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ABSTRACT

We use the information in collateralized debt obligations (CDO) prices to study market
expectations about how corporate defaults cluster. A three-factor portfolio credit model
explains virtually all of the time-series and cross-sectional variation in an extensive
data set of CDX index tranche prices. Tranches are priced as if losses of 0.4%, 6%,
and 35% of the portfolio occur with expected frequencies of 1.2, 41.5, and 763 years,
respectively. On average, 65% of the CDX spread is due to firm-specific default risk,
27% to clustered industry or sector default risk, and 8% to catastrophic or systemic
default risk.

A COLLATERALIZED DEBT OBLIGATION (CDO) is a financial claim to the cash flows
generated by a portfolio of debt securities or, equivalently, a basket of credit
default swaps (CDS contracts). Thus, CDOs are the credit market counterparts
to the familiar collateralized mortgage obligations (CMOs) actively traded in
secondary mortgage markets. Since its inception in the mid-1990s, the market
for CDOs has become one of the most rapidly growing financial markets ever.
Industry sources estimate the size of the CDO market at the end of 2006 to
be nearly $2 trillion, representing more than a 30% increase over the prior
year.1 Recently, CDOs have been in the spotlight because of the May 2005
credit crisis in which downgrades of Ford’s and General Motors’ debt triggered
a wave of large CDO losses among many credit-oriented hedge funds and Wall
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Street dealers. Despite the importance of this market, however, relatively little
research on CDOs has appeared in the academic literature to date.

CDOs are important not only to Wall Street, but also to researchers since they
provide a near-ideal “laboratory” for studying a number of fundamental issues
in financial economics. For example, CDOs allow us to identify the joint distri-
bution of default risk across firms since CDOs are claims against a portfolio of
debt, information that cannot be inferred from the marginal distributions asso-
ciated with single-name credit instruments. The joint distribution is crucial to
understanding how much credit risk is diversifiable and how much contributes
to the systemic risk of “credit crunches” and liquidity crises in financial mar-
kets. Furthermore, clustered default risk has implications for the corresponding
stocks since default events may map into nondiversifiable event risk in equity
markets.

CDO-like structures are emerging as a major new type of financial vehicle
and/or “virtual” institution.2 In particular, the CDO structure can be viewed
as an efficient special purpose vehicle for making illiquid assets tradable,
creating new risk-sharing and insurance opportunities in financial markets,
and completing markets across credit states of the world. CDO-like structures
are now used not only for corporate bonds and loans, but also for less liquid
and more private assets such as subprime home equity loans, credit card re-
ceivables, commercial mortgages, auto loans, student loans, equipment leases,
trade receivables, small business loans, private equity, emerging market lo-
cal assets, and even the “intellectual” property rights of rock stars.3 Finally,
observe that a CDO could also be viewed as a “synthetic bank” in the sense
that its assets consist of loans and its liabilities run the gamut from near-
riskless senior debt to highly leveraged equity. The key distinction, however,
is that the “synthetic” CDO bank may not engage in the same type of moni-
toring activities as actual banks. Thus, a comparison of CDO equity and bank
stocks could provide insights into the delegated-monitoring role of financial
intermediaries.4

This paper represents a first attempt to understand the economic structure
of default risk across firms using information from the CDO market. Specif-
ically, we use the prices of standardized tranches on the CDX credit index to
infer the market’s expectations about the way in which default events cluster
across firms. Motivated by recent research by Collin-Dufresne, Goldstein, and
Martin (2001), Elton et al. (2001), Eom, Helwege, and Huang (2004), Longstaff,
Neis, and Mithal (2005), and others who show that corporate credit spreads are
driven by firm-specific factors as well as broader economic forces, we develop
a simple multifactor portfolio credit model for pricing CDOs. Our framework
has some features in common with Duffie and Gârleanu (2001), who allow
for three types of default events in their framework: idiosyncratic or firm-
specific defaults, industrywide defaults in a specific sector of the economy, and

2 For a discussion on the role of tranching in markets with asymmetric information, see Demarzo
(2005).

3 For example, see Richardson (2005) for a discussion of the “Bowie” bonds.
4 For example, see Diamond (1984).
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economywide defaults affecting every industry and sector. However, rather than
focusing on the individual “quantum” or “zero-one” states of default for each
firm and aggregating up to the portfolio level, our framework takes a “statisti-
cal mechanics” approach by modeling portfolio credit losses directly. Specifically,
we allow portfolio losses to occur as the realizations of three separate Poisson
processes, each with a different jump size and intensity process.5 We take the
model to the data by fitting it to the CDX index spread and the prices of the
0–3%, 3–7%, 7–10%, 10–15%, and 15–30% CDX index tranches for each date
during the sample period.

We first address the issue of how many factors are needed to explain CDO
prices. To do this, we estimate one-factor and two-factor versions of the model
and use a likelihood-ratio approach to test whether a N + 1-factor model has
significant explanatory power relative to a N-factor model. The three-factor
model significantly outperforms the two-factor model, which, in turn, signifi-
cantly outperforms the one-factor model. These results provide the first direct
evidence that the market expects defaults for the firms in the CDX index to
cluster (correlated defaults).

Focusing on the three-factor results, the estimated jump sizes for the three
Poisson processes are about 0.4%, 6%, and 35%, respectively. Since there are
125 firms in the CDX index, the jump size of 0.4% for the first process can be in-
terpreted as the portfolio loss resulting from the default of a single firm, given
a 50% recovery rate (1/125 × 0.50 = 0.004). The jump size of 6% for the sec-
ond process can be viewed as an event in which, say, 15 firms default together.
Since this represents roughly 10% of the firms in the portfolio, one possible
interpretation of this event could be that of a major crisis that pushes an entire
industry or sector into financial distress. However, there are many other possi-
ble interpretations. For example, this type of event could just as easily involve
clustered defaults among firms with similar accounting ratios, currency or raw
materials exposures, firm age, firm size, etc.6 Finally, the 35% jump size for the
third process could be viewed as a catastrophic or systemic event that wipes
out the majority of firms in the economy. Our analysis indicates that all three
types of credit risk are anticipated by the market.

We also estimate the probabilities or intensities of the three Poisson events
(under the risk-neutral pricing measure). On average, the expected time until
an idiosyncratic or firm-specific default is 1.2 years, the expected time until a
clustered industry default crisis is 41.5 years, and the expected time until a
catastrophic economywide default event is 763 years.7

5 In independent work, Giesecke and Goldberg (2005) put forward an interesting approach to
modeling multiname credit risk that also has many similarities to ours. Their approach is called
the top–down approach.

6 I am grateful to the associate editor for this insight.
7 An expected time of 763 years may seem unrealistically long, but it is important to observe

that there has never been a credit event in the U.S. history—not even during the U.S. Civil War
or the Great Depression—in which more than 50% of the firms in the economy defaulted or went
bankrupt. On the other hand, there are numerous documented economic collapses and sovereign
defaults in erstwhile safe countries over the past centuries, suggesting that a nonzero probability
is appropriate to attach to such an event (see Kindleberger (2005)).



532 The Journal of Finance

In an effort to understand whether clustering in default risk is in fact linked
to industry, we perform a principal components analysis of changes in the CDS
spreads for the individual firms in the CDX index. We find that there is a
dominant first factor driving spreads across all industries. This is consistent
with there being a pervasive economywide component to credit. Moving beyond
this first factor, however, we find that the second, third, fourth, etc. princi-
pal components are significantly related to specific industries or groups of in-
dustries. Thus, there is some evidence that default clustering occurs in ways
that have some relation to industry. On the other hand, when we repeat the
principal components analysis using stock returns for the individual firms in
the CDX index, we find that the second, third, fourth, etc. principal compo-
nents for stock returns are much more strongly related to industry than is the
case for the CDS spreads. Thus, there are intriguing differences in the cross-
sectional structure of stock returns and credit spreads for the firms in the CDX
index.

Using the intensity estimates, we decompose the level of the CDX index
spread into its three components. We find that on average, firm-specific de-
fault risk represents only 64.6% of the total CDX index spread, while clustered
industry or sector and economywide default risks represent 27.1% and 8.3%
of the index spread, respectively. Thus, the risk of industry or economywide
financial distress accounts for more than one-third of the default risk in the
CDX portfolio. Recently, however, idiosyncratic default risk has played a larger
role.

Next we examine how well the model captures the pricing of individual index
tranches. Even though tranche spreads are often measured in hundreds or even
thousands of basis points, the root-mean-squared error (RMSE) of the three-
factor model is typically on the order of only two to three basis points, which is
well within the typical bid-ask spreads in the market. Thus, virtually all of the
time-series and cross-sectional variation in index tranche prices is captured
by the model. We find that the largest pricing errors occur shortly after the
inception of the CDX index and tranche market, but decrease rapidly after
several weeks. Thus, despite some early mispricing, the evidence suggests that
the CDX index tranche market quickly evolved.

