are sam
iβ  and *

iβ ? The answer is shown in Figure 6, where the parameter set ( )** ,σμ  

employed is the solution to Optimization Problem 1. The figure reveals that the 

difference between sam
iβ  and *

iβ  is very small. The reason is that both the 

denominators and the numerators of (3a) and (3b) are very similar. The variance of 

the market proxy is quite close whether the optimized parameters or the sample 

parameters are employed (compare the horizontal location of star and the triangle in 

Figures 3 and 4). As for the covariances in the numerator, note that sam
j

*
j σσ ≈ , and in 

addition, the deviations tend to cancel each other out in the summation, as in some 

cases sam
j

*
j σσ > , while in others sam

j
*
j σσ <  (see Column 7 in Table I).8 

                                                 
7 This is, of course, one of the major debates in finance. See, for example, Reinganum [1981], Levy 
[1981], Lakonishok and Shapiro [1986], Chen, Roll, and Ross [1986], Fama and French [1992], and 
Roll and Ross [1994]. 
8 Figure 6 shows the relation between the sam

iβ 's and the *
iβ 's when we use a value of 750.=α in the 

distance measure D (see eq.(2)). When a higher value of α is employed, the s'*
iμ are closer to their 
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 Since the market proxy is efficient with the true parameters ( )** ,σμ , the 

following relationship holds exactly: 

  )( m
*
i

*
i zz rr −μβ+=μ ,    (4) 

where zr is the expected return on the zero-beta portfolio for index m.  Common 

practice substitutes a “riskless” rate, rf, for rz, but this is appropriate only when f and z 

have the same mean return.  Since *
i

sam
i ββ ≈ , employing the SML with the sample 

beta, as is commonly done in practice, provides an excellent estimate for the true 

expected return (assuming rf = rz): 

 [ ] 0≈−−−=−+− )r()r()r(r f
sam
m

sam
if

*
m

*
if

sam
m

sam
if

*
i μβμβμβμ .  (5) 

 The above argument is based on taking the true ex-ante parameters as the 

( )** ,σμ  vectors solving Optimization Problem 1, i.e. the parameters ensuring the 

CAPM that are closest to the sample parameters. What if, instead, we take another set 

of parameters that ensures the efficiency of the proxy and is consistent with the 

sample parameters? For example, suppose that we take as the true parameters those 

that solve Optimization Problem 2 with  %20 =μ  and %.2540 =σ  (see point A in 

Figure 3). It turns out that with these parameters the *
iβ ’s and the sam

iβ ’s are still very 

close – see Panel A in Figure 7. This is also true for other points with very different 

proxy portfolio expected returns and standard deviations – see Panels B,C, and D in 

Figure 7, corresponding to the points B,C, and D in Figure 3. 

This is a strong result:  if the CAPM holds in a way that is consistent with the 

sample parameters, the differences between sample betas and true betas are going to 

be small. Thus, if the SML formula for pricing, which implies that the CAPM holds 
                                                                                                                                            
sample counterparts, and the s'*

iσ are more distant from their sample counterparts. As a result, the 

differences between the  sam
iβ 's and  the *

iβ 's also increase. Yet, even with a very high value 

of 970.=α the *
iβ 's are still very close to the sam

iβ 's, with a correlation of 0.96. 
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with the ex-ante parameters, one can be confident about using the sample betas, and 

should not worry about estimation errors in the betas. This conclusion is reached 

because we are not just looking at the statistical estimation error of a single asset’s 

beta in isolation, as is typically done, but rather at the error in beta given that the 

CAPM holds in a way that is consistent with the sample parameters   ( )samsam ,σμ . 

(Please insert Figures 6 and 7 about here) 

From a practical perspective, since sample betas are quite close to betas that 

have been adjusted to render the market proxy mean/variance efficient, improved 

estimates of expected returns can be obtained from sample betas alone.  Sample mean 

returns should be ignored!  To illustrate, Figure 8, Panel A shows the cross-sectional 

relation between sample mean returns and sample betas for our 100 stocks while 

Figure 8, Panel B shows the analogous relation for adjusted means and betas.  Clearly, 

the sample means in Panel A are not closely related at all to sample betas but the 

adjusted means in Panel B are perfectly related to adjusted betas.9 

(Please insert Figure 8 about here) 

Consequently, to obtain an improved expected return for any stock, first 

calculate the adjusted mean return for the market index proxy and for its 

corresponding zero-beta portfolio.10  Plugging these numbers along with the sample 

beta (because it’s close to the adjusted beta) into the usual CAPM formula delivers the 

improved estimate of expected return.  Making the market index proxy mean/variance 

efficiency produces useful betas for many practical purposes such as estimation of the 

cost of equity capital for a firm or of the discount rate for a risky project. 

