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Inthe absence of frictions, the value of the under-
lying asset implied by option prices must equal
its actual market value. With frictions, however,
this requirement need not bold. Using S&P 100
index options data, I find that the implied cost
of the index is significantly bigber in the options
market than in the stock market, and is directly
related to measures of transaction costs and liq-
uidity. I show that the Black-Scholes model bas
strong bid-ask spread, trading volume, and open
interest biases. Option pricing models that relax
the martingale restriction perform significantly
better.

The no-arbitrage approach to valuing derivative se-
curities has become a standard paradigm in finance.
This approach was first introduced by Black and
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Scholes (1973) and has been extended by Cox and Ross (1976), Harri-
son and Kreps (1979), Harrison and Pliska (1981), Merton (1973), and
others. In its most general form, the no-arbitrage approach is often
called risk-neutral valuation.

In the no-arbitrage framework, the price of an option is given by
taking the expectation of its payoff with respect to a risk-neutral or
certainty-equivalent density, and then discounting the expectation at
the riskless rate. To avoid arbitrage, however, the mean of the risk-
neutral density must satisfy the martingale restriction. This restriction
is simply that the price of the underlying asset implied by the option
pricing model must equal its actual market value. Harrison and Kreps
(1979) show that in frictionless markets, the violation of this funda-
mental restriction implies the existence of arbitrage opportunities.

When there are transaction costs or other market frictions, how-
ever, the martingale restriction need not be satisfied. This is because
the no-arbitrage framework is only able to place bounds on option
prices when there are market frictions. In this case, option prices are
determined by equilibrium rather than no-arbitrage considerations. If
market frictions are significant, then imposing the no-arbitrage mar-
tingale restriction on a model such as the Black-Scholes may limit its
ability to explain option prices.

In this article, I examine whether the martingale restriction holds for
an extensive sample of actively traded S&P 100 index option prices.
This analysis is important for several reasons. In particular, the results
provide direct evidence about the effects of transaction costs, market
illiquidity, or other types of frictions on option prices. Furthermore,
examining whether the martingale restriction holds provides a simple
new approach for testing no-arbitrage option pricing models. Finally,
this analysis can identify key factors omitted by no-arbitrage models
which should be incorporated into more general models of derivative
security prices.

Using daily option data, I invert the Black-Scholes model and solve
simultaneously for the implied index value and volatility. I then com-
pare the implied index value directly to the actual index value. The
martingale restriction is strongly rejected by the data. I find that the
implied index value exceeds the actual index value for more than
99 percent of the sample. On average, the implied index value is
roughly one-half percent higher than the actual index value. Because
an option can be viewed as a levered position in the underlying asset,
these results suggest that it is more expensive to purchase stock via
the options market than in the stock market.

To determine whether the rejection of the martingale restriction is
in fact due to the presence of market frictions, I regress the differences
between the implied and actual index values on a number of transac-
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tion cost and market liquidity variables. I find that an increase in the
average option bid-ask spread increases the implied cost of the index
in the options market. Similarly, the implied cost of the index de-
creases when the options market becomes more liquid. These results
indicate that the Black-Scholes model has strong bid-ask spread, trad-
ing volume, and option interest biases. I show that these are distinct
from the previously documented biases of the Black-Scholes model.
These results suggest that transaction costs and liquidity effects play
a major role in the valuation of index options.

I also examine how the pricing performance of the standard Black-
Scholes model compares with that of an ‘equilibrium’ version of the
model in which the martingale restriction is relaxed. I show that more
than half of the pricing error of the Black-Scholes model is eliminated
by allowing the cost of the index in the options market to differ from
the actual market value. In addition, relaxing the martingale restriction
eliminates most of the biases of the Black-Scholes model. I also find
that the standard Black-Scholes model results in upward-biased esti-
mates of implied volatility. These results indicate that option pricing
models which incorporate the effects of market frictions have the po-
tential to significantly improve upon the performance of no-arbitrage
option pricing models.

I also examine whether the martingale restriction is satisfied by
a number of other no-arbitrage option pricing models. The results
are similar to those for the Black-Scholes model and are consistent
with the interpretation that transaction costs and market liquidity are
reflected in option prices.

The remainder of this article is organized as follows. Section 1 re-
views the risk-neutral valuation framework and the martingale restric-
tion. Section 2 describes the data. Section 3 presents the tests of the
martingale restriction. Section 4 examines the properties of the differ-
ences between implied and actual index values. Section 5 compares
the traditional Black-Scholes model with an unrestricted version of
the model. Section 6 considers a number of alternative no-arbitrage
option pricing models. Section 7 summarizes the paper and discusses
the results.

The Martingale Restriction

All no-arbitrage option pricing models impose a common restriction
on option prices. This is simply the requirement that the implied cost
of the underlying asset in the options market must equal its actual
market value. I designate this requirement the martingale restriction.
In this section, I review the basic no-arbitrage risk-neutral valuation
framework and show why the martingale restriction can be viewed as
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its primary empirical implication. In the absence of transaction costs,
illiquidities, or other market frictions, the martingale restriction must
hold exactly in order to avoid arbitrage opportunities. If there are
market frictions, however, the martingale restriction need not hold.

The origin of the risk-neutral valuation model is in the Black and
Scholes (1973), Cox and Ross (1976), and Merton (1973) no-arbitrage
theory of option pricing. Harrison and Kreps (1979) model this valu-
ation framework more formally and introduce the notion of a pricing
functional which operates on the payoff function for a contingent
claim. This pricing functional transforms the payoff function into a
price which is consistent with the underlying asset price in the sense
of avoiding arbitrage opportunities.

To illustrate the role of the martingale restriction, fix two dates
t =0and ¢t = T, and consider the valuation at time zero of derivative
securities with payoffs at time 7' Let (2, B, P) denote the underlying
probability space defining the possible realizations X7 of values for
the underlying asset at time 7'. Here, 2 represents the set of possible
outcomes of X7, B represents a o-algebra of sets in €, and P denotes
the underlying probability measure that assigns probabilities to the
various elements of B. I restrict attention to the set of contingent-claim
payoffs that are B-measurable and square integrable with respect to
P. I denote this space of contingent claims Z*(R2, B, P).

