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The Valuation of Forestry Resources under Stochastic
Prices and Inventories

Randall Morck, Eduardo Schwartz, and David Stangeland”

Abstract

A contingent claims approach to capital budgeting may be preferable to traditional meth-
ods where uncertainty and managers' strategic reactions to changing conditions are impor-
tant. As an example of such a case, we solve the classical problem of the duration of an
investment in forestry resources (i.e., when to cut down the trees) in the general case of
stochastic output prices and stochastic natural growth rate and timber inventories. A con-
tingent claims approach is used to value the forestry resources as a function of: (1) sto-
chastic prices and inventories, and (2) an asymmetric, aptimal production policy that in-
corparates the option to halt timber production temporarily.

I. Introduction

Classical capital budgeting techniques are based on the assumption that fu-
ture cash flows follow a rigid pattern and can be accurately predicted far into the
future. On the basis of such cash flow predictions, the praject is either accepted
ar rejected. The uncertainty in the project, and management’s strategic reactions
to changing conditions are dealt with only superficially. At best, a risk-adjusted
interest rate is employed and various deterministic scenarios are plotted out. In
situations where uncertainty, and management’s strategic reactions to it, are im-
portant, the classical technique is apt to lead to wrong decisions. The technology
needed to deal with such problems more accurately is becoming available. The
purpose of this paper is to present a stylized example of how it can be used.

Our example is a general solution to the classical *‘duration’” problem of the
optimal control of a lang-term, renewable resource investment, such as forestry
resaurces (i.e., when to chop down a tree).! If the prices and the natural growth
rate of the inventory of forest timber are assumed to be deterministic, the optimal
control is very simple to derive. But when both the price and inventory of timber
are stochastic, the problem becomes both stochastic and asymmetric. The asym-

* First and third authars, Faculty of Business, University of Alberta, Edmonton, Alberta, Can-
ada T&G 2R6; second author, Anderson Graduate School of Management, Univetsity of California,
Los Angeles, CA 96024, Partial funding was provided by the Social Sciences and Humanities Re-
search Council of Canada. The authors are grateful for helpful comments by Giovanni Barone-Adesi,
Steinar Ekern, and an anonymous JFQA referee, and for research assistance by Craig W. Holden.

! The model developed in this paper can be applied to any renewable resource management
problem. For example, exactly the same equations describe an optimal management strategy for fish-
enes. The general methodology can be applied to many problems in diverse argas.
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metry is due to the passible exercise of an option to halt timber production tem-
porarily if prices are too low. The valuation of forestry resources must explicitly
incarporate this stochastic, asymmetric optimal control framework.

We follow a contingent claims approach within the context of Merton’s
(1973) intertemporal capital asset pricing model. We calculate the value of a
farestry lease as the value of an option to cut down the trees at the most advanta-
geous time. The point of the contingent claims approach is that it ties the value of
an asset to one or more variables whose stochastic properties can be easily esti-
mated. It is not necessary to formulate predictions of prices and inventories far
into the future. Instead, the stochastic properties of these variables are fed di-
rectly into the analysis. The only assumption about prices and inventories in the
future is that they follow certain well-defined stochastic processes.

This simple and elegant framework allows for the incorporation of both the
underlying stochastic price and inventory processes; and the stochastic, asymme-
tric nature of the optimization problem. Brennan and Schwaitz (1985) use a can-
tingent claims approach to develop a model for the valuation of a nonrenewable
natural resource investment. Their model incorporates stochastic output prices in
a stochastic, asymmetric optimal control framework. This paper develops a criti-
cal extension of the contingent claims approach to cover forestry resources,
where both prices and inventories are stochastic. It generalizes the classical **du-
ration’’ literature ta cover renewable resource investments in which prices and
inventories are stochastic.

Section II develops a valuation model of forestry resources, which involves
a partial differential equation, production constraints, inventory constraints, and
boundary conditions. Section III presents a specific example by valuing a hy-
pothetical Canadian white pine forest. Section IV provides a conclusion.