 

                                                 
9 The slight deviations from linearity in Figure 8, Panel B are caused by rounding error. 

 
10 For most proxies, the sample means will be close to the adjusted means. 
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IV. CONCLUSION 

 Market proxy portfolios are typically very far from the sample efficient 

frontier. Many studies have tried various adjustments to the sample parameters to 

make the market proxy mean/variance efficient, without success. Thus, the “common 

wisdom” is that the empirical return parameters and market portfolio weights are 

incompatible with the CAPM theory. 

 In this paper we hope to change that perception. We show that small variations 

of the sample parameters, well within the range of estimation error, can make a 

typical market proxy mean/variance efficient. While such parameter variations are 

reminiscent of “shrinkage”, they differ from those obtained with the standard 

statistical shrinkage methods: they are the result of “reverse optimization.” In this 

reverse optimization, return parameters are derived to make the market proxy 

mean/variance efficient while being “close” to their sample counterparts.  

 The fact that we find many such parameter sets, together with the fact that 

many previous attempts to vary the return parameters in order to obtain an efficient 

proxy were unsuccessful, seem to indicate that such parameter sets may be very rare 

in parameter space – it is very unlikely to “stumble onto one of them” by coincidence. 

Yet, the reverse optimization problem delivers them simply and directly. 

 These findings suggest that the CAPM (i.e., ex ante mean/variance efficiency 

of the market index proxy) is consistent with the empirically observed return 

parameters and the market proxy portfolio weights. Of course, this does not constitute 

a proof of the empirical validity of the model, but it shows that the model can not be 

rejected, in contrast to the widespread belief in our profession. The intuitive idea that 
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shrinkage corrections should increase the empirical validity of the CAPM is shown to 

be valid - with the right corrections, which are small, the index proxy is perfectly 

efficient. The analysis also shows that in this framework employing the sample betas 

provides an excellent estimate of the true expected returns. 
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Table I 

The Sample Parameters and Closest Parameters Ensuring that the 
Market Proxy is Mean/variance Efficient 

For the sake of brevity, this table reports only 30 of the 100 stocks (the complete table is given in 
the appendix). The sample parameters are given in the second and fourth columns. The expected 
returns and standard deviations which are closest to these parameters and ensure that the market 
proxy is efficient (i.e. the parameters that solve Optimization Problem 1) are given in columns (3) 
and (5). The t-values for the expected returns are given in column (6), which shows that none of 
these values are significant at the 95% level (this is also true for the 70 other stocks not shown in 

the table). Column (7) reports the ratio between the optimized variances ( )2*σ and the sample 
variances. The 95% confidence interval for this ratio is [0.790-1.319] (see footnote 5). All of the 
ratios in the table, as well as the ratios for all other 70 stocks not shown here, fall well within this 
interval. These results are obtained with a value of 750.=α in the minimized distance measure D 
(see eq.(2)). Higher values of α reduce the variation in the expected returns (at the expense of 
increasing the deviations in the standard deviations). 

 
(1) 

 
Stock # 

(i) 

(2) 
 

sam
iμ  

(3) 
 
*
iμ  

(4) 
 

sam
iσ  

(5) 
 
*
iσ  

(6) 
 

t-value 
for *

iμ  

(7) 
 

( ) ( )22 sam
i

*
i / σσ  

(the 95% confidence 
interval for this value is 

[0.790-1.319] ) 

1 0.024 0.018 0.165 0.167 -0.423 1.019 
2 0.021 0.019 0.115 0.115 -0.170 1.003 
3 0.011 0.017 0.106 0.104 0.588 0.963 
4 0.029 0.023 0.158 0.160 -0.444 1.028 
5 0.039 0.022 0.150 0.156 -1.228 1.077 
6 0.005 0.011 0.075 0.073 0.952 0.953 
7 0.007 0.013 0.072 0.070 0.938 0.942 
8 0.012 0.010 0.051 0.052 -0.433 1.028 
9 0.013 0.015 0.070 0.069 0.286 0.978 