Harrison and Kreps (1979) show that the pricing operator map-
ping time-7 payoff functions into time-zero prices must have cer-
tain properties in order to avoid the possibility of arbitrage oppor-
tunities. Specifically, the pricing operator must be linear, continuous,
and strictly positive. Furthermore, the pricing operator, when applied
to X7, must give the current price of the underlying asset Xp. Intu-
itively, the reason why these properties are necessary is clear. The
linearity requirement ensures that the pricing operator has the port-
folio property—that the price of a portfolio is the same as the sum
of the prices of its components. The continuity requirement implies
that small changes in the payoff function result in small changes in
the price of the contingent claim. The positivity requirement means
that positive payoffs map into positive prices. The condition that
Xr maps into X simply requires the pricing functional to be in-
ternally consistent. If any of these four conditions are violated, the
possibility of generating arbitrage profits from the pricing distortions
€Xists.

Given these basic properties for the pricing functional, the Riesz
representation theorem for L? spaces provides a simple characteriza-
tion of the pricing functional as an expectation operator. Following
Harrison and Kreps, the price of a contingent claim with payoff F(Xr),
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where F(Xr) € I3(R, B, P), is given by
EplpF(X7)], (D

where p > 0, p € I*(Q, B, P), and Ep is the expectation operator as-
sociated with P.! This Riesz representation of the pricing functional is
consistent with many asset-pricing models. For example, if p is inter-
preted as the intertemporal marginal rate of substitution for a repre-
sentative agent, then Equation (1) becomes a standard Euler equation
and is compatible with models such as Breeden (1979), Constantinides
(1989), Cox, Ingersoll, and Ross (1985a), Hansen and Richard (1987),
Hansen and Singleton (1983), Lucas (1978), and Rubinstein (1976).

Let Dy represent the time-zero price of a unit discount bond with
maturity date 7. From Equation (1),

Dy = Eplp). )

Assuming Dy is bounded above zero for all T, Equation (1) can be
rewritten as

DrEplpF(X7)/Drl. 3)

Note that Equation (3) holds even if interest rates are stochastic. Since
p/Dr is positive, square integrable, and has an expected value of one,
the Lebesgue-Radon-Nikodym theorem can be applied to simplify the
representation of the pricing operator further:

DrEQlF(Xp)), 4

where Eg is the expectation operator relative to a new probability
measure Q defined on the probability space (2, B, Q). The measure
Q is equivalent to P in the sense that Q assigns probability zero to a
set in B if and only if P assigns probability zero to the same set.?

From Equation (4), contingent-claim values are given by taking the
expectation of the payoff with respect to Q, and then discounting at
the riskless rate—as if market participants were risk neutral. For this
reason, Equation (4) is termed the risk-neutral valuation model and
Q is designated the risk-neutral pricing measure. Note that the risk-
neutral valuation model can also be viewed as a certainty-equivalent
model.

Observe that the risk-neutral valuation model is different from the
risk-adjusted valuation model. In the risk-adjusted valuation model,

Expectations obtained by applying Ep are conditional on all prices and state variables that generate
the o-algebra B.

This condition is known as absolute continuity and follows because p/D; > 0. We assume that P
and Q are absolutely continuous with respect to Lebesgue measure on the real axis. This implies
that P and Q have density functions.
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contingent-claim prices are given by

T
Ep [exp (—/ r(s) ds) F(XT)] , 5)
0

where R is a risk-adjusted probability measure equivalent to P, and
r is the short-term interest rate. Although the risk-neutral and risk-
adjusted valuation models give the same prices for contingent claims,
the pricing measures Q and R are the same only when interest rates
are not stochastic.

To see that the pricing functional in Equation (4) preserves the
basic properties of viable pricing operators, recall that the expecta-
tion operator is linear and that probability measures are positive. This
guarantees that the pricing operator has the portfolio property and that
positive payoff functions map into positive prices. Furthermore, the
boundedness of the expectation operator ensures that Equation (4)
has the continuity property.

It is important to recognize, however, that the linearity, positivity,
and continuity properties hold for any choice of Q. Thus, these three
properties alone are not sufficient to give empirical content to the
valuation model in Equation (4). The only property not guaranteed
by the representation of the pricing operator as a certainty equivalent
is that the pricing operator gives the current price of the underlying
asset when applied to X7.

To close the model and satisfy the remaining no-arbitrage condi-
tion, I require that the probability measure Q have the property

Xo = DrEglXq). ©6)

This requirement is a simple restriction on the mean of the probability
measure Q and is analogous to the first moment restrictions imposed
by other asset pricing models such as the CAPM or the APT. Intuitively,
this restriction means that the price of the underlying asset implicit
in the derivatives market must equal the actual market value of the
underlying asset. If markets are frictionless, then the violation of this
condition implies the existence of a riskless arbitrage opportunity. I
designate this condition the martingale restriction.3

In markets with transaction costs or other frictions, however, the
no-arbitrage conditons are not sufficient to price options and the mar-
tingale restriction need not hold. For example, Levy (1985), Perrakis
and Ryan (1984), and Ritchken (1985) show that when there are trans-
action costs or other frictions, the no-arbitrage conditions only place

When interest rates are stochastic, Q is defined only for a specific horizon 7. Hence, the marginale
restriction in Equation (6) is only required to hold for a specific horizon T.
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bounds on option prices. Boyle and Vorst (1992) and Leland (1985)
show that when transaction costs are incorporated into the analysis,
the value of a replicating portfolio for an option can be expressed
as a discounted expectation or certainty equivalent. The expectation,
however, must be taken with respect to a path-dependent probabil-
ity measure which will generally not satisfy the martingale restriction.
When there are transaction costs, market illiquidities, or other fric-
tions, options must be priced by equilibrium rather than no-arbitrage
conditions.

A major implication of this is that examining whether the price
of the underlying asset implied by option prices equals the market
value of the underlying asset can provide information about whether
market frictions are reflected in the pricing of options. In addition, this
suggests that if violations of the martingale restriction are observed,
they should be related to variables proxying for transaction costs,
option liquidity, or other types of market frictions. These implications
provide the motivation for the empirical tests conducted in this article.

. The Data

The prices used in this study are for the S&P 100 index options traded
at the Chicago Board Options Exchange (CBOE). Since their intro-
duction in 1983, these options have experienced dramatic growth in
popularity and are now one of the most actively traded option con-
tracts in the world.

The S&P 100 index options are cash settled and are listed on a
monthly expiration date cycle. Options with expiration dates in the
three nearby months represent the majority of trading volume. Exer-
cise prices are set at five-point intervals to bracket the current value of
the underlying S&P 100 index. Option prices are expressed in terms
of dollars and fractions per unit of the S&P 100 index. Each point rep-
resents $100. The minimum fraction is 1/16 for options trading below
3, and 1/8 for all other options.

