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ABSTRACT

We develop a simple approach to valuing risky corporate debt that incorporates
both default and interest rate risk. We use this approach to derive simple closed-form
valuation expressions for fixed and floating rate debt. The model provides a number
of interesting new insights about pricing and hedging corporate debt securities. For
example, we find that the correlation between default risk and the interest rate has
a significant effect on the properties of the credit spread. Using Moody’s corporate
bond yield data, we find that credit spreads are negatively related to interest rates
and that durations of risky bonds depend on the correlation with interest rates. This
empirical evidence is consistent with the implications of the valuation model.

THE TRADITIONAL BLACK-SCHOLES (1973) and Merton (1974) contingent-
claims-based approach to valuing corporate debt has become an integral part
of the theory of corporate finance. In this approach, interest rates are
assumed to be constant, and the default risk of a bond is modeled using
option pricing theory. This framework for valuing risky debt has been applied
in a number of articles including Geske (1977), Ingersoll (1977a, 1977b),
Merton (1977), Smith and Warner (1979), and many others.

One of the drawbacks of this approach is that default is assumed to occur
only when the firm exhausts its assets. This is clearly unrealistic, since firms
usually default long before the firm’s assets are exhausted. In addition,
Jones, Mason, and Rosenfeld (1984) and Franks and Torous (1989) show that
this aspect of the model implies credit spreads much smaller than actual
credit spreads. In an important article, Black and Cox (1976) relax this
assumption and allow default to occur when the value of the firm’s assets
reaches a lower threshold. This feature makes the model consistent with

* Both authors are from the Anderson Graduate School of Management, University of Califor-
nia at Los Angeles. This is a substantially revised version of an earlier working paper entitled
“Valuing Risky Debt: A New Approach.” We are grateful for the comments and suggestions of
Brian Betker, Brad Cornell, Darrell Duffie, Julian Franks, Mark Grinblatt, Robert Heinkel,
David Hirshleifer, Hayne Leland, Andrew Lo, Victor Makarov, Richard Rendleman, Ehud Ronn,
Mark Rubinstein, Chester Spatt, Walter Torous, Bruce Tuckman, Justin Wood, Josef Zechner,
and seminar participants at the Amex Options and Derivatives Colloquium, the University of
British Columbia, the University of California at Berkeley, Duke University, the European
Institute for Financial Analysis and Portfolio Management, the University of Rochester, South-
ern Methodist University, Stanford University, the University of Strathclyde, Texas Christian
University, UCLA, and the European Finance Association and Western Finance Association
meetings. We are particularly grateful for generous financial support by the Milken Institute for
Job and Capital Formation. All errors are our responsibility.

789



790 The Journal of Finance

either net-worth or cash-flow-based insolvency. By incorporating this more
realistic default condition, the Black and Cox model is able to generate credit
spreads more consistent with those observed in corporate debt markets.

Despite this advantage, the Black and Cox model shares some of the other
limitations of the traditional Black-Scholes-Merton framework for valuing
risky debt. Specifically, this framework assumes that interest rates are
constant. This assumption is difficult to justify in a valuation model for risky
fixed-income securities. In addition, this framework assumes that assets are
allocated among corporate claimants according to strict absolute priority
rules if the firm defaults. However, recent evidence by Franks and Torous
(1989, 1994) Eberhart, Moore, and Roenfeldt (1990), LoPucki and Whitford
(1990), Weiss (1990), Betker (1991, 1992), and others shows that strict
absolute priority is rarely upheld in distressed reorganizations.

This article develops a simple new approach to valuing risky debt by
extending the Black and Cox (1976) model in two ways. First, this model
incorporates both default risk and interest rate risk. Second, this approach
explicitly allows for deviations from strict absolute priority. In developing the
model architecture, our objective is to be able to provide tractable valuation
models for risky debt securities. Accordingly, we present the simplest possible
specification for the model rather than the most general. This has the
important advantage of allowing us to derive simple closed-form expressions
for both risky fixed-rate and floating-rate debt. These closed-form expressions
provide a number of new insights about the properties of corporate debt
prices.

