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Traditional models of portfolio choice assume that investors can continuously trade 
unlimited amounts of securities. In reality, investors face liquidity constraints. I ana- 
lyze a model where investors are restricted to trading strategies that are of bounded 
variation. An investor facing this type of illiquidity behaves very differently from an 
unconstrained investor. A liquidity-constrained investor endogenously acts as if facing 
borrowing and short-selling constraints, and one may take riskier positions than in liquid 
markets. I solve for the shadow cost of illiquidity and show that large price discounts 
can be sustained in a rational model. 

The brass assembled at headquarters at 7 a.m. that Sunday. One after another, 
LTCM's partners, calling in from Tokyo and London, reported that their markets 
had dried up. There were no buyers, no sellers. It was all but impossible to maneu- 
ver out of large trading bets.-Wall Street Journal, November 16, 1998. 

1. Introduction 

A fundamental assumption underlying the traditional intertemporal portfolio 
choice paradigm of Merton (1969, 1971, 1973a), Dybvig and Huang (1988), 
Cox and Huang (1989), Karatzas et al. (1987), and others is that securities can 
be traded continuously in unlimited amounts. This assumption also underlies 
standard option pricing theory, such as Black and Scholes (1973), Merton 
(1973b), Harrison and Kreps (1979), and Harrison and Pliska (1981) where 
the number of shares of stock needed to replicate an option generally follows 
a stochastic process of unbounded variation, implying that infinite amounts 
of the stock must be traded. 

In reality, however, investors face liquidity constraints in virtually all finan- 
cial markets. Being unable to initiate or unwind a portfolio position instantly 
is a fact of life for traders in most financial markets, a lesson painfully 
learned by a number of highly leveraged hedge funds recently faced with 
the dilemma of raising cash to meet margin calls by unwinding positions in 
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markets where liquidity had almost disappeared.' This inability is a subtle 
form of market incompleteness that exposes investors to additional risks not 
present in the traditional portfolio choice problem. To mitigate the effects of 
illiquidity, a risk-averse investor may select a portfolio very different from 
that which would be optimal if trading was unconstrained. This has impor- 
tant implications for asset pricing because the relative valuation of liquid and 
illiquid securities should reflect any welfare loss incurred by investors from 
their inability to trade in unlimited amounts. 

The extent to which liquidity affects security prices has itself become a 
controversial issue in asset pricing. There is a widespread view on Wall Street 
that the liquidity of a security is a major determinant of its value. This view 
is strongly supported by recent empirical studies documenting that illiquid 
securities are priced at large discounts to otherwise identical liquid securities. 
For example, Amihud and Mendelson (1991) and Kamara (1994) show that 
the yield spread between illiquid Treasury notes and liquid Treasury bills 
of the same maturity averages more than 35 basis points. Boudoukh and 
Whitelaw (1991) find that the yield spread between the designated benchmark 
Japanese government bond and similar but less liquid Japanese government 
bonds averages more than 50 basis points. Silber (1992) shows that Rule 
144 letter stock with a two-year liquidity restriction is privately placed at 
an average discount of 35% to otherwise identical registered stock. These 
and other similar results suggest that the market price of liquidity is very 
high.2 In fact, the apparent price of liquidity is so high that critics of the 
efficient market paradigm argue that discounts for illiquidity are too large 
to be rational and view their size as clear evidence that investor sentiment 
drives prices in security markets. 

In an effort to better understand the role that liquidity plays in security 
valuation, this article analyzes a continuous-time partial-equilibrium model 
in which an investor makes optimal portfolio decisions but is restricted to 
trading strategies that are of bounded variation. This is consistent with the 
characteristics of actual financial markets, where it may take an extended 
period of time to accumulate or unwind a specific portfolio position. In the 
academic literature, illiquidity has traditionally been measured in terms of 
bid-ask spreads or transaction costs. Among practitioners, however, illiquidity 
is often viewed as the risk that a trader may not be able to extricate himself 
from a position quickly when need arises. This article models liquidity in 
a way that is consistent with this latter definition. To provide a concrete 
motivation for trading, the continuous-time framework allows the volatility 
of returns to be stochastic. 

'Examples include Long Term Capital Management, Ellington Capital Management, D. E. Shaw & Co., MKP 

Capital Management, and Askin Capital Management. 

2 For additional empirical evidence about the market price of liquidity, see Trout (1977), Pratt (1989), Wruck 

(1989), Comell and Shapiro (1990), Comell (1993), Daves and Ehrhardt (1993), Longstaff (1995a, 1995b, 
2000), and Grinblatt and Longstaff (2000). 
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I solve first for the optimal portfolio strategy of an investor in the presence 
of liquidity constraints and compare it with the unconstrained optimal strat- 
egy. I show that the investor's optimal strategy consists of trading as much as 
possible, whenever possible. This contrasts with the optimal strategy for an 
investor facing transaction costs who trades only when large changes in value 
occur.3 Because the investor in my model can trade only at a limited rate, 
he has less control over the support of his wealth distribution. An important 
implication of this is that the investor endogenously acts as if facing bor- 
rowing and short-selling constraints, even though these constraints are not 
imposed. Despite this cautious behavior, however, the investor may choose 
to hold more of the risky asset than would be optimal in the absence of liq- 
uidity restrictions. In general, a constrained investor must hedge against both 
expected and unexpected changes in portfolio weights. In contrast, portfolio 
weights are completely under the control of the investor in the unconstrained 
portfolio problem. 

Given the optimal strategy, we then solve for the investor's derived util- 
ity of wealth. The shadow price of liquidity is determined by comparing 
the constrained and unconstrained utilities of wealth and solving for the dis- 
count in the price of the illiquid asset that compensates the investor for the 
liquidity restrictions. We present a variety of numerical examples of the illiq- 
uidity discounts generated by the model. These results show that the discount 
for illiquidity can be substantial, particularly for assets that are traditionally 
margined or leveraged, such as stock, partnership interests, derivatives, real 
estate, and hedge-fund holdings. Even when the endogenous borrowing con- 
straint is not binding, implied discounts for illiquidity can be on the same 
order of magnitude as those observed by Amihud and Mendelson (1991), 
Boudoukh and Whitelaw (1991), Kamara (1994), and others. These results 
offer hope that empirically observed discounts for illiquidity may be explain- 
able within a rational model of investor behavior. 

These results also contribute to the asset pricing literature in several other 
ways. For example, they demonstrate that the usual assumption that securi- 
ties can be traded in unlimited amounts fundamentally affects the optimal 
portfolio strategy. This has important implications for traditional models of 
intertemporal portfolio choice as well as option pricing theory. In addition, 
the results for the unconstrained case provide an original closed-form solu- 
tion to the investor's portfolio problem in a stochastic volatility model, and 
complement the closed-form solutions recently obtained by Liu (1999). 

Related literature on the effects of liquidity on portfolio choice and asset 
valuation includes Mayers (1972, 1973, 1976), Brito (1977), Stapleton and 
Subrahmanyam (1979), Amihud and Mendelson (1986), Constantinides 
(1986), Dumas and Luciano (1991), Boudoukh and Whitelaw (1993), Jouini 

3Examples of these types of models include Constantinides (1986), Grossman and Laroque (1990), and Jouini 
and Kallal (1998). 
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and Kallal (1998), Huang (1998), and Constantinides and Mehra (1998). 
These articles typically focus on the effects of exogenous transaction costs or 
borrowing and short-selling constraints. This article differs in that it focuses 
on the endogenous effects of illiquidity on trading strategies and security 
values. 