Il.  AValuation Model of Forestry Resources

The value of the timber in a particular forestry leasehold is assumed to be
affected by two stachastic variables: (1) the price of timber, and (2) the inventory
of timber in that leasehold. Define P as the price of timber, [ as the inventory of
timber, and £ as the current time. Assume that these variables are governed by the
stochastic differential equations

(1) & = Pyt + 0, (P Y,
(2) al = [w 0 — g LD dr + o dydz,

where 2, and % are possibly correlated Wiener processes in 57?2 with correlation
p, (P, 1), and pl 1) are instantaneous drift coefficients, aa(P,f} and a(/,¢) are
instantaneous diffusion coefficients, and g(P,I,¢} is the instantanecous quantity of
timber produced, i.e., the cutting rate. The price dynamics in (1) are standard in

the literature.? The expected rate of change in inventories, y,, in (2} is instan-

2 A jump process also could be incorporated into the madel. For simplicity, however, we con-
sider anly the standard [td processes (1} and {2}.
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taneously decreased by the cutting rate ¢, which is precisely the stochastic opti-
mal control. '

Consider a logging company whose sole asset is a [ease that gives it the right
to harvest timber in a particular forest from £ to a maturity date T. The company’s
after-tax cash flow from timber production on the leasehold is

3 Foy ={t-r )| (1- T }PA(PLE —A(qn)] NV (PLY,

where T, = corporate tax rate,’
Tp = royalty rate on timber sales,
A{q.t) = aperating costs of logging quantity g,

A property tax rate, assumed proportional ta the value of the logging

company, and

V(P,I,t) = value of the logging company.

The logging lease is a contingent claim on the undetlying timber. For a
given production policy, g{P,{ 1), the value of the logging company V(P,I.f) can
be determined. Applying Ité's lemma, the value of the leasehold will evolve ac-
cording ta the stochastic differential equation

dV = V,dP + Vdi + Vdt
2% (4P) + () + Vp(al)(dP)

Substituting (1) and (2) into (4), and rearranging terms, leads to

(4)

(3) av = p, Vdt + o, Vdz, + o, Vdz,
where p, = { ( ) +V
© latpv,, + 1oy, PV, v
20- + 20'! i + pUP f
(7 Ty = 0,PV,V !, and
(8) Gy = O'IVJ,V—l,

If we assume that Merton’s (1973) intertemporal asset pricing model holds, that

3 Actual tax payments are discrete and, therefare, difficult to madel in a continuous time frame-
wark. Nate that in the above model corporate taxes are symmetric. Thete is a full offset if income is
negative. Given that the solution pracedure is numerical, the maodel can easily be adapted to allow
cither for a full offset ot for no taxes if income goes negative. Brennan and Schwartz (1985) use the
latter representation of taxes. A realistic treatment of the tax code would involve modeling tax loss
carryforwards, and would, therefore, require the addition of a time-dependent state variable. In em-
ploying an offset provision, we are attempting to mave closer o such an approach while keeping the
analysis as straightforward as possible.
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the risk-free rate r is constant, and that the utility function of the representative
imvestor is logarithmic, then

©) V3@ iy~ = oy,

where @y, is the covariance of the return on V with aggregate wealth, and f{f) is
as defined in Equation (3). Assume that aggregate wealth W follows the stachas-
tic process

(10) dW = p, Wit + o, Wdz,, .

Equations (5) and (10} imply

. - Cov [V 'aV, w 1aW]
(11) vw dr

= PwpTwCyp t Py Oy Oy -

where pyp and py, are the instantaneous correlations of the price and inventory of
timber with aggregate wealth. Let
bp = PupTwTp -

b, = Py Oy -

(12)

Substituting (6), (7), (8), (11), and (12) into (9} yields?
(1-=)(1 — 1) [PA(PL) = ACq)] — NV = 1V

@ e s an-a)y
I 2,2 1 2
+50pP Vpp + 30V + 90,0, PVp = 0.