We first apply our framework to value risky discount and coupon bonds. We
show that the credit spreads implied by the model are consistent with many
of the properties of actual credit spreads. For example, the model implies
credit spreads comparable in magnitude to actual spreads and allows the
term structure of credit spreads to be either monotone increasing or hump
shaped. An important implication of our results is that credit spreads for
firms with similar default risk can vary significantly if the assets of the firms
have different correlations with changes in interest rates. This property of
the model has the potential to explain why bonds with similar credit ratings
but in different industries or sectors have widely differing credit spreads.
Finally, we show that the properties of high-yield bonds can be very different
from those of less risky debt. For example, the duration or interest rate
sensitivity of a high-yield bond may actually increase as it gets closer to its
maturity date.

We then derive closed-form expressions for the value of risky floating-rate
debt. We find that the price of a floating-rate bond can be an increasing
function of the maturity of the bond in some situations. Similarly, the value
of floating-rate debt can be an increasing function of the level of interest
rates. These results illustrate that the properties of floating-rate debt are
fundamentally different from those of fixed-rate debt. In general, the price of
a floating-rate bond need not equal its par value even on coupon payment
dates because of the risk of default.
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Using Moody’s corporate bond yield averages, we examine whether the
implications of our model are consistent with the actual properties of credit
spreads. As implied by the model, we find that credit spreads are strongly
negatively related to the level of interest rates. Furthermore, changes in
interest rates account for the majority of the variation in credit spreads for
most of the bonds in the sample. This drives home the importance of allowing
for interest rate risk in addition to default risk in valuing risky debt securi-
ties. We also find that the differences in the duration of bonds across
industries and sectors is consistent with the differences in correlations with
changes in the interest rate. These results provide supporting evidence for
the empirical implications of our valuation model.

There are a number of other articles focusing on the valuation of corporate
securities that allow for both default risk and interest-rate risk. These
include Ramaswamy and Sundaresan (1986), Hull and White (1992), Mal-
oney (1992), Jarrow and Turnbull (1992a, 1992b, 1992¢, 1992d), Kim, Ra-
maswamy, and Sundaresan (1993), Ginzburg, Maloney, and Willner (1993),
Shimko, Tejima, and Deventer (1993), Genotte and Marsh (1993), and Nielsen,
Saa-Requejo, and Santa-Clara (1993). This article distinguishes itself from
each of these other contributions in that it is the only one that provides
closed-form valuation expressions for risky coupon bonds as well as risky
floating-rate debt. In addition, it is the only one that jointly allows for (a)
default before the firm exhausts all its assets, (b) complex capital structures
including multiple issues of debt, (c) deviations from strict absolute priority,
and (d) empirical evidence supporting the implications of the model.

The remainder of this article is organized as follows. Section I presents the
basic valuation framework. Section II derives a valuation model for risky
fixed-rate debt and examines its implications for the risk structure of interest
rates. Section III presents the valuation model for floating-rate debt. Section
IV presents the results of the empirical analysis. Section V summarizes the
article and makes concluding remarks.

I. The Valuation Framework

In this section, we extend the Black and Cox (1976) model to develop a simple
continuous-time valuation framework for risky debt that allows for both
default risk and interest rate risk. This framework is then used in later
sections to derive closed-form valuation expressions for a variety of risky
corporate debt securities. The basic assumptions of this framework parallel
those of Black and Scholes (1973), Merton (1974), and Black and Cox (1976),
and are discussed individually below.

AsSsSUMPTION 1: Let V designate the total value of the assets of the firm. The
dynamics of V are given by

dV = uVdt + oVdZ,, 1

where o is a constant and Z, is a standard Wiener process.
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ASSUMPTION 2: Let r denote the short-term riskless interest rate. The dynamics
of r are given by

dr = ({ - Br)dt + ndZ,, (2)

where {, B, and m are constants and Z, is also a standard Wiener process.
The instantaneous correlation between dZ, and dZ, is pdt.