The remainder of this article is organized as follows. Section 2 discusses 
the nature of illiquidity in financial markets. Section 3 describes the 
continuous-time framework in which the investor makes portfolio decisions. 
Section 4 describes the optimal portfolio strategy in a market with liquidity 
constraints. Section 5 presents numerical examples illustrating how the opti- 
mal portfolio strategy differs from the unconstrained strategy and providing 
estimates of discounts for lack of liquidity. Section 6 summarizes the results 
and makes concluding remarks. 

2. What Is Illiquidity? 

Most market participants probably have a general sense of what liquidity 
means. Despite this, however, it is often difficult to know exactly what is 
meant when a market or security is referred to as being illiquid. The reason 
for this is that there are several closely related but distinct ways in which 
markets or securities can be illiquid. In this section, I briefly review several 
of the implicit definitions of illiquidity found in the literature. 

In virtually all of the academic literature, liquidity is defined in terms of the 
bid-ask spread and/or transaction costs associated with trading a security. For 
example, this notion of liquidity is implicit in Glosten and Milgrom (1985), 
Amihud and Mendelson (1986), Constantinides (1986), Easley and O'Hara 
(1987), Glosten (1987), Glosten and Harris (1988), Stoll (1989), Davis and 
Norman (1990), Grossman and Laroque (1990), Dumas and Luciano (1991), 
Jouini and Kallal (1998), and many others. From this perspective, illiquidity 
is the situation in which investors find that they face higher trading and exe- 
cution costs than at other times or in other markets. In this view, an investor 
can usually trade whenever desired, albeit at some (potentially high) cost. 

In the practitioner literature, however, a somewhat different meaning is 
often attached to the term illiquidity. Traders view illiquidity as the situa- 
tion where their ability to buy or sell securities (at any price) is limited or 
restricted. In extreme situations, illiquidity may be so severe that markets 
temporarily disappear. This type of illiquidity has more to do with the quan- 
tity of trades that can be executed than with the costs of trading. This notion 
of thin markets or thinly traded securities is somewhat difficult to reconcile 
with the standard economic view that there should be an equilibrium market 
clearing price at which any desired quantity can be traded. 

Whatever the underlying reason for thin markets, however, recent market 
events, as evidenced by the introductory quotation of this article, make clear 
that investors can find themselves in the situation where they are not able to 
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trade as much as they would prefer and cannot initiate or unwind positions 
instantly. Although this type of illiquidity appears to be an important factor 
in financial markets, it has not yet received much attention in the academic 
literature. In this article, I develop a simple model of illiquidity that is more in 
the spirit of this thin-trading interpretation. In particular, I develop a model in 
which investors may only trade a limited amount of securities per period. The 
objective in doing this is to attempt to more closely capture this real-world 
phenomenon and to study the effects that thin trading-induced illiquidity 
may have on portfolio decisions and the valuation of securities. 

3. The Continuous-Time Framework 

In this section, I describe the continuous-time framework used throughout this 
article in which the investor makes portfolio decisions. As a benchmark for 
comparison with later results, I first characterize the optimal portfolio strategy 
in the absence of liquidity restrictions. To provide a concrete motivation 
for trading, this framework allows the volatility of risky security returns to 
be stochastic. Because of this, an unconstrained investor trades frequently 
in response to market conditions and may switch back and forth between 
leveraged and unleveraged positions. 

I assume a simple two-asset securities market in which trade takes place 
continuously. The first asset is a riskless money market account with price 
B(t) which earns the riskless rate of interest r(t). The dynamics of B(t) are 

dB(t) = r(t)B(t)dt. (1) 

Because the riskless rate plays no direct role in our analysis, we assume that 
r(t) = 0, which implies that B(t) = 1 for all t.4 The second asset is risky 
and has price dynamics given by 

dS(t) = (p. + XV2(t))S(t)d + V(t)S(t)dZ1(t), (2) 

where ,u and X are constants, V(t) is the instantaneous volatility of returns, 
and Z1(t) is a standard Brownian motion. The term XV2(t) in the drift allows 
for the possibility of a volatility risk premium in the expected return of 
the risky asset. A similar risk premium is found in the stochastic volatility 
models of Merton (1980) and Cox et al. (1985). The instantaneous volatility 
of returns follows the dynamic process 

dV(t) = caV(t)dZ2(t) (3) 

where a is a constant and Z2(t) is a standard Brownian motion independent 
of Z1(t). This model is closely related to the stochastic volatility model 

4This assumption is equivalent to using the price of the money market account as the numeraire and has no 
effect on the results. 
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of Hull and White (1987) and is chosen for its simplicity.5 Note that from 
the properties of geometric Brownian motion, V(t) cannot reach infinity for 
t < oo. Because of this, it is easily shown by expressing the solution for 
S(t) in exponential form that S(t) cannot reach zero for t < oo. 

The investor is endowed with strictly positive initial wealth W(O) and has 
a finite horizon T. To simplify the exposition, we assume that the investor 
only consumes at time T, although this assumption can be relaxed without 
affecting the basic results. In particular, the investor maximizes an expected 
utility function defined over the logarithm of his terminal wealth W(T), 

E[ln W(T)]. (4) 

We assume logarithmic preferences to be able to focus more directly on the 
effects of illiquidity because the unconstrained optimal strategy is myopic 
and the investor does not hedge even though the investment opportunity set is 
stochastic.6 Thus, any hedging behavior in the presence of trading constraints 
is directly attributable to the effects of illiquidity. 

Let N(t) and M(t) denote the number of shares of the risky and riskless 
securities held by the investor. The investor's wealth at time t is given by 

W(t) = N(t)S(t) + M(t). (5) 

We require that portfolio strategies be chosen from the set of self-financing 
strategies. This implies the wealth dynamics 

dW(t) = N(t) dS(t). (6) 

Following Dybvig and Huang (1988) and Cox and Huang (1989), we restrict 
the set of admissible trading strategies to those that imply W(t) > 0 for all 
t, 0 < t < T. This entails little loss of generality because any strategy that 
allows the possibility of zero wealth cannot be optimal because ln(O) =-0o. 

Because admissible strategies require W(t) > 0, the portfolio weight 
w(t) = N(t)S(t)/W(t) is well defined.7 Substituting this into Equation (6) 
gives 

dW(t) = (p + ?V2(t))w(t)W(t)dt + V(t)w(t)W(t)dZ(t). (7) 

5 This model could easily be extended in several ways. For example, we could allow the volatility to follow 
an Omstein-Uhlenbeck process as in Stein and Stein (1991) or a square-root process as in Heston (1993). 
The resulting implications for the portfolio choice problem, however, are very similar to those implied by this 
model. 

6 If the investor has constant relative risk aversion (CRRA) preferences, for example, the investor chooses a 
portfolio that hedges against unexpected shifts in the volatility of the risky asset's return. See Merton (1971, 
1973a). 