There is a rapidly growing literature on credit derivatives and correlated de-
faults.8 This paper contributes to this primarily theoretical literature by pre-
senting a new approach to modeling portfolio default losses, conducting the first
extensive empirical analysis of pricing in the CDO markets, and providing the
first direct estimates of the nature and degree of default clustering across firms
expected by market participants.

The remainder of this paper is organized as follows. Section I provides an
introduction to the CDO market. Section II describes the data used in the study.

8 Important recent contributions in this area include Duffie and Gârleanu (2001), Hull and White
(2003), Giesecke (2004), Jorion and Zhang (2005), Longstaff et al. (2005), Saita (2005), Yu (2005,
2007), Giesecke and Goldberg (2005), Frey and Backhaus (2005), Schönbucher (2005), Das et al.
(2006), Bakshi, Madan, and Zhang (2006), Duffie et al. (2006), Errais, Giesecke, and Goldberg
(2006), Duffie, Saita, and Wang (2007), Das et al. (2007), and many others.
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Section III presents the three-factor portfolio credit model. Section IV applies
the model to the valuation of index tranches. Section V reports the results
from the empirical analysis. Section VI summarizes the results and makes
concluding remarks.

I. An Introduction to CDOs

CDOs have become one of the most important new financial innovations of the
past decade. It is easiest to think of a CDO as a portfolio containing certain debt
securities as assets, and multiple claims in the form of issued notes of varying
seniority. The liabilities are serviced using the cash flows from the assets, as in
a corporation. Although CDOs existed in various forms previously, it was only in
the mid-1990s that they began to be popular. Over subsequent years, issuance
experienced rapid growth. For example, during the first three quarters of 2006,
issuance was $322 billion, representing nearly a 102% increase over the same
period during 2005.9 The assets securitized by cash CDOs have broadened to
include investment-grade bonds, high yield bonds, emerging market securities,
leveraged loans, middle market loans, trust preferred securities, asset-backed
securities, commercial mortgages, and even previously issued CDO tranches.10

Over the past few years, the technology of cash CDOs has merged with the
technology of credit derivatives to create the so-called synthetic CDO, which
is the main focus of this paper. Synthetic CDOs differ from cash CDOs in that
the portfolios that provide the cash flow to service their liabilities consist of
credit default swaps rather than bonds or other cash securities. The majority
of synthetic securities are based on corporate credit derivatives, and tend to be
simpler to model.

A. An Example of a Stylized CDO

To build up understanding of a full-f ledged synthetic CDO, we consider a
simple example based on a $100 million investment in a diversified portfolio of
5-year par corporate bonds. Imagine that a financial institution (CDO issuer)
sets up this portfolio, which consists of 100 separate bonds, each with a market
value of $1 million, and each issued by a different firm. Imagine also that each
bond is rated BBB and has a coupon spread over Treasuries of 100 basis points.
The CDO issuer can now sell 5-year claims against the cash flows generated
by the portfolio. These claims are termed CDO tranches and are constructed to
vary in credit risk from very low (senior tranches) to low (junior or mezzanine
tranches) to very high (the “equity” tranche).

9 To put these numbers in perspective, we note that according to the Securities Industry and
Financial Markets Association, the total issuance of corporate bonds and agency mortgage-backed
securities during 2005 was $703.2 and $966.1 billion, respectively.

10 For additional insights into the CDO market, see the excellent discussions provided by Duffie
and Gârleanu (2001), Duffie and Singleton (2003), Roy and Shelton (2007), and Rajan, McDermott,
and Roy (2007).
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Let us illustrate a typical CDO structure by continuing the example. First,
imagine that the CDO issuer creates a so-called equity tranche with a total
notional amount of 3% of the total value of the portfolio ($3 million). By defi-
nition, this tranche absorbs the first 3% of any defaults on the entire portfolio.
In exchange, this tranche may receive a coupon rate of, say, 2,500 basis points
above Treasuries. If there are no defaults, the holder of the equity tranche earns
a high coupon rate for 5 years and then receives back his $3 million notional
investment. Now assume that one of the 100 firms represented in the portfolio
defaults (and that there is zero recovery in the event of default). In this case,
the equity tranche absorbs the $1 million loss to the portfolio and the notional
amount of the equity tranche is reduced to $2 million. Thus, the equity tranche
holder has lost one-third of his investment. Going forward, the equity tranche
investor receives the 2,500 basis point coupon spread as before, but now only on
his $2 million notional position. Now assume that another two firms default. In
this case, the equity tranche absorbs the additional losses of $2 million, the no-
tional amount of the equity tranche investor’s position is completely wiped out,
and the investor receives neither coupons nor principal going forward. Because
a 3% loss in the portfolio translates into a 100% loss for the equity tranche
investor, we can view the equity tranche investor as being leveraged 33 1/3
to 1. However, unlike an investor who leverages by borrowing, the equity
tranche investor has no liability beyond a 3% portfolio loss, a condition referred
to as “nonrecourse” leverage.

Now imagine that the CDO issuer also creates a junior mezzanine tranche
with a total notional amount of 4% of the total value of the portfolio ($4 million).
This tranche absorbs up to 4% of the total losses on the entire portfolio after the
equity tranche has absorbed the first 3% of losses. For this reason, this tranche
is designated the 3–7% tranche. In exchange for absorbing these losses, this
tranche may receive a coupon rate of, say, 300 basis points above Treasuries. If
total credit losses are less than 3% during the 5-year horizon of the portfolio,
then the 3–7% investor earns the coupon rate for 5 years and then receives
back his $4 million notional investment. If total credit losses are greater than
or equal to 7% of the portfolio, the total notional amount for the 3–7% investor
is wiped out.

The CDO issuer follows a similar process in creating additional mezzanine,
senior mezzanine, and even super-senior mezzanine tranches. A typical set of
index CDO tranches might include the 0–3% equity tranche, and 3–7%, 7–10%,
10–15%, 15–30%, and 30–10% tranches. The initial levels 3%, 7%, 10%, 15%,
and 30% at which losses begin to accrue for the respective tranches are called
attachment points or subordination levels. Note that the total notional valua-
tion of all the tranches equals the $100 million notional of the original portfolio
of corporate bonds.

An interesting aspect of the CDO creation process is that since each tranche
has a different degree of credit exposure, each tranche could have its own credit
rating. For example, the super-senior 30–100% tranche can only suffer credit
losses if total losses on the underlying portfolio exceed 30% of the total notional
amount. Since this is highly unlikely, this super-senior tranche would typically
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have a AAA rating, even if all the underlying bonds were below investment
grade. This example illustrates that the tranching process allows securities of
any credit rating to be created. Thus, the CDO process can serve to complete
the financial market by creating high credit quality securities that might not
otherwise exist in the market.

B. Synthetic CDOs

To take advantage of the wide availability of credit derivatives, credit markets
have recently introduced CDO structures known as synthetic CDOs. This type
of structure has become very popular and the total notional amount of synthetic
CDO tranches is growing rapidly. A synthetic CDO is economically similar to a
cash CDO in most respects. The principal difference is that rather than there
being an underlying portfolio of corporate bonds on which tranches are based,
the underlying portfolio is actually a basket of credit default swap contracts.
Recall that a CDS contract functions as an insurance contract in which a buyer
of credit protection makes a fixed payment each quarter for some given horizon
such as 5 years.11 If there is a default on the underlying reference bond during
that period, however, then the buyer of protection is able to give the defaulted
bond to the protection seller and receive par (the full face value of the bond).12

Thus, the first step in creating a synthetic CDO is to define the underlying
basket of CDS contracts.

C. Credit Default Indexes and Index Tranches

In this study, we focus on CDOs with cash flows tied to the most liquid U.S. cor-
porate credit derivative index, the DJ CDX North American Investment Grade
Index. This index is managed by Dow Jones and is based on a liquid basket of
CDS contracts for 125 U.S. firms with investment grade corporate debt. The
CDX index itself trades just like a single-name CDS contract, with a defined
premium based on the equally weighted basket of its 125 constituents. The in-
dividual firms included in the CDX basket are updated and revised (“rolled”)
every 6 months in March and September, with a few downgraded and illiq-
uid names being dropped and new ones taking their place. CDX indexes are
numbered sequentially. Thus, the index for the first basket of 125 firms was
designated the CDX NA IG 1 index in 2003, the index for the second basket
of 125 firms the CDX NA IG 2 index, etc., and so on up to CDX NA IG 7 in
September 2006, of which the first five series comprise the data set analyzed
in this paper. While there is considerable overlap between successive CDX
NA IG indexes, occasionally there are significant changes across index rolls.

11 As with any swap contract, however, CDS contracts carry the small additional risk of a coun-
terparty default. In reality, this risk can be largely mitigated by the posting of collateral between
swap counterparties.