This assumption about the dynamics of r is drawn from the term structure
model of Vasicek (1977). Although consistent with many of the observed
properties of interest rates, these dynamics can allow negative interest rates.
There are several reasons, however, why this assumption may be justifiable
in the context of this model. First, the probability of negative interest rates
occurring is small for realistic parameter values. Second, given that the
current value of r is positive, these dynamics always imply positive expected
future values of r. This is important since the primary effect of r on credit
spreads is through its expected future value. Note that our approach could be
extended to allow for more general interest rate processes, although risky
debt prices would then need to be solved for numerically.

ASSUMPTION 3: The value of the firm is independent of the capital structure of
the firm.

This is the standard assumption that the Modigliani-Miller Theorem holds.
This assumption also implies that changes in capital structure, such as
payments of coupons and principal, have no effect on V. This is easily
satisfied, for example, if coupons and principal payments are financed by
issuing new debt. Implicit in this assumption is the notion that the capital
structure of the firm is held constant over time or that the status quo is
maintained.! This is reasonable in light of the fact that in this frictionless
continuous-time framework, the firm has no incentive to alter its capital
structure.? We allow the capital structure of the firm to consist of a variety of
contingent claims including debt with different coupon rates, priorities, and
maturity dates.

ASSUMPTION 4: Following Black and Cox (1976), we assume there is a thresh-
old value K for the firm at which financial distress occurs. As long as V is
greater than K, the firm continues to be able to meet its contractual obliga-
tions. If V reaches K, however, the firm immediately enters financial distress,
defaults on all of its obligations, and some form of corporate restructuring
takes place.

An important implication of this assumption is that default occurs for all
debt contracts simultaneously. This is realistic since when a firm defaults on

! For a model with dynamic capital structure choice, see Fischer, Heinkel, and Zechner (1989a,
1989b).

2 In the Leland (1994) model, the firm faces taxes and bankruptcy costs that imply an optimal
capital structure. As a result, firms may have incentives to move toward the optimal capital
structure in the Leland model.
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a debt issue, it typically defaults on other issues because of cross-default
provisions, acceleration of principal provisions, or injunctions against making
coupon payments on other debt issues. Although we assume that K is a
constant, which is consistent with the assumption of a stationary capital
structure, we could extend the analysis to allow K to depend on time and the
riskless interest rate or to follow a separate stochastic process. However,
since it is the ratio of V to K, rather than the actual value of K, that plays
the major role in our analysis, allowing a more general specification for K
simply makes the model more complex without providing additional insight
into the valuation of risky debt.?

This definition of financial distress is consistent with both the case where
the firm is insolvent because assets of V = K do not generate sufficient cash
flow to meet current obligations, as well as the case where assets of V=K
imply a violation of minimum net worth or working-capital requirements.
The distinction between flow-based and stock-based insolvency is discussed in
Wruck (1990) and Kim, Ramaswamy, and Sundaresan (1992).

Since financial distress is triggered when V = K, a reorganization or
bankruptcy is simply a mechanism by which total assets of K are allocated to
the various classes of corporate claimants. There are a variety of ways in
which a corporate restructuring can occur including a Chapter 7 liquidation,
a Chapter 11 reorganization, a Chapter 11 liquidation, or a private debt
restructuring.*

The traditional approach to valuing corporate securities assumes that strict
absolute priority holds. However, a growing amount of evidence shows that
absolute priority rules are frequently violated in corporate restructurings.
For example, Franks and Torous (1989) find that absolute priority is violated
in 78 percent of the bankruptcies in their sample. Similar percentages are
found by Eberhart, Moore, and Roenfeldt (1990) and Weiss (1990). In addi-
tion, recent research suggests that the actual payoff to a bondholder in a
reorganization depends on a host of exogenous variables such as firm size,
the bargaining power of the bondholders, the existence of an equity commit-
tee, and the strength of ties between managers and shareholders.® Several
recent articles attempt to model some of the elements of the bargaining game
among corporate claimants during financial distress and incorporate them
into a model for risky debt prices. These include Anderson and Sundaresan
(1992), Mella and Perraudin (1993), and Leland (1994). Although insightful,
these models are limited in their ability to capture the actual properties of
corporate debt, since they do not allow interest rates to be stochastic.