The logging company is assumed to choose the optitnum production policy,
g*(P,1,£), so as to maximize the company’s value. This leads to the stochastic
Bellman equation

0 = max {(1 —-rc) [(1 —TR)Pq<P,1,!) - A(q,x)}

qe[0,M]
—AV — WV + (}LP—(bP)PVP
+(my—aP LD -6 )V, + Y,

1 2.2 L 2
+50-PP VPP + EUI ‘G’f + pCI'PCr!PVP‘,] \

(14)

where M is the maximum rate of production that is technologically feasible.

4 This equation can be derived in several ways. It is equivaleat to Equation (31) in Cox, Inger-
sall, and Ross (1985), and also can be derived using a contingent claims hedging pracedure as in
Brennan and Schwartz (1985). The latter derjvation requires that an instrument be available for hedg-
ing inventory risk.
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To find the optimum production policy, we set the partial derivative of (14)
with respect to g to zero, and solve for 4. The optimum production policy also
must incotporate the constraints that: (1) production must be nonnegative, and
(2} if production falls too low, the production site can be shut down and later
reopened in order to avoid ongoing operating costs.? The optimum production
policy is then substituted into Equation (14) to obtain the concentrated PDE to be
solved.

A. Boundary Conditions and Constraints

The value of the logging company must satisfy the Bellman equation subject
to the following boundary conditions:

L. On the terminal date T of the lease, the value of the company must fall to
zero. That is,
(15) VPLT) = 0.

2. If the price of timber drops to 0, then stochastic process (1) implies that
the value of the company must alse go to zero. That is,
(16) V(O.ls) =0 se[,T] .

3. If the price of timber becomes very large, then changes in the value of the
firm due to changes in the price level will be proportianal to the level of inven-
tory held, that is, V, will approach a linear function of / given by

. AV (P.Is)

lim —— 225 = i t,T7.
{n pore  GP se(nT]
The proportionality factor k will depend on the cast function and other parame-
ters and will be specified in more detail below.

4. If there is a natural maximum density of trees in the forest, [, then at
this point, the value of the company cannot be increased further due to increased
inventory. This is mathematically modeled as a reflecting boundary condition

WP Ls = 0 se[,T] .

(18) al o

max

3. If there are regulatory constraints that limit the minimum inventory in the
forest, I, this means that, if the inventory falls to this level, all lumbering must
stop. This impases the following constraint on the stochastic control

19) q(Plys) = 0, Vsel[tT], fI =1 .

The boundary conditions listed above are not meant to be realistic. They are
choasen primarily for simplicity. In each specific case where this methodology is
applied, the relevant constraints on minimum or maximum inventories and prices
due to regulatory, financial, or technological restrictions would have to be incor-
parated. The complete valuation model for forest resources is the PDE in Equa-
tion (14), after concentrating with respect to the optimal production policy,

¥ See Brennan and Schwartz (1985) for how to incorporate cptimal shutdewn, reopening, and
abandonment. See also Myers and Majd (1983},
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boundary conditions such as Equations (15) through (19), and any additional
constraints. Together, these equations uniquely determine the value of the com-
pany V(P {1t} and the optimal operating policy g*(P,1.£). We are upaware of any
apalytic solution to this model, however numerical methods can solve it.

fIl.  An Example
A. Specification and Coefficient Estimates

The usefulness of this model can be demonstrated by solving a specific ex-
ample. Below, we assume specific functional forms for the instantaneous drift
coefficients, instantaneous diffusion coefficients, and cost function. As we men-
tioned above, the only assumption we need make about the future is that these
functional forms and the parameters of the stochastic processes do not change
over time,

To implement the model developed in the previous section, we make the
following additional simplifying assumptions:

1. Stochastic changes in the inventory of timber in this leaschold are un-
correlated with changes in aggregate investor wealth. The factor risk premium,
¢y, is thus equal to zero.

