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Inthe absence of frictions, the value of the under-
lying asset implied by option prices must equal
its actual market value. With frictions, however,
this requirement need not bold. Using S&P 100
index options data, I find that the implied cost
of the index is significantly bigber in the options
market than in the stock market, and is directly
related to measures of transaction costs and liq-
uidity. I show that the Black-Scholes model bas
strong bid-ask spread, trading volume, and open
interest biases. Option pricing models that relax
the martingale restriction perform significantly
better.

The no-arbitrage approach to valuing derivative se-
curities has become a standard paradigm in finance.
This approach was first introduced by Black and
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Scholes (1973) and has been extended by Cox and Ross (1976), Harri-
son and Kreps (1979), Harrison and Pliska (1981), Merton (1973), and
others. In its most general form, the no-arbitrage approach is often
called risk-neutral valuation.

In the no-arbitrage framework, the price of an option is given by
taking the expectation of its payoff with respect to a risk-neutral or
certainty-equivalent density, and then discounting the expectation at
the riskless rate. To avoid arbitrage, however, the mean of the risk-
neutral density must satisfy the martingale restriction. This restriction
is simply that the price of the underlying asset implied by the option
pricing model must equal its actual market value. Harrison and Kreps
(1979) show that in frictionless markets, the violation of this funda-
mental restriction implies the existence of arbitrage opportunities.

When there are transaction costs or other market frictions, how-
ever, the martingale restriction need not be satisfied. This is because
the no-arbitrage framework is only able to place bounds on option
prices when there are market frictions. In this case, option prices are
determined by equilibrium rather than no-arbitrage considerations. If
market frictions are significant, then imposing the no-arbitrage mar-
tingale restriction on a model such as the Black-Scholes may limit its
ability to explain option prices.

In this article, I examine whether the martingale restriction holds for
an extensive sample of actively traded S&P 100 index option prices.
This analysis is important for several reasons. In particular, the results
provide direct evidence about the effects of transaction costs, market
illiquidity, or other types of frictions on option prices. Furthermore,
examining whether the martingale restriction holds provides a simple
new approach for testing no-arbitrage option pricing models. Finally,
this analysis can identify key factors omitted by no-arbitrage models
which should be incorporated into more general models of derivative
security prices.

Using daily option data, I invert the Black-Scholes model and solve
simultaneously for the implied index value and volatility. I then com-
pare the implied index value directly to the actual index value. The
martingale restriction is strongly rejected by the data. I find that the
implied index value exceeds the actual index value for more than
99 percent of the sample. On average, the implied index value is
roughly one-half percent higher than the actual index value. Because
an option can be viewed as a levered position in the underlying asset,
these results suggest that it is more expensive to purchase stock via
the options market than in the stock market.

To determine whether the rejection of the martingale restriction is
in fact due to the presence of market frictions, I regress the differences
between the implied and actual index values on a number of transac-
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tion cost and market liquidity variables. I find that an increase in the
average option bid-ask spread increases the implied cost of the index
in the options market. Similarly, the implied cost of the index de-
creases when the options market becomes more liquid. These results
indicate that the Black-Scholes model has strong bid-ask spread, trad-
ing volume, and option interest biases. I show that these are distinct
from the previously documented biases of the Black-Scholes model.
These results suggest that transaction costs and liquidity effects play
a major role in the valuation of index options.

I also examine how the pricing performance of the standard Black-
Scholes model compares with that of an ‘equilibrium’ version of the
model in which the martingale restriction is relaxed. I show that more
than half of the pricing error of the Black-Scholes model is eliminated
by allowing the cost of the index in the options market to differ from
the actual market value. In addition, relaxing the martingale restriction
eliminates most of the biases of the Black-Scholes model. I also find
that the standard Black-Scholes model results in upward-biased esti-
mates of implied volatility. These results indicate that option pricing
models which incorporate the effects of market frictions have the po-
tential to significantly improve upon the performance of no-arbitrage
option pricing models.

I also examine whether the martingale restriction is satisfied by
a number of other no-arbitrage option pricing models. The results
are similar to those for the Black-Scholes model and are consistent
with the interpretation that transaction costs and market liquidity are
reflected in option prices.

The remainder of this article is organized as follows. Section 1 re-
views the risk-neutral valuation framework and the martingale restric-
tion. Section 2 describes the data. Section 3 presents the tests of the
martingale restriction. Section 4 examines the properties of the differ-
ences between implied and actual index values. Section 5 compares
the traditional Black-Scholes model with an unrestricted version of
the model. Section 6 considers a number of alternative no-arbitrage
option pricing models. Section 7 summarizes the paper and discusses
the results.