8 Black and Cox (1976) assume that the default threshold is of the form Ke°T rather than a
constant. This time dependence of the threshold could easily be incorporated into a more general
version of our model.

* For a discussion of these alternatives, see Franks and Torous (1989), Gilson, John, and Lang
(1990), and Wruck (1990). ,

% See Weiss (1990), LoPucki and Whitford (1990), and Betker (1992).



794 The Journal of Finance

Rather than trying to model the complex bargaining process among corpo-
rate claimants during a restructuring or bankruptcy, we take the allocation
of the firm’s assets as exogenously given.

ASSUMPTION 5: If a reorganization occurs during the life of a security, the
security holder receives 1 — w times the face value of the security at maturity.

An equivalent way of specifying the payoffs in the event of a default would
be to assume that the security holder receives N riskless zero-coupon bonds
at the time of the default, where N equals 1 — w times the face amount of
the debt, and where the maturity date of the riskless bonds is the same as for
the original debt. This equivalent specification is consistent with typical
reorganizations in which security holders receive new securities rather than
cash in exchange for their original claims. We note that there are other
possible specifications for the payoff in reorganization. For example, w could
be allowed to depend on the remaining maturity of the bond or even to
depend on the level of interest rates at the time the firm defaults.

The factor w represents the percentage writedown on a security if there is
a reorganization of the firm during the life of the security. For limited
liability securities, w < 1. In general, w will differ across the various bond
issues and classes of securities in the firm’s capital structure. When w = 0,
there is no writedown and the security holder is unimpaired. When w = 1,
the security holder receives nothing in a restructuring. If w < 0, a security
holder actually benefits from a restructuring.® Note that nothing in this
assumption precludes w from being viewed as the expected outcome from a
game theoretic model of the bargaining process.

In practice, the value of w for a particular class of securities could be
estimated from actuarial information. For example, Altman (1992) finds that
the average writedown w for secured, senior, senior subordinated, cash-pay
subordinated, and non-cash-pay subordinated debt for a sample of defaulted
bond issues during the 1985 to 1991 period is 0.395, 0.477, 0.693, 0.720, and
0.805, respectively. Franks and Torous (1994) find that the average write-
down w for secured debt, bank debt, senior debt, and junior debt for a sample
of firms that reorganized under Chapter 11 during the 1983 to 1990 period is
0.199, 0.136, 0.530, and 0.711, respectively. Similar results are obtained by
Betker (1992). The only constraint on the value of w is the adding-up
constraint that the total settlement on all classes of claims cannot exceed K.’

Note that even when firms have many issues of debt outstanding, the
bonds are usually grouped into a small handful of categories for purposes of
reorganization. Thus, only two or three different values of w are usually

% As shown by Franks and Torous (1989) and LoPucki and Whitford (1990), this situation can
actually occur. In most cases, this results from the bondholder receiving pendency interest at a
rate higher than the coupon rate of the bond during the period between the default and the
execution of the reorganization plan. In other cases, a settlement made on the basis of the face
amount of a long-maturity low-coupon rate bond might benefit the bondholder because of the
effective shortening of the maturity date.

" Included in these claims would be any administrative and priority claims such as wages,
taxes, and debtor-in-possession financing.
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necessary in valuing a firm’s debt. For example, on December 1992, General
Motors Acceptance Corp. had 53 outstanding long-term debt issues listed in
Moody’s Bank and Finance Manual. Of these, 42 issues were described as
either not secured, or not secured and ranking pari passu with all other
unsecured obligations of the company. The priority of the remaining 11 issues
was not described, but would likely be the same as that of the other 42 issues,
since they were listed simply as notes or debentures.

Although we assume that w is a constant, this framework could easily be
extended to allow for stochastic values of w, provided that the risk of w is
unsystematic. Since w represents the outcome of the bargaining process, the
assumption that w is unsystematic may not be unreasonable. Because w
affects payoffs linearly, allowing w to be random simply requires that we
replace w with its expected value in the valuation expressions.