The data for the study were obtained from the CBOE Market Data
Retrieval tape and include all last-sale transactions and bid-ask quota-
tions during 1988 and 1989 for all S&P 100 index options. The bid-ask
quotations are reported by CBOE employees who are physically lo-
cated among the roughly 400 traders on the trading floor. All quotes
are for a trade size of 10 contracts. Quotes may be recorded as fre-
quently as 30 times a minute for actively traded options.

In examining the martingale restriction, I use data for call options
only. The reason for this is that S&P 100 index options have an Amer-
ican exercise feature that allows the options to be exercised prior to
maturity. As shown by Merton (1973), the early exercise of put options
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can be optimal even if the underlying asset does not pay dividends.
Thus, the value of an American put will generally exceed that of a
European put. In contrast, Merton shows that if the underlying as-
set pays a continuous stream of fixed dividends, then early exercise
of an American call may not be optimal. Brenner, Courtadon, and
Subrahmanyam (1987) demonstrate that the small relative size and
roughly continuous nature of the dividend stream on the S&P 100
makes the Merton result applicable to S&P 100 index call options.
Thus, the American exercise feature should have little effect on the
prices of S&P 100 index call options. By using call option data only,
I mitigate the possibility of the American exercise feature biasing the
test results.

The call prices used in the sample are drawn from the universe of
prices by the following procedure. First, I restrict our attention to the
five-minute window from 2:00 p.M. to 2:05 P.M. Using data from the
same period each day allows us to avoid the possibility of intraday
effects in the S&P 100 index options market affecting the results. I
use this time frame to avoid data drawn from periods near the market
opening at 8:30 A.M., the low-volume midday period, and the market
closing at 3:15 p.m. I then take the midpoint of the first bid-ask price
quotation given for each option during the window. I use bid-ask
prices rather than transaction prices for several reasons. First, as shown
by George and Longstaff (1993) and Phillips and Smith (1980), the bid-
ask spread can represent a significant proportion of the value of an
option. For example, the bid-ask spread for an out-of-the-money S&P
100 index call option is often as large as 30 percent of the midpoint
value of the option. Clearly, inferences about option-pricing models
based on transaction data could be affected by whether the transaction
was at a bid or an ask price. Secondly, transaction prices could also
be affected by the size of the transaction executed. The advantage of
using bid-ask prices is that quotes are for a standard-sized trade of
10 contracts. Furthermore, CBOE rules require that quotations made
by S&P 100 index option market makers be firm for 10 contracts—the
bid-ask prices quoted represent actual prices at which transactions
could be executed. Call options that do not have a bid-ask quote
during five-minute window are excluded from the sample for that
day.

This procedure results in a set of virtually simultaneous option
prices for each day in the sample period, where the options vary
in terms of their strike prices and expiration dates. I require that there

4 Empirical evidence by Harvey and Whaley (1992) shows that the average value of the early

exercise premium in at-the-money American calls on the S&P 100 index is about 2 to 3 cents,
representing less than one-quarter percent of the total value of the call option.
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be prices for at least four calls available for each day included in the
sample. Fewer than 10 days were excluded from the sample period
because of this criteria.

Each bid-ask quotation record in the sample includes the value
of the S&P 100 index as of that time. Since the index is updated
continuously, this ensures that the bid-ask quotation and the index
value included in the record are virtually simultaneous. As the estimate
of the index value during the five-minute window, I use the average
of index values reported in the records for each of the options for that
day. In general, however, there is little if any difference in the timing
of the option prices and index values used.

Although the dividend stream associated with the S&P 100 index
does not lead to significant early exercise premia in the call options,
the dividend stream affects the analysis in another way. Intuitively,
this is because the underlying asset for the call option is not actually
the S&P 100 index, but the S&P 100 index minus the present value of
all dividends to be paid prior to the expiration of the option.

To make the dividend adjustment, I obtain the actual dividends on
the S&P 100 index for each day during the sample period. The data are
obtained from Standard and Poors 100 Information Bulletin. Using
the actual dividends on the S&P 100 index results in more precise
tests than using an average dividend rate. I then obtain estimates of
the term structure for each day in the sample period and use the
appropriate yields to discount each of the dividends received during
the remaining life of each option.> Thus, our estimates of the present
value of dividends reflect the actual amount of the dividends, their
timing, and the actual discount factor for the dividend. The values of
Dr used in the tests are based on the corresponding maturity Treasury-
bill yields reported in the Wall Street Journal.

Finally, I eliminate from the sample any set of call prices that vi-
olates one of Merton’s (1973) distribution-free bounds. In particular,
I eliminate sets that violate the upper or lower boundary conditions,
the convexity relation, or the restriction on the difference between
call prices divided by the difference in their strike prices. These filters
ensure that there are no static arbitrage opportunities in the data set.
The total number of options excluded for violating one of these static
arbitrage bounds is less than one-half percent of the total number of
options in the sample. In most of these cases, the arbitrage is on the
order of 10 cents, which is likely smaller than the transaction costs
associated with implementing the arbitrage strategy.

5 Because 1990 daily dividend data was not available to us, the last day included in the sample is
November 16, 1989.
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Table 1
Summary statistics for the S&P 100 index options included in the sample

Mean Std. Dev. Min. Median Max.
Number 10.32 3.78 4.00 11.00 20.00
Index value 273.80 27.41 233.18 262.88 334.08
Moneyness -1.97 3.98 —14.42 —-1.99 19.50
Avg. time to exp. 28.27 9.72 2.00 28.00 55.00
Avg. bid-ask spread 0.153 0.036 0.078 0.151 0.331
Call volume 102,553 37,964 18,544 94,396 230,208
Open interest 323,955 64,513 160,983 322,804 545,497

The sample consists of 444 daily sets of call options, where each set consists of prices for all
available call options with bid-ask quotations during the five-minute window beginning at 2:00 p.m.
Number is the number of call prices included in the sample for a given day. Moneyness is the
difference between the index value and the average strike price of the options included in the
sample for a given day. Average time to expiration for the options is expressed in days. Call
volume is the total reported trading volume of all S&P 100 index call options for a given day.
Open interest is the total open interest of all S&P 100 index call options for a given day. The
sample period is January 1, 1988, to November 16, 1989.

The resulting data set includes option prices for 444 days during
the sample period. The number of call prices available on a given day
ranges from 4 to 20, with a median of 11. In addition to the option
prices, the data set includes the following information for each daily
observation: the corresponding S&P 100 index value, the present value
of dividends to be paid during the life of each option, the present value
of one dollar to be received at the expiration date of each option, the
average bid-ask spread of the options, and the total trading volume
and open interest for all S&P 100 index calls for that day. Summary
statistics for the data are given in Table 1.