7 If W(t) can become zero, then the portfolio weight w(t) can become infinite. In addition to allowing the 
portfolio weight to be well defined, Dybvig and Huang (1988) show that requiring W(t) > 0, 0 < t < T is 
sufficient to rule out arbitrage opportunities of the type discussed by Harrison and Kreps (1979). 
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Thus, from Equations (3) and (6), the volatility V (t) and the controlled dif- 
fusion W(t) follow a joint Markov process and the current values of V(t) 
and W(t) completely describe the state of the economy. Define the derived 
utility of wealth J(W, V, t) by the following expression 

J(W, V,t) = maxE[ln W(T)], (8) 
w(t) 

subject to the budget constraint (7) and where w(t) is a member of the set 
of admissible strategies implying strictly positive wealth. 

The Hamilton-Jacobi-Bellman equation for this problem is 

W(t)x(. 2 Jww + 2 Jvv + (,u +V2)wwJw =) (9) 

with the boundary condition J(W, V, T) = ln W(T). The first-order condi- 
tion for optimality with respect to the control w(t) is 

wV2W2JWW + (/,t + ?V2)WJW = 0, (10) 

which implies the optimal strategy w*(t) 

W*(t) = (/ ?V2) iw (11) 

As in Merton (1971), we conjecture the following functional form for the 
derived utility of wealth: 

J(W, V, t) = ln W(t) + H(V, t). (12) 

Differentiating and substituting back into Equation (11) implies that the opti- 
mal portfolio weight w*(t) is given by 

w*(t)O= A +XV2(t) 

Because volatility is not constant, the optimal portfolio weight is time vary- 
ing. When both X and ,t are positive, the investor holds a strictly positive 
amount of the risky asset. When ,t is positive and X is less than zero, how- 
ever, the investor could choose to hold a leveraged position in the risky asset, 
an unleveraged long position in the risky asset, or even a short position in 
the risky asset, depending on the level of volatility. This portfolio behavior 
differs significantly from the constant portfolio weight strategy followed by 
the investor when the volatility of the risky asset is constant. 

To solve for the function H(V, t), we substitute the solution for w* (t) into 
the dynamics of wealth given in Equation (7), 

(,U + X.V(t)2)2 (it + X'V (t) 2)_ dW(t) = VV(t)2 W(t)dt + V (t) W(t)dZl(t). (14) 
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Solving this stochastic differential equation gives 

W(T) = W(t)exp 
T 

(+V2(S))2 ds (15) 
T +V2(S)) 

+1T(; , 2() dZ1 (s)I 
V(s) / 

Given the exponential form of this expression, it is straightforward to verify 
that the investor's wealth is strictly positive for all t, 0 < t < T. Thus, the 
portfolio strategy is admissible. We then substitute this expression for W(T) 
into Equation (8), which results in 

J(W, V, t) = ln W(t) + Xpt(T - t) + 1- IELv2() Jds (16) 

+ E[V2(s)]ds. 

Evaluating the indicated expectations and then integrating gives the solution 
for the derived utility of wealth function 

Ai 1 2 

J(W, V, t) = ln W(t) + Xqt(T - t) + 6 2 V2(t) (e3o (T-t) _ I) (17) 
V 

+ 2 2 V (t)(e (T-t) 1) 

This expression clearly satisfies the conjectured functional form in Equa- 
tion (12). In addition, differentiation verifies that this expression solves the 
Hamilton-Jacobi-Bellman equation with the associated boundary condition. 

The expressions for the optimal portfolio weight in (13) and the derived 
utility of wealth in Equation (17) provide a complete solution to the investor's 
portfolio choice problem in this stochastic volatility framework. To my 
knowledge, the only other closed-form solution in a stochastic volatility 
model is given by Liu (1999), who solves the investor's portfolio choice 
problem when volatility follows either an Ornstein-Uhlenbeck or square-root 
process. These results contribute to the literature by providing a solution 
when volatility follows a geometric Brownian motion. 

Finally, because the number of shares N(t) of the risky asset held by the 
investor is equal to w*(t)W(t)/S(t), Ito's lemma can be applied to solve for 
the dynamics of N(t). The resulting expression shows that the number of 
shares held by the investor follows a process of unbounded variation.8 This 
implies that the optimal trading strategy in this unconstrained framework 
requires trading the risky security in unlimited amounts. 

8 The variation of a function f (x) defined on [a, b] is the supremum over all partitions a = xo < xl < X2 < 

* < Xk = b of the sum ik , I f(xi) - f(xi-) 1. For a function of unbounded variation, this supremum is 
infinite. 
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4. Illiquidity and Portfolio Choice 

In this section, we characterize the investor's optimal portfolio strategy in 
the presence of liquidity restrictions. The investor is allowed to choose an 
initial portfolio, but can then only make limited revisions to the portfolio. 
Specifically, we model the liquidity restrictions by requiring that the number 
of risky shares held by the investor follows the dynamics 

dN(t) = y(t) dt, (18) 

where -oc < -a < y(t) < a < oc, and a > 0 is a constant.9 These 
dynamics have a number of important implications for the way in which the 
investor can trade. For example, the restriction on the y(t) term implies that 
there are upper and lower bounds on the number of shares of the risky asset 
that the investor can trade per period.10 

This is directly in the spirit of the thin-trading type of illiquidity considered 
in Section 2; modeling illiquidity in this way closely parallels the real-world 
situation in which investors find that they can only execute trades for a limited 
quantity of a security.11 In addition, the bounds on y(t) imply that N(t) is a 
function of bounded variation.12 Intuitively, this means that the sample path 
of N(t) follows a smooth process that is differentiable almost everywhere and 
locally deterministic. In contrast, the number of shares held by an investor 
in traditional models of dynamic portfolio choice are typically of unbounded 
variation. 3 

9 In a more general model, the liquidity parameter a could be allowed to be stochastic. For example, an investor 
could typically face liquid markets with a large value of a, but then periodically experience "flights to quality" 
during which the value of a might temporarily drop to zero. I am grateful to Bemard Dumas for this insight. 
Because the primary results of this section depend only on the boundedness of a, the assumption that a is 
constant could be relaxed significantly without affecting the results. 

10 This definition of illiquidity parallels Longstaff (1995a, 1995b) in the sense that restrictions on liquidity are 
investor-specific rather than security-specific. There are many examples of this type of illiquidity, such as Rule 
144 letter stock, pension assets, or real estate, and there are also institutional or regulatory reasons why some 
investors might at times face greater constraints than other investors. This definition, however, makes clear the 
partial equilibrium nature of my analysis. I am assuming that a specific investor may face trading restrictions 
even though the asset is traded continuously in the market by other investors who may face fewer constraints. 
Although beyond the scope of this article, a more extensive analysis might consider the dynamics of prices 
and investor behavior in a general equilibrium framework in which all investors face trading constraints. For 
discussions of other definitions of liquidity, see Lippman and McCall (1986), Amihud and Mendelson (1986), 
Constantinides (1986), Boudoukh and Whitelaw (1993), and Huang (1998). 

Extreme liquidity constraints, such as those imposed on Rule 144 letter stock where the investor cannot trade 
the stock for a period of two years after the stock is acquired in a private placement, can be nested within 
this framework by the restriction a = 0. For a discussion of Rule 144 letter stock, see Silber (1992). 