10 0.016 0.018 0.099 0.098 0.185 0.986 
11 0.010 0.013 0.067 0.066 0.344 0.977 
12 0.016 0.009 0.092 0.093 -0.819 1.025 
13 0.015 0.011 0.071 0.072 -0.627 1.035 
14 0.019 0.012 0.100 0.102 -0.702 1.034 
15 0.011 0.011 0.061 0.061 -0.029 1.006 
16 0.032 0.014 0.159 0.162 -1.215 1.044 
17 0.023 0.025 0.158 0.157 0.145 0.990 
18 0.024 0.021 0.146 0.147 -0.232 1.016 
19 0.011 0.012 0.086 0.085 0.199 0.988 
20 0.007 0.010 0.067 0.066 0.477 0.979 
21 0.011 0.011 0.065 0.065 0.082 0.996 
22 0.018 0.016 0.080 0.081 -0.225 1.018 
23 0.012 0.008 0.067 0.068 -0.652 1.023 
24 0.013 0.004 0.059 0.059 -1.533 0.995 
25 0.017 0.014 0.088 0.088 -0.361 1.021 
26 0.014 0.013 0.081 0.082 -0.128 1.007 
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27 0.006 0.012 0.077 0.075 0.810 0.955 
28 0.018 0.011 0.077 0.078 -1.058 1.044 
29 0.010 0.012 0.087 0.086 0.276 0.989 
30 0.010 0.010 0.065 0.064 0.055 0.999 

 
 
 
 
 
 
 
 

 
Figure 1: The Efficient Frontier and Market Proxy with the Sample and the 

Adjusted Return Parameters. 
The thin line curve and the triangle (partly hidden behind the star) show the 
mean/variance frontier and the market proxy with the sample parameters. As 
typical of other studies, the market proxy is very far from the efficient frontier 
when the sample parameters are employed. The bold line and the star show the 
mean/variance frontier and the market proxy with the adjusted parameters 
( )** ,σμ . With these parameters the market proxy is mean/variance efficient. 
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Figure 2: The Correction to the Expected Returns and a Function of the 

Sample Average Return. 
For stocks with high sample average returns, the correction in the expected 
return tends to be negative. The opposite holds for stocks with low sample 
average returns. Thus, the corrections produced by the solution to the 
optimization problem are reminiscent of statistical shrinkage methods. 
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Figure 3: The Set of Proxy Portfolio Parameters Consistent with 

Mean/variance Efficiency and the Sample Parameters – 100 stocks.   
Optimization Problem 2 is solved for each point on the mean-standard deviation 
plane, ( )00 σμ , . The resulting parameter set, ( )** ,σμ , is considered consistent 
with the sample parameters if 95% or more of the parameters are within the 95% 
confidence intervals of their sample counterparts. The ( )00 σμ ,  points that are 
consistent with the mean/variance efficiency of the proxy portfolio and with the 
sample parameters are indicated by the filled circles. For example, the proxy 
portfolio can be made mean/variance efficient with a standard deviation of 4% 
and a mean return of 2%, but not with a standard deviation of 3.95% and a mean 
return of 2%. The figure shows that given a set of sample parameters and proxy 
portfolio weights, the proxy portfolio can be made mean/variance efficient with 
a large range of possible mean and standard deviation combinations. As in 
Figure 1, the triangle and the star represent the market proxy with the sample 
parameters and with the parameters solving Optimization Problem 1, 
respectively. 
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Figure 4: The Set of Proxy Portfolio Parameters Consistent with 

Mean/variance Efficiency and the Sample Parameters – 50 stocks.   
This figure is the same as Figure 3, but it is constructed with only the 50 largest 
stocks (rather than 100). Again, a wide range of ( )00 σμ ,  is consistent with the 
efficiency of the market proxy. The area of a polygon drawn through the outer 
consistent points is an approximation to the range of consistency. 
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Figure 5: The Area of Admissible Proxy Portfolio Parameters as a Function 
of the Number of Assets. 

For each value of N, starting with the largest ten stocks, the area of a consistency 
polygon is computed analogous to the one shown in Figure 4.  This area 
measures the range of proxy portfolio return parameters consistent with the 
CAPM and the given proxy portfolio. This is an approximation of the precise 
area, because it depends on a finite set of parameter points in the MV plane. The 
error bars reflect this possible estimation error. The figure shows that the area of 
admissible parameters does not change systematically with the number or the 
identity of the stocks included in the market index proxy. 
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Figure 6: The Relation Between Sample Betas and the “True” Betas.   

The “true” parameters are those that solve Optimization Problem 1 and satisfy 
the CAPM: ( )** ,σμ . The sample parameters are ( )samsam ,σμ . The true and sample 
betas are given by eq.(3). The figure shows that the sample betas are very close 
to the true betas, and thus yield excellent estimates of the expected returns. 