Testing the Maritngale Restriction

In this section, I test the martingale restriction imposed by the Black-
Scholes model by examining whether the value of the S&P 100 index
implied from option prices equals the actual value of the index.

3.1 The empirical results

The empirical approach is a simple one. Using all of the option prices
available during the five-minute window for a given day, I invert the
Black-Scholes model to estimate both the implied index value and the
implied volatility. Since the number of option prices ranges from 4 to
20, it is generally not possible to find a single implied index value and
volatility estimate that exactly fit all of the call prices. Consequently,
these two parameters are estimated via gridsearch by minimizing the
sum of squared deviations between the theoretical and actual option
prices. This procedure is repeated for each of the 444 daily sets of
option prices in the sample.
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Once the implied index value is estimated, it can then be compared
directly to the actual index value. I focus on the percentage pricing
difference between the implied and actual index values. This percent-
age difference is defined as the difference between the implied and
actual index values divided by the actual index value.

From the earlier discussion, it is clear that estimating the implied
index value and volatility is the same as estimating the first and second
moments of the risk-neutral density. Since the first and second mo-
ments completed specify the lognormal risk-neutral density implied by
the Black-Scholes model for horizon T, our approach parallels other
research which focuses on inferring the risk-neutral density from op-
tion prices. Examples of this include Banz and Miller (1978), Breeden
and Litzenberger (1978), Hutchinson, Lo, and Poggio (1994), Rubin-
stein (1994), and Shimko (1993). In a sense, our approach can also
be viewed as a simple extension of the familiar technique of inverting
option prices to solve for the implied second moment of the pricing
density. Research focusing on implied volatility includes Canina and
Figlewski (1993), Chiras and Manaster (1978), Latane and Rendleman
(1976), and Schmalensee and Trippi (1978).

Related work includes Manaster and Rendleman (1982) who invert
sets of option prices for individual stocks to solve for the implied stock
price and volatility parameter. Although they focus more on the issue
of whether the implied stock price is useful in predicting returns and
include only longer maturity options in their sample, they find some
evidence that the implied stock price is higher than the actual stock
price. Other related work includes Fackler (1986), Fackler and King
(1990)6, Madan and Milne (1994), Sherrick, Irwin, and Forster (1990,
1992).

The empirical results are reported in Table 2. As shown, the mar-
tingale restriction imposed by the Black-Scholes model is strongly
rejected by the data. The percentage difference between the implied
index value and the actual index value is positive for 442 of the 444
observations. The z-statistic for the hypothesis that positive and neg-
ative differences are equally likely is 20.89. The mean percentage
difference is 0.465 with a t-statistic of 31.52. The median percentage
difference is 0.410.

Table 2 also reports the results by the number of option prices used
in estimating the implied index value. As shown, inferences about
the martingale restriction are the same for all of the categories. The
mean percentage differences range from 0.406 to 0.628 for the various

¢ Grundy (1991) and Lo (1987) examine the relation between the moments of the original density
function for the underlying asset and the distribution of option returns. Bates (1991) estimates the
probability of a jump in the value of the underlying asset from option prices.
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categories, and the t-statistics for the means are all in excess of 11.
The uniformity of the results across the various categories strongly
suggests that the results are not an artifact of the number of options
used in estimating the implied index value.

Recall that a call option can be viewed as a levered position in
the underlying asset. Intuitively, these results imply that it is more
expensive to purchase stock via the options market than directly in
the stock market. There are several possible reasons why this cost
may be higher in the options market. For example, the higher cost
may simply reflect the higher transaction costs in the options market
than in the stock market. This is consistent with George and Longstaff
(1993) who find that the average bid-ask spread for a share of stock
synthesized by options is roughly twice as large as the average bid-ask
spread for NYSE stocks.

Similarly, Boyle and Vorst (1992), Leland (1985), and others show
that the transaction costs associated with dynamic trading strategies
that synthesize option payoffs can be economically significant. In
equilibrium, the present value of these costs may be reflected in the
market prices for these options. In addition, the liquidity of the op-
tions market may affect the implicit valuation of the equity component
of an option. Several recent papers addressing the relation between
transaction costs and the equilibrium valuation of securities include
Amihud and Mendelson (1986), Constantinides (1986, 1993), Tuckman
and Vila (1992), and Vayanos and Vila (1992).

3.2 Diagnostic tests

To ensure that these results are robust, it is important to examine the
sensitivity of the estimates of the implied index value to alternative
empirical specifications. In this section, I report the results from sev-
eral alternative specifications in order to provide diagnostic checks on
these results.

In Table 2, I use the midpoint of the bid-ask spread as the point
estimate of the option price. Since the implied index value is virtually
always higher than the actual index value, it is possible that using a
lower value for the point estimate of the option price could change
the results. Accordingly, I reestimated the implied index values using
the bid price for each option.

The results are almost identical to those reported in Table 2. The
mean percentage difference is 0.512 with a #-statistic of 34.28. The
median percentage difference is 0.457. Of the 444 daily estimates of
the implied value of the index, all 444 are positive.” Similar results are

7 Intuitively, it may seem that using the lower bid price should result in a smaller estimate of the
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obtained when the percentage differences are estimated using ask
prices for the options. Thus, the results are not due to the choice of
the midpoint of the bid-ask spread as the point estimate of the call
price.

In inverting the Black-Scholes formula, I subtract the present value
of the dividends to be paid during the life of the option from the
estimated index value. This adjustment for dividends is described in
Black (1975), Gibson (1991), and others. In doing this, however, I
implicitly assume that the dividends are known with certainty at the
date the option is valued by the market. If dividends are not known
with certainty, then the empirical results may be biased. In particular,
the empirical estimates of the implied index value will be upward
biased if the expected dividend is less than the actual dividend.

As a diagnostic check, I reestimate the implied index value under
the extreme assumption that the market expects no dividends at all
during the life of the option. Even with this extreme assumption, the
empirical results are similar to those reported in Table 2. The mean
value of the percentage difference is 0.305 with a #-statistic of 24.29.
The median percentage difference is 0.250. Of the 444 daily estimates
of the implied index, 416 are positive. These results demonstrate that
the rejection of the martingale restriction is not due to dividend un-
certainty.