12 This follows from Equation (18), which implies that N(t) is an absolutely continuous function. An abso- 
lutely continuous function is a function f(x) defined on [a, b] such that, given e, there is a 8 > 0 such 
that I7=1 I f(x') - f(xi) < for every finite collection {(x', xi)} of nonoverlapping intervals with 

I xi' -xi 1< 8. A function is absolutely continuous if, and only if, it can be expressed as an integral. 
Absolutely continuous functions are continuous and differentiable almost everywhere. The bounded variation 
of an absolutely continuous function follows from Lemma 5.4.10 of Royden (1968). 

13 For example, the number of shares needed to replicate an at-the-money call option in the Black-Scholes model 
when the volatility of returns on the underlying asset is strictly positive is of unbounded variation. 
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With these preliminaries, we can now examine how the optimal portfolio 
strategy differs when liquidity is constrained. Recall that in the unconstrained 
case, the optimal strategy involves a leveraged position in the risky asset if 
(,t + XV2) > V2. When his wealth declines, the investor can sell shares of 
the risky asset to maintain the optimal portfolio weight. The key point here 
is that the investor can control the fraction of wealth held in the form of the 
risky asset; as his wealth approaches zero, the number of shares of the risky 
asset held also approaches zero and negative wealth cannot occur. 

When liquidity is constrained, however, the investor no longer has com- 
plete control over the fraction of wealth held in the form of the risky asset. 
To see this, imagine that the investor takes a leveraged position in the risky 
asset. Now consider what happens when the price of the risky asset drops 
rapidly and approaches zero. The investor may not be able to sell shares 
quickly enough to unwind the leveraged position before bankruptcy occurs. 
Similarly, when the investor holds a short position in the risky asset and the 
price of the risky asset increases rapidly, the investor may not be able to 
cover the short position quickly enough to avoid bankruptcy. The following 
proposition shows that positive wealth can be guaranteed if, and only if, the 
investor avoids taking a leveraged or short position in the risky asset. 

Proposition 1. W(t) > 0 for all t, 0 < t < T almost surely if, and only if, 
N(t) > 0, M(t) > 0, and N(t) + M(t) > O for all t, 0 < t < T. 

Proof. See Appendix. U 

An immediate implication of this result is that the portfolio weight w(t) 
must satisfy the condition 0 < w (t) < 1 for the constrained portfolio strategy 
to be admissible. This is true even if the probability of ruin is very small; any 
positive probability of bankruptcy is sufficient to make a leveraged or short 
position inadmissible. The optimal strategy is clearly significantly affected 
by the liquidity restrictions; the desire to hedge against the perhaps remote 
possibility of bankruptcy has a first-order effect on how an investor behaves 
in the presence of thin-trading constraints. 

Because the dynamics of wealth depend on W(t), N(t), S(t), and V(t), 
all four state variables are necessary for a Markovian representation of the 
economy. Consequently, the investor's derived utility of wealth depends func- 
tionally on each of these state variables and is defined as 

J (W, N, S, V, t) = max E [ln W (T)], (19) 
w (O), y (t) 

subject to the boundary condition J(W, N, S, V, T) = ln W(T). Observe 
that there are two ways in which the investor controls the stochastic evolu- 
tion of his wealth. First, the investor chooses the initial number of shares 
N(O) of the risky asset, or equivalently, the initial fraction of wealth w(0) 
invested in the risky asset. The investor then chooses the rate y (t) at which to 
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rebalance holdings of the risky asset, subject to liquidity constraints. Again, 
to be admissible, w(O) and y(t) must be such that 0 < w(t) < 1, for all t, 
0 < t < T. 

Although the investor has two controls over which to maximize expected 
utility, only y(t) is a continuous control; the control w(0) is chosen at time 
zero. Accordingly, we find the optimal strategy by solving the Hamilton- 
Jacobi-Bellman equation for the continuous control y(t) conditional on a 
given w(0), and then select the optimal initial portfolio weight w(0) by max- 
imizing over the conditional values of J(W, N, S, V, t; w(0)). When t > 0, 
the Hamilton-Jacobi-Bellman equation for the investor's problem is 

N2S2V2 s+ V2 a2v 2 s W max Jww + ~Jss + Jv+N y(t) 2 WW 2 2 

+ O+ V2)NSJw + (It + V2)Ss + YjN + Jt = 0), (20) 

subject to the boundary condition. Because the control y(t) is constrained, 
the first-order condition for optimality need not be satisfied. However, the 
control y (t) appears only as a coefficient in the JN term. Thus, the Hamilton- 
Jacobi-Bellman equation is maximized by choosing y (t) to maximize the 
term y JN. This term is clearly maximized by selecting y (t) = a if JN > 0, 

and y (t) = -a if JN < 0, whenever this strategy is admissible, and y (t) = 0 
otherwise.14 

This optimal strategy is very intuitive. When the investor's derived util- 
ity of wealth is an increasing function of N(t), the investor chooses to buy 
additional shares of the risky asset as aggressively as possible, and vice 
versa. When the investor reaches w(t) = 0 or w(t) = 1, the investor can- 
not short or acquire more shares. Thus, the optimal strategy is to trade as 
aggressively as possible, whenever possible. This contrasts with the optimal 
trading strategy in models where investors face fixed transaction costs or 
similar frictions when trading securities. In those models, the typical optimal 
strategy is to trade only when the price of the risky asset has changed signif- 
icantly.15 Because the investor's optimal portfolio strategy is essentially the 
bang-bang control of his trading rate, this stochastic optimal control problem 
parallels those described in Benes et al. (1980), Shreve (1981), and Karatzas 
and Shreve (1988), chapter 6. 

Having determined the optimal portfolio strategy, I now turn to the problem 
of solving for the derived utility of wealth function. Though I cannot provide 
a closed-form solution, I do offer a formal solution that conveys much of 

14 Note that this implies that y (t) = 0 when JN = 0. This is arbitrary, however, as y JN = 0 for any admissible 
value of y(t) when JN = 0. 

1 As an example of this type of trading strategy, see Constantinides (1986) and Grossman and Laroque (1990). 
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the intuition. Because w(t) is well defined under the optimal strategy, the 
dynamics of wealth can again be expressed as 

dW(t) = (It + XV2(t))w(t) W(t)dt + V(t)w(t)W(t)dZj(t). (21) 

Solving for W(T) gives 

W(T) = W(t)exp(t (+k V2 (S))W(S) 
v (S) 2(s)d 

+ V(s) w(s) dZI(s)). (22) 

Substituting this expression into Equation (19) results in the following formal 
solution for the derived utility of wealth function J(W, N, S, V, t; w(O)): 

T 

J(W, N, S, V, t; w(O)) = ln W(t) + E[t (p.+ XV2(S))W(S) 

_ V2(s) (s)wds( (23) 

This derived utility of wealth function is similar to that for the unconstrained 
case in that it can be separated into a ln W(t) term and an additional function. 

