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Abstract. This paper analyzes the asset allocation problem of an investor who
can invest in equity and cash when there is time variation in expected returns
on the equity. The solution methodology is multistage stochastic asset alloca-
tion problem with decision rules. The uncertainty is modeled using economic
scenarios with Gaussian and stable Paretian non-Gaussian innovations. The
optimal allocations under these alternative hypothesis are compared. Our com-
putational results suggest that asset allocation may be up to 20% different
depending on the utility function and the risk aversion level of the investor.
Certainty equivalent return can be increased up to .13% and utility can be
improved up to .72% by switching to the stable Paretian model.
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1 Introduction

Strategic investment planning is allocation of a portfolio across broad asset
classes such as bonds, stocks, cash and real estate considering the legal and
policy constraints facing an institution or individual. Empirical evidence by
Culp et al. (1997) suggests that asset allocation is the most important factor in
determining investment performance.

Most of the early models in this field are either myopic or represent de-
terministic formulations of multiperiod problems. An investor that has iso-
elastic utility function chooses the same investment proportions independent
of the investment horizon if the market is frictionless and the returns are in-
dependent over time (Merton, 1969 and Samuelson, 1969). However, myopic
models cannot capture long-term investment goals in the presence of transac-
tion costs. There is considerable evidence of predictability in asset returns
(Hodrick, 1992 and Kandel and Staumbaugh, 1996) and the myopic models
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do not take this empirical finding into account. These models tend to produce
high portfolio turnovers and opportunistic asset trades.

There has been a growing interest in the development of multiperiod sto-
chastic models for asset and liability management (ALM). Kusy and Ziemba
(1986) developed a multiperiod stochastic linear programming model for Van-
couver City Savings Credit Union. Another successful application of multi-
stage stochastic programming is the Russell-Yasuda Kasai model by Carino et
al. (1994). The investment strategy suggested by the model resulted in extra
income of $79 million during the first two years of its application (1991 and
1992). Boender (1997) reports the success of a hybrid simulation/optimization
scenario model for ALM of pension funds in the Netherlands.

There are various approaches to modeling the predictability of asset re-
turns. Wilkie (1986, 1995) suggests using ARMA model for each variable of
interest in a cascade structure rather than a multivariate model. Mulvey (1996)
describes an economic projection model that uses stochastic differential equa-
tions in a similar cascade framework. Hodrick (1992) uses VAR to model time
variation in asset returns. Boender et al. (1998) extend VAR model to a Vec-
tor Error Correction Model (VECM) which additionally takes economic re-
gime changes and long term equilibria into account.

Most of these models assume that the variables or the innovations of these
variables follow normal distribution or the continuous time counterpart, Brow-
nian motion. In response to the empirical evidence about the heavy tail, high
peak and possible skewness in financial data, Fama (1965) and Mandelbrot
(1963, 1967) propose stable Paretian distribution as an alternative model.
Among the alternative non-Gaussian distributions in the literature, stable dis-
tribution has unique characteristics that make it an ideal candidate. The stable
laws are the only possible limit distributions for properly normalized and
centered sums of independent identically distributed random variables {Em-
brechts et al., 1997 and Rachev and Mittnik, 2000). If a financial variable can
be regarded as the result of many microscopic effects, then it can be described
by a stable law. Stable distributions are leptokurtotic. When compared to nor-
mal distribution, they typically have fatter tails and higher peak around the
center. They allow modeling various levels of skewness. Due to these flex-
ibilities, stable model fits the empirical distribution of the financial data better
(see Mittnik et al. 2000). Gaussian distribution Is a special case of stable dis-
tribution. In fact, it is the only distribution in the stable family with a finite
second moment. Although autoregressive conditional heteroskedastic models
driven by normally distributed innovations imply unconditional distributions
that possess heavier tails, there is still considerable kurtosis unexplained by
this model. Mittnik et al, (2000) present empirical evidence favoring stable
hypothesis over the normal assumption as a model for unconditional, homo-
skedastic conditional, and heteroskedastic conditional distributions of several
asset return series.

In this paper we analyze the multistage asset allocation problem of an in-
vestor under the Gaussian and stable returns scenarios. W e use stochastic pro-
gramming with decision rules to solve the allocation problem. Our model cap-
tures uncertainty by a branching event tree. Each node of the tree represents a
Joint outcome of all the random variables at that decision stage. Each path
through the event tree represents a ‘scenario’. The major advantage of sto-
chastic programming is that it permits a very rich description of the state of
world at each node by easily accommodating a large number of random vari-
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ables. This characteristic leads to several important practical applications of
the model such as Carino et al. (1994), Zenios (1993), and Mulvey (1996). Sto-
chastic programming with decision rules simplifies the computation of a so-

" lution by imposing the use of an allocation rule such as fix-mix at each deci-
sion stage. Some commercial applications of this approach include Boender
et al. (1998) and Berger and Mulvey (1998).

The investor is assumed to invest in two assets-cash and an equity portfo-
lio. While we do not model any liabilities, it is relatively straightforward to
generalize the model to include them (see Boender et al., 1998). The variables
that predict the return on the equity portfolio are dividend yield and dividend
growth of the equity portfolio, Treasury bill rate, Treasury bond yield, and
inflation. The investor updates his portfolio at every decision stage using the
fix-mix allocation rule. Although fix-mix rule is the optimal strategy under
certain conditions, it is still widely used by financial practitioners. Fixed mix
strategy maintains a fixed exposure to equity market by requiring the purchase
of stocks as they fall in value, and the sale of stocks as they rise in value (Perold
and Sharpe, 1988).

We consider two alternative objective functions for the investor. We first
analyze an investor that maximizes the classical power utility function of final
wealth. Then we model an investor who trades off between the mean return
and a risk measure, which is a power (< 2) of mean absolute deviation of the
return. This objective function is an analog of mean-variance but it assigns
less importance to extreme observations.

Our computational results suggest that the significance of the asset alloca-
tion and certainty equivalent return differences between Gaussian and stable
returns models depend on the objective function of the investor. We find that
if the investor has very high or low risk aversion, then the normal and stable
scenarios result in similar asset allocations for all of the objective functions
analyzed. However, when the risk aversion level is between the two cases, the
two distributional assumptions may result in considerably different asset allo-
cations depending on the objective function and the risk aversion level of the
decision maker. The investor may reduce his equity allocation up to 20%, in-
crease his certainty equivalent wealth up to .13% and improve his utility by
12% by switching to stable model. Since stable economic scenarios model
extreme events more realistically, they suggest more conservative asset allo-
cations. Ortobelli et al. (1999) report similar observations in their single period
asset allocation model.