Although the early exercise premium in S&P 100 index call prices
is small, it may still have an effect of the estimation of the implied
index value. In particular, the early exercise premium may lead to a
higher estimate for the implied index value since the value of the call
option is increasing in the mean of the risk-neutral density. To check
this possibility, I subtract from each call option price the estimated
amount of the early exercise premium and reestimate the implied
index value. The estimates of the early exercise premium are based
on the mean values of the early exercise premiums for S&P 100 index
calls reported in Harvey and Whaley (1992) during the same sample
period as this study. Once again, the empirical estimates of the implied
index values are very similar to those in Table 2. The mean value
of the percentage difference is 0.448 with a #-statistic of 30.48. The
median value is 0.394. Only 4 of the 444 daily estimates are negative.
These results indicate that the rejection of the martingale restriction
is not due to the American exercise feature of the S&P 100 index call
options.

implied index value. What actually happens is that the implied volatility estimate is smaller and
the implied index value is slightly higher when the bid price is used. Thus, using the bid price
rather than the midpoint effects both the first and second moments instead of just the first or the
second.
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Properties of the Pricing Differences

In addition to comparing the implied index value to the actual index
value, it is important to examine the empirical properties of the pricing
differences. If the violations of the martingale restriction are due to
the effects of market frictions on option prices, then the difference
between the implied and actual index values should be related to
measures of transaction costs and option market liquidity.

Figure 1 plots the time series of percentage differences between the
implied index value and the actual index value. As shown, there is
considerable time series variation in the percentage differences. The
percentage differences are generally highest at the beginning of 1988.
This is the period immediately after the 1987 stock market crash. The
percentage differences decline significantly by the second half of 1988
and remain at lower levels through most of 1989. Immediately after
the October 13, 1989, minicrash, however, the percentage differences
increase to levels similar to those at the beginning of 1988. This time-
series variation suggests that violations of the martingale restriction
may also be related to market events such as the recent path of stock
index prices.

To examine these implications, I regress the percentage pricing dif-
ferences on variables reflecting the transaction costs of options, option
market liquidity, and recent stock market movements. In these regres-
sions, I also control for the other pricing biases of the Black-Scholes
model. This ensures that the market friction variables are not sim-
ply proxying for previously documented biases of the Black-Scholes
model.

A number of previous studies have examined the pricing biases
of the Black-Scholes model. Examples of these studies include Chiras
and Manaster (1978), Macbeth and Merville (1980), and Rubinstein
(1985). These studies generally find evidence of three types of bias:
a time to expiration bias, a moneyness bias, and a volatility bias.
To control for these biases, I include the average time to expiration
and moneyness (index value minus strike price) of the options as
independent variables in the regression. To control for volatility, I
include the current and first two lagged values of the absolute daily
return on the index in the regression. Intuitively, this allows volatility
to be represented as a linear combination of recent absolute returns
and is similar to an ARCH model. I use this simple proxy for volatility
rather than the implied volatility estimate since implied volatility is
estimated jointly with the implied index value, which could induce a
spurious correlation simply because of sampling variability.

As a measure of the transaction costs of the options, I use the av-
erage bid-ask spread for the options used in computing the implied

1105



The Review of Financial Studies/v 8 n 4 1995

0.02

0.015 |-

0.01 |

0.005

T

PERCENTAGE DIFFERENCE

—0.005

JANS88 APR88 JUL8 OCT8 JAN8 APR89 JUL8Y OCT 89

Figure 1
Percentage difference between the implied value of the index and the actual market value

of the index
The implied value of the index is obtained by inverting the Black-Scholes model using daily sets
of simultaneous S&P 100 index call option prices.

index value. As shown by George and Longstaff (1993), there is con-
siderable cross-sectional variation in the bid-ask spreads for S&P 100
index options. Furthermore, these bid-ask spreads are directly related
to the market-making costs and risks faced by market participants.

I use several related measures of market liquidity in the regressions.
As a proxy for the total demand for call options, I include the total
open interest of all S&P 100 index call options. As one measure of
trading activity, I use the total trading volume for all S&P 100 index
call options. As another measure of trading activity, I use the total
number of calls used to compute the implied index value. Recall that
this number reflects the number of calls for which quotes are available
during the five-minute window each day. Thus, this number provides
a direct measure of market liquidity. As shown in Table 2, there is
little or no evidence of a univariate relation between the percentage
differences and the number of options. As a proxy for liquidity, how-
ever, the number of options could still have explanatory power in a
multiple regression specification.
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Finally, to capture the possibility of market-related or path-depen-
dent effects on option pricing similar to those suggested by Boyle and
Vorst (1992) and Leland (1985), I include current and lagged daily re-
turns on the S&P 100 index as explanatory variables.® In estimating
the regressions, I use a Cochrane-Orcutt procedure to allow for possi-
ble serial correlation in the regression residuals. The regression results
are reported in Table 3.

The regressions provide strong evidence that the violations of the
martingale restriction are related to market frictions. In particular, the
average bid-ask spread of the options used in estimating the implied
index value is positive and highly significant in both regressions. This
means that the cost of taking a synthetic position in the index via
the options market increases with the cost of trading options. This
is intuitive since taking a synthetic position in the index requires an
investor to incur these higher transaction costs.

Similarly, the results indicate that the implied cost of the index in
the options market decreases as the liquidity of the options market
improves. The coefficient for the total open interest is negative and
significant in all of the regressions reported. As the total open interest
increases, the options market becomes more liquid, and the cost of a
synthetic position in the index becomes less expensive. In addition,
the results suggest that as the level of trading activity increases, the
cost of a synthetic position in the index decreases. In the first regres-
sion, trading volume is significant. In the other regressions, which
include the current and lagged index returns, the coefficient for trad-
ing volume is negative but not always significant.

The second and third regressions examine whether there is evi-
dence of path-dependent effects on option pricing. As shown, there
is a pronounced negative relation between the percentage pricing
differences and index returns. The negative relation is strongest for
the contemporaneous index return, but is still highly significant for
the returns for the previous two trading days. Intuitively, this nega-
tive relation suggests that the cost of the index in the options market
increases when the market is declining or has recently declined.

Finally, the regressions indicate that time to expiration, money-
ness, and the volatility proxy are all related to the violations of the
martingale restriction. The implied cost of the equity component of
the options increases with the average time to expiration, decreases as
the average moneyness of the calls increases, and increases when the
volatility of the market goes up. The relation between the martingale

8 In contrast, Manaster and Rendleman (1982) regress stock returns on the percentage pricing differ-
ences for individual stocks. They find some evidence that the pricing differences have explanatory
power for stock returns.
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Option Pricing and the Martingale Restriction

restriction and the biases of the Black-Scholes model are examined in
more depth in the following section.

. Relaxing the Martingale Restriction

Because the Black-Scholes option pricing model is a no-arbitrage
model, it imposes the martingale restriction on the mean of the log-
normal risk-neutral density. As shown, this martingale restriction is
strongly rejected by the data. In this section, I examine whether re-
laxing the martingale restriction in the Black-Scholes model improves
the performance of the model in describing actual option prices.