The Martingale Restriction

All no-arbitrage option pricing models impose a common restriction
on option prices. This is simply the requirement that the implied cost
of the underlying asset in the options market must equal its actual
market value. I designate this requirement the martingale restriction.
In this section, I review the basic no-arbitrage risk-neutral valuation
framework and show why the martingale restriction can be viewed as
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its primary empirical implication. In the absence of transaction costs,
illiquidities, or other market frictions, the martingale restriction must
hold exactly in order to avoid arbitrage opportunities. If there are
market frictions, however, the martingale restriction need not hold.

The origin of the risk-neutral valuation model is in the Black and
Scholes (1973), Cox and Ross (1976), and Merton (1973) no-arbitrage
theory of option pricing. Harrison and Kreps (1979) model this valu-
ation framework more formally and introduce the notion of a pricing
functional which operates on the payoff function for a contingent
claim. This pricing functional transforms the payoff function into a
price which is consistent with the underlying asset price in the sense
of avoiding arbitrage opportunities.

To illustrate the role of the martingale restriction, fix two dates
t =0and ¢t = T, and consider the valuation at time zero of derivative
securities with payoffs at time 7' Let (2, B, P) denote the underlying
probability space defining the possible realizations X7 of values for
the underlying asset at time 7'. Here, 2 represents the set of possible
outcomes of X7, B represents a o-algebra of sets in €, and P denotes
the underlying probability measure that assigns probabilities to the
various elements of B. I restrict attention to the set of contingent-claim
payoffs that are B-measurable and square integrable with respect to
P. I denote this space of contingent claims Z*(R2, B, P).

Harrison and Kreps (1979) show that the pricing operator map-
ping time-7 payoff functions into time-zero prices must have cer-
tain properties in order to avoid the possibility of arbitrage oppor-
tunities. Specifically, the pricing operator must be linear, continuous,
and strictly positive. Furthermore, the pricing operator, when applied
to X7, must give the current price of the underlying asset Xp. Intu-
itively, the reason why these properties are necessary is clear. The
linearity requirement ensures that the pricing operator has the port-
folio property—that the price of a portfolio is the same as the sum
of the prices of its components. The continuity requirement implies
that small changes in the payoff function result in small changes in
the price of the contingent claim. The positivity requirement means
that positive payoffs map into positive prices. The condition that
Xr maps into X simply requires the pricing functional to be in-
ternally consistent. If any of these four conditions are violated, the
possibility of generating arbitrage profits from the pricing distortions
€Xists.

Given these basic properties for the pricing functional, the Riesz
representation theorem for L? spaces provides a simple characteriza-
tion of the pricing functional as an expectation operator. Following
Harrison and Kreps, the price of a contingent claim with payoff F(Xr),
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where F(Xr) € I3(R, B, P), is given by
EplpF(X7)], (D

where p > 0, p € I*(Q, B, P), and Ep is the expectation operator as-
sociated with P.! This Riesz representation of the pricing functional is
consistent with many asset-pricing models. For example, if p is inter-
preted as the intertemporal marginal rate of substitution for a repre-
sentative agent, then Equation (1) becomes a standard Euler equation
and is compatible with models such as Breeden (1979), Constantinides
(1989), Cox, Ingersoll, and Ross (1985a), Hansen and Richard (1987),
Hansen and Singleton (1983), Lucas (1978), and Rubinstein (1976).

Let Dy represent the time-zero price of a unit discount bond with
maturity date 7. From Equation (1),

Dy = Eplp). )

Assuming Dy is bounded above zero for all T, Equation (1) can be
rewritten as

DrEplpF(X7)/Drl. 3)

Note that Equation (3) holds even if interest rates are stochastic. Since
p/Dr is positive, square integrable, and has an expected value of one,
the Lebesgue-Radon-Nikodym theorem can be applied to simplify the
representation of the pricing operator further:

DrEQlF(Xp)), 4

where Eg is the expectation operator relative to a new probability
measure Q defined on the probability space (2, B, Q). The measure
Q is equivalent to P in the sense that Q assigns probability zero to a
set in B if and only if P assigns probability zero to the same set.?

From Equation (4), contingent-claim values are given by taking the
expectation of the payoff with respect to Q, and then discounting at
the riskless rate—as if market participants were risk neutral. For this
reason, Equation (4) is termed the risk-neutral valuation model and
Q is designated the risk-neutral pricing measure. Note that the risk-
neutral valuation model can also be viewed as a certainty-equivalent
model.