Section 2 introduces stable distribution. The asset allocation model is set
up in Section 3 with the discussion of the scenario generation and asset allo-
cation modules. The computational results are reported in Section 4. Section 5
concludes.

2 Stable distribution

There are several important reasons for modeling financial variables using
stable distributions. The stable law is supported by a generalized central limit
theorem (Embrechts et al., 1997 and Rachev and Mittnik, 2000). Stable dis-
tributions are leptokurtotic. Since they can accommodate the fat tails and
asymmetry, they fit empirical distribution of the financial data better.

Any distribution in the domain of attraction of a specified stable distri-
bution will have properties which are close to the ones of stable distribution.
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Even if the observed data does not exactly follow the ideal distribution speci-
fied by the modeler, in principle, the resulting decision is not affected.

Each stable distribution has an index of stability which remains the same
regardless of the sampling interval adopted. The index of stability can be re-
garded as an overall parameter that can be employed in inference and decision
making. However, we should note that for some financial data empirical anal-
ysis shows that the index of stability increases as the sampling interval in-
creases.

It is possible to check whether a distribution is in the domain of attraction
of a stable distribution or not by examining the tails of the distribution. The
tails dictate the properties of the distribution.

This section describes the properties of stable distribution and addresses
the estimation issues.

2.1 Description of stable distributions

If the sums of linear functions of independent identically distributed (iid) ran-
dom variables belong to the same family of distributions, the family is called
stable. Formally, a random variable r has stable distribution if for any a > 0
and b > 0 there exists constants ¢ > 0 and J € R such that

ary +bry L er + d, (1)

where 7 and ry are independent copies of r, and 4 denotes equality in distri-
bution. The distribution is described by the following parameters: o ¢ (0,2]
(index of stability), § e [~1,1] (skewness parameter), u € R (location parame-
ter), and ¢ € [0, o) (scale parameter). The variable is then represented as r ~
Sy,p(, ¢). Gaussian distribution is actually a special case of stable distribution
when o« =2, f=0. The smaller the stability index is, the stronger the lep-
tokurtic nature of the distribution becomes, i.e. with higher peak and fatter
tails. If the skewness parameter is equal to zero, as in the case of Gaussian dis-
tribution, the distribution is symmetric. When £ > 0 (f < 0), the distribution
1s skewed to the right (left). If = 0 and & = 0, then the stable random vari-
able is called symmetric a-stable (S2.S). The scale parameter generalizes the
definition of standard deviation. The stable analog of variance is variation, v,
which is given by ¢

Stable distributions generally do not have closed form expressions for den-
sity and distribution functions. They are more conveniently described by char-
acteristic functions. The characteristic function of random variable r, @,(0) =
Elexp(irf)], is given by

D.(0) = exp{»aﬂ@{“(l — iffsign(#) tan%) -+ l',ut?}, if o1,

= exp{‘aw( <1 - i/)’%sign(é’) In 9) + l',ué’}, if o= 1. 2)

The p” absolute moment of r, EX)" = [" P(X)” > 1) dv, is finite if 0 <
P < 2, and infinite otherwise. Hence, when 2 < 1 the first moment is mfinite,
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and when « < 2 the second moment is infinite. The only stable distribution
that has finite first and second moments is the Gaussian distribution.

In models that use financial data, it is generally assumed that & ( 1.2
" There are several reasons for this:

1) When « > 1, the first moment of the distribution is finite. It is convenient
to be able to speak of expected returns.

2) Empirical studies support this parametrization.

3) Although the empirical distributions of the financial data sometimes depart
from normality, the deviation is not “too much”.

In scenario generation, one may need to use multivariate stable distribu-
tions. The extension to the multivariate case is nontrivial, Although most of
the literature concentrates on the univariate case, recently some new results
have become available. See for example Samorodnitsky and Taqqu (1994),
Rachev and Mittnik (2000).

If R is a stable d-dimensional stable vector, then any linear combination of
the components of R is also a stable random variable. However, the converse
is true under certain conditions (Samorodnitsky and Taqqu, 1994). The char-
acteristic function of R is given by:

By (6) = exp{-J: 19%;(1 _ isign(67s) tanzzzz)F(ds) + iHTu},

Sa

if a1,

- exp{—JSd 167 s| (1 + i%sign(@Ts) 1nr9Ts¢>r<ds) + iQTu},

fa=1, (3)

where I is the spectral measure which replaces the scale and skewness pa-
rameters that enter the description of the univariate stable distribution. It is a
bounded nonnegative measure on the unit sphere Sy, and se Sy is the in-
tegrand unit vector. The index of stability is again %, and y is the vector of
locations.

Stable distributions have infinite variances. The stable equivalent of co-
variance for SaS variables is covariation:

[Ri, Ry], = J 5155~ I (ds), (4)
Sa

where (Ry, Ry) is a SuS vector (xe(1,2)), and x* 1 = |x|* sign(x). The
matrix of covariations determines the dependence structure among the indi-
vidual variables.

Subordinated Gaussian distribution can be used to model the dependence
between stable variables (Mercury, 1999). The main idea of this approach is
to capture the dependence structure using the Gaussian distribution and to
model the heavy tails with the stable subordinator. Subordinated Gaussian is
defined as follows: Let X ~ N(0,26%), and 4 ~ S,5 4(1,¢), X and 4 being
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independent. Then, one can generate Z=4"2X ~ S, 4(0,6"), where ¢—
(i—) [cos(ma/4)}7.

The “truncated’ covariance matrix can be used to capture the dependence
by leaving out the Very extreme events. Let T be the truncated covariance
matrix. It can be estimated by exponential smoothing (Riskmetrics, 1996} as
follows:

oC

o= (L=2) 3 2R, (5)

i=1
is the diagonal element of the truncated covariance matrix, and

oc

C/‘Zk. 1 = (1= 4) ZiiRj\z-ikaz-z', (6)

=1

where /4 is the smoothing parameter, measures the truncated covariance be-
tween j and k. Hence, 5 = {ci} and Cy = 20/.2. Suppose the truncation points

are x and —x, then Ryj,; is defined as the following:

L if r! s in (—x, x)
Ry = -x, if 1] < —x . (7)
x, if ] > x

2.2 Financial modeling and estimation

Financial modeling frequently involves information on past market move-
ments. Examples include technical analysis to derive investment decisions, or
researchers assessing the efficiency of financial markets. In such cases, it is not
the unconditional return distribution which is of Interest, but the conditional
distribution, which is conditioned on information contained in past return
data, or a more general information set. The class of autoregressive moving
average (ARMA) models is a natura] candidate for conditioning on the past
of a return series. These models have the property that the conditional distri-
bution is homoskedastic. In view of the fact that financial markets frequently
exhibit volatility clusters, the homoskedasticity assumption may be too re-
strictive. As a consequence, conditional heteroskedastic models, such as
Engle’s (1982) autoregressive conditiona] heteroskedastic (ARCH) models and
the generalization (GARCH) of Bollersley (1986), possibly in combination
with an ARMA model, referred to as an ARMA-GARCH model, are now
common in empirical finance. It turns out that ARCH-type models driven
by normally distributed innovations imply unconditional distributions which
themselves possess heavier tails. Thus, in this respect, ARCH models and
stable distributions can be viewed as competing hypotheses.