I designate the traditional version of the Black-Scholes model the
restricted model since it imposes the martingale restriction. Recall that
the restricted model implies that the risk-neutral density is lognormal,
where the mean of the lognormal is fully specified by the martin-
gale restriction. Now consider a version of the Black-Scholes model
in which the pricing density is lognormal, but the martingale restric-
tion is not imposed. I term this model the unrestricted Black-Scholes
model. Intuitively, the unrestricted model can be viewed as a simplis-
tic ‘general equilibrium’ form of the Black-Scholes model.

I compare the performance of the restricted and unrestricted Black-
Scholes models in the following way. First, I estimate the implied
volatility that best fits the call prices for each day in the sample. For
example, if there are 15 options in the sample for day 7, I estimate
the implied volatility which minimizes the sum of squared pricing er-
rors for the 15 options. I then repeat this procedure for each of the
444 days in the sample period, resulting in 444 daily implied volatil-
ity estimates and 4582 pricing errors (444 days times an average of
10.32 calls). The pricing errors are computed as the difference be-
tween the actual call price and the price implied by the fitted model.
This gives the implied volatility estimates and pricing errors for the
restricted model. T estimate the implied volatility and pricing errors
for the unrestricted model in a similar fashion. Rather than estimating
only the implied volatility, however, the unrestricted model is esti-
mated by jointly finding the implied index value and volatility that
best fits the option prices. Note that both the pricing errors and im-
plied volatility estimates of the restricted model will differ from those
for the unrestricted model.

Table 4 compares the pricing errors for the restricted model with
those of the unrestricted model. Because the unrestricted model has
an extra parameter, the pricing errors of the unrestricted model should
be less than the restricted model. Surprisingly, however, the pricing er-
rors from the unrestricted model are dramatically less than those of the
restricted model. In particular, the median absolute pricing error for
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Table 4
Summary statistics for the absolute value of the differences between the fitted and actual
call prices

Mean Std. dev. Min. Median Max.
Restricted
model 0.3801 0.2918 0.0001 0.3203 2.0975
Unrestricted
model 0.1783 0.1679 0.0000 0.1333 1.4888

The restricted model is the standard Black-Scholes model and is fitted each day by implying a
single implied volatility estimate for all of the call options available for that day. The unrestricted
model is the Black-Scholes model fitted each day by implying a single index value and volatility
estimate for all of the call options available for that day. The total sample size is 4582.

the restricted model is 32 cents. In contrast, the median absolute pric-
ing error for the unrestricted model is approximately 13 cents, which
is about 40 percent of that for the restricted model. By relaxing the
martingale restriction, most of the pricing error of the Black-Scholes
model is eliminated.

I also examine the degree to which the pricing errors of each model
display systematic patterns or biases. Specifically, I examine whether
the pricing errors are purely random, as would be the case if they
were due to measurement error, or whether they are related to option-
specific characteristics as their moneyness, time to expiration, or bid-
ask spread.

Figure 2 graphs the pricing errors from the restricted model against
the moneyness of the options. As many studies have shown, the tra-
ditional Black-Scholes model displays a significant strike price bias.
In contrast, the pricing errors for the unrestricted model are graphed
in Figure 3. As shown, the unrestricted model results in significantly
less bias than the restricted model.

Figure 4 graphs the pricing errors from the restricted model against
the time to expiration of the options. Figure 5 shows the same graph
for the pricing errors from the unrestricted model. There is a clear
negative time to expiration bias in the restricted model. In contrast, the
pricing errors from the unrestricted model display a slightly positive
time to expiration bias. Note, however, that the magnitude of this bias
is much smaller than in the restricted model.

The pricing errors from the restricted model are plotted against the
bid-ask spread of the options in Figure 6. This graph indicates that
the traditional Black-Scholes model has a strong bid-ask spread bias.
The Black-Scholes model tends to overprice options with a small-bid-
ask spread and underprice options with a large bid-ask spread. In
contrast, Figure 7 shows that most of the bid-ask spread bias in the
pricing errors is eliminated in the unrestricted model.

1110



Option Pricing and the Martingale Restriction

—_

|
—_

RESTRICTED BLACK SCHOLES ERRORS
=)

-30 =20 -10 0 10 20 30
MONEYNESS

Figure 2

Pricing errors from the restricted Black-Scholes model graphed against the moneyness
of the options

The pricing errors are computed by solving for the Black-Scholes implied volatility estimate that
results in the best fit to the S&P 100 index call option prices in the sample. The pricing errors
represent the difference between the actual and fitted prices.

Table 5 reports the results of regressing the pricing errors from the
restricted and unrestricted models on the moneyness, time to expira-
tion, and bid-ask spreads of the options. I use these variables since I
am examining the cross-sectional properties of the pricing errors and
these variables are option specific. I do not include variables common
to all options such as the volatility proxy since they do not provide
explanatory power for the cross section of pricing differences. These
regressions indicate that over 62 percent of the variation in the pric-
ing differences from the restricted model is due to moneyness, time
to expiration, and bid-ask spread bias. These regressions also indi-
cate that the bid-ask spread bias is distinct from the other previously
documented biases of the Black-Scholes model. In contrast, less than
21 percent of the variation in the pricing differences from the unre-
stricted model is due to these biases.

Since the unrestricted model does not impose the martingale re-
striction, the implied volatility estimates obtained from the unrestricted
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Figure 3

Pricing errors from the unrestricted Black-Scholes model graphed against the moneyness
of the options

The pricing errors are computed by solving for the Black-Scholes implied index value and volatility
estimates that result in the best fit to the S&P 100 index call option prices in the sample. The pricing
errors represent the difference between the actual and fitted prices.