2. There are futures markets for timber and the convenience yield is propor-
tional to the spot price of timber, P.% Brennan and Schwartz (1985) show in a
similar context that the risk-adjusted drift of the price process pp — ¢ is equal to
the riskless interest rate minus the proportionai convenience yield r — k.

3. The standard deviation of the return process in (1) is constant. The ex-
pected change and the standard deviation of changes in inventory in (2) are pro-
portional to the level of the inventory.?

Under assumptions 1, 2, and 3 above, the risk-adjusted stochastic process
corresponding to (1) and (2) can be written as

dP

{19 5 = (r—w)dr + ¢,di, ,

2" dil = [1.1.1 - q(Pl,)dr + oldz, .

4. The leasehold is assumed to be small relative to the timber industry so
that the stochastic processes zp in (1°) and z; in (2°) are uncorrelated, i.e., p
equals zero. Changes in this forest’s inventory of trees do not affect the market

¢ The convenience yield is defined as the value of the flow of services that accrues to the owner
of a physical commodity but not to the owner of a contract far future delivery of the same com-
madity. It can he thought of as valuing the advantage to be gained by exploiting temporary shortages
and price fluctuations. See Kaldar (1939), Working (1948), Brennan (1958), and Telser (1958). The
assumption that the convenience yield is proportional to the spat price is very strang. We emplay it
salely for simplicity, following the tradition of constant proportional volatility, etc. in the continuous
time finance literature. [n many cases, such assumptions may be highly problematic— see Brennan
(1986). The issues involved here aré develaped in connection with long-term oil-linked assets by
Gibson and Schwartz (1989). Dealing effectively with these issues is quite difficult and is beyond the
scope of this paper.

7 This is only a simplifying assumption. We would, in fact, expect a much more complex rela-
tion between . and f.
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price of timber. This ““small firm’” assumption could be relaxed at the expense of
a more complicated numerical problem. 8
5. The cost function is given by the quadratic equation

ay, + a9 + %azq2 if f(6y >0
(20) Algit) = .

0 if f() <

where ag is the fixed cost, a, is the variable cost, a, is the quadratic term reflect-
ing increasing marginal cost, and where the cost function reflects an assumption
that production can be costlessly shut down and reapened. The quadratic func-
tional form is not critical, and is chasen solely for its algebraic simplicity.
Substituting these specific functional forms into Equation (14) produces

= max (I -7 )[(I—TR)PQ(P,[,I) - A(q,r)}

g€ [0,M]
o ~NV =V + (r= )PV, + [ — q(PID1V, + Y,
1 2 I 22
2 PP V + 50 I VHA

To find the optimal production policy, set the partial derivative with respect
to g equal to zero

0.

Il

22) (1=} [(1=7)P = a; — a,¢*(PL0)] —

Imposing the constraints that (1) production must be nonnegative and (2)
praduction can be costlessly shutdown and reopened, Equation (22) can be
solved for the optirmurm production policy

-V N (1—-1-R)P—

(IHTc)az a4,

0 if f() < 0

max |0,

if f(r)y > 0
(23) q*(P!’{vt) =

2 We abstract from the effect that the level of aggregate inventary has on the market price. To
incorporate this effect would requite an additional state variable, a stochastic convenience yield. We
leave this issue as an interesting topic for future research.
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Substituting Equation (23} into Equation (21} gives the concentrated partial
differential equation to be solved

a 1 2 _ (l—'rR)P —a
= 2a2(l~'rc)v" s 4 "
(1—frc) 2
04) + T}[(I—TR)P — al} — (I —Tc)aﬂ
— VAV + (r=k)PV, + V. + %U’!PzVPP
+aa’V, .

Note the quadratic expression in V. Equation (24) is a nonlinear, partial
differential equation. This equation, along with the boundary conditions in Equa-
tions {15) through (19)° and the production contraints in Equation (23), is to be
solved numerically.

As a specific application, consider a hypathetical white pine forest in Can-
ada. Estimated coefficients for this application are given in Table 1. The analysis
is carried out in real terms; the parameters of the cost functions are assumed
constant throughout the lease periad; and the historical standard deviation and
trend, as well as the convenience yield of the white pine, are computed using
deflated prices. We employ a real interest rate.