12 This aspect of the contract design means that the protection buyer can be compensated for his
losses relatively quickly; the protection buyer does not need to wait until the end of the bankruptcy
and recovery process.
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For example, the CDX NA IG 4 index (beginning in March 2005) includes Ford
and General Motors while the CDX NA IG 5 index (beginning in September
2005) does not since the debt for these firms dropped below investment grade
in May 2005.

Index CDO tranches have also been issued, each tied to a specific CDX in-
dex. The attachment points of these CDO tranches are standardized at 3%, 7%,
10%, 15%, and 30%, exactly as in the example above. Since these instruments
are structured as credit default swaps, when investors “buy” a synthetic in-
dex tranche from a counterparty, they are selling protection on that tranche.
Their counterparty has bought protection on the same tranche from them. This
highlights a convenient feature of these index tranches—that is, a dealer need
not create and sell the entire capital structure of tranches to investors; rather,
investors are free to synthetically create and trade (sell or buy) individual in-
dex tranches (single-tranche index CDOs) according to their needs. As observed
earlier, the losses on an N–M% tranche are zero if the total losses on the un-
derlying portfolio are less than N. On the other hand, the total losses on the
tranche are 1.00 or 100% if the total losses on the underlying portfolio equals
or exceeds M. For underlying portfolio losses between N and M, tranche losses
are linearly interpolated between zero and one. Thus, the losses on a N–M%
tranche can be viewed intuitively as a call spread on the total losses of the un-
derlying portfolio. This intuition will be formalized in a later section. Just as
an option has a “delta,” that is, an equivalent exposure to the underlying, the
tranche has a delta with respect to its underlying index.

Although index tranches are the most liquid synthetic tranches, a synthetic
tranche can be based on any portfolio. A tranche created with a specific nonindex
portfolio, and with customized attachment points, e.g., 5–8%, is called a bespoke
tranche. While the results in this paper are based on index tranche data, the
analysis can also be applied to most bespoke CDO tranches. Finally, there are
also full capital structure synthetic CDOs, created when demand exists for the
entire capital structure. Provided a CDO observes the simple type of structure
we specified in the example, a model such as the one in this paper may be used
to price its tranches.13

II. The Data

CDOs are a relatively new financial innovation and have only recently begun
to trade actively in the markets. As a result, it has been difficult for researchers
to obtain reliable CDO pricing data. We were fortunate, however, to be given
access by Citigroup to one of the most extensive proprietary data sets of CDO
index and tranche pricing data in existence.14

13 The analysis in this paper, however, may not apply directly to certain other types of portfolio
derivative products, for example, Nth-to-default baskets, CDO-squareds, and cash CDOs, which
have more granular compositions, more complex structures, or more difficult-to-model cash flows
and rules, respectively.

14 Although the data set we were given access to is proprietary, data for standardized CDX index
tranches are now available on the Bloomberg system and other commercial sources.



Empirical Analysis of the Pricings of CDOs 537

The data consist of daily closing values for the 5-year CDX NA IG index
(CDX index for short) for the period from October 2003 to October 2005. As dis-
cussed earlier, the underlying basket of 125 firms in the index is revised every
March and September. Thus, the index data correspond to the five individual
indexes denoted CDX i, i = 1, 2, 3, 4, and 5. CDX 1 covers October 20, 2003 to
March 19, 2004; CDX 2 covers March 22, 2004 to September 22, 2004; CDX 3
covers September 23, 2004 to March 18, 2005; CDX 4 covers March 21, 2005
to September 19, 2005; and CDX 5 covers September 20, 2005 to October 18,
2005. This data set covers virtually the entire history of the CDX index through
2005. Data are missing for some days during the earlier part of the sample. We
omit these days from the sample, leaving us with a total of 435 usable daily ob-
servations for the 2-year sample period. For the primarily descriptive purposes
of this section, we report summary statistics based on the continuous series of
the on-the-run CDX index (rather than reporting statistics separately for the
individual CDX series).

In addition to the index data, we also have daily closing quotation data for
the 0–3%, 3–7%, 7–10%, 10–15%, and 15–30% tranches on the CDX index. The
pricing data for most tranches are in terms of the basis point premium paid
to the CDO investor for absorbing the losses associated with the individual
tranches. Thus, a price of 300 for the 3–7% tranche implies that the tranche
investor would receive a premium of 300 basis points per year paid quarterly
on the remaining balance in exchange for absorbing the default losses from
3% to 7% on the CDX index. The exception is the market convention for the
equity tranche (the 0–3% tranche), which is generally quoted in terms of points
up front. A price of 50 for this tranche means that an investor would need to
receive $50 up front per $100 notional amount, plus a premium of 500 basis
points per year paid quarterly on the remaining balance, to absorb the first 3%
of losses on the CDX index. Rather than using this market convention, however,
we convert the points up front into spread equivalents to facilitate comparison
with the pricing data for the other tranches.

In addition to the CDX index and tranche data, we also collect daily New
York closing data on 3-month, 6-month, 12-month Libor rates, and on 2-year,
3-year, 5-year, 7-year, and 10-year swap rates. The Libor data are obtained from
the Bloomberg system. The swap data are obtained from the Federal Reserve
Board’s web site. From this Libor spot rate and swap par rate data, we use
a standard cubic spline approach to bootstrap zero-coupon curves that will be
used throughout the paper to discount cash flows.15 Since the same zero-coupon
curve is used to discount both legs of the CDO contract, however, the results are
largely insensitive to the decision to discount using the Libor-swap curve; the
results are virtually identical when the bootstrapped Treasury curve is used
for discounting cash flows.

Table I provides summary statistics for index and tranche data. As shown,
the average values of the spreads are monotone decreasing in seniority (at-
tachment point). The average spread for the 0–3% equity tranche is 1,758.87

15 See Longstaff et al. (2005) for a more detailed discussion of this bootstrapping algorithm.
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basis points (which translates into an average number of points up front of
39.34). This spread is many times larger than the average spread for the ju-
nior mezzanine 3–7% tranche, indicating that the expected losses for the equity
tranche are much higher than those for more senior tranches. Similar compar-
isons hold for all the other tranches. Figure 1 plots the time series of tranche
spreads for the various attachment points. The correlations indicate that while
these spreads have a high level of correlation with each other, there is also
considerable independent variation.

Figure 1. CDX index and tranche spreads. This figure graphs the time series of the CDX
index and its tranche spreads for the October 2003 to October 2005 sample period. Spreads are in
basis points. The vertical division lines denote the roll from one CDX index to the next.
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Figure 1. Continued

III. The Model

Motivated by these aspects of the data, as well as by the mounting evidence in
the literature that credit spreads are driven by idiosyncratic as well as broader
market factors, we develop a simple multifactor portfolio credit model for valu-
ing CDO index tranches in this section.16 Although developed independently,
our framework complements important recent theoretical work on “top down”
portfolio credit modeling by Giesecke and Goldberg (2005) and others.17

16 Evidence about the multifactor nature of credit risk is provided by Collin-Dufresne et al.
(2001), Elton et al. (2001), Eom et al. (2004), Longstaff et al. (2005), and many others.

17 Also see recent papers by Giesecke (2004), Schönbucher (2005), and Sidenius, Piterbarg, and
Andersen (2005).
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To date, most modeling of CDOs has been done at the firm level by modeling
individual losses and then aggregating over the portfolio. However, losses on
the tranches are simple functions of the total losses on the underlying portfolio.
Thus, the distribution of total portfolio losses represents a “sufficient statistic”
for valuing tranches. Accordingly, rather than modeling individual defaults, we
model the distribution of total portfolio losses directly.

We stress that we are not implying that individual firm-level information
about default status is unimportant. For many types of credit derivatives (such
as credit default swaps or first-to-default swaps on small baskets of firms),
individual firm default status is essential in defining the cash payoffs. Rather,
we suggest that for many other types of credit-related contracts that are tied to
larger portfolios, the “reduced-form” approach of modeling portfolio-level losses
directly may provide important advantages with little loss in our ability to
capture the underlying economics. In general, the smaller the single-name risk
concentration in a portfolio, the more applicable is the aggregate loss approach
taken here.

Let Lt denote the total portfolio losses on the CDX portfolio per $1 notional
amount. By definition, L0 = 0. To model the dynamic evolution of Lt we assume

dLt

1 − Lt
= γ̄1 dN1t + γ̄2 dN2t + γ̄3 dN3t , (1)

where γ̄i = 1 − e−γi ; i = 1, 2, 3; γ1, γ2, and γ 3 are nonnegative constants defin-
ing jump sizes; and N1t, N2t, and N3t are independent Poisson processes. Note
that for small values of γi, the jump size γ̄i is essentially just γi. Thus, for ex-
positional simplicity, we will take a slight liberty and generally refer to the
parameters γ1, γ2, and γ 3 simply as jump sizes. Integrating equation (1) and
conditioning on time-zero values (a convention we adopt throughout the paper)
gives the general solution for Lt

Lt = 1 − e−γ1 N1t e−γ2 N2t e−γ3 N3t . (2)

From this equation, it can be seen that the economic condition 0 ≤ Lt ≤ 1 is
satisfied for all t. Furthermore, since N1t, N2t, and N3t are nondecreasing pro-
cesses, the intuitive requirement that total losses be a nondecreasing function
of time is also satisfied. These dynamics imply that there are three factors at
work in generating portfolio losses, each of which could be a firm-specific de-
fault event or a multifirm default event. Thus, this approach explicitly allows
for the possibility of default correlation.