Mittnik et al. ( 1997) present empirical evidence favoring stable hypothesis
over the normal assumption as a mode| for unconditional, homoskedastic con-
ditional, and heteroskedastic conditional distributions of severa] asset return
series.

-



The impact of fat tailed returns 171

2.2.1 Maximum likelihood estimation

We will describe an approximate conditional maximum-likelihood (ML) esti-

- mation procedure suggested by Mittnik et al. (1996). The unconditional ML
estimate of 6 = (%, §. . o) is obtained by maximizing the logarithm of the like-
lihood function

) =TT 5.5 (F=2) ©
=1

One needs to use conditional ML to estimate ARMA and ARMA-
GARCH models. The ML estimation is conditional, in the sense that, when
estimating, for example, an ARMA(p, g) model, one conditions on the first p
realizations of the sample, r,, r,_1,...,r, and, when x> 1 holds, sets in-
novations &, &1, ..., &g~ to their unconditional mean E(g,) = 0. The esti-
mation of all stable models is approximate in the sense that the stable density
function, S, g(x, o), is approximated via fast Fourier transformation (FFT) of
the stable characteristic function,

exp{—a“{tla{l — ifisign(r) tan%} + iﬂt} if o1,

exp{—afz[ {1 + iﬁ%sign(z) lnyt;J + z‘m}, ifa=1
(©)

where H is the distribution function corresponding to S, sl o).

This ML estimation method essentially follows that of DuMouchel (1973),
but differs in that the stable density is approximated numerically by an FFT
of the characteristic function rather than some series expansion. As Du-
Mouchel shows, the resulting estimates are consistent and asymptotically nor-
mal with the asymptotic covariance matrix of T 209 — 8y) being given by the
mverse of the Fisher information matrix. The standard errors of the estimates
are obtained by evaluating the Fisher information matrix at the ML point es-
timates. For details on stable ML estimation see Mittnik et al. ( 1996), Mittnik
and Rachev (1993), and Paulauskas and Rachev (1999).

2.3 Comparison of estimation methods

When the residuals of the ARMA model have Gaussian distribution, Least
Squares (LS) estimation is equivalent to condition ML estimation. Further-
more, Whittle estimator is asymptotically equivalent to LS and conditional
ML estimation methods. However, when the innovations have stable distri-
bution, the properties of conventional estimation methods may change due to
the infinite variance property. In the stable case, ML estimates are still con-
sistent and asymptotically normal (DuMouchel, 1987); LS and Whittle esti-
mates are consistent but they are not asymptotically normal. The LS and
Whittle estimates have infinite variance limits with a convergence rate that
is faster than that of the Gaussian case (Mikosch et al., 1995). When o < 2,
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Mikosch (1998) suggests using the classical confidence bands and test regions
based on L? in a conservative sense.

Calder and Davis (1998) compare LS, Least Absolute Deviation (LAD),
and ML methods for the estimation of ARMA model with stable innovations.
Their simulations reveal that the difference between the estimates of the three
methods is insignificant when the index of stability of the residuals is 1.75.
However, when o = 1 or « = .75, they report that the LAD and ML estima-
tion procedures are superior to LS estimation.

ML estimation has desirable properties in both the Gaussian and stable
setting, but it is computationally very demanding. Since the variables of in-
terest in this paper have indices of stability greater than 1.5, nonlinear LS es-
timation method has been utilized in this study. Our parameter estimates are
consistent, but they are not asymptotically normal. However, due to the high
index of stability, the parameter estimates are comparable to those that would
be achieved if ML estimation were to be used.

3 Model setup
3.1 Multistage asset allocation model

The asset allocation problem for an investor that maximizes isoelastic utility
function or an analog of mean-variance objective function at the end of the
investment horizon is formulated as follows:

max E[u(R! 1))
s.t.

=

R;,T: <I+Rsi.t>_1>

I

I
[ e,
R, =3 WiTjsts
J=1

w]‘ > 0, where w} 1s the proportion of funds of portfolio 7 invested in asset

I Rj r 1s compound return of allocation i in time period of 1 through 7 under
scenario s € {1,2....,S},

R}, is the return of the portfolio 7 under scenario s e {1,2,..., S} in time
period e {1,2,..., T}, and
rise 1s the percentage return of asset je {1,2,...,J} under scenario s in

time period z.

The restrictions on the model are that there are no short sales and the asset
allocation js updated every month according to fixed mix decision rule. In
general, fixed mix strategy requires the purchase of stocks as they fall in value,
and the sale of stocks as they rise in value. Fixed mix strategy does not have
much downside protection, and tends to do very well in flat but oscillating
markets. However, it tends to do relatively poorly in bullish markets (Perold
and Sharpe, 1988).

We use two alternative objective functions: the first one is power utility”’
function and the second one is an analog of mean-variance analysis. The power
utility function, which has constant relative risk aversion, is calculated as
follows:
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! Aiy(1=7) \
Z“_”)(WS)‘I o> L (10)
= 7

N

U(W) =

| —

‘ where 7 is the coefficient of relative risk aversion, and W, is the final wealth.
U(W") is finite if (1 — ) < 2. Assuming that the initial wealth is 1, we com-
pute the final wealth as follows:

W= 11+ R ). ()

A constant relative risk aversion investor chooses the same investment pro-
portions independent of the investment horizon if the market is frictionless
and returns are independent over time. Fix mix is the optimal portfolio choice
in this setting. However, if the returns are predictable, which is the conjecture
of this paper, then the portfolio choice depends on the investment horizon.
Although the fix mix strategy is no longer optimal in this economic environ-
ment, the investor is assumed to follow this decision strategy for computa-
tional simplicity.