ASSUMPTION 6: We assume perfect, frictionless markets in which securities
trade in continuous time.

This assumption allows us to invoke standard results to derive the funda-
mental partial differential equation defining the price H(V, r, T') of any
derivative security with payoff at time T' contingent on the values of V and r.
This partial differential equation is

o2 n?
?V2HVV + ponVHy, + ?HN +rVHy + (a« — Br)H, — rH = H;, (3)

where a represents the sum of the parameter ¢ and a constant representing
the market price of interest rate risk. As shown by Campbell (1986), this
market price of interest rate risk can be derived within a simple general
equilibrium framework in which the representative investor has logarithmic
preferences. The value of the derivative security is obtained by solving
equation (3) subject to the appropriate maturity condition.

The value of a riskless discount bond plays an important role in the
derivation of valuation expressions for corporate securities. In this frame-
work, the value of a riskless discount bond D(r, T) is given by the Vasicek
(1977) model

D(r,T) = exp(A(T) — B(T)r), 4)
where
7’ «
A(T) = (232 - E)T

7 o«

+ FERE (exp(—BT) - 1)
n?

—(4—33)(9XP(—2[3T) -1,

1 — exp(—BT)

B(T) =
() 3
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II. Valuing Fixed-Rate Debt

In this section, we derive valuation expressions for risky discount and
coupon bonds and examine their implications for the term structure of credit
spreads. Let P(V, r, T) denote the price of a risky discount bond with
maturity date T'. The payoff on this contingent claim is 1 if default does not
occur during the life of the bond, and 1 — w if it does. This payoff function
can be expressed as

1 - wa <T> (5)
where I is an indicator function that takes value one if V reaches K during
the life of the bond, and zero otherwise. More formally, I takes value one if

the first-passage time y of V to K is less than or equal to 7. In addition, let
X denote the ratio V/K.

PROPOSITION 1: The value of a risky discount bond is

P(X,r,T)=D(r,T) —wD(r,TYQX,r,T), 6)
where
Q(X,ryT’n) = Z qi9
i=1
q; = N(a,),
i-1
g; =N(a;) — ) q;N(b,)), i=2,3,...,n,
j=1
-InX-MGT/n,T)
%= JSGT/m) ’
b = M(jT/n,T) - MGT/n,T)
Yo JSGT/n) - S(jT/n)
and where
2 2
a — pon n o
M@, T) = (T - ? - —2—)t
2
poM n
+ —B—E— + —2——5—3-)exp(—BT)(exp(Bt) -1)
r e n?
+ 'E — ? + F aa - exp(—Bt))
n?
~\ 25 )exp(—BT)(l — exp(—Bt)),
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2
pan M
S(t)=(—B~+F+a2 t
2 2
—(%+B—Z)(1—exp(—3t))
n?
+ 2—B3)(1—exp(—23t)).

The term Q(X, r, T') is the limit of Q(X, r, T, n) as n — . N(-) denotes the
cumulative standard normal distribution function.

Proof: See Appendix.

This closed-form expression involves nothing more complex that the stan-
dard normal distribution function. Note that the g; terms in equation (6) are
defined recursively, which makes it straightforward to program this valua-
tion expression and to calculate risky discount bond prices. Although Q(X, r,
T) is defined as the limit of Q(X, r, T, n), the convergence is rapid;
numerical simulations show that setting n = 200 results in values of Q(X, r,
T) and Q(X, r, T, n) that are virtually indistinguishable.

Proposition 1 shows that the value of a risky discount bond depends on V
and K only through their ratio X. Thus, X provides a summary measure of
default risk of the firm and can be viewed as a proxy variable for the credit
rating of the firm. An important implication of this is that risky debt can be
valued without having to separately specify the values of V and K. This
feature dramatically simplifies the practical implementation of the model.
From equation (6), the price of the risky discount bond is an explicit function
of X, r, and T, and depends on the parameters w, «, 8, 2, o2, and p.