Using the coefficients in Table 1, the concentrated PDE in Equation (24)
can be salved numerically subject to the boundary conditions in Equations (15)
through (19), and the production constraints in Equation (23). The numerical
technique used is a fourth order Runge-Kutta algorithm with a variable step size.
This is implemented using a software package called FORSIM. 1¢

B. HResuits

With the parameters given in Table 1, the value of the logging company
with a lease of 10 years (40 quarters) is $545,600. Note that this figure is derived
without any specific predictions about future prices or inventories. The only as-
sumption is that the stochastic processes that govern these variables are station-
ary. This figure takes into account the uncertainty in the underlying price and
inventory processes, and the potential strategic reactions of the firm's manage-
ment to changes in these variables.

¢ For the example considered, the term &£ in the right-hand side of (17) is approximated by
(1 =11 — ) — L nd(1 + A} The boundary condition (19} is replaced by V(P.F . .6} = 0, so that
if the inventory reaches the regulatory minimum, the lease is terminated. These boundary conditions
are highly stylized and are chosen primarily for simplicity.

10 The Runge-Kutta method employs a weighted average of four successive incremental ratios to
approximate the behaviar of the function at each grid point. A variable step size is a device to in-
crease the performance of the numercal procedure by locally refining the grid size where required for
a better fit. The Runge-Kutta method is described in Braun (1975), p. 159. The package FORSIM is
available from the Chalk River Nuclear Laboratories, Atomic Energy of Canada Limited, Chalk
River, Ontario, Canada.
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TABLE 1
Estimated Coefficients for a Hypothetical White Pine Forest

White Pine Inventory:2 150,000 cubic meters

Average Growth Rate (p).2 1.7%fyear

Standard Deviation {a}.2 9 A% fyear
White Pine Price:  $80/cubic meter

Standard Deviation (o) 10.4%/year

Average Growth Rate (jup)t 0.4%

Canvenience Yield {k}.¢ 4 G%fyear
Risk-Free Interest Rate {r):¢ B%fyear
Logging Casts:d

Fixed Costs {ay): $100,000¢vear

Variable Costs (a,):¢ $28/cubic meter

Quadratic Costs (&,): $2/cubic meter
Taxes:!

Corporate Tax Rate {ra): 32%

Rovalty Rate {15): 5%

Propetty Tax Rate {(A): 2%

a Alberta Phase 3 Farest Data,

b Based an Canada's softwood [umber index, using the Canadian industrial price index
series to adjust for inflation.

¢ Brennan and Schwartz (1985) argue that ps—d,p = r—«k. The assumption made above is
consistent with & equal to zero and farms our base case. This is reasonable if timber price
mavernents are largely idiosyncratic. See Mills {1988) and Binkley and Washburn (1988)
far empirical evidence on this paint. Results using other values of k will be compared with
the base case.

4 Based on 150,000 cuhic meters, the average inventory of Alberta forest companies.

e From the Alberta Economic Timber Supply Analysis (1980). Refarestation is required by
law and its costs are included in these estimates. Logging of reforested areas on the
leasehald is not permitted.

t Alllogging is done on Crown lands and is taxed accordingly.

These strategic reactions define an implicit optimal cutting rate. To explore
an explicit optimal cutting policy, we must make assumptions about future price
and inventory levels. If we assume that these variables grow at their historical
trends, an optimal cutting policy through time can be derived. This is shown by
the middle curve of Figure 1. The optimal cutting rates shown in this figure and
in thase that follow are based on two assumnptions. First, that ex post the initial
timber price (in the base case $30) grows at its expected trend, a real rate of 0.4
percent per year. Second, that ex post the inventory remaining after each quar-
ter’s logging also grows at its expected trend of 1.7 percent per year. The inven-
tory is initially 150,000 cubic meters in the base case. Note that mast of the
allowable timber is cut during the first half of the lease period. The upper curve
shows the optimal cutting rate for an inventory 50 percent larger (225,000 cubic
meters), and the lower curve gives the same information for an inventory 50
percent smaller (75,000 cubic meters). The pattern is similar to the base case
with the cutting rate and period of cutting being increased or decreased, respec-
tively. 11