The second objective function trades off between mean final return and a
measure of risk:

U(Ry) = E[R}] — - MD(R}), (12)

where c¢ is the coefficient of risk aversion.
The mean compound portfolio return of fixed mix rule i e {1,2,...,7] }at
the final date is:

P RNy
E{RT}:§§ R r. (13)
s=1

We consider the following risk measure which gives less importance to out-
liers than variance does:

AR [RC RN .
MD(R}) = 5 g IR, — E[R}]|", where 1 <r <2. (14)
s=1

Notice that when r = 2, the above risk measure becomes the variance.
Since variance is not defined for non-Gaussian stable variables, we use those
values of r < 2 for which MD(R}) is finite, such as r = 1.5.

The scenario generation module generates asset return scenarios, Fist, for
each time period. At each stage, n new offspring scenarios are generated from
the parent scenarios. If the horizon of interest is 7 periods, then we produce
nT alternative asset return scenarios for the final date. Optimal asset alloca-
tion is calculated for this scenario tree. The scenario tree is repeated 100 times
and the sample average of optimal allocations is reported as the optimal asset
allocation.

3.2 Time series analysis

The portfolio we analyze is composed of Treasury bill and S&P 500. The
monthly return on Treasury bill is assumed to be constant at 6% annualized
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Treasury Bill & Treasury Bond Returns

|

Price'Inflation

|
! ¢

Stock Div. Stock Div.
Yield Growth Rate

Stock Returns

Fig. 1. Cascade Structure Model for Scenario Generation

rate of return. The main challenge is predicting the return scenarios for S&P
500. The financial variables that are used to generate the return scenarios for
S&P 500 are modeled in a cascade structure similar to Mulvey (1996) (see
Figure 1). However, the analysis is done in discrete time as in Wilkie (1995).
Monthly data from 2/1965 through 12/1999 is used for the estimation of the
time series models.3-month Treasury bill rate and 10-year Treasury bond rate
are modeled first as measures of short term and long term interest rates. The
price inflation depends on the Treasury bond rate and the previous values of
inflation. Following Wilkie’s and Mulvey’s approaches, stock returns are an-
alyzed in two components: dividend growth and dividend yield growth.

The relationship of economic variables does not denote a one way casual
relationship, but rather indicates the sequencing of the modules. The eco-
nomic variables are modeled using Box-Jenkins methodology. The standard
Gaussian Box-Jenkins techniques carry over to the stable setting with some
possible changes. There are two criteria that we used in the model selection:

1) Autocorrelation function (ACF) and Partial Autocorrelation function
(PACF) were used to determine the order of the autoregressive and moving
average terms and to detect the significance of the serial correlation of the re-
siduals. Adler et al. (1998) compare stable, Cauchy and Gaussian limits in the
construction of confidence interval for ACF and PACF. Their simulations
show that when o > 1.7, Gaussian and Cauchy limits are better than stable
limits. However, for x < 1.7, while Gaussian limits still perform in the ac-
ceptable range, Cauchy and stable limits are better than the Gaussian limits.
Gapss1an limits were used in our analysis since the indices of stability of all the
residuals except for one are greater than 1.7%.

2) Akaike Information Criteria was used to trade of between extra ex-
planatpry power and parsimonious parameter selection. It is valid is both the
Gaussian and the stable setting (Adler, et al. 1998). ’

! The index of stability for

L the residuals of i ian 1 5 7o wr :
limits for this variable iy & 1duals of Treasury bill equation is 1.56. We will use the Cauchy

later version of this paper.
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We do not model the time varying volatility of the economic variables.
Fitting ARMA-GARCH models may reduce the kurtosis in the residuals.
However, Balke and Fomby (1994) show that even after estimating GARCH

- models, significant excess kurtosis and/or skewness still remains. Mittnik et al.
(2000) present empirical evidence favoring stable hypothesis over the normal
assumption as a model for ARMA-GARCH residuals. We postpone model-
ing the time varying volatility in the generation of economic scenarios to a
further paper.

3.2.1 Level 1: Short term and long term interest rates

3-month Treasury bill rate is used as a proxy for short term risk free interest
rate and 10-year Treasury bond yield is used as a proxy for the long term in-
terest rate. Dickey-Fuller and Phillips Perron tests for unit root suggest that
both Treasury bill and Treasury bond are first order unit root processes. There
is no agreement in economic theory on whether short term and long term in-
terest rate have a long-term equilibrium relationship or not. We analyze the
data to decide on this issue on empirical grounds for our data set. One option
1s to ignore the nonstationarity and simply estimate in levels. However, the
classical asymptotic theory for test statistics is nonstandard. Another option is
to difference the apparently nonstationary variables before estimating the re-
gression equations. If the true processes are regressions in first differences,
then this approach is the right one. However, the series may have been in fact
stationary, or a linear combination of the series might be stationary. In such
circumstances, the analysis is misspecified. One needs to test for possible co-
integration among series. The disadvantage of this approach is that alternative
tests for unit roots and cointegration can produce conflicting results. One
practical solution suggested by Hamilton (1994) is to employ parts of all three
approaches. If the regression for the data in levels form yields similar inferences
to those in the stationary first difference form, then one can be satisfied that the
results were not governed by the assumptions made about unit roots; confi-
dence in the specification increases.

When short term and long term interest rates are allowed to have linear
rends, and the cointegration equation is allowed to have intercept and trend,
Johansen Cointegration test (1991, 1995) suggests that there is no cointegra-
tion relationship between the two series. However, if one imposes the restric-
tion that the individual series have no trend and the cointegration equation
has no trend, but possibly an intercept then Johansen Cointegration test finds
one cointegration equation. These results are very sensitive to the time period
analyzed, and the assumed lag length (See Table 1). We conclude that it is
likely that there is no linear combination of short term and long term interest
rates that is stationary.

We fit a vector autoregression (VAR) to first differences of Treasury bond
and Treasury bill rates. The Schwartz Information Criteria suggests VAR(2),
in which case the residuals exhibit no significant serial correlation.

d(Tbill), = y'd(Tbill),_, + y*d(Thill), ,

+7°d(Thond),_| + y*d(Tbond), _, + ¢ 7" (15)
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Table 1. Johansen cointegration test summary

Time period 2/1965-12/1999

Lag interval 1

Individual Data Series No trend No trend Linear trend
Cointegration Eqn. No intercept/No trend Intercept/No trend Intercept/Trend

L.R. Test Rank = | Rank =1 Rank =0
2/1965-12/1999

Time period

Lag interval 2
Individual Data Series No trend No trend Linear trend
Cointegration Eqn. No intercept/No trend Intercept/No trend Intercept/Trend
L.R. Test Rank =0 Rank =0 Rank =0

. .
Time period 2/1968-12/1999
Lag interval 1
Individual Data Series No trend No trend Linear trend
Cointegration Eqn. No intercept/No trend Intercept/No trend Intercept/Trend

L.R. Test Rank =1 Rank =0 Rank =0

d(Tbond), = B'd(Thill), , + BAd(Thill),_, + Bd(Thond),
+p*d(Thond), , + ¢Toond (16)

The adjusted R? of the first model is 0.16, and the adjusted R? of the sec-
ond mode] is 0.14. The correlation between the residuals of the two variables
is 0.56.