Table 5
Results from regressing differences between the fitted and actual call prices on the
indicated variables

Int M T BA R?
Restricted
Coefficient 0.03510 0.02624 —0.62431 0.87409 0.624
t-statistic 327 4157 —6.14 14.33
Unrestricted
Coefficient —0.17651 0.00736 1.7054 0.14667 0.209
t-statistic —22.15 15.67 22.55 3.23

The restricted model is the standard Black-Scholes model and is fitted each day by implying a
single implied volatility estimate for all of the call options available for that day. The unrestricted
model is the Black-Scholes model fitted each day by implying a single index value and-volatility
estimate for all of the call options available for that day. Int is the regression intercept, M is the
average moneyness of the options, T is the average time to expiration, and BA is the average
bid-ask spread of the option. The total sample size is 4582.
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Figure 4
Pricing errors from the restricted Black-Scholes model graphed against the time until
expiration of the options

The pricing errors are computed by solving for the Black-Scholes implied volatility estimate that
results in the best fit to the S&P 100 index call option prices in the sample. The pricing errors
represent the difference between the actual and fitted prices.

model need not equal those estimated from the restricted model. Fig-
ure 8 graphs the difference between the restricted and unrestricted
implied volatility estimates for the 444 days in the sample period.
As shown, the implied volatility estimates are quite different. The re-
stricted implied volatility is nearly always higher than the unrestricted
implied volatility. On average the implied volatility estimated using
the restricted model is 0.1939. In contrast, the implied volatility esti-
mated using the unrestricted model is 0.1702. Intuitively, this is be-
cause the restricted model implies a lower mean for the risk-neutral
density than the unrestricted model. Thus, the implied volatility of
the restricted model must be higher to compensate for imposing the
martingale restriction.

An important implication of these results is that if the martingale
restriction imposed by an option pricing model is rejected by the
data, the implied volatility estimates obtained from the model may
not be reliable estimates of the actual volatility of the underlying asset.
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Pricing errors from the unrestricted Black-Scholes model graphed against the time until
expiration of the options

The pricing errors are computed by solving for the Black-Scholes implied index value and volatility
estimates that result in the best fit to the S&P 100 index call option prices in the sample. The pricing
errors represent the difference between the actual and fitted prices.

This may provide an explanation why recent evidence by Canina and
Figlewski (1993) suggests that the implied volatility estimates from
the Black-Scholes model contain little information about the realized
volatility of the underlying asset.

Finally, I note that even very simple modifications of the Black-
Scholes model that allow for the effects of market frictions can sub-
stantially improve on its performance. For example, simply multiply-
ing the index value by 1.004 before inputting it into the Black-Scholes
formula and estimating the implied volatility and pricing errors re-
duces the median absolute pricing error from 32 cents to 16 cents.
Similarly, the mean absolute pricing error is reduced from 38 cents to
26 cents. The R? in the cross-sectional regression of pricing errors on
moneyness, time to expiration, and bid-ask spreads is reduced from
0.62 to 0.16. Clearly, multiplying the index value by a factor of 1.004 is
an ad hoc adjustment. Nevertheless, it suggests that a fully developed
general equiliibrium option pricing model which explicitly incorpo-
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Figure 6

Pricing errors from the restricted Black-Scholes model graphed against the bid-ask spread
of the options

The pricing errors are computed by solving for the Black-Scholes implied volatility estimate that
results in the best fit to the S&P 100 index call option prices in the sample. The pricing errors
represent the difference between the actual and fitted prices.

rates transaction costs, market illiquidity, and other market frictions
would likely lead to large improvements in pricing performance over
the traditional Black-Scholes model.

Testing Alternative Models

Earlier, I examined whether the martingale restriction was satisfied
by the Black-Scholes model. In this section, I examine a general
no-arbitrage option pricing model that nests or closely approximates
many of the option pricing models that have appeared in the literature.

In developing this general option pricing model, I specify the func-
tional form of the risk-neutral density rather than specifying the dy-
namics of the underlying asset. In doing this, our goal is to specify
the risk-neutral density in a way that allows for the broadest set of
possible shapes for the risk-neutral density.

Assume that the risk-neutral density is a member of the class of four-
parameter density functions known as the Fourier series or Edgeworth
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Figure 7

Pricing errors from the unrestricted Black-Scholes model graphed against the bid-ask
spread of the options

The pricing errors are computed by solving for the Black-Scholes implied index value and volatility
estimates that result in the best fit to the S&P 100 index call option prices in the sample. The pricing
errors represent the difference between the actual and fitted prices.

expansion family of densities. As shown by Johnson and Kotz (1970),
the four parameters can be chosen in a way to match the first four mo-
ments of any continuous density function. Thus, this family of density
functions admits a virtually unlimited class of possible shapes. These
density functions are closely related to the approximating functions
used in neutral network estimation and have been used in Gallant,
Hansen and Tauchen (1990), Gallant and Nychka (1987), Gallant and
Tauchen (1989), Jarrow and Rudd (1982), and Singleton (1990).
Let Z be the standardized value of ln Xy

_InXy -«

, ™)

o
where « and o are the conditional mean and standard deviation of

In X7 implied by the risk-neutral pricing measure Q. Furthermore, let
q(Z) denote the risk-neutral density for Z implied by Q. Following
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Figure 8

The implied volatility from the restricted Black-Scholes model minus the implied
volatility from the unrestricted Black-Scholes model

In the restricted Black-Scholes model, only the implied volatility is estimated from option prices.
In the unrestricted Black-Scholes model, both the implied index value and the implied volatility
are estimated from option prices.

Johnson and Kotz (1970), let g(Z) be of the form

_exp(=Z%/2)
q(Z) = ~

where B and y are coefficients related to the higher moments of In X7.
Together Equations (7) and (8) specify Edgeworth expansion family
of risk-neutral density functions defined by the four parameters «, 8,
y,and o.

With the risk-neutral density specified, the risk-neutral valuation
operator in Equation (4) can be used to express the price of a Euro-
pean call option on Xy with strike price K as

1+ B(Z> =32)+y(Z* - 62*+3)), (8

DT/ max(0, exp(a + 0 Z) — K)q(Z) dZ. )

This integral can be evaluated directly to give a lengthy closed-form
expression for the value of a call option in terms of the cumulative
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normal and gamma distribution functions and the four parameters «,
B,v,and o.

This general option pricing model includes many other option pric-
ing models as special cases. Examples of models that are nested within
this general model include

the Black-Scholes (1973) model,

the Merton (1973) stochastic interest rate model,

the Merton (1976, eq. 17) jump diffusion model, and
the Merton (1976, eq. 18) jump diffusion model.

In addition, since the risk-neutral density in Equation (8) can match
the first four moments of any continuous density, the four parameters
of the model can be chosen in such a way that Equation (9) closely
approximates most existing option pricing models.