This closed-form expression has an intuitive structure. The first term in
equation (6) represents the value the bond would have if it were riskless. The
second term represents a discount for the default risk of the bond. The
discount for default risk consists of two components. The first component,
wD(r, T), is the present value of the writedown on the bond in the event of a
default. The second component, Q(X, r, T), is the probability—under the
risk-neutral measure—that a default occurs. It is important to recognize that
the probability of a default Q(X, r, T') under the risk-neutral measure may
differ from the actual probability of a default. This is because the upward
drift of the actual process for V in equation (1) is uV, while the upward drift
of the risk-neutral process depends on the value of r and is independent of u.

Since X is a sufficient statistic for default risk in this model, we do not
need to condition on the pattern of cash payments to be made prior to the
maturity date of a bond in order to value the bond. Intuitively, this is because
we assume that financial distress triggers the default of all of the firm’s debt.
In contrast, the traditional approach implicitly assumes that a discount bond
can only default at its maturity date. Because default risk is captured by a
common state variable X in this model, bonds can be valued by conditioning
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.on X directly rather than on the default status of other bonds. An important
implication of this is that coupon bonds can be valued as simple portfolios of
discount bonds.® This value additivity feature is a major reason why this
approach is significantly more tractable than the traditional approach to
valuing risky fixed-rate debt securities.

The price of a risky bond is an increasing function of the default-risk
variable X. This is intuitive since the higher the value of X, the further the
firm is from the default threshold and the smaller the discount for default
risk. Differentiation shows that bond values are decreasing functions of w.
This is because an increase in w implies that the writedown on a bond in the
event of financial distress is larger. Similarly, as T increases, the value of
D(r, T) decreases and the risk-neutral probability of a default (X, r, T)
increases. Both of these effects tend to decrease the value of the risky bond.
Hence, risky bonds are decreasing functions of T

In general, the price of a risky bond is a decreasing function of r. Further-
more, the sensitivity of the price to changes in r provides a measure of the
duration of the bond. As shown by Chance (1990) and others, the duration of
a risky fixed-rate bond is shorter than for an otherwise riskless bond. This
property also holds for the fixed-rate bond prices implied by this model. The
reason for this is that riskless interest rate r plays two roles in the valuation
of risky debt. In particular, an increase in r results in a lower value for D(r,
T). However, an increase in r implies that the upward drift of the risk-neu-
tral process for V is higher. This means that as r increases, V is expected to
drift away from K at a faster rate, which reduces the risk-neutral probability
of a default.

Another interesting implication of this model is that the duration of a risky
discount bond need not be a monotone-increasing function of its maturity. For
example, for a moderate level of default risk, the duration of a zero-coupon
bond can first increase with T', level out, and then decrease with T'. This also
serves to illustrate how different the properties of risky bonds are from those
of riskless bonds. In fact, for values of X and w very close to one, the effect of
r on the drift can offset the bond-price effect, and a risky bond can be an
increasing function of r. Thus, the duration of very risky fixed-rate debt can
actually become negative. Note that this occurs only for extremely risky debt.
This is shown in Figure 1, which graphs the price of a zero-coupon bond when
the value of X is very close to the default threshold. The value of the
zero-coupon bond is an increasing function of r for maturities less than three
years. In addition, the correlation between the assets of the firm and changes
in the interest rate can be shown to have a major effect on the duration of
risky fixed-rate debt.

8 Geske (1977) shows that in the Merton (1974) framework, the value of a coupon bond is
related to the value of a compound option. Determining the value of this compound option
requires evaluating a N-dimensional integral, where N is the number of remaining coupon

payments.
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Figure 1. Discount bond prices as a function of the maturity of the bond. The
parameter values used are X = 1.05, w = 0.9, 0% = 0.04, p = —0.25, a = 0.06, 8 = 1.00, and
2
n* = 0.001.