Observe that the risk-neutral valuation model is different from the
risk-adjusted valuation model. In the risk-adjusted valuation model,

Expectations obtained by applying Ep are conditional on all prices and state variables that generate
the o-algebra B.

This condition is known as absolute continuity and follows because p/D; > 0. We assume that P
and Q are absolutely continuous with respect to Lebesgue measure on the real axis. This implies
that P and Q have density functions.
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contingent-claim prices are given by

T
Ep [exp (—/ r(s) ds) F(XT)] , 5)
0

where R is a risk-adjusted probability measure equivalent to P, and
r is the short-term interest rate. Although the risk-neutral and risk-
adjusted valuation models give the same prices for contingent claims,
the pricing measures Q and R are the same only when interest rates
are not stochastic.

To see that the pricing functional in Equation (4) preserves the
basic properties of viable pricing operators, recall that the expecta-
tion operator is linear and that probability measures are positive. This
guarantees that the pricing operator has the portfolio property and that
positive payoff functions map into positive prices. Furthermore, the
boundedness of the expectation operator ensures that Equation (4)
has the continuity property.

It is important to recognize, however, that the linearity, positivity,
and continuity properties hold for any choice of Q. Thus, these three
properties alone are not sufficient to give empirical content to the
valuation model in Equation (4). The only property not guaranteed
by the representation of the pricing operator as a certainty equivalent
is that the pricing operator gives the current price of the underlying
asset when applied to X7.

To close the model and satisfy the remaining no-arbitrage condi-
tion, I require that the probability measure Q have the property

Xo = DrEglXq). ©6)

This requirement is a simple restriction on the mean of the probability
measure Q and is analogous to the first moment restrictions imposed
by other asset pricing models such as the CAPM or the APT. Intuitively,
this restriction means that the price of the underlying asset implicit
in the derivatives market must equal the actual market value of the
underlying asset. If markets are frictionless, then the violation of this
condition implies the existence of a riskless arbitrage opportunity. I
designate this condition the martingale restriction.3

In markets with transaction costs or other frictions, however, the
no-arbitrage conditons are not sufficient to price options and the mar-
tingale restriction need not hold. For example, Levy (1985), Perrakis
and Ryan (1984), and Ritchken (1985) show that when there are trans-
action costs or other frictions, the no-arbitrage conditions only place

When interest rates are stochastic, Q is defined only for a specific horizon 7. Hence, the marginale
restriction in Equation (6) is only required to hold for a specific horizon T.
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bounds on option prices. Boyle and Vorst (1992) and Leland (1985)
show that when transaction costs are incorporated into the analysis,
the value of a replicating portfolio for an option can be expressed
as a discounted expectation or certainty equivalent. The expectation,
however, must be taken with respect to a path-dependent probabil-
ity measure which will generally not satisfy the martingale restriction.
When there are transaction costs, market illiquidities, or other fric-
tions, options must be priced by equilibrium rather than no-arbitrage
conditions.

A major implication of this is that examining whether the price
of the underlying asset implied by option prices equals the market
value of the underlying asset can provide information about whether
market frictions are reflected in the pricing of options. In addition, this
suggests that if violations of the martingale restriction are observed,
they should be related to variables proxying for transaction costs,
option liquidity, or other types of market frictions. These implications
provide the motivation for the empirical tests conducted in this article.

. The Data

The prices used in this study are for the S&P 100 index options traded
at the Chicago Board Options Exchange (CBOE). Since their intro-
duction in 1983, these options have experienced dramatic growth in
popularity and are now one of the most actively traded option con-
tracts in the world.

The S&P 100 index options are cash settled and are listed on a
monthly expiration date cycle. Options with expiration dates in the
three nearby months represent the majority of trading volume. Exer-
cise prices are set at five-point intervals to bracket the current value of
the underlying S&P 100 index. Option prices are expressed in terms
of dollars and fractions per unit of the S&P 100 index. Each point rep-
resents $100. The minimum fraction is 1/16 for options trading below
3, and 1/8 for all other options.

The data for the study were obtained from the CBOE Market Data
Retrieval tape and include all last-sale transactions and bid-ask quota-
tions during 1988 and 1989 for all S&P 100 index options. The bid-ask
quotations are reported by CBOE employees who are physically lo-
cated among the roughly 400 traders on the trading floor. All quotes
are for a trade size of 10 contracts. Quotes may be recorded as fre-
quently as 30 times a minute for actively traded options.