 
 
 
 
 
 
 



 28

 
 

 
 

 
 
 

Figure 7: The Relation Between Sample Betas and “True” Betas.   
The “true” parameters are those that satisfy the CAPM and solve Optimization 
Problem 2. Each panel corresponds to a different combination of values of the 
pre-specified expected return and standard deviation of the proxy portfolio, 0μ  
and 0σ . (The points corresponding to these four panels are indicated by A,B,C, 
and D, respectively, in Figure 3). The true and sample betas are given by eq.(3). 
The figure shows that the sample betas are very close to the true betas, and thus 
yield excellent estimates of the true expected returns, even when 0μ  and 0σ  are 
not close to the values obtained with the sample parameters. 
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Figure 8: The Securities Market Line Scatter  
for Sample vs. Adjusted Means and Betas 

Sample estimates of means and betas for our 100 stocks are plotted against 
each other in Panel A.  Panel B plots the corresponding adjusted means and 
betas that are obtained from optimization problem 1.   
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Appendix- Table AI 

The Sample Parameters and Closest Parameters Ensuring that the 
Market Proxy is Mean/variance Efficient 

This is the complete version of Table I given in the text, where here the data is provided 
for all 100 stocks. The sample parameters are given in the second and fourth columns. 
The expected returns and standard deviations which are closest to these parameters and 
ensure that the market proxy is efficient (i.e. the parameters that solve  Optimization 
Problem 1) are given in columns (3) and (5). The t-values for the expected returns are 
given in column (6), which shows that none of these values are significant at the 95% 

level. Column (7) reports the ratio between the variances ( )2*σ and the sample variances. 
The 95% confidence interval for this ratio is [0.790-1.319] (see footnote 5). All of the 
ratios in the table fall well within this interval. 
 

(1) 
 

Stock # 
(i) 

(2) 
 

sam
iμ  

(3) 
 
*
iμ  

(4) 
 

sam
iσ  

(5) 
 
*
iσ  

(6) 
 

t-value 
for *

iμ  

(7) 
 

( ) ( )22 sam
i

*
i / σσ
(the 95% 

confidence 
interval for this 

value is 
[0.790-1.319] ) 

1 0.024 0.018 0.165 0.167 -0.423 1.019 
2 0.021 0.019 0.115 0.115 -0.170 1.003 
3 0.011 0.017 0.106 0.104 0.588 0.963 
4 0.029 0.023 0.158 0.160 -0.444 1.028 
5 0.039 0.022 0.150 0.156 -1.228 1.077 
6 0.005 0.011 0.075 0.073 0.952 0.953 
7 0.007 0.013 0.072 0.070 0.938 0.942 
8 0.012 0.010 0.051 0.052 -0.433 1.028 
9 0.013 0.015 0.070 0.069 0.286 0.978 