This formal solution provides some insights into how the portfolio prob- 
lem is affected by illiquidity. Equation (23) shows that the derived utility of 
wealth depends linearly on w(t) through the first term in the integral, but 
also quadratically on w(t) through the second term in the integral. Thus, in 
selecting an optimal constrained trading strategy, the investor faces a problem 
similar to that of a standard mean-variance maximization problem. What is 
different is that the trade-off is essentially between the mean and variance of 
the portfolio weight rather than the mean and variance of the returns of the 
portfolio. Intuitively, this is because the portfolio weight itself becomes a ran- 
dom variable when the investor faces liquidity constraints since the portfolio 
weight is no longer fully under his control. Thus, the presence of illiquid- 
ity has the effect of introducing a second level of mean-variance analysis 
into the investor's portfolio choice problem. Of course, the mean-variance 
problem is complicated by the fact that V(t) also appears in the integral in 
Equation (23) and is random when a > 0. 

5. Numerical Results 

To illustrate how liquidity restrictions affect optimal portfolio choice and 
asset valuation, this section presents a variety of numerical examples. 
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5.1 The numerical methodology 
As shown in the previous section, the derived utility of wealth function 
depends on the four state variables W, N, S, and V, as well as time, when 
there are liquidity restrictions. In theory, standard finite difference tech- 
niques could be applied to solve the Hamilton-Jacobi-Bellman equation in 
Equation (20) numerically. In actuality, the dependence of the derived utility 
of wealth function on four state variables makes this traditional approach 
virtually intractable from a computational perspective. 

A number of recent articles, however, demonstrate that dynamic program- 
ming problems similar to this constrained portfolio choice problem can be 
solved numerically using simulation techniques. Examples of this rapidly 
growing literature include Bossaerts (1989), Tilley (1993), Keane and Wolpin 
(1994), Barraquand and Martineau (1995), Carriere (1996), Broadie and 
Glasserman (1997a, 1997b, 1997c), Broadie et al. (1997, 1998), Raymar and 
Zwecher (1997), Averbukh (1997), Ibanez and Zapatero (1998), Carr (1998), 
Garcia (1999), Longstaff et al. (2000), Tsitsiklis and Van Roy (1999), Brandt 
and Santa-Clara (2000), and Longstaff and Schwartz (2001). In this section, I 
use the Longstaff and Schwartz (2001) technique to solve for the derived util- 
ity of wealth function in the presence of liquidity constraints; this technique 
is also used by Brandt and Santa-Clara (2000) in solving similar dynamic 
portfolio-choice problems with large numbers of state variables. 

Briefly, the Longstaff and Schwartz (2001) approach, termed the LSM 
algorithm, is motivated by observing that the value function in a typical 
dynamic programming problem can be expressed as a conditional expecta- 
tion function. For example, the continuation value or value of keeping an 
American option alive at an exercise date can be expressed as the expecta- 
tion of its discounted future cash flows under the optimal exercise strategy, 
conditional on the current stock price. In the LSM algorithm, this condi- 
tional expectation function is estimated by regressing the realized ex post 
cash flows from the option on a basis set of functions of the current or ex 
ante stock price, where each path in the simulation is an observation in this 
cross-sectional regression. Using the fitted value from the regression as the 
estimated conditional expectation function, it is then straightforward to com- 
pare the values of continuation and immediate exercise at each exercise date 
along each path, resulting in a complete specification of a stopping strat- 
egy. Longstaff and Schwartz (2001) demonstrate that the LSM algorithm is 
accurate, converges rapidly to the option values implied by finite difference 
techniques, and is robust to the specification of the regression function. 

I apply the LSM algorithm to this problem in the following way. First, 
for convenience, I redefine the state variables to be N, M, S, and V rather 
than W, N, S, V. This is without loss of generality because W = NS + M. 
Next, I discretize the investment horizon [0, T] into equal intervals. For nota- 
tional simplicity, I assume that these intervals are of length one and that the 
investment horizon T is expressed in units of the discretization interval. The 
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numerical results in this section are based on 20 periods per year; the dis- 
cretization period used is .05 years. Normalizing the initial values of W and 
S to one, I then simulate 100,000 paths of S and V using the standard Euler 
approximations to the dynamics given in Equations (2) and (3). At time T -1, 
I then draw 100,000 independent values of N and M from a uniform distri- 
bution on [0, 1] and assign them randomly to the 100,000 paths of S and V. 
By drawing N and M from a uniform distribution, I provide the variation 
in the data needed to efficiently estimate a conditional expectation function 
while guaranteeing that the bounds imposed by Proposition 1 are satisfied. 

Now observe that the derived utility of wealth function J(N, M, S, V, T - 
1; w (0)) can be expressed as the expected value of ln WT, conditional on 
the state variables at time T - 1. To approximate this conditional expecta- 
tion, I regress the ex post values of ln WT, where WT = NT-1ST + MT-1 

on a set of basis functions of the values of the state variables at time 
T - 116 The fitted value from this regression now provides an efficient esti- 
mator of the conditional expectation function or derived utility of wealth 
J(N, M, S, V, T - 1; w(0)). I then differentiate the closed-form conditional 
expectation function with respect to N, holding W, S, and V fixed, to obtain 
an explicit functional approximation for JN at time T - 1. With this approx- 
imation of JN, I can then determine whether it is optimal to increase N by 
a dt or to decrease N by a dt at time T - 1, given the value of the state 
variables at time T - 1 along any simulated path. 

The next step is to roll backward to time T - 2. Again, I draw 100,000 
independent values of N and M from a uniform distribution on [0,1] and 
assign them randomly to the 100,000 paths of S and V. I again regress the ex 
post values of ln WT, this time assuming that the estimated optimal portfolio 
strategy is followed at time T - 1, on the same set of basis functions of the 
state variables at time T - 2. The fitted value from this regression now pro- 
vides an estimate of the conditional expectation function or derived utility 
of wealth J(N, M, S, V, T - 2; w(0)), which is differentiated to approxi- 
mate the derivative JN at time T - 2. The process is repeated for each time 
period recursively (at each period assuming that optimal strategies are pur- 
sued at later dates), until the JN function has been approximated for each 
time 1,2,3,...,T. 

With these estimates of the JN functions and for a particular choice of 
w(O), I can then solve for J(W, N, S, V, 0; w(O)) by simply taking the aver- 
age value over all paths of ln WT as given by following the optimal port- 
folio strategy y*(t) implied by the estimated functions JN. I then solve for 

16 Iuse a set of 22 basis functions in estimating the conditional expectation function, consisting of a constant, 

In WT_I and its square, the first three powers of ST-1, VT-,, NT-1, and MT-1, and the cross products ST-1 VT-1, 

ST-INT-1 ST-IMT-1 VT-INT-1, VT-MT-1, NT-MT-1, and S2_INT_1. For the case where a = 0, the terms 

involving VT-, are omitted because they are not stochastic. I also examine a variety of altemative functional 

forms for the conditional expectation function with an equal or greater number of terms than this specification. 

The numerical results are virtually indistinguishable from those given by this specification. This is consistent 

with Longstaff and Schwartz (2001), who find that the algorithm is very robust to the specification of the 

conditional expectation function. 
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the optimal initial portfolio w*(0) by finding the value of w(0) that max- 
imizes the value of J(W, N, S, V, 0; w(0)). The derived utility of wealth 
J(W, N, S, V, 0) is then given as J(W, N, S, V, 0; w*(0)). 