Given the explicit solution for risky fixed-rate debt, we can solve for the
credit spread. This is defined as the difference between the yields of a risky
and a riskless bond with identical maturity dates and coupon rates. Figure 2
graphs the term structure of credit spreads for an eight percent coupon bond
for various values of X. The interest rate parameter values used in these
examples are chosen to closely match the observed moments of the short-term
interest rate during the past thirty years. As shown, the term structure of
credit spreads can be monotone increasing as well as hump shaped. This
corresponds well with recent empirical evidence by Sarig and Warga (1989),
which suggests that the term structure of credit spreads is monotone increas-
ing for bonds with high ratings, and humped shaped for bonds with low
ratings. In addition, the magnitudes of the credit spreads implied by this
model are consistent with the average levels observed in debt markets. For
example, Figure 2 shows that the average credit spread for a ten-year eight
percent coupon bond with X = 2.0 is about 60 basis points. This is close to
the average spread of 48 basis points for Moody’s Aaa-rated industrial bond
yield average during the 1977 to 1992 period.

Figure 3 graphs the term structure of credit spreads for varying values of
w. As expected, the credit spread is an increasing function of w. However, as
the writedown w increases, the term structure of credit spreads can take on
different shapes. For example, when w = .25, the maximum credit spread
occurs for a bond with a maturity of about eight years. When w = 0.75,
however, the maximum credit spread occurs for a bond with a maturity of
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Figure 2. Credit spreads for an 8 percent bond for different values of X. The
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Figure 3. Credit spreads for an 8 percent bond for different values of w. The
parameter values used are X = 2.0, r = 0.04, 02 = 0.04, p= —0.25, @ = 0.06, B = 1.00, and
2
n* = 0.001.
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nearly ten years. Since w is related to priority, differences in the credit
spreads shown in Figure 3 can be viewed as the term structure of priority.
Note that priority matters most for medium-term bonds.

The relation between credit spreads and the level of the short-term interest
rate is shown in Figure 4. As discussed earlier, an increase in r tends to
reduce the probability of a default because of the effect on the drift of the
risk-neutral process for V. Thus, an increase in r results in a decrease in the
credit spread. The magnitude of the decrease in the credit spread, however,
depends on the value of p. This empirical implication of the model will be
examined in Section V of this article.

Figure 5 graphs the credit spread for different values of the variance of the
firm’s assets o 2. As o2 increases from 0.04 to 0.09, the maximum credit
spread increases from approximately 60 basis points to approximately 300
basis points. Note that the maximum credit spreads occur at different maturi-
ties as o2 increases.

Figure 6 plots the relation between the term structure of credit spreads and
the correlation coefficient between asset returns and changes in the interest
rate. As shown, the effect of correlation can be very significant. For example,
the credit spread for an 8 percent bond with a maturity of eight years widens
by 27 basis points as the correlation increases from —.50 to +.50. The
intuition for why the credit spread increases with p is that the risk-neutral
distribution of future values of V depends on r. Thus, the variance of changes
in the value of the firm during the life of the bond depends on the correlation
between asset returns and changes in the interest rate. When p is positive,
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the covariance term adds to the total variance, and therefore, increases the
probability that the critical default threshold is reached during the life of the
bond. These results are consistent with empirical evidence that credit spreads
for Aaa-rated bond vary across sectors. For example, the average yield for
Moody’s Aaa-rated industrial bond index during the 1977 to 1992 period is 45
basis points less than the same measure for Aaa-rated public utility bonds.
The relation between credit spreads and correlations will also be examined in
Section V.

An important advantage of this model is that it can be easily implemented
in practice. For example, when firms have multiple issues of debt outstand-
ing, the value of X can be implied from the market price of the most liquid
bond and then used to value the other bonds. This is similar to the familiar
technique of solving for the implied variance of an at-the-money option and
using it to price the remaining options. The values of o2 and p, since they
are determined by the nature of the firm’s assets, can be determined on the
basis of historical firm or industry data, or could even be implied along with
the value of X from market data. The value of r and the three term structure
parameters a, B, and n? are easily obtained from term structure data.’

ITI. Valuing Floating-Rate Debt

In this section, we derive valuation expressions for floating-rate coupon
payments. The value of a floating-rate note or bond can then be obtained by
summing the values of