Since the second moment does not exist for stable random variables with
% < 2, the dependence structure between the innovations of Treasury bill and
Treasury bond rates cannot be modeled by using covariance measure in the
generation of stable scenarios. We derive the dependence structure from trup-
cated observations by leaving out the virtually impossible values, Mercury
(1999) package is used to estimate the ‘truncated’ covariance matrix by expo-
nential smoothing and to simulate the residuals.

Once the truncated covariance matrix for d(Tbill) and d(Tbond), X = {cy},

Is estimated, we generate
%2

Z=A"X~S,(0,67), wherec— <12> [cos(ra/4))7* X~ N(0,267),
g

and 4 ~ S, 0(l.¢), X and 4 being independent. The dependence structure
between risk factors still remains: The stable random variable Z =AY can
be viewed informally as N(0, 203A)-distributed, Le. normal with random vari-
ance 2024,

The future correlated residuals for d(Tbill) and d(T: bond) are then simu-
lated as follows:

1) We simulate N independent multivarite normal random variables with
the truncated covariance matrix 2 between components of each vector-column:

X X,
G= : © [, where very column is N(0,X).
Xy Xy,
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2) We simulate V independent identically distributed stable random vari-
ables, Aj.z' ~ Sygou Cj")

1,2

1
AT Ay

[

S =
1
4V

1o 19

S

1
Ay

3) The matrix T which is the dot product of G and S will contain N simu-
lations for d(Thill) and d(Thond) with the desired stable parameters:

T=GoS, where T, ;~S400,00). Vi=1.2,.. N, and j = 1,2.

T can informally be viewed as N(0, I™)-distributed, with random covari-
ance matrix 2, where X% = {o5}. 05 =¢;- 4, and o = ¢ - (4,4;)"%. Note
that 4; is the square of the realization from S for the j-th variable (corre-
sponding to d(7bill) or d(Thond)), and ¢ is an element of X,

3.2.2 Level 2: Inflation

Mulvey (1996) finds that inflation depends on previous inflation rates and the
current yield curve. Since we avoid modeling the yield curve, we checked
whether the inflation rate can be explained by changes of short term and long
term interest rates. Changes in short rate do not explain inflation rates at | or
5 percent significance levels. However, changes in long rate have significant
explanatory power at 5 percent level. The residuals exhibit ARMA(1,1) struc-
ture. There is a very significant peak in the partial autocorrelation function at
lag 9. When ninth order autoregressive term is added, the serial correlation in
the residuals becomes insignificant. However, if a different time horizon is
considered, there is no longer a significant peak in the partial autocorrelation
function at lag 9. Since there is no particular reason for its existence, we con-
clude that is an outlier.
We use the following time series model for price inflation:

Inf, = L y]”fd Thond), + resIn 17
' i1

resinf, = ™ resinf, | + o bond glnf o oI (18)

where Inf : log differences of seasonally adjusted monthly CPI values.

This model gives the highest Schwartz Information Criterion without leav-
ing any significant serial correlation in the residuals. The Jarque-Bera statistic
rejects that 3,["f comes from normal distribution at 1% and 3% significance
levels. The residuals have a kurtosis of 8.15 and a skewness of 0.49. The ad-
justed R? of the estimated model is .51,

3.2.3 Level 3: Stock dividend growth rate and stock dividend yield

Mulvey and Thorlacius (1998) suggest dividing the stock returns into two
components: dividend and capital appreciation. They argue that by separating
the base components as dividend growth and dividend yield, one can accu-
rately depict cash income and the decomposed structure provides more accu-
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rate linkages to the key economic factors such as interest rates and inflation
level. We adopt their approach.

Mulvey (1996) observes that growth of dividends net of inflation has been
fairly stable over the last several decades. He suggests that dividend growth
can be linked to inflation and past dividend growth.

The data reveals that the dividend growth rate can be explained by dividend
growth rate of the previous two years and second order autoregressive terms:

Divg, = yP" Inf, + resDivg, (19)
- . __ pDivg | . Divg , . . Divg
resDivg, = B resDivg,_1 + "9 resDivg, > + ¢, (20)

where Divg : log differences of dividend index of S&P 500.

The inclusion of changes in short and long rate directly in the model does
not have any significant explanatory power. The residuals have no significant
serial correlation left over. The kurtosis of the residuals is 6.63, and the skew-
ness is —.002. The Jarque-Bera statistic rejects that e,D *9 comes from normal
distribution at 1% and 5% significance levels. The adjusted R? of the estimated
model is .23.

Dickey-Fuller test for unit root suggest dividend yield is first order in-
tegrated process. Hence, we model the change in the dividend yield rather
than dividend yield itself. Mulvey suggests that dividend yield depends on the
movement of short-term and long-term interest rates. However, our analysis
shows that short term interest rate as proxied by 3 month Treasury rate has no
significant explanatory power for explaining dividend yield movements. The
current and the previous month’s long rates have significant explanatory
power (at 5% level) in explaining the change in dividend yield.

Using the Schwartz Information Criteria, the time series mode] we suggest
for change in the dividend vield is as follows:

d(Divy), = ™" d(Tbond), + y2™d(Tbond),_, + 2™ (21)

where Divy:logarithm of monthly dividend yield of S&P 500.

This model leaves no significant serial correlation in the residuals. The
Jarque-Bera statistic rejects that ¢ comes from normal distribution at 1%
and 5% significance levels. The residuals are kurtotic and skewed. The kurto-
sis is 12.02, and the skewness is 1.56. The adjusted R? of the estimated model
is .13.

3.3 Simulation of future scenarios

Future economic projections are simulated at monthly intervals. The scenar-
10s have a tree structure. One set of scenarios is generated by assuming that
the residuals of each variable is identical normally distributed. This is the clas-
sical assumption made in the literature. Another set is generated by assuming
that the residuals are identical stable distributed. At each stage (month) we
generate 7 possible alternative realizations. For each scenario, we first gener-
ate a normal or stable residual for Treasury bill, and calculate the corre-’
sponding Treasury bill rate for the proceeding month. Then, given this short
rate, we generate Treasury bond rate, price inflation, dividend growth rate and
dividend yield for that month according to the cascade structure and the time



The impact of fat tailed returns 179

Table 2. The estimated normal and stable parameters for the innovations

innovations of normal dist. stable dist.

u o % B Z G
Price Inflation (/nf) 6.15¢-06 .0021 1.7072 0.1073 6.15e¢—-06 0.0012
Dividend gr. (Divg) 9.89e¢—-4 .0195 1.7503 —0.0229 9.8%9e—-4 0.0114
Dividend yield (d(DiL‘y)) —.002551 .0407 1.8076 0.2252 -.002551 0.0239
Treasury bill (d(Thill)) .000336 0579 1.5600 0 0 .0308
Treasury bond (d(Thond)) 000818 0339 19100 0 0 0230

series models we have built. For instance, the inflation rate for next month is
generated by using the Treasury bond rate, inflation rate and the surprise to
expected inflation this month, and the normal or stable innovation of inflation
rate next month. Note that we allow for innovation of each economic variable
in each simulated month.