Because I cannot solve this portfolio choice problem using finite difference 
techniques, I cannot directly compare the results from the LSM algorithm 
with those obtained by the traditional finite difference approach. Despite 
this, however, there are a number of diagnostics that provide support for 
the reliability of the results from the LSM algorithm. First, when a = .00, the 
value of derived utility of wealth can be obtained by simply optimizing the 
expected value of ln WT over all values of w (0). In this case, the value of 
the derived utility of wealth can be estimated directly, and the results indicate 
that the LSM algorithm converges to this estimated value. 

Second, when a = .00, the volatility of risky asset returns V is no longer 
stochastic, and only three state variables appear in the problem. In this spe- 
cial case, it is feasible to solve for the derived utility of wealth function 
using finite difference techniques and then compare the results with those 
obtained from the LSM algorithm. I do this by solving for the derived utility 
of wealth function using a standard finite difference algorithm with 100 grid 
points each for the state variables S, N, and M and requiring that the third 
derivatives of the derived utility function with respect to the relevant state 
variables equal zero on the boundaries of the grid. Though the granularity of 
the finite difference grid and the random noise inherent in a simulation-based 
algorithm lead to small differences between the two approaches, numerical 
tests indicate that the LSM algorithm generally gives results that agree within 
1% of those obtained by the finite difference algorithm. For example, when 
W = 1, S = 1, T = 1, and a = .10, the LSM and finite difference esti- 
mates of the derived utility of wealth are .00934 and .00927, respectively, 
for V = .7071; .02474 and .02469, respectively, for V = .4472; and .07496 
and .07495, respectively, for V = .2236. 

Finally, the economics of the problem imply that as a increases from zero 
to larger values, the constrained derived utility of wealth should increase 
and approach the unconstrained derived utility of wealth given in Equation 
(17). Extensive numerical tests indicate that the estimated LSM value of the 
derived utility of wealth increases smoothly from the a = .00 value to the 
unconstrained value as a increases; the LSM value is almost always between 
the completely illiquid a = .00 value and the unconstrained value. This 
feature can be seen in the numerical results that follow. 

5.2 Optimal portfolio choice 
Perhaps the most direct way to identify how liquidity restrictions affect port- 
folio decisions is to compare the investor's initial portfolio when there are 
restrictions to the initial portfolio chosen in the absence of restrictions. Recall 
that the investor is not constrained in choice of the initial portfolio; liquidity 
restrictions only affect the ability to rebalance the portfolio subsequently. 
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Table 1 
Optimal initial portfolio weight for the risky asset in the presence of liquidity restrictions 

Horizon (x Volatility Unconstrained a = .00 a = .20 a = .40 a = .60 

1 .00 .7071 .20 .182 .176 .163 .144 
1 .00 .4472 .50 .499 .487 .458 .417 
1 .00 .3536 .80 .800 .782 .734 .663 
1 .00 .3162 1.00 .994 .968 .903 .813 
1 .00 .2236 2.00 1.000 1.000 1.000 1.000 
1 .00 .1414 5.00 1.000 1.000 1.000 1.000 

1 .10 .7071 .20 .199 .191 .182 .168 
1 .10 .4472 .50 .495 .489 .470 .427 
1 .10 .3536 .80 .789 .773 .741 .678 
1 .10 .3162 1.00 1.000 .934 .879 .817 
1 .10 .2236 2.00 1.000 1.000 1.000 1.000 
1 .10 .1414 5.00 1.000 1.000 1.000 1.000 

2 .00 .7071 .20 .162 .155 .135 .114 
2 .00 .4472 .50 .497 .482 .437 .380 
2 .00 .3536 .80 .809 .780 .699 .604 
2 .00 .3162 1.00 .998 .956 .848 .723 
2 .00 .2236 2.00 1.000 1.000 1.000 .985 
2 .00 .1414 5.00 1.000 1.000 1.000 .999 

2 .10 .7071 .20 .169 .177 .182 .170 
2 .10 .4472 .50 .466 .492 .466 .411 
2 .10 .3536 .80 .837 .782 .720 .634 
2 .10 .3162 1.00 1.000 .923 .855 .756 
2 .10 .2236 2.00 1.000 1.000 1.000 1.000 
2 .10 .1414 5.00 1.000 1.000 1.000 1.000 

Horizon denotes the investor's horizon in years; ca is the maximum number of shares that can be traded per year where the total 
number of shares that could be initially purchased is normalized to one; volatility is the current volatility of returns on the risky 
asset; unconstrained is the initial optimal portfolio weight for the risky asset in the absence of liquidity constraints; and a is 
the volatility of volatility parameter. The expected return parameter it is set equal to .10 and the market price of volatility risk 
X equals zero. 

Table 1 reports the optimal initial portfolio weights for the unconstrained 
and constrained cases for different values of T, V, and a. The values of the 
expected return and the current volatility of the risky asset are chosen to 
imply unconstrained portfolio weights ranging from .20 to 5.00. The values 
of a are chosen to be consistent with the historical behavior of stock index 
volatility. The stock index volatility is typically very high. For example, the 
Bloomberg system reports that the annualized standard deviation of monthly 
percentage changes in the Chicago Board Options Exchange VIX index of 
implied volatility for S&P 500 index options during the 1994-1998 period is 
in excess of 50%. 

In general, the investor chooses a lower initial portfolio weight in the pres- 
ence of liquidity constraints, even when the unconstrained weight is admis- 
sible in the constrained case. For example, when the unconstrained weight 
is .20, the constrained weight ranges from .181 to .144 for T = 1. Sim- 
ilarly, when the unconstrained weight is .50 or .80. Intuitively, the reason 
for this is that the unconstrained investor only needs to consider the current 
value of V(t) in determining his optimal portfolio. In contrast, a constrained 
investor has to consider the expected value of future optimal portfolio weights 
as well as the current value. For example, note that the expected value of 
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the portfolio weight increases over time as the expected value of the stock 
increases relative to the value of the riskless asset. Thus, the constrained 
investor hedges against the expected trend in the portfolio weight by taking 
a smaller initial position in the risky asset. This investment behavior differs 
significantly from that implied by traditional models of dynamic portfolio 
choice. In Merton (1969, 1971) for example, investors hedge only against 
unexpected changes in the state of the economy. In the presence of liquid- 
ity constraints, both expected and unexpected changes in the state variables 
affect the optimal decision. 

In some cases, however, the constrained investor selects a higher initial 
portfolio weight than the unconstrained investor. In particular, when T = 2, 
a = 0, and the unconstrained optimal portfolio weight is .80, the constrained 
investor selects an initial portfolio weight of .809 for a = .00, and .837 
for a = .10. Thus, the presence of liquidity constraints can result in the 
investor taking a more aggressive investment position. The intuition for this 
result is related to the distribution of w (t). When a = 0, w (t) = 0 and 
w (t) = 1 become absorbing states, and the variance of the portfolio weight 
process becomes zero at these endpoints. Thus, in trading off the expected 
value of w(t) against the variance of w(t) in Equation (23), the constrained 
investor has an incentive to move toward the closest endpoint to minimize 
the variance of w (t); when the unconstrained portfolio weight is greater than 
.50, the constrained investor may choose to hold a more aggressive initial 
portfolio. 