The intensities of the three Poisson processes are designated λ1t, λ2t, and λ3t,
respectively. To complete the specification of the general model, we assume that
the dynamics for the intensity processes are given by

dλ1t = (α1 − β1 λ1t) dt + σ1
√

λ1t dZ1t , (3)

dλ2t = (α2 − β2 λ2t) dt + σ2
√

λ2t dZ2t , (4)

dλ3t = (α3 − β3 λ3t) dt + σ3
√

λ3t dZ3t , (5)
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where Z1t, Z2t, and Z3t are standard independent Brownian motion processes.
These dynamics ensure that the intensities for the three Poisson processes are
always nonnegative. Furthermore, the mean-reverting nature of the intensi-
ties allows the model to potentially capture expected migrations in the credit
quality of the underlying portfolio. Specifically, we would anticipate that over
time, the lowest credit quality firms would tend to exit the portfolio sooner,
resulting in an expected downward trend in the value of λ. This trend could be
reflected in the model in the situation in which the initial value of λ is above
its long-run mean value of α/β.18 Since these intensities are stochastic, it is
clear from the previous discussion that this framework allows default correla-
tions to vary over time. Although we present analytical results for the general
case implied by equations (3) through (5) in this section, the empirical results
to be presented later are based on the special case in which αi = βi = 0 for
all i.

To value claims that depend on the realized losses on a portfolio, we first need
to determine the distribution of Lt. From equation (2), Lt is a simple function
of the values of the three Poisson processes. Thus, it is sufficient to find the
distributions for the individual Poisson processes, since expectations of cash
flows linked to Lt can be evaluated directly with respect to the distributions of
N1t, N2t, and N3t.

Since many of the following results are equally applicable to each of the
three Poisson processes, we simplify notation whenever possible by dropping
the subscripts 1, 2, and 3 when we present generic results and the interpretation
is clear from context. Standard results imply that, conditional on the path of
λt, the probability of NT = i, i = 0, 1, 2, . . . can be expressed as

exp
( − ∫ T

0 λtdt
)( ∫ T

0 λtdt
)i

i!
. (6)

Let Pi(λ, T) denote i! times the probability that NT = i, conditional on the cur-
rent (the time-zero unsubscripted) value of λ. Thus,

Pi(λ, T ) = E


exp

(
−

∫ T

0
λt dt

) (∫ T

0
λt dt

)i

 . (7)

For i = 0, the Appendix shows that this expression is easily solved in closed
form from results in Cox, Ingersoll, and Ross (1985). For i > 0, the results in
Karlin and Taylor (1981, pp. 202–204) can be used to show that Pi(λ, T) satisfies
the recursive partial differential equation

σ 2λ

2
∂2 Pi

∂λ2
+ (α − βλ)

∂ Pi

∂λ
− λPi + iλPi−1 = ∂ Pi

∂T
. (8)

18 We are very grateful to the referee for pointing this out.
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The Appendix shows that this partial differential equation for Pi(λ, T) has the
following (poly-affine) closed-form solution

Pi(λ, T ) = A(T ) e−B(T )λ
i∑

j=0

Ci, j (T ) λ j , (9)

where

A(T ) = exp
(

α(β − ξ )T
σ 2

) (
2ξ

β + ξ − (β − ξ )e−ξT

) 2α

σ2

, (10)

B(T ) = 2ξ (β + ξ )
σ 2(β + ξ − (β − ξ )e−ξT )

− β + ξ

σ 2
, (11)

and ξ =
√

β2 + 2σ 2. The first Ci,j(T) function is C0,0(T) = 1. The remaining
Ci,j(T) functions are given as solutions of the recursive system of first-order
ordinary differential equations,

dCi,i

dt
= i Ci−1,i−1 − (σ 2 B(t) + β) i Ci,i, (12)

dCi, j

dt
= i Ci−1, j−1 − (σ 2 B(t) + β) j Ci, j + ( j + 1) (α + jσ 2/2) Ci, j+1, (13)

dCi,0

dt
= α Ci,1, (14)

where 1 ≤ j ≤ i – 1. These differential equations are easily solved numerically
subject to the initial condition that Ci,j(0) = 0 for all i > 0.

With these solutions, the expectation of an arbitrary function F(Lt) of the
portfolio losses (satisfying appropriate regularity conditions of course) can be
calculated directly by the expression

E[F (Lt)] =
∞∑

i=0

∞∑
j=0

∞∑
k=0

P1,i(λ1, t)
i!

P2, j (λ2, t)
j !

P3,k(λ3, t)
k!

F (Lt). (15)

Although the summations range from zero to infinity, only the first few terms
generally need to be evaluated since the remainder are negligible.

IV. Valuing Tranches

Given the solutions for the Poisson probabilities, it is now straightforward
to value securities with cash flows tied to the realized credit losses of an un-
derlying portfolio such as the CDX index. Let D(t) denote the present value
(as of time zero) of a zero-coupon riskless bond with maturity t. For simplicity,
we assume that the riskless rate r is independent of the Poisson and intensity
processes.

The total losses on an individual N–M% tranche can be modeled as a call
spread on the underlying state variable Lt. Specifically, the total losses Vt on a
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N–M tranche (assuming quarterly cash flows and abstracting from day count
considerations) can be expressed as

Vt = 1
M − N

(max(0, Lt − N ) − max(0, Lt − M )), (16)

where N and M are denoted in decimal form. This expression indicates that
if the total loss on the underlying portfolio Lt is less than N, then the loss on
the tranche Vt is zero. If Lt is midway between N and M, the total loss on the
tranche Vt is 0.50 or 50%. If Lt equals or exceeds M, the total loss on the tranche
Vt equals 1.00 or 100%. As with the total losses on the underlying portfolio, Vt
is a nondecreasing function of time.

An investor in an index tranche receives a fixed annuity of h on the remaining
balance 1 − Vt of the tranche, in exchange for compensating the protection buyer
for the losses dV on the tranche. Thus, the value of the premium leg of a N − M%
tranche is given by

h
4

4T∑
i=1

D(i/4) E[1 − Vi/4]. (17)

Similarly, the value of the protection leg of the N − M% tranche is given by
4T∑
i=1

D(i/4) E[Vi/4 − V(i−1)/4]. (18)

Setting the value of the two legs equal to each other and solving gives the
value of the tranche spread h. The expectations in these expressions are easily
evaluated by substituting the closed-form solutions for the Poisson probabilities
into equation (15).

V. Empirical Analysis

In this section, we estimate the model using the times series of CDX index
values and the associated index tranche prices. We then examine how the model
performs and explore the economic implications of the results.

A. The Empirical Approach

To make the intuition behind the results more clear, we focus on a simple
special case of the model in which each of the intensity processes follows a
martingale. Thus, we assume that the α and β parameters in equations (3)
through (5) are zero. As we will show, even this simplified specification allows
us to fit the data with a very small RMSE (and only marginal improvements
would be possible by estimating the general case of the model).19

19 These parameter restrictions imply that the intensity process is absorbed at zero if it reaches
zero. Thus, a more robust specification might allow for a small positive value for α. In actuality,
however, the implied intensity values are generally many standard deviations away from zero.
Thus, this technical consideration likely has little effect on the estimation results.
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In this specification, six parameters need to be estimated: the three jump
size parameters γ1, γ2, and γ 3, and the three volatility parameters σ1, σ2, and
σ 3. In addition, the values of the three intensity processes need to be estimated
for each date. Our approach in estimating the model will be to solve for the
parameter and intensity values that best fit the model to the data. In doing so,
we estimate the model separately for each of the five CDX indexes. The reason
for this is that there are slight differences in the composition of the individual
indexes, potentially resulting in minor differences in parameter values.