Given market prices for four call options differing only in their
strike prices, I can invert the expressions for the call values to solve
for the four parameters. Since the parameters are conditional on T,
I estimate the parameters separately for each different time to expi-
ration. On average, there are 1.83 sets of four or more options with
common expiration dates for each day during the sample. Thus, the
total number of risk-neutral densities estimated is 1.83 x 444 = 812. In
estimating the parameters, I use only the four call options that are clos-
est to the money. This provides another diagnostic check on earlier
results which use all available options. Once the paramters of a risk-
neutral density are determined, the first moment of the risk-neutral
density is given by the expression

Ep[X7] = exp(a + 02/2)(1 + Bo’ + ya4). (10)

The martingale restriction for this general option pricing model can
now be expressed as

Xo = Drexp(a +0%/2)(1 + o’ + yo*). (11)

This approach to estimating the conditional mean of the risk-neutral
density parallels recent work by Gallant, Hansen, and Tauchen (1990)
and Hansen and Jagannathan (1991). In these papers, a semiparamet-
ric approach is applied to security market data to place bounds on the
admissible region for means and standard deviations of the intertem-
poral marginal rate of substitution for consumers. In the context of
this paper, this is equivalent to placing bounds on the moments of
the distribution of p defined in Equation (1).

The results from the martingale tests for this model are reported in
Table 6. Even though the class of possible types of density functions
is much larger, the results are strikingly similar to those for the Black-
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Scholes model. Table 6 shows that a large majority of the percentage
differences are positive. Of the 812 estimates, 759 or 93.5 percent are
greater than zero. This pattern is the same for all of the individual
maturity categories. In fact, for the four-week maturity category, 100
percent of the percentage differences are greater than zero. A standard
binomial test strongly rejects the hypothesis that positive and negative
estimates are equally likely. The overall z-statistic for the binomial
test is 24.78. The mean percentage difference fo all 812 observations
is 0.400 with a #-statistic of 31.08. Note that this value is only slightly
less than the mean value of the percentage differences for the Black-
Scholes model given in Table 2.

These results suggest that the rejection of the martingale restriction
is not limited to the Black-Scholes model and that the martingale re-
striction is violated by a variety of more general no-arbitrage option
pricing models. It is important to acknowledge, however, that there
are fewer degrees of freedom available in estimating the more gen-
eral model since more parameters are estimated. Thus, the parameters
may not be as precisely estimated as in earlier sections.

. Conclusion

In this article, I examined whether the martingale restriction imposed
by the no-arbitrage option pricing framework holds for S&P 100 index
option prices. I found that the implied index value is nearly always
higher than the actual index value. The percentage differences be-
tween the implied and actual index values are related to a number of
transaction cost and option market liquidity variables. These results
provide evidence of a number of previously undocumented biases
in the Black-Scholes model, such as a bid-ask spread bias and an
open-interest bias.

There are several possible interpretations of this evidence. For ex-
ample, these results may imply that market frictions have a major
effect on the pricing of options. If so, then options should be val-
ued using equilibrium rather than no-arbitrage models. I find that a
simplistic ‘general equilibrium’ version of the Black-Scholes model in
which the martingale restriction is relaxed significantly improves on
the pricing performance of the traditional Black-Scholes model. A fully
developed general equilibrium model would likely lead to additional
pricing improvements.

It is important to acknowledge, however, that there is an alternative
interpretation for these results. It may be that the actual risk-neutral
density implicit in the market’s valuation of options is fundamentally
different from the risk-neutral densities implied by the option pricing
models that I consider. This possibility is relevant since it is always

1119



The Review of Financial Studies /v 8 n 4 1995

"SUOIIEAIISCO JO JOqUINU S} SIJOUSP A/ "OISZ ST SJBUIISD
ueawl 2y} ey sisaypodAy oY) SIS) dNSNEIS-7 S, "AIBLEA [EWIOU PIEPUEIS B SE PANGIISIP ST PUE ‘06°0 ST salewnsa aanisod jo uoptodoid oy 1eyy
sisaylodAy oy s1sa) onsnels-z oy, -ouaiapip Sunud oyl jo ajewnsa aansod e U NS 1BY) SUONEAISSJO JO UONdERY 3y} st aansod uonsodoig

z18 $00'C L¥S0 11€°0 So1°0 ¥8%°0— 80°1¢ £9€°0 00%°0 8L¥%T €60 nv
i4 0S8l 1€€°0 ZLT°0 ST 0— ¥8%°0— 9T <540 0LT°0 Lyl 6090 01 <
6% 6951 9L50 €0 8Z1°0 6L£°0— €9'9 8%7°0 jc44Y 67°S 8/8°0 6
€9 886'1 790 €9¢°0 710 SLT0— 61’8 L¥Y'0 19%°0 LT9 6880 8
oL $00'C 1580 ve0 6510 181°0— 6¢'6 S9%°0 10$°0 ¥eL 1260 L
06 9991 ¥2L0 85¢°0 1€2°0 ¢Ie0— Y01 08¢0 8y°0 L0°6 860 9
$01 €891 L2L0 (040 192°0 160°0— 88'%1 98¢0 6150 0001 066°0 S
Z01 SIY'L 0LL0 €0%'0 9€T°0 0100 LO°ST 6Z¢°0 06%°0 (N0 0001 b4
66 orIT'tl €050 S€C0 ¥81°0 S60°0— 08'¥%1 0%¥Z°0 L8€°0 ST'6 096°0 ¢
L0T 0zz'1 [4540) 920 8110 €eT0— JA%A! 8¢T°0 ¥87°0 816 %60 4
oL ¥26°0 187°0 6L1°0 LO0T°0 L£0°0— SLOT ¢LT0 120 €0'8 1960 1
N wnuixeyy ~— o(uenb  ueIpoy  ouenb  wnunuipy  ONSHEIS-?  UONEIASP  UBDN  ONSHEIS-Z aamisod uonendxa
pi¢ T pIepuels uomnodord  Run Sya9x

SPUSPIAIP JO 19U XIPUT JUILIND 3Y) PUE [SPOW
Surrad uondo essual ayy Aq pafdurt anJeA Xapur 3Y) USIMII] SIDUIIP 3Feyuadiad o) Jo sajewrnsd ) JOJ SONSHE)s Areurwng

9 3IqeL

1120



Option Pricing and the Martingale Restriction

possible to construct an N + 1 parameter risk-neutral density that
will exactly match N option prices with the same expiration date
and satisfy the martingale restriction on the mean of the risk-neutral
density. For example, this can be done using techniques similar to
those presented in Banz and Miller (1978), Bick (1982), and Breeden
and Litzenberger (1978).

In order for this alternative explanation to account for these results,
however, the risk-neutral density implicit in the market’s valuation
would need to be very complex since I am able to reject a model
in which the risk-neutral density can match the first four moments of
any continuous density function. Furthermore, it is difficult to explain
why transaction costs and market liquidity measures should be related
to the violations of the martingale restriction if misspecification of the
functional form of the risk-neutral density was the underlying reason
for the rejection of the martingale restriction. Clearly, future research
should investigate in more depth the role that market frictions play in
the valuation of derivative securities.
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