These two factors, however, do not fully explain the portfolio strategy of 
the constrained investor. For example, when the unconstrained optimal port- 
folio is w (t) = 1, there is no upward drift in the portfolio weight and the 
variance of w(t) is minimized. Despite this, however, the constrained investor 
still selects an initial portfolio w (0) < 1 when a > 0. The reason for this 
is due to the fact that when a > 0, the investor must take into account the 
correlation between V (t) and w (t) in making portfolio decision, because the 
term V2(t)w2(t) appears in the integral in Equation (23). Numerical tests 
show that there is a negative correlation between V (t) and w (t) that is maxi- 
mized at some value of w(t) that is generally less than w(t) = 1. Thus, even 
when the unconstrained optimal is w(t) = 1, the constrained investor may 
hold a less aggressive initial portfolio to benefit from the negative correlation 
between V(t) and w(t). 

Table 1 also shows that as a increases from 0 to .10, the optimal initial 
portfolio weight generally approaches the unconstrained optimal portfolio 
weight. This is intuitive because increasing a relaxes the liquidity constraint 
faced by the investor. Finally, Table 1 shows that when the unconstrained 
investor holds a leveraged portfolio, the constrained investor holds a port- 
folio satisfying 0 < w(t) < 1 to avoid the possibility of bankruptcy. Thus, 
liquidity constraints effectively impose endogenous short-selling and leverage 
constraints on investors. 
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These numerical results illustrate just how different the portfolio problem 
is for an investor who faces liquidity constraints. In particular, a constrained 
investor must now consider the portfolio weight w(t) as a random vari- 
able and solve a mean-variance problem in the portfolio weight. In addition, 
the investor hedges against expected changes in the portfolio composition, 
in sharp contrast with traditional continuous-time portfolio choice results. 
Finally, the risk of bankruptcy endogenously imposes significant restrictions 
on the investor's admissible trading strategies. 

5.3 Discounts for illiquidity 
Imposing restrictions on an investor's ability to trade the risky asset clearly 
reduces his derived utility of wealth, J(W, N, S, V, t) < J(W, V, t). To 
make an investor facing trading restrictions as well off as he would be 
in their absence, additional wealth needs to be given to the investor. The 
amount of additional wealth required can be viewed as the shadow cost 
of illiquidity. Given the logarithmic form of the derived utility functions, 
the investor's wealth would need to be increased by the simple scale fac- 
tor R = exp(J(W, V, t) - J(W, N, S, V, t)) to compensate for the effect of 
illiquidity. Because the investor's optimal portfolio strategy is independent 
of his wealth level, increasing his wealth by a factor of R results in the 
investor purchasing R times as many shares of the risky asset initially. Thus, 
increasing his wealth by a factor of R can be interpreted as reducing the 
price per share by a factor of 1/R, implying a percentage price discount for 
illiquidity of 1 - 1/R. Table 2 presents numerical estimates of the discounts 
for illiquidity for the same sets of parameters as in Table 1. 

Table 2 shows that the discounts for lack of liquidity can be fairly sub- 
stantial. The largest discounts occur when the endogenous constraint on 
borrowing is binding. This is intuitive because the differences between the 
constrained and unconstrained portfolios are largest in this case. For real- 
istic combinations of JL and V, we would expect that the investor would 
prefer to hold a leveraged portfolio and that the endogenous borrowing con- 
straint would be binding. For example, the average rate of return on the S&P 
500 over the short-term interest rate has been roughly 10% during the past 
decade, while the standard deviation of returns has been approximately 15 
to 20%. These values imply an unconstrained optimal portfolio weight of in 
neighborhood of three or four. 

Table 2 shows that for a two-year period of complete illiquidity with 
a = .00, and when the unconstrained portfolio weight is 2.00, the discount 
for illiquidity is 7.502% for a = .20, and 17.658% for a = .40. These dis- 
counts are somewhat lower but still on the same order of magnitude as those 
observed for illiquid letter stock. Recall that discounts for illiquid letter or 
Rule 144 stock can be measured directly by comparing the price at which 
the stock is privately placed, which is observable at the time of the private 
placement, with the simultaneous price of unrestricted registered shares. The 

424 



Illiquid Securities 

Table 2 
Percentage liquidity discounts for the risky asset 

Horizon x Volatility Unconstrained a = .00 a = .20 a = .40 a = .60 

1 .00 .7071 .20 .105 .207 .509 1.132 
1 .00 .4472 .50 .033 .265 .977 2.480 
1 .00 .3536 .80 .000 .364 1.488 3.853 
1 .00 .3162 1.00 .001 .455 1.858 4.795 
1 .00 .2236 2.00 2.473 3.158 5.452 10.509 
1 .00 .1414 5.00 14.798 16.150 20.721 30.428 

1 .10 .7071 .20 .067 .115 .338 .877 
1 .10 .4472 .50 .026 .191 .819 2.240 
1 .10 .3536 .80 .000 .303 1.340 3.628 
1 .10 .3162 1.00 .003 .426 1.744 4.576 
1 .10 .2236 2.00 2.473 3.158 5.451 10.497 
1 .10 .1414 5.00 14.798 16.150 20.721 30.428 

2 .00 .7071 .20 .493 .838 2.152 5.984 
2 .00 .4472 .50 .229 1.041 4.198 13.348 
2 .00 .3536 .80 .056 1.355 6.327 20.210 
2 .00 .3162 1.00 .023 1.662 7.845 24.583 
2 .00 .2236 2.00 4.894 7.502 17.658 44.244 
2 .00 .1414 5.00 27.409 32.027 48.463 79.911 

2 .10 .7071 .20 .269 .517 1.407 4.904 
2 .10 .4472 .50 .178 .677 3.412 12.275 
2 .10 .3536 .80 .043 1.048 5.613 19.275 
2 .10 .3162 1.00 .021 1.435 7.163 23.717 
2 .10 .2236 2.00 4.894 7.502 17.608 43.915 
2 .10 .1414 5.00 27.409 32.027 48.463 79.898 

Horizon denotes the investor's horizon in years; ca is the maximum number of shares that can be traded per year where the total 
number of shares that could be initially purchased is normalized to one; volatility is the current volatility of returns on the risky 
asset; unconstrained is the initial optimal portfolio weight for the risky asset in the absence of liquidity constraints; and a is 
the volatility of volatility parameter. The expected return parameter it is set equal to .10 and the market price of volatility risk 
X equals zero. 

difference between these two prices provides a direct measure of the market 
valuation of the two-year nonmarketability period imposed on the purchaser 
of the private placement. Silber (1992) shows that the average price discount 
on letter stock is about 35%. 

Even when the unconstrained optimal portfolio weight is less than or equal 
to one, however, Table 2 shows that there can be a substantial discount for 
lack of liquidity. For example, when T = 1, a = .00, and the unconstrained 
portfolio weight is .50, the discount for lack of liquidity is .265% for a = .20, 
and .977% for a = .40. These clearly represent economically significant dis- 
counts and are on the same order of magnitude as those observed by Amihud 
and Mendelson (1991), who compare the difference in prices between off- 
the-run Treasury notes and bonds with Treasury bills with the same maturity. 
For example, Amihud and Mendelson find that the average yield difference 
between Treasury notes and bills with the same maturity is about 42.8 basis 
points, which implies a pricing difference of roughly .21% for a six-month 
Treasury note. Similar results are obtained by Kamara (1994). 