Let us illustrate the estimation approach with the specific example of the
CDX 1 index. The CDX 1 index was the on-the-run index from October 20, 2003
to March 20, 2004. There are 65 observations for this index in the data set. Let
hit denote the market spread for the ith tranche on date t, where i ranges from
1 to 5 (tranche 1 is the equity tranche, tranche 2 is the 3–7 junior mezannine
tranche, etc.) Let θ denote the vector of σ and γ parameters to be estimated.
Let λt denote the vector of intensities for date t, and λ the set of all 65 of these
vectors. The estimation process consists of solving for the parameter vector θ

and the 65 λt vectors that minimize the following sum of squared errors,

min
θ ,λ

65∑
t=1

5∑
i=1

[hit − ĥit(θ , λt)]2, (19)

where ĥ denotes the model-implied value of the tranche spread, subject to the
model-implied value of the CDX index equaling the market value of the CDX
index for each date t. This algorithm is essentially nonlinear least squares
and has been widely used in the finance literature in similar types of applica-
tions.20 The optimization methodology we use is a direct search algorithm that
does not use the gradient or Hessian of the objective function (Fortran IMSL
routine DBCPOL). While this algorithm displays robust convergence proper-
ties for a variety of starting values, its direct search nature (which keeps trying
parameter values far removed from the current minimizing parameter vector
in order to avoid local minima) is admittedly somewhat slow to converge.21

As a result, some of the optimizations for longer time series such as CDX4
take more than 12 hours of CPU time to complete. Clearly, more efficient op-
timization algorithms could reduce the computational time significantly. We
use a similar procedure to estimate the model for the other CDX indexes. Fi-
nally, it is important to note that parameter values and intensities are es-
timated for the risk-neutral pricing measure (not the objective or historical
measure).

20 See Longstaff, Mithal, and Neis (2005), Liu, Longstaff, and Mandell (2006), and many others.
21 As robustness checks for the results, we use a variety of starting values for the optimization.

For example, we use starting values ranging from 0.0001 to 0.05 for γ 1, from 0.0001 to 0.20 for γ 2,
and 0.0001 to 0.75 for γ 3 (and similarly for the σ1, σ2, and σ 3 parameters). The convergence results
are robust to the choice of starting parameters.
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Table II
Root Mean Squared Errors (RMSE) from Model Fitting and Tests of

the Number of Factors
This table reports the RMSEs for the individual CDX index tranches resulting from fitting the
indicated models, where the RMSE is calculated from the pricing errors for the individual tranche.
The table also reports the overall RMSE, which is calculated from the pricing errors for all five of
the tranches. All RMSEs are measured in basis points. The p-value is for the test of n versus n − 1
factors. N denotes the number of observations for the indicated CDX index. The sample period is
from October 2003 to October 2005.

Tranche RMSE
Number of Overall
factors Index 0–3 3–7 7–10 10–15 15–30 RMSE p-Value R2 N

One Factor CDX 1 13.13 78.55 17.78 40.15 13.44 41.11 – 0.9924 65
CDX 2 26.90 54.02 47.08 47.50 13.37 40.73 – 0.9931 108
CDX 3 39.21 65.48 41.22 24.75 9.29 40.55 – 0.9887 118
CDX 4 31.81 39.76 47.65 23.28 12.38 33.35 – 0.9966 127
CDX 5 49.58 29.92 26.37 13.83 6.21 29.25 – 0.9965 17

Two Factors CDX 1 9.89 20.24 8.46 6.73 9.82 12.01 0.000 0.9993 65
CDX 2 5.60 17.17 5.12 5.89 3.02 8.90 0.000 0.9997 108
CDX 3 3.78 5.77 3.28 1.68 3.07 4.74 0.000 0.9998 118
CDX 4 22.40 14.30 9.95 7.39 10.85 13.98 0.000 0.9994 127
CDX 5 2.24 1.95 7.13 6.99 0.66 4.67 0.000 0.9999 17

Three Factors CDX 1 11.01 4.62 8.68 10.37 8.31 8.88 0.997 0.9996 65
CDX 2 2.52 1.31 3.04 6.08 4.68 3.90 0.000 0.9999 108
CDX 3 0.99 0.76 3.36 2.80 2.06 2.23 0.000 1.0000 118
CDX 4 1.18 1.19 4.52 2.27 2.46 2.63 0.000 1.0000 127
CDX 5 0.29 0.28 1.10 0.61 0.46 0.63 0.000 1.0000 17

B. Testing for the Number of Factors

One of the key issues to address at the outset is the question of how many
factors are actually needed in pricing CDOs. In this section, we explore this
issue by testing whether a two-factor version of the model has incremental ex-
planatory power relative to the one-factor version, and similarly for the three-
factor version. These tests for the number of factors needed to price tranches
also provide insight into an issue that is of fundamental importance in credit
markets, namely, default correlation. This follows since if defaults were uncor-
related, then default losses on a portfolio could be modeled using a single-factor
Poisson with intensity equal to the sum of intensities for the individual firms in
the portfolio (since the sum of independent Poissons is itself a Poisson). Thus,
rejecting a single-factor Poisson version of the model would provide direct evi-
dence that the market expects correlation or clustering in the defaults of CDX
firms.

Table II presents summary statistics for the pricing errors obtained by
estimating one-factor, two-factor, and three-factor versions of the model. In
each case, the values of the intensity processes are chosen to match the
CDX index spread exactly. In the two-factor and three-factor models, the
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RMSE of the difference between market- and model-implied spreads for
the five index tranches is also minimized. The table reports the RMSEs
for each of the 0–3%, 3–7%, 7–10%, 10–15%, and 15–30% tranches individ-
ually, as well as the RMSE computed over all tranches. Table II also re-
ports the p-values for the chi-square tests of the two-factor versus one-
factor and three-factor versus two-factor specifications. In the one-factor spec-
ification, we estimate the two parameters γ 1 and σ 1, as well as N val-
ues of λ1, where N is the number of days in the sample. In the two-
factor specification, we estimate the four parameters γ1, γ2, σ1, and σ 2 as
well as N values each for λ1 and λ2. Thus, the one-factor specification is
nested within the two-factor specification by imposing N + 2 restrictions; the
chi-square statistic has N + 2 degrees of freedom. Similarly, the two-factor
specification is nested within the three-factor specification by imposing N +
2 restrictions.

As shown in Table II, the RMSEs for the one-factor version of the model are
very large across all of the tranches. The overall RMSEs range from about 30 to
41 basis points. Increasing the number of factors to two results in a significant
reduction in the RMSEs, both overall and across tranches. Typically, the overall
RMSE for the two-factor version of the model is between about 5 and 14 basis
points. For each CDX index, the incremental explanatory power of the two-
factor version relative to the one-factor version is highly statistically significant.
Note that the chi-square likelihood-ratio test is much more relevant than a
simple comparison of the nonlinear least squares R2s, which are all high (since
even the 40bp RMSE of the single-factor model is very small relative to the
huge cross-sectional variation in the tranche spreads, which range from fewer
than 10 to over 1,000 basis points).

The three-factor version of the model results in very small RMSEs. With the
exception of the CDX 1 index, the overall RMSEs are all on the order of two
to three basis points. In fact, the RMSE for CDX 5 is actually less than one
basis point. Again, with the exception of the CDX 1 index, the incremental
explanatory power of the three-factor version relative to the two-factor model
is highly significant. Thus, the three-factor model provides a very close fit to
the data. Accordingly, we report results based on the three-factor version of the
model in the remainder of the paper.

C. The Parameter Estimates

Table III reports the parameter estimates obtained from the three-factor
model along with their asymptotic standard errors (Gallant (1975)). Focusing
first on the estimates of the jump sizes, the table shows that there is strong
uniformity across the different CDX indexes. In particular, the jump sizes as-
sociated with the first Poisson process are in a tight range from 0.00387 to
0.00469. Since each firm in the CDX index has a weight of 1/125 = 0.008 in
the index, a jump size of, say, 0.004 is consistent with the interpretation that
a jump in the first Poisson process represents the idiosyncratic default of an
individual firm, where the implicit recovery rate for the firm’s debt is 50%. If
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Table III
Parameter Estimates

This table reports the parameter estimates for the indicated CDX indexes. The jump size parame-
ters are the parameters γ1, γ2, and γ 3 in the model. The volatility parameters are the σ 1, σ 2, and
σ 3 parameters in the model. Asymptotic standard errors are in parentheses and are computed as
in Gallant (1975). The sample period is from October 2003 to October 2005.