Il A comparison of the management strategy described in Figute | and in subsequent figures
with the actual practices of the forestry industry would have been informative. Unfortunately, we
were unable to obtain the necessary data.
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Figure 2 illustrates the sensitivity of the cutting rate through time to differ-
ent tree growth rates. The higher the growth rate, the lower is the cutting rate and
the longer the forest lasts. Figure 3 shows that the convenience yield can have an
important impact on the cutting rate. When the convenience yield is high (2.5
percent per quarter or 10 percent per year), there is an incentive to cut the forest
fast since risk-adjusted prices are expected to decrease in the future. Alterna-
tively, when the convenience yield is low, (O percent, there is an incentive to
delay cutting down the trees.

Figure 4 shows that a higher initial price is an incentive to cut the forest
early. Figure 3 illustrates the sensitivity of the cutting rate to the standard devia-
tion of price changes. A higher standard deviation implies a higher option value
of the forest and a greater value to postponing the exercise of the aption to har-
vest the trees,

Figures 6 through 10 illustrate the sensitivity of the initial value of the log-
ging company ten years prior to the maturity of the lease for various initial
prices, inventory levels, and parameters of the stochastic process. As expected,
the value of the forest is an increasing function of the tree growth rates, inventory
levels (Figure @), and the price of trees (Figures 7 and 8). Figure 9 illustrates the
value of the leasehold as a function of the inventory level for different conveni-
ence yields. Value is inversely related to convenience yield. Finally, Figure 10
shows the option value of the forest, Higher price volatilities result in higher
forest values.

2
Cutting &
rate per
gquarter
in
4
thausands
of cubic
metars
2
q [“' ”rrr'lr'lr_rll|Fl'lll'_rr[[r!=ll'll=rlll
40 38 30 25 20 15 10 5
Tirme remairing (in quarters)
—= Dhase Case —— nventory = 225000 e nventory = 75,000
FIGURE 1

Cutting Rate vs. Time to End of Lease for Various Initial [nventory Levels

IV. Summary and Conclusions

A contingent claims approach to capital budgeting may be preferable to
standard methods if uncertainty and management’s strategic reactions to chang-
ing conditions are important. As an example of such a case, we value a forestry
resource in an environment where prices and inventories change stochastically
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Cutting Rate vs. Time to End of Lease for Various Tree Growth Rates
0 I'
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FIGURE 3

Cutting Aate vs. Time to End of Lease for Various Canvenience Yields

through time. Managers can react to adverse conditions by reducing or shutting
down logging operations. The setup is one in which the forest is leased for a fixed
amaunt of time, but the framework can be easily extended to deal with different
situations.

The model jointly determines the value of the forest and the implicit optimal
cutting rate as a function of the stochastic properties of the price of timber and the
firm’s inventory of trees, as well as the time to maturity of the lease. The model
is then applied to a hypothetical white pine forest in Canada.

The model developed gives rise to a nonlinear partial differential equation
that must be solved by numerical methods. We believe that this is the first paper
in the finance literature that solves this type of equation.
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Cutting Rate vs. Time to End of Lease for Various Levels of o,

Obwvious extensions of the analysis are to consider stochastic interest rates
and convenience yields. This would, however, somewhat complicate the numeri-
cal solution procedures. It also would be of interest to extend the problem over a
much longer time horizon in order to consider issues such as optimal reforesta-
tion policies.

Indeed, in focusing on the optimal policy for a short-term private
Jeaseholder, we abstract from a host of problems involving sacial vs. private
optimization, which these methods might illurninate. The prospect of applying
this methodology to general capital budgeting problems is promising, and there
is great scope for future work.
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