10 0.016 0.018 0.099 0.098 0.185 0.986 
11 0.010 0.013 0.067 0.066 0.344 0.977 
12 0.016 0.009 0.092 0.093 -0.819 1.025 
13 0.015 0.011 0.071 0.072 -0.627 1.035 
14 0.019 0.012 0.100 0.102 -0.702 1.034 
15 0.011 0.011 0.061 0.061 -0.029 1.006 
16 0.032 0.014 0.159 0.162 -1.215 1.044 
17 0.023 0.025 0.158 0.157 0.145 0.990 
18 0.024 0.021 0.146 0.147 -0.232 1.016 
19 0.011 0.012 0.086 0.085 0.199 0.988 
20 0.007 0.010 0.067 0.066 0.477 0.979 
21 0.011 0.011 0.065 0.065 0.082 0.996 
22 0.018 0.016 0.080 0.081 -0.225 1.018 
23 0.012 0.008 0.067 0.068 -0.652 1.023 
24 0.013 0.004 0.059 0.059 -1.533 0.995 
25 0.017 0.014 0.088 0.088 -0.361 1.021 
26 0.014 0.013 0.081 0.082 -0.128 1.007 
27 0.006 0.012 0.077 0.075 0.810 0.955 
28 0.018 0.011 0.077 0.078 -1.058 1.044 
29 0.010 0.012 0.087 0.086 0.276 0.989 
30 0.010 0.010 0.065 0.064 0.055 0.999 
31 0.012 0.013 0.086 0.085 0.147 0.991 
32 0.009 0.006 0.082 0.082 -0.406 1.004 
33 0.016 0.009 0.082 0.083 -0.862 1.026 
34 0.017 0.006 0.077 0.078 -1.461 1.018 
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35 0.011 0.012 0.072 0.072 0.243 0.984 
36 0.009 0.013 0.064 0.062 0.658 0.954 
37 0.012 0.011 0.064 0.064 -0.228 1.012 
38 0.026 0.023 0.203 0.204 -0.142 1.006 
39 0.011 0.010 0.065 0.065 -0.195 1.009 
40 0.006 0.012 0.087 0.085 0.749 0.960 
41 0.010 0.015 0.115 0.114 0.480 0.978 
42 0.016 0.017 0.119 0.119 0.011 1.001 
43 0.018 0.003 0.100 0.099 -1.615 0.986 
44 0.013 0.017 0.105 0.104 0.364 0.976 
45 0.009 0.013 0.088 0.087 0.499 0.974 
46 0.006 0.014 0.085 0.082 1.067 0.932 
47 0.013 0.018 0.124 0.122 0.409 0.978 
48 0.011 0.011 0.084 0.083 0.057 0.997 
49 0.008 0.009 0.077 0.077 0.112 0.998 
50 0.017 0.011 0.082 0.084 -0.884 1.036 
51 0.012 0.014 0.081 0.081 0.265 0.984 
52 0.021 0.018 0.105 0.106 -0.277 1.019 
53 0.016 0.012 0.072 0.073 -0.517 1.030 
54 0.011 0.014 0.106 0.105 0.281 0.984 
55 0.011 0.012 0.074 0.074 0.118 0.993 
56 0.007 0.013 0.076 0.074 0.889 0.945 
57 0.011 0.013 0.072 0.071 0.379 0.975 
58 0.014 0.019 0.102 0.100 0.581 0.952 
59 0.023 0.016 0.089 0.091 -0.807 1.056 
60 0.014 0.018 0.090 0.088 0.489 0.961 
61 0.012 0.012 0.070 0.070 -0.095 1.005 
62 0.012 0.011 0.093 0.093 -0.095 1.000 
63 0.008 0.011 0.075 0.074 0.436 0.979 
64 0.021 0.019 0.106 0.107 -0.172 1.012 
65 0.016 0.013 0.077 0.078 -0.336 1.018 
66 0.013 0.014 0.074 0.074 0.110 0.993 
67 0.016 0.017 0.076 0.075 0.130 0.988 
68 0.011 0.008 0.052 0.052 -0.610 1.020 
69 0.020 0.020 0.134 0.133 0.029 0.994 
70 0.014 0.014 0.076 0.076 0.009 0.997 
71 0.010 0.013 0.094 0.094 0.346 0.983 
72 0.015 0.011 0.070 0.071 -0.560 1.028 
73 0.018 0.013 0.088 0.089 -0.658 1.033 
74 0.022 0.014 0.096 0.098 -0.934 1.049 
75 0.011 0.007 0.059 0.059 -0.705 1.018 
76 0.005 0.013 0.083 0.081 1.013 0.937 
77 0.007 0.013 0.083 0.081 0.718 0.957 
78 0.005 0.013 0.083 0.081 1.032 0.938 
79 0.013 0.014 0.086 0.086 0.028 0.997 
80 0.016 0.015 0.090 0.090 -0.046 1.006 
81 0.012 0.015 0.074 0.072 0.392 0.964 
82 0.011 0.013 0.070 0.069 0.290 0.983 
83 0.021 0.022 0.117 0.116 0.099 0.992 
84 0.019 0.019 0.089 0.088 -0.004 0.993 
85 0.018 0.011 0.098 0.100 -0.800 1.029 
86 0.013 0.012 0.073 0.073 -0.228 1.012 
87 0.021 0.021 0.130 0.130 0.031 0.996 
88 0.007 0.016 0.095 0.092 0.968 0.939 
89 0.021 0.020 0.100 0.100 -0.109 1.009 
90 0.040 0.022 0.193 0.199 -1.035 1.052 
91 0.034 0.015 0.161 0.164 -1.274 1.046 
92 0.030 0.027 0.170 0.171 -0.163 1.014 
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93 0.012 0.014 0.086 0.086 0.310 0.982 
94 0.013 0.011 0.080 0.080 -0.204 1.009 
95 0.030 0.023 0.130 0.133 -0.579 1.045 
96 0.016 0.012 0.147 0.147 -0.245 1.009 
97 0.017 0.012 0.087 0.088 -0.523 1.024 
98 0.017 0.017 0.102 0.102 0.035 0.997 
99 0.020 0.014 0.089 0.090 -0.704 1.041 

100 0.021 0.013 0.087 0.089 -0.997 1.057 
 
 