Jump size parameters Volatility parameters

Index First Second Third First Second Third N

CDX 1 0.00453 0.06093 0.17091 0.03016 0.10847 0.00098 65
(0.00820) (0.00215) (0.00925) (3.98870) (0.11198) (2.18805)

CDX 2 0.00411 0.06498 0.35104 0.20854 0.19569 0.14246 108
(0.00064) (0.00020) (0.11342) (0.04624) (0.00542) (0.13661)

CDX 3 0.00402 0.06621 0.35347 0.11955 0.16863 0.18110 118
(0.00165) (0.00027) (0.10936) (0.20686) (0.00729) (0.10325)

CDX 4 0.00387 0.05260 0.51615 0.14003 0.25083 0.16539 127
(0.00007) (0.00081) (0.26476) (0.01756) (0.00530) (0.23667)

CDX 5 0.00469 0.05628 0.33801 0.17315 0.27763 0.29674 17
(0.00072) (0.00509) (0.10590) (0.5473) (0.06554) (0.06784)

we adopt this interpretation, then the recovery rates implied by the estimated
jump sizes are 56.6%, 51.4%, 50.3%, 48.4%, and 58.6% for the individual CDX
indexes, respectively.22

The jump sizes for the second Poisson process are also very uniform across the
CDX indexes, ranging from roughly 0.052 to 0.066. These values are consistent
with the interpretation of the second Poisson process reflecting a major event in
a specific sector or industry. As one way of seeing this, observe that virtually ev-
ery broad industry classification is represented in the CDX index. In particular,
the CDX index includes firms in the consumer durables, nondurables, manufac-
turing, energy, chemicals, business equipment, telecommunications, wholesale
and retail, finance and insurance, health care, utilities, and construction in-
dustries. If we place the CDX firms into these 12 broad industry categories,
then there are 125/12 = 10.42 firms per category. Assuming a 50% recovery
rate, a major event that resulted in the loss of an entire industry would lead
to a total loss for the index of 10.42/125 × 0.50 = 0.042, which is on the order
of magnitude of the jump size estimated for the second Poisson process. We
note again, however, that a number of alternatives to this industry-event-risk
interpretation could be equally valid.

The estimated jump sizes for the third Poisson process display somewhat
more variation than for the other two Poisson processes, with values ranging

22 Historical recovery rates on corporate debt vary based on macroeconomic conditions, the se-
niority of the debt, the nature of the default, the rating of the issuer, and many other factors. For
the senior unsecured debt referenced by the CDX indexes, the normal range of recovery between
1981 and the present has ranged from 20% to 70% according to Moody’s (for example, see Gupton
(2005)).
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from about 0.17 to 0.52. The average value across all five indexes is about 0.35.
Again assuming a 50% recovery rate, a jump size of 0.35 associated with a
realization of the third Poisson process can be interpreted as a major economic
shock to the entire economy in which as many as 70% of all firms default on
their debt. This is a nightmare scenario that is difficult to imagine. Potential
examples of such a scenario might include nuclear war, a worldwide pandemic,
or a severe and sustained economic depression. The latter would need to be
much more severe than any the United States has yet experienced, but has
been observed elsewhere in a number of instances during the two-millenium-
long experience of sovereign defaults and collapses in ancient Rome, Germany,
Russia, and many other states (see Winker (1999)).

Turning now to the estimates of the volatility parameters, Table III shows
that the volatility estimates of each of the three intensity processes are gener-
ally of the same order of magnitude. Specifically, with the exception of the first
CDX index, the volatility parameters range from roughly 0.10 to 0.30 across
all three processes and across all the CDX indexes. It is important to stress
that these parameters are all estimated in sample, which leaves open the usual
issue of how the model would fit out of sample. The fact that many of the esti-
mated parameters are similar across different CDX indexes, however, provides
some indirect support that the out-of-sample performance of the model might
not be unreasonable. Finally, we note that the standard errors for a few of the
parameters are large relative to the parameter estimates, particularly for the
CDX 1 results and for the estimates of σ 3. In general, however, most of the other
parameters appear to be reasonably precisely estimated.

D. The Intensity Processes

D.1. The Time Series

Figure 2 plots the time series of the estimated values of the three intensity
processes. Again, the estimated intensities are all under the risk-neutral mea-
sure. As shown, the first intensity process λ1 ranges from roughly 0.50 to 1.50
during the sample period. For the majority of the sample period, this process
takes values between 0.60 to 0.90 and displays a high level of stability. During
the credit crisis of May 2005, however, this intensity process spiked rapidly
to a value of 1.52, but then declined to just over 1.00 by the middle of June
2005. Thus, this spike was relatively short lived. The average values of λ1 for
the CDX 1 through CDX 5 indexes are 0.726, 0.854, 0.766, 1.023, and 0.816, re-
spectively. Given the average value of λ1 during the sample period, the expected
(risk-neutral) waiting time until a firm-specific default is 1.16 years.

The second intensity process λ2 ranges from a high of about 0.04 to
a low of about 0.01 during the sample period. The value of this process
is generally declining throughout the period. During the credit crisis, the
value of this process doubled from about 0.015 to just over 0.030. After
the crisis, the value of this process continued to decline. This suggests that
the market-implied probability of a major industry or sector crisis declined
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Figure 2. Intensity processes. This figure graphs the estimated intensity processes. The vertical
division lines denote the roll from one CDX index to the next.

significantly during the past several years. Put another way, the expected
waiting time for this type of event declined from roughly 28 years to 125 years
during the sample period. The average values of λ2 for the CDX 1 through CDX
5 indexes are 0.031, 0.035, 0.021, 0.016, and 0.009, respectively. The average
(risk-neutral) waiting time for a realization of the second Poisson process is
41.5 years during the sample period.

The third intensity process λ3 has more apparent variability across CDX
indexes than do the other two intensity processes. In particular, the value of
this process increases rapidly for the CDX 1 index, but then generally takes
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Figure 3. Loss distribution function. This figure graphs the loss distribution implied by the
fitted three-factor model for losses ranging from 0.00 to 0.16. The actual loss distribution is discrete,
but is approximated by a continuous function in the graph.

lower values for the other four CDX indexes. The apparent discontinuity in this
process as it rolls from CDX 1 to 2 is probably related to the higher standard
errors of the estimated parameters for CDX 1; the estimated parameters and
values of the intensity processes for CDX 1 are likely much noisier than for the
other indexes. As with the second intensity process, the third intensity process
essentially doubles around the time of the credit crisis. The average values of λ3
for the CDX 1 through CDX 5 indexes are 0.0026, 0.0009, 0.0009, 0.0014, and
0.0010, respectively. The average value for this intensity process throughout the
entire sample period is 0.00131. Thus, the implied risk-neutral probability of
a catastrophic meltdown scenario is very small with an expected (risk-neutral)
waiting time of about 763 years on average.

To illustrate the implications for the risk-neutral portfolio loss distribution,
Figure 3 plots the time series of loss distributions implied by the model. Specif-
ically, the distributions shown are for total portfolio losses at the 5-year horizon
and are truncated to show only values ranging from zero to 16% (the probabil-
ities for larger losses are visually difficult to distinguish from zero). As shown,
the distribution of portfolio losses is multimodal and displays considerable time-
series variation.

D.2. Interpreting the Factors

Although we have referred to the three Poisson processes as being consis-
tent with idiosyncratic, industry or sector, and economywide credit events, re-
spectively, it is important to stress that we have provided no direct evidence
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supporting this interpretation. Intuitively, it seems reasonable to think of the
first Poisson variable as an idiosyncratic credit event given that its realization
maps into a portfolio loss of roughly 0.004. Similarly, it also seems natural to
interpret the third Poisson event as a serious credit event affecting a large frac-
tion of firms throughout the economy. In contrast, however, the second Poisson
process need not necessarily be an industry or sector event. In fact, it could just
as easily represent a default event for a subset of firms related by a variety of
other firm attributes.

One possible way to explore the economic role played by the second Poisson
process is by examining its implications for the factor structure of credit spreads
for individual firms. To see this, imagine that all credit risk was purely idiosyn-
cratic and that the correlation of credit spread changes across firms was zero.
This is clearly not the case since the average correlation of daily credit spread
changes across firms in the CDX index is 0.245. Similarly, imagine that all
credit risk was economywide. In this polar extreme case, all credit spread cor-
relations would be one, which is again easily rejected by the data. Now imagine
that credit risk was a blend of both idiosyncratic and economywide risk, where
the relative proportion varies across firms. In this case, credit spreads would
be cross-sectionally correlated, but factor analysis would reveal that there was
one common factor driving credit spreads—the remaining variation in credit
spreads would be purely idiosyncratic.

With these preliminaries, now consider the more realistic case corresponding
to the model estimated in this paper in which there is idiosyncratic and econo-
mywide credit risk, but also clustered default risk for subsets of firms related
to the second Poisson process. Assume that this default clustering occurs across
firms in a way that has nothing to do with their industry or sector. In this sce-
nario, a principal components analysis would reveal a common economywide
component driving individual firm credit spreads, and then a number of other
common factors affecting specific subsets of the firms, but unrelated to industry
grouping.

To explore this interpretation, we first map each of the 125 firms in the
CDX indexes into one of the 12 Fama–French industry categories. Averaging
over all five CDX indexes, 5.92% are in consumer nondurables, 3.36% in con-
sumer durables, 10.24% in manufacturing, 5.44% in energy, 3.20% in chemicals,
6.40% in business equipment, 8.00% in telecommunications, 5.60% in utilities,
11.68% in wholesale/retail, 3.20% in healthcare, 22.24% in finance, and 14.72%
in “other.” Next, we extract out time series of CDS spreads for the 94 firms that
are present in the CDX indexes throughout the sample period and also have
traded stock. We then compute the correlation matrix of daily credit spread
changes for these firms and perform a principal components analysis. Finally,
we regress the principal components (the corresponding eigenvectors) on indus-
try dummy variables for each firm. If default clustering is unrelated to industry,
these dummy variables should not have cross-sectional explanatory power for
the second, third, fourth, etc. principal components.