At the next stage, n new offspring scenarios are generated from the parent
scenarios. This continues until the final time of interest. In this study, we gen-
erate 2 scenarios for each month, so 512 possible economic scenarios are
considered over the next three quarters.

The estimated normal and stable parameters for the innovations of the
time series models are given in Table 2. All of the innovations have indices of
stability estimates less than 2. This indicates that these variables have fatter
tails in comparison to the Gaussian distribution. They are also slightly skewed.
This flexibility of stable distribution is more useful for significantly skewed fi-
nancial variables, such as corporate bonds. The variable with the lowest index
of stability and hence the fattest tails is the residuals of change in Treasury bill
rate. Figure 2 depicts comparison of empirical probability density function,
the stable fit and the normal fit for Treasury bill rate.

Rachev and Mittnik (2000) compare the empirical fit of several fat-tailed
distributions to daily returns on S&P 500. The best fit in the tails of the dis-
tribution is achieved by log-stable and Student-r models. A major drawback
of Student-z distribution is its lack of stability with respect to summation, i.e. a
portfolio of Student-s distributed asset returns does not have Student-r distri-
bution. It is not supported by a central limit theorem. Student-z distribution is
a symmetric distribution and it cannot capture the possible skewness in fi-
nancial data.

3.4 Valuation of assets

The monthly return of S&P 500 is derived using the dividend yield and the
dividend index. Dividend index is calculated by multiplying price index with
the dividend yield:

) DI, = P, « DY, where DI, is the dividend index for period ¢, P, is the price
index for period ¢, and DY, is the dividend yield for period 1. The dividend
growth is just log differences of dividend indices.

The dividend yield and dividend growth rate are simulated as explained in
the.previous section. Hence, we can get back simulated future price index in
period 7 under scenario s from the simulated dividend growth and dividend
yield indices by
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Fig. 2. Empirical, Stable and Normal Fit to the Residuals of Treasury Bill Rate
DI,
st = DY,
Then, we can calculate the return for holding S&P 500 for a month under
scenario s as

Fo =

Py — Ps(r—l‘) + DI,
By .

4 Computational results

We first present the mean annualized return of S&P 500 in 100 repetitions of
the scenario tree generated by using the Gaussian and stable distribution
models (See Table 3). The table also depicts the percentiles of these return
scenarios. It should be noted that the S&P 500 returns generated by stable
scenarios have fatter tails than those of Gaussian scenarios. Hence, stable sce-
narios consider more extreme scenarios than Gaussian scenarios do. Rachev
et al. (2000} report similar observat

lons in their paper where they com
value at risk employing Gaussian a

pute
nd stable distributed daily

returns. They
Table 3. Annualized return scenarios on S&P 500

mean 1% 2.5% 25% 75% 97.5% 99%
Normal Scenarios 9.07 —122.34 —103.03 ~31.97 48.54 125.66 152,90
Stable Scenarios 10.20 —149.17 -107.29

~27.45 44.96 128.68 171.16



The impact of fat tailed returns 181

Table 4. Optimal aliocations under normal and stable scenarios (T = 3 quarters)

Normal Scenarios Optimal Stable Scenarios Optimal
Percentage Invested Percentage Invested
S&P 300 Treasury Bill S&P 300 Treasury Bill
0.80 100% %o 100% 0%
1.00¢ 100 0 88 12
1.50 86 14 66 44
2.30 60 40 48 52
2.70 52 48 42 58
10.00 14 86 12 38

* Note that when y = [ the power utility function reduces to logarithmic utility function.

state that 5% percentile of normal and stable distribution are very close, but
the 1% percentile of stable distribution is greater than that of the Gaussian.

The asset allocation problem has been solved for an investor that max-
imizes the power utility of final wealth. The optimal asset allocation depends
on the risk aversion leve! of the agent. If his relative risk aversion coefficient is
very low, such as 0.80, or very high, such as 10.00, then the Gaussian and
stable scenarios result in similar asset allocations (See Table 4). The intuitive
explanation for this is that, the investor who has very low risk aversion, does
not mind the risk very much. Therefore, his decision does not change when the
extreme events are modeled more realistically. Similarly, the investor who has
very high risk aversion, is already scared away from the risky asset. The fatter
tails do not affect his decision much either. On the other hand, an investor
who would put 60% in S&P 500 if he were to use normal scenarios, will put
only 48% in S&P 500 if he uses stable scenarios. The fact that stable scenarios
model the extreme events more realistically, results in stable investor putting
less in the risky asset than Gaussian investor does.

The time series models which generate the Gaussian and stable scenarios
are the same except for the residuals being Gaussian or stable, respectively. In
our computations, the mean return of Gaussian S&P 500 scenarios came out
to be less than stable S&P 500 scenarios. The equity premium is 3.07% in the
normal scenarios and 4.20% in the stable scenarios. Since the premium on
equity is higher in stable scenarios, the equity is more attractive. However, the
fact that the stable scenarios also have heavier tails outweighs this, and con-
sequently the investor puts considerably less money in the stock index. If the
equity premium were the same in both sets of scenarios, we contemplate that
the allocation difference would be even more pronounced.