In examining the martingale restriction, I use data for call options
only. The reason for this is that S&P 100 index options have an Amer-
ican exercise feature that allows the options to be exercised prior to
maturity. As shown by Merton (1973), the early exercise of put options
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can be optimal even if the underlying asset does not pay dividends.
Thus, the value of an American put will generally exceed that of a
European put. In contrast, Merton shows that if the underlying as-
set pays a continuous stream of fixed dividends, then early exercise
of an American call may not be optimal. Brenner, Courtadon, and
Subrahmanyam (1987) demonstrate that the small relative size and
roughly continuous nature of the dividend stream on the S&P 100
makes the Merton result applicable to S&P 100 index call options.
Thus, the American exercise feature should have little effect on the
prices of S&P 100 index call options. By using call option data only,
I mitigate the possibility of the American exercise feature biasing the
test results.

The call prices used in the sample are drawn from the universe of
prices by the following procedure. First, I restrict our attention to the
five-minute window from 2:00 p.M. to 2:05 P.M. Using data from the
same period each day allows us to avoid the possibility of intraday
effects in the S&P 100 index options market affecting the results. I
use this time frame to avoid data drawn from periods near the market
opening at 8:30 A.M., the low-volume midday period, and the market
closing at 3:15 p.m. I then take the midpoint of the first bid-ask price
quotation given for each option during the window. I use bid-ask
prices rather than transaction prices for several reasons. First, as shown
by George and Longstaff (1993) and Phillips and Smith (1980), the bid-
ask spread can represent a significant proportion of the value of an
option. For example, the bid-ask spread for an out-of-the-money S&P
100 index call option is often as large as 30 percent of the midpoint
value of the option. Clearly, inferences about option-pricing models
based on transaction data could be affected by whether the transaction
was at a bid or an ask price. Secondly, transaction prices could also
be affected by the size of the transaction executed. The advantage of
using bid-ask prices is that quotes are for a standard-sized trade of
10 contracts. Furthermore, CBOE rules require that quotations made
by S&P 100 index option market makers be firm for 10 contracts—the
bid-ask prices quoted represent actual prices at which transactions
could be executed. Call options that do not have a bid-ask quote
during five-minute window are excluded from the sample for that
day.

This procedure results in a set of virtually simultaneous option
prices for each day in the sample period, where the options vary
in terms of their strike prices and expiration dates. I require that there

4 Empirical evidence by Harvey and Whaley (1992) shows that the average value of the early

exercise premium in at-the-money American calls on the S&P 100 index is about 2 to 3 cents,
representing less than one-quarter percent of the total value of the call option.
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be prices for at least four calls available for each day included in the
sample. Fewer than 10 days were excluded from the sample period
because of this criteria.

Each bid-ask quotation record in the sample includes the value
of the S&P 100 index as of that time. Since the index is updated
continuously, this ensures that the bid-ask quotation and the index
value included in the record are virtually simultaneous. As the estimate
of the index value during the five-minute window, I use the average
of index values reported in the records for each of the options for that
day. In general, however, there is little if any difference in the timing
of the option prices and index values used.

Although the dividend stream associated with the S&P 100 index
does not lead to significant early exercise premia in the call options,
the dividend stream affects the analysis in another way. Intuitively,
this is because the underlying asset for the call option is not actually
the S&P 100 index, but the S&P 100 index minus the present value of
all dividends to be paid prior to the expiration of the option.

To make the dividend adjustment, I obtain the actual dividends on
the S&P 100 index for each day during the sample period. The data are
obtained from Standard and Poors 100 Information Bulletin. Using
the actual dividends on the S&P 100 index results in more precise
tests than using an average dividend rate. I then obtain estimates of
the term structure for each day in the sample period and use the
appropriate yields to discount each of the dividends received during
the remaining life of each option.> Thus, our estimates of the present
value of dividends reflect the actual amount of the dividends, their
timing, and the actual discount factor for the dividend. The values of
Dr used in the tests are based on the corresponding maturity Treasury-
bill yields reported in the Wall Street Journal.

Finally, I eliminate from the sample any set of call prices that vi-
olates one of Merton’s (1973) distribution-free bounds. In particular,
I eliminate sets that violate the upper or lower boundary conditions,
the convexity relation, or the restriction on the difference between
call prices divided by the difference in their strike prices. These filters
ensure that there are no static arbitrage opportunities in the data set.
The total number of options excluded for violating one of these static
arbitrage bounds is less than one-half percent of the total number of
options in the sample. In most of these cases, the arbitrage is on the
order of 10 cents, which is likely smaller than the transaction costs
associated with implementing the arbitrage strategy.

5 Because 1990 daily dividend data was not available to us, the last day included in the sample is
November 16, 1989.
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