The results provide a number of interesting insights into the cross-sectional
structure of credit risk. Credit risk is obviously not purely idiosyncratic; the first
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principal component explains more than 27% of the variation in credit spreads
across firms. On the other hand, idiosyncratic risk appears to be the dominant
nature of individual firm credit spreads. Specifically, the next five principal
components only explain an incremental 5.1%, 4.5%, 3.5%, 3.1%, and 2.8%,
respectively. Furthermore, eight principal components are required before more
than 50% of the variation in credit spreads is explained.

Table IV (top panel) reports the results from the cross-sectional regression of
the principal component weights on the industry dummy variables. As shown,
the first principal component is consistent with the interpretation of an econ-
omywide credit variable affecting the majority of firms; all 12 of the industry
dummy variables are highly significant. Although not shown, the regression
coefficients for the industry dummy variables are remarkably uniform, rang-
ing from about 0.08 to 0.11. Thus, the first factor can be viewed as a “parallel
shift” in the credit spreads of all firms.

Moving beyond the first principal component, we can now test whether the
default clustering in subsets of firms is related to industry categories. Recall
that if the default clustering reflected by the second Poisson process has noth-
ing to do with industry, then these principal components should be orthogonal
to the industry dummy variables. In actuality, however, there appears to be a
significant relation between many of the principal components and the industry
dummies. For example, four of the industry dummy variables are significant
for the second principal component and the corresponding adjusted R2 is 0.419.
The four significant industries are the manufacturing, energy, finance, and
other industries. Similarly, the energy, telecommunications, and finance indus-
try dummies are significant for the third principal component and the adjusted
R2 is 0.263. Interestingly, for the fourth through eighth principal components,
only one or two of the industry dummy variables are significant at the 5% or
10% level. Thus, were the R2s for the regressions higher, there would be the
possibility of almost a one-to-one mapping between these principal components
and a specific industry or pair of industries.

It is important to provide some caveats at this point. For example, a number of
the significant industry dummy variables have negative signs. These negative
signs muddy the interpretation of the relation between principal components
and specific industries. Furthermore, the adjusted R2s for many of the principal
components are not high, indicating that industry grouping may only be a small
part of the total picture in explaining the default clustering being captured
by the second Poisson process. Despite these caveats, however, these results
provide at least some evidence that industry does play a significant role in
explaining the clustering of credit risk in subsets of firms.

To understand better how these results fit into a broader economic perspec-
tive, we repeat the same exercise using daily stock return data for the same
94 firms and sample period. The results are reported in the bottom panel
of Table IV and indicate that there are many similarities between the re-
sults for credit spreads and those for the stock returns for these 94 firms.
For example, the first principal component for stock returns explains about
26.9% of the variation in returns, which is almost the same amount explained
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by the first principal component for credit spreads. As before, however, the
second, third, fourth, etc. principal components explain only small proportions
of the total variation, suggesting that much of the variability in stock returns is
idiosyncratic.

The regression results indicate that the industry dummy variables have sig-
nificant explanatory power for the stock return principal components. Similar
to the results for changes in CDS spreads, the first principal component loads
on all 12 of the Fama–French industry dummy variables, consistent with the
usual view of the first factor in stock returns being related to the market.
Where the results differ from those for credit spreads is in the implications for
the other principal components. For example, the industry dummy variables
explain more than 82% of the variation in the loadings for the second prin-
cipal component. This is a much higher proportion than in the credit spread
results. Furthermore, 8 of the 12 industry dummies have significant explana-
tory power for the second stock return principal component. Similar results hold
for the third, fourth, fifth, etc. principal components: principal components for
the stock returns are much more related to industry than is the case for credit
spreads. Furthermore, few, if any, of the stock return principal components can
be linked to one or two industries; stock return principal components seem to
be related to broader subsets of firms in the economy than is the case for credit
spreads. These results are intriguing and argue for a more in-depth compari-
son of the cross-sectional structure of credit spread changes and that of stock
returns for the corresponding firms than we are able to provide in this paper.

E. CDX Index Spread Components

We can decompose the CDX index spread into three distinct components to
measure the approximate overall economic impact of idiosyncratic, industry,
and economywide default risks. In particular, the idiosyncratic component of
the CDX index spread can be approximated by γ̄1 λ1, the industry component
by γ̄2 λ2, and the economywide component by γ̄3 λ3. The sum of these three
components approximates the value of the CDX index spread.

For the CDX 1 through CDX 5 indexes, the idiosyncratic component of the
spread represents 58.83%, 57.70%, 64.19%, 71.56%, and 82.17% of the total
spread, respectively. Thus, although idiosyncratic default risk averages about
two-thirds of the total value of the CDX index over the entire sample period,
the percentage due to idiosyncratic default risk has increased steadily over
time. In contrast, the portion of the CDX index spread due to industry or sec-
tor default risk declined significantly during the sample period, representing
33.34%, 37.02%, 28.88%, 15.92%, and 10.48% of the total CDX spread for the
CDX 1 through CDX 5 indexes, respectively. Economywide default risk accounts
for 7.83%, 5.28%, 6.93%, 12.52%, and 7.35% of the total spread for the CDX 1
through CDX 5 indexes, respectively. Thus, there is no clear trend in the size
of this component. We note, however, that this component takes its largest
value for the CDX 4 index, which spans the period during the May 2005 credit
crisis.
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Figure 4. Time series of RMSEs. This figure graphs the time series of daily root mean squared
error (RMSE) from the fitting of the five CDX tranches. RMSEs are measured in basis points. The
vertical division lines denote the roll from one CDX index to the next.

In summary, these results indicate that idiosyncratic default risk constitutes
the majority of the CDX index spread. The combined effects of industry and
economywide risk, however, are also significant and have represented more
than 40% of the total at times. For the entire sample period, the average size of
the three default components are 64.6%, 27.1%, and 8.3%, respectively, of the
total CDX spread.

F. The Time Series of RMSEs

Although Table II reports summary RMSE statistics for the three-factor
model, it is also interesting to examine the time-series variation in the abil-
ity of the model to capture market tranche spreads more closely. Accordingly,
Figure 4 plots the time series of daily RMSEs obtained by fitting the model to
the five tranches.

As shown, the ability of the model to match market tranche spreads in-
creased significantly during the sample period. Initially, some of the RMSEs
are as large as 19 basis points. The RMSEs decline rapidly, however, and
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are on the order of five basis points by early 2004. By mid-2004, the RMSEs
decline further and hover around two basis points for most of the sample pe-
riod. The only exception is around the May 2005 credit crisis when the RMSE
increases slightly to about five basis points. After the crisis, however, the RM-
SEs decline rapidly and reach values below one basis point near the end of
the sample period. The small spikes in the RMSEs at the beginning and end
of each index series are potentially due to investors rolling positions from
tranches based on the previous index to tranches based on the new on-the-run
index.

G. Pricing Errors

We turn next to the pricing errors, defined as the difference between the
model-implied spreads and the market spreads for the various CDX index
tranches, and examine their properties. Table V presents summary statistics
and reports t-statistics for the significance of the average pricing errors.

As shown, the pricing errors from the three-factor model are surpris-
ingly small across all indexes and tranches. In particular, the average pric-
ing errors are all within 10 basis points of zero and most are within 1 or
2 basis points of zero. Recall from Table I that the average sizes for the
0–3%, 3–7%, 7–10%, 10–15%, and 15–30% tranche spreads are about 1,759,
240, 82, 34, and 12 basis points, respectively. Thus, average pricing errors of
only a few basis points are extremely small in percentage terms as well. Except
for the CDX 1 errors, the mean errors are not significant.

While the results on the size of the pricing errors are encouraging, it is
important to acknowledge that the model is rejectable. For example, most of
the first-order serial correlation coefficients are very large, indicating that
there is a high degree of persistence in the pricing errors. Thus, in prin-
ciple, it might be possible to construct a trading rule that exploits model
mispricings.

H. Linking Firm-Level and Portfolio-Level Information

In this paper, we have focused on the implications of the data for the distri-
bution of default losses for a large portfolio of credit-sensitive contracts. Ideally,
we would like to be able to use portfolio-level information to infer something
about the economic nature of credit risk at the individual firm level.