Table 5 depicts the change in the utility if the investor uses stable scenarios
rather than Gaussian scenarios?, The improvement can be as large as 0.72%
depending on the risk aversion level of the investor. Table 6 reports the im-
provement in the certainty equivalent final wealth (CEFW) if an investor uses
stable scenarios rather than Gaussian scenarios. The computations show a 6
basis point Improvement in the certainty equivalent wealth of the investor who

_—
2 . . . . . . . ~ . . -

Since Gaussian distribution is a special case of stable distribution, the stable model encompasses
the Gaussian model. Therefore, the comparisons are made under the assumption that stable is the
correct model.
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Table 5. Comparison of utility achieved from normal and stable scenarios (T = 3 quarters)

¥ Normal Scenarios Stable Scenarios % Change
%o in S&P 500 Utility % in S&P 500 Utility in Utility
0.80 100% 5.0633 100% 5.0633 0.00
1.00 100 0.0600 88 0.0604 0.72
1.50 86 —1.9458 66 —1.9445 0.06
2.30 60 —-0.7188 48 —0.7181 0.09
2.70 52 —0.5391 42 —0.5386 0.09
10.00 14 —-0.0728 12 —0.0728 0.03

Table 6. Comparison of certainty equivalent wealth achieved from normal and stable scenarios
(T = 3 quarters)

v Normal Scenarios Stable Scenarios % Change

% in S&P 500 CEFW 7o in S&P 500 CEFW in CEFW
0.80 x 100% 1.0650 100% 1.0650 0.00
1.00 100 1.0618 88 1.0623 0.04
1.50 86 1.0565 66 1.0579 0.13
2.30 60 1.0536 48 1.0543 0.07
2.70 52 1.0526 42 1.0532 0.05
10.00 14 1.0480 2 1.0481 0.00

would put 60% in S&P 500. The difference could get larger or smaller de-
pending on the risk aversion level of the decision maker.

The other ‘utility’ function we consider is an analog of mean-variance cri-
terion. The computational results achieved are very similar to the constant
relative risk aversion utility. The investor who has very low or very high risk
aversion, does not gain much from using the stable model. However, the sta-
ble model makes a difference for the investors in the middle. Table 7 depicts
that an investor who would put 60% in S&P 500 if he were to use normal sce-
narios, will put only 56% in S&P 500 if he uses stable scenarios. Table 8 reports
the percentage improvement in the ‘utility’ function® if one uses stable model
as opposed to Gaussian model. If there is any percentage improvement in the
utility function, an investor can reduce the risk for a given level of mean re-
turn or increase the mean return for a given level of risk. This can be achieved
by switching from Gaussian scenario generation to stable scenario generation.

5 Conclusion

Generating scenarios that realistically represent the future uncertainty is im-
portant for the validity of the results of asset allocation models. The assump-

>

* Since the risk corresponding to certainty equivalent return is zero, the certainty equivalent re-
turn is equal to the utility of return. Hence, the percentage improvement in the utility of return is
equivalent 1o the percentage improvement in the certainty equivalent return.



(%)

The impact of fat tailed returns 18

Table 7. Optimal allocations under normal and stable scenarios (T = 3 quarters)

¢ Normal Scenarios Optimal Stable Scenarios Optimal
Percentage Invested Percentage Invested
S&P 500 Treasury Bill S&P 500 Treasury Bill

0.335 100% 0% 100% 0%

0.40 90 10 30 20

0.52 60 40 54 46

0.59 50 50 44 66

1.00 20 80 18 82

Table 8. Percentage change in utility achieved from normal and stable scenarios (T = 3 quarters)

¢ Normal Scenarios Stable Scenarios % Change
% in S&P 500 Utility % in S&P 500 Utility in Utility

0.35 100% 0.0583 100% 0.0583 0.00

0.40 90 0.0561 80 0.0562 0.28

0.52 60 0.0526 54 0.0527 0.10

0.59 50 0.0513 44 0.0514 0.12

1.00 20 0.0479 18 0.0480 0.08

tion underlying most of the scenario generation models used in the literature is
the normal distribution. The validity of normal distribution has been ques-
tioned in the finance and macroeconomics literature. The leptokurtotic and
asymmetric nature of economic variables can be better captured by using sta-
ble distribution as opposed to normal distribution.

We analyze the effects of the distributional assumptions on optimal asset
allocation. A multistage dynamic asset allocation model with decision rules
has been set up. The optimal asset allocations found under normal and stable
scenarios are compared. The analysis suggests that the normal scenarios
greatly underestimate risks. Stable scenario modeling leads to asset allocations
that are up to 20% different than those of normal scenario modeling.

The effect of fat tailed returns on the asset allocation decision depends on
the objective function of the investor. In this paper, we only analyzed power
utility and mean-1.5 power of mean absolute deviation. Tokat et al. (2001)
investigate the same effect when the investor uses Value-at-Risk and Condi-
tional Value-at-Risk as risk measures, and they report that the impact of fat
tailed returns on asset allocation are even greater for these risk measures since
they concentrate on the tail of the return distribution.

We have used stable modeling for an equity index that is not as highly
volatile as some other indices. We expect that the allocation and certainty
equivalent returns differences will be greater for more volatile indices such as
NASDAQ, Russell 2000 or Wilshire 5000. Ortobelli et al. (1999) observe such
a behavior for several indices they compare.

Although the financial data exhibit time varying volatility and long range
dependence as well as heavy tails, this study has only considered explicit mod-
eling of heavy tails in the financial data. The conditional heteroskedastic
models (ARMA-GARCH) utilizing stable distributions can be used to de-
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scribe the time varying volatility along with the asymmetric and leptokurtic
behavior. In addition to these, the long-range dependence can also be modeled
if fractional-stable GARCH models are employed. These aspects of financial
data will be considered in a later paper.

Acknowledgment. We would like to thank Boryana Racheva-Jotova from Bravo Consulting and
Carlo Marinelli from Columbia Graduate School of Business for their computational assistance.
An earlier draft of this paper has been presented at 17% International Symposium on Mathemat-
ical Programming and 4™ Columbia-JAFEE Conference on Mathematical Finance and Financial
Engineering. We have benefited from discussions with participants.