The discounts for lack of liquidity in Table 2 are all increasing functions 
of the volatility of volatility parameter a. This is intuitive because variation 
in V(t) is the primary motivation for trading in this economy. Specifically, 
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when the investor does not face trading constraints, Equation (13) shows 
that the variation in his optimal portfolio holding is driven entirely by the 
variation in V(t). As a increases, the variation in the unconstrained investor's 
optimal portfolio weight increases, resulting in a greater need to rebalance the 
portfolio substantially. Thus, as a increases, the welfare loss to an investor 
facing liquidity constraints becomes larger. 

The relationship between discounts for lack of liquidity and asset volatil- 
ity is more complex. As the volatility of returns on the risky asset increases, 
the unconstrained portfolio weight decreases and the endogenous borrow- 
ing constraint becomes less binding. On the other hand, as the volatility of 
returns on the risky asset increases, there is more risk that the constrained 
investor's portfolio weight will deviate significantly from the unconstrained 
optimal value. The combination of these two effects explains why there is 
a nonmonotonic relationship between the discounts and the volatility of the 
risky asset. Finally, as the value of a increases, the discount for lack of liq- 
uidity decreases. Intuitively, this makes sense because increasing the value 
of a relaxes the trading restriction imposed on the investor. 

6. Conclusion 

This article solves the investor's intertemporal portfolio choice problem when 
the investor is limited to trading strategies of bounded variation. This more 
closely approximates the thin-trading illiquidity in actual markets where 
investors cannot trade unlimited amounts of securities instantaneously. The 
resulting optimal trading strategy endogenously imposes borrowing and short- 
selling constraints on the investor. Intuitively, this is because the inability to 
trade unlimited amounts exposes an investor with a leveraged position to the 
risk of bankruptcy, something that an unconstrained investor is able to avoid. 
To avoid this risk, however, the constrained investor may give up a large per- 
centage of the welfare gains available from investing in the capital markets. 

The resulting discounts for illiquidity can be substantial, even then the endoge- 
nous borrowing constraint is not binding. Although the discounts depend on the 
specific parameter values used, the numerical results suggest that the valuation 
effects of illiquidity constraints similar to those modeled here can be of the same 
order of magnitude as those observed empirically. Thus, these results suggest 
that observed discounts for illiquidity could be reconciled with market ratio- 
nality. I note, however, that as these are only partial equilibrium results, they 
should be viewed as suggestive rather than definitive. One possible direction for 
future research might be to embed this analysis within a full general equilibrium 
framework with multiple agents and securities. 

Appendix 

Proof of Proposition 1. If N(t) > 0, M(t) > 0, and N(t) + M(t) > 0 for all t, 0 < t < T, 
then since S(t) > 0 for T < oo, W(t) = N(t)S(t)+M(t) > 0 for all t, 0 < t < T. To prove the 
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only if part of the proposition, we need to show that there is a positive probability that W(t) < 0 
for some t, 0 < t < T if N(t) < 0, M(t) < 0, or N(t) + M(t) < 0 for some t, 0 < t < T. 

Note that N(t) + M(t) < 0 can only occur if N(t) < 0, M(t) < 0, or N(t) = M(t) = 0. If 
N(t) = M(t) = 0 for some t, then clearly W(t) < 0. Hence, it is sufficient to examine the two 
cases A N(t) < 0, and B M(t) < 0. 

Case A. Assume that N(t) < 0 for some t, 0 < t < T. Since N(t) is continuous, the set of 
t where N(t) < 0 is open. Thus, N(T) < 0 implies that N(t) < 0 for some t < T. Thus, the 
assumption implies that N(t) < 0 for some t, 0 < t < T. This case can now be partitioned into 
the two subcases (a) N(t) < 0 and M(t) < 0 for some t, 0 < t < T, and (b) N(t) < 0 and 
M(t) > 0 for some t, 0 < t < T. 

Subcase (a). Since S(t) > 0 for T < oo, W(t) = N(t)S(t) + M(t) < 0. 
Subcase (b). Define 

E=min (T-t,-4 ) > 0. 

Define C as the set of price paths on which the average value of S(Q), t < 
r < t + E is less than or equal to S(r + E). On this set, 

t+E 

M(t + E) = M(t) - y(r)S(r)dr 

t+E 

< M(t) + a j S(r)dr 

< M(t) + oGS(t +)G) 

< M(t) - (t) S(t +EG). 

where the equality follows from the self-financing condition dM(t) = 

-S(t)dN(t), and the first inequality follows from the liquidity constraints. 
Similarly, 3N(t) 

N(t + e) < N(t) + aE < 4 

where the first inequality follows from the upper bound on the rate at which 
shares can be traded. Together, these inequalities imply 

3N(t) N(t) 
W(t +EG) < )S(t +EG) + M(t)- ()S(t +EG) 

4 4 

(t) S(t +EG) + M(t). 

Let D be the set of price paths where S(t + E) > -2M(t) Then, on the set 
C n D, W(t + E) < 0. Because the transitional density of S(t + E) conditional 
on S(t) and V(t) is continuous on (0, oo) x (0, oo), this set has strictly positive 
probability. 

Combining the implications of the two subcases shows that W(t) > 0 almost surely for all t, 
0 < t < T cannot be satisfied under the assumption of case A. 

Case B. Assume that M(t) < 0 for some t, 0 < t < T. Since M(t) is continuous, the set of 
t where M(t) < 0 is open. Thus, M(T) < 0 implies that M(t) < 0 for some t < T. Thus, the 
assumption implies that M(t) < 0 for some t, 0 < t < T. This case can now be partitioned into 
the two subcases (a) M(t) < 0 and N(t) < 0 for some t, 0 < t < T, and (b) M(t) < 0 and 

N(t) > 0 for some t, 0 < t < T. 
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Subcase (a). Since S(t) > 0 for T < oo, W(t) = N(t)S(t) + M(t) < 0. 
Subcase (b). Define 

,e= min (T-t,- 4 'S) > ?. 

Define E as the set of price paths on which S, < 2 S, where t < r < t + E. 

On this set, 

t+f 

M(t + E) = M(t) - t yr )S(r) dr 

t+E 

< M(t) + a S(r)dr 

< M(t) + 2aES(t) 

M(t) 
< M(t)- (5 ) (t) 

2 S(t) 

M(t) 

2 

Similarly, 
M(t) 

N(t + E) < N(t) + aE < N(t) -4S(t). 

Together, these inequalities imply 

W(t + e) < N(t)S(t + e)- M(t) S(t +EG) + 2 
4S(t) 2 

Let F be set of price paths where 0 < S(t + E) < M 2M(t)S(t) -. Then on the set 
-M(t)-4N(t)S(t) 

E n F, W(t + E) < 0. Because the transitional density of S(t + E) conditional 
on S(t) and V(t) is continuous on (0, oo) x (0, oo), this set has strictly positive 
probability. 

Combining the implications of the two subcases shows that W(t) > 0 almost surely for all t, 
0 < t < T cannot be satisfied under the assumption of case B. Combining cases A and B, the 
only if part of the proposition is proven. 
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