One way to do this is to solve for the default correlation among individ-
ual firms implied by the data. The event that firm i has defaulted by time
T can be characterized as a simple binary or Bernoulli variate with proba-
bility πi = 1 − e−ξT, where ξ is a firm-specific constant. With this structure,
it is straightforward to show that the value of the premium leg for a 5-year
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Table V
CDX Index Tranche Pricing Errors

This table reports summary statistics for the pricing errors for the indicated CDX
index tranches. The t-statistic for the mean is corrected for first-order serial cor-
relation. Pricing errors are measured in basis points. The sample period is from
October 2003 to October 2005.

t-Statistic Serial
Tranche Index Mean SD for the mean correlation N

0–3 Tranche CDX 1 −7.00 8.56 −1.66 0.896 65
CDX 2 −1.27 2.18 −1.33 0.916 108
CDX 3 −0.19 0.97 −0.26 0.984 118
CDX 4 −0.20 1.17 −0.55 0.850 127
CDX 5 0.02 0.29 0.32 −0.019 17

3–7 Tranche CDX 1 −3.21 3.34 −1.98 0.893 65
CDX 2 −0.51 1.21 −1.16 0.880 108
CDX 3 −0.21 −.73 −0.55 0.947 118
CDX 4 0.00 1.19 0.01 0.894 127
CDX 5 −0.03 0.28 −0.42 0.110 17

7–10 Tranche CDX 1 −2.60 8.34 −0.66 0.887 65
CDX 2 0.03 3.06 0.04 0.801 108
CDX 3 0.61 3.32 0.30 0.968 118
CDX 4 −0.27 4.53 −0.15 0.914 127
CDX 5 0.16 1.12 0.51 0.152 17

10–15 Tranche CDX 1 −6.62 8.05 −1.67 0.896 65
CDX 2 −2.07 5.74 0.57 0.967 108
CDX 3 −0.45 2.77 −0.22 0.984 118
CDX 4 −0.27 2.26 −0.53 0.752 127
CDX 5 −0.76 0.62 −0.31 0.486 17

15–30 Tranche CDX 1 −8.09 1.88 −9.13 0.885 65
CDX 2 −2.98 3.63 −1.66 0.936 108
CDX 3 −0.83 1.90 −0.64 0.975 118
CDX 4 −0.62 2.39 −0.72 0.892 127
CDX 5 0.06 0.46 0.45 0.238 17

quarterly-pay CDS contract on the firm is

s
4

20∑
t=1

D(t/4) e−ξ t/4, (20)

and the value of the protection leg for the CDS contract is

w
4

20∑
t=1

D(t/4)ξe−ξ t/4, (21)

where s is the CDS premium and w is the write-down fraction on the firm’s
debt in the event of a default. Thus, the value of ξ is given immediately from
the CDS premium for the firm by the relation ξ = s/w.
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The joint distribution of losses on the 125 firms in the CDX index is a multi-
variate correlated Bernoulli distribution. As discussed in Marshall and Olkin
(1985), Park, Park, and Shin (1996), Lunn and Davies (1998), and many oth-
ers, this distribution is very difficult to characterize in either closed form or
via simulation. To solve for the implied correlation, however, we do not need to
evaluate the joint density explicitly. In particular, assume that the event of a
default of any firm translates into a loss fraction of 0.004 for the CDX portfolio.
Given this structure, the variance of the loss distribution for the CDX portfolio
at horizon T is given by

0.0042
125∑
i=1

πi(1 − πi) + 0.0042
125∑
i=1

125∑
j=1 j 
=i

ρi j

√
πiπ j (1 − πi)(1 − π j ), (22)

where ρij is the pairwise correlation coefficient for the Bernoulli variates for
firms i and j. To solve for an implied correlation it is necessary to place some
additional structure on the correlations. For simplicity, we assume that ρij is
constant for all i and j, i 
= j. With this assumption, it is now straightforward to
solve for the variance of the portfolio loss distribution implied by CDO prices,
set it equal to the above expression, and then solve for the implied default
correlation.23

Figure 5 plots the time series of the implied correlation estimates. The implied
correlation typically ranges from about 0.05 to 0.10 during the sample period.
The average value and standard deviation of the implied correlation during the
sample period are 0.0835 and 0.0177, respectively. Around the credit crisis of
May 2005, however, the implied correlation increases to about 0.13, but then
rapidly declines. The lowest values for the implied correlation occur near the
end of the sample period and are in the neighborhood of 0.04.

The expression in equation (22) also provides insight about how the cross-
sectional structure of credit risk affects the portfolio loss distribution. From this
expression, it is immediately clear that the variance of the loss distribution is an
increasing function of the individual pairwise correlations. This is completely
consistent with the usual portfolio intuition that as correlations increase, the
portfolio is less-well diversified, resulting in a higher portfolio variance.

VI. Conclusion

This paper uses the information in the prices of synthetic CDX index tranches
to study the market’s expectations about how corporate defaults cluster in var-
ious economic environments—the cross-sectional structure of default risk. To
do this, we first develop a new portfolio credit model in which three types of
Poisson events generate portfolio credit losses. Using an extensive data set of
CDX index and tranche spreads, we then estimate the model and evaluate its
performance.

23 The data for the CDS levels of the individual firms in the CDX indexes are also provided by
Citigroup.
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Figure 5. Implied default correlations. This figure graphs the implied default correlation
among firms in the CDX index. These default correlations are given by solving for the single
correlation parameter that sets the variance of the sum of the default losses for the individual firms
in the CDX index, where the joint distribution of default events is distributed as a multivariate
correlated Bernoulli distribution, equal to the implied variance of the distribution of portfolio losses
after 5 years estimated by fitting the three-factor model to the data. The vertical division lines
denote the roll from one CDX index to the next.

The results provide a number of insights into the important issue of default
clustering. In particular, we find that the market expects significant clustering
to occur. We show that roughly one-third of the value of the default spread
for the typical firm in the CDX index is due to events in which multiple firms
default together.

These results have a number of important economic implications. For exam-
ple, they suggest that a significant portion of corporate credit risk may not
be diversifiable. This has immediate implications for portfolio choice, the cost
of corporate debt capital, and the systemic risk of financial institutions. Fur-
thermore, since correlated default risk necessarily translates into correlated
shocks to the stock values of the corresponding firms, these results may also
have implications for the extreme risks being priced in equity markets.
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Appendix

There are several ways in which the partial differential equation for Pi can
be derived. For example, the approach outlined in Karlin and Taylor (1981,
pp. 202–204) leads directly to the partial differential equation. To provide an
alternative approach, recall that

Pi = Et


exp

(
−

∫ T

0
λsds

) (∫ T

0
λsds

)i

 . (A1)

Let

Ht =
∫ t

0
λsds. (A2)

This implies

dHt = λtdt. (A3)

Now, rewrite Pi as

Pi = Et


exp

(
−

∫ t

0
λsds −

∫ T

t
λsds

) (∫ t

0
λsds +

∫ T

t
λsds

)i

 , (A4)

= Et


exp

(
−Ht −

∫ T

t
λsds

) (
Ht +

∫ T

t
λsds

)i

 . (A5)

From this expression, Pi can be expressed explicitly as a function of λt, Ht, and
τ = T − t. An application of Itô’s Lemma gives

dPi = (α − βλ)
∂ Pi

∂λ
dt + σ

√
λ

∂ Pi

∂λ
dZ + σ 2λ

2
∂2 Pi

∂λ2
dt

− ∂ Pi

∂τ
dt − λPidt + iλPi−1 dt.

(A6)

Since Pi is a martingale, however, the expected value of dPi = 0. Thus,

σ 2λ

2
∂2 Pi

∂λ2
+ (α − βλ)

∂ Pi

∂λ
− λPi + i λt Pi−1 = ∂ Pi

∂τ
, (A7)

which is equation (8) (at t = 0). For i = 0, the boundary condition is P0(λ, 0) = 1.
For all other i, the boundary condition is Pi(λ, 0) = 0.

For the case i = 0, the solution to the partial differential equation is iden-
tical to that provided by Cox et al. (1985) in obtaining zero-coupon bond
prices. The solution for this case can be expressed as shown in equation (9)
with i = 0. For i > 0, we conjecture that the solution is of the form shown
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in equation (9). Differentiating the conjectured solution for Pi(λ, T ), sub-
stituting into equation (8), and collecting terms in the powers of λ leads
to the system of first-order differential equations shown in equations (12),
(13), and (14). This system can be solved recursively following in the order
C1,1, C1,0, C2,2, C2,1, C2,0, C3,3, C3,2, C3,1, C3,0, etc. Thus, for each i, we solve
for Ci,j, where j runs backwards from i to zero.
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Sidenius, Jakob, Vladimir Piterbarg, and Leif Andersen, 2005, A new framework for dynamic credit
loss modeling, Working paper, Royal Bank of Scotland.

Winkler, Max, 1999, Foreign Bonds: An Autopsy (Frederick, MD: Beard Books).
Yu, Fan, 2005, Default correlation in a reduced-form model, Journal of Investment Management 3,

33–42.
Yu, Fan, 2007, Correlated defaults in intensity-based models, Mathematical Finance 17, 155–173.