References

1. Adler RJ, Feldman RE, Gallagher C (1998) Analysing stable time series. In: Adler RJ. Feld-
man RE, Taqqu MS (eds.} A Practical Guide to Heavy Tails. Birkhauser, U.S., pp. 133-158
2. Balke NS, Fomby TB (1994) Large shocks, small shocks, and economic fluctuations: outliers
in macroeconormic time series. Journal of Applied Econometrics 9:181-200
3. Berger AJ, Mulvey JM (1998) The home account advisor: asset and liability management for
individual investors. In: Ziemba WT, Mulvey JM (eds.) Worldwide Asset and Liability
Modeling. Cambridge University Press, Cambridge, UK, pp. 634665
4. Boender GCE (1997) A hybrid simulation/optimization scenario model for asset/liability
management. European Journal of Operational Research 99:126—135
5. Boender GCE, van Aalst P, Heemskerk F (1998) Modeling and management of assets and
liabilities of pension plans in the Netherlands. In: Ziemba WT, Mulvey JM (eds.) Worldwide
Asset and Liability Modeling. Cambridge University Press, Cambridge, UK, pp. 561-580
6. Bollerslev T (1986) Generalized autoregressive conditional homoskedasticity. Journal of
Econometrics 52:5-59
7. Calder M, Davis RA (1998) Inference for linear processes with stable noise. In: Adler RJ,
Feldman RE, Taqqu MS (eds.) A Practical Guide to Heavy Tails. Birkhauser, U.S., pp. 159~
176
8. Carino DR, Kent T, Myers DH, Stacy C, Sylvanus M, Turner AL, Watanabe K, Ziemba WT
(1994) The Russell-Yasuda Kasai Model: An Asset/Liability Model for a Japanese insurance
company using multistage stochastic programming. Interfaces 24:29-49
9. Culp C, Tanner K, Mensink R (1997) Risk, returns and retirement risk 10(10):63-69
10. Dert CL (1998) A dynamic model for asset liability management for defined benefit pension
funds. In: Ziemba WT, Muivey JM (eds.) Worldwide Asset and Liability Modeling. Cam-
bridge University Press, Cambridge, UK, pp. 501-336
1. DuMouchel WH (1973) On the asymptotic normality of the maximum likelihood estimate
when sampling from a stable distribution. Annals of Statistics 1:948-957
12. Embrechts P, Kluppelberg C, Mikosch T (1997) Modelling extremal events for insurance and
finance. Springer Verlag, Berlin
13. Engle R (1982) Autoregressive conditional heteroskedasticity with estimates of the variance of
United Kingdom inflation. Econometrica 50:987-1007
4. Fama E (1965) The behavior of stock market prices. Journal of Business 38:34-105
- Hamilton JD (1994) Time serjes analysis. Princeton University Press, Princeton, New Jersey,
pp. 651-653
16. Hodrick RJ (1992) Dividend yields and expected stock returns: alternative procedures for in-
ference and measurement. Review of Financial Studies 5(3):357-386
17. Johansen S (1991) Estimation and hypothesis testing of cointegration vectors in Gaussian
vector autoregressive models. Econometrica 59:1551-1580
18. Johansen S (1995) Likelihood-based inference in cointegrated vector autoregressive models.
Oxford University Press
19. Kandel S, Staumbaugh RF (1996) On predictability of stock returns: an asset allocation per-
spective. Journal of Finance 51:385-424
20. Khindanova I Rachev ST, Schwartz E (2000) Stable modeling of Value-at-Risk. In: Rachev
ST. Mittnik S (eds.) Stable Paretian Models in Finance. Wiley & Sons, New York



The impact of fat tailed returns 185

38.
39.

40.

41.

46.

47.

2L

Kim J. Malz AM, Mina J (1999) LongRun technical document. New York: RiskMetrics
Group

. Konno H, Yamazaki H (1991) Mean-absolute deviation portfolio optimization model and its

applications to Tokyo Stock Market. Management Science 37(5):519-531

. Kusy MI, Ziemba WT (1986) A bank asset and liability management model. Operations Re-

search 35:356-376

. Mandelbrot BB (1963) The variation of certain speculative prices. Journal of Business

26:394-419
Mandelbrot BB (1967) The variation of some other speculative prices. Journal of Business
40:393-413

26. Merton RC (1969) Lifetime portfolio selection under uncertainty: the continuous-time case.

Review of Economics and Statistics 51(3):247-257

27. Mikosch T (1998) Periodogram estimates from heavy tailed data. In: Adler RJ, Feldman RE,

Taqqu MS (eds.) A Practical Guide to Heavy Tails. Birkhauser, U.S., pp. 241-257

28. Mikosch T, Gadrich T, Kluppelberg C, Adler RJ (1995). Parameter estimation for ARMA

models with infinite variance innovations. Annals of Statistics 23(1):305-326

. Mittnik S, Rachev ST (1993) Modeling asset returns with alternative stable distribution.

Econometric Review 12(3):261-330

. Mittnik S, Rachev ST, Doganoglu T, Chenyao D {1996) Maximum likelihood estimation of

stable Paretian models. Working Paper, Christian Albrechts University, Kiel

. Mittnik S, Paolella MS, Rachev ST (2000) Diagnosing and treating the fat tails in financial

returns data. Journal of Empirical Finance 7:389-416

. Morgan Guaranty Trust Company (1996) RiskMetrics technical document. Fourth edition,

JP Morgan

- Mulvey JM (1996) Generating scenarios for the Towers Perrin investment system. Interfaces

26:1-15

- Mulvey JM, Thorlacius AE (1998) The Tower Perrin global capital market scenario genera-

tion system. In: Ziemba WT, Mulvey JM (eds.) Worldwide Asset and Liability Modeling.
Cambridge University Press, Cambridge, UK, pp. 286-312

. Ortobelli SL, Rachev ST, Schwartz E (1999) The problem of optimal portfolio with stable

distributed returns. Working Paper, UCLA

. Paulauskas V, Rachev ST (1999) Maximum likelihood estimators in regression models with

infinite variance innovation. Working paper, Vilnius University, Lithuania

. Perold JM, Sharpe WF (1988) Dynamic strategies for asset allocation. Financial Analysts

Journal January: 16-27

Rachev ST, Mittnik § (2000) Stable Paretian models in finance. Wiley & Sons, New York
Rachev ST, Racheva-Jotova B, Hristov B, Mandev I (1999) Mercury 1.0-documentation.
software package for market risk (VaR) modeling for stable distributed financial distributed
returns

Rachev ST, Schwartz E, Khindanova I (2000) Stable modeling of credit risk. Working Paper,
UCLA

Rachev ST, Tokat Y (2000) Asset and liability management: recent advances. In Anastassiou
G (ed) Handbook on Analytic Computational Methods in Applied Mathematics. CRC Press,
Pp- 859-908

- Samorodnitsky G, Tagqu MS (1994) Stable non-Gaussian random variables. Chapman and

Hall, New York

- Samuelson PA ( 1969) Lifetime portfolio selection by dynamic stochastic programming. Re-

view of Economics and Statistics 51(3):239-246

- Tokat Y, Rachev ST, Schwartz ES (2001) Asset liability management: a review and some new

results in the presence of heavy tails. Forthcoming in: Ziemba WT (ed.) Handbook of Heavy
Tailed Distributions in Finance, Handbooks of Finance

- Tokat Y, Rachev ST, Schwartz ES (2001) The stable non-Gaussian asset allocation: a com-

parison with the classical Gaussian approach. Forthcoming in: Journal of Economic Dy-
namics and Control

Wilkie AD (1986) A stochastic investment model for actuarial use. Transactions of the Fac-
ulty of Actuaries 39:391-403

Wilkie AD (1995) More on a stochastic asset model for actuarial nse. British Actuarial Jour-
nal 1(3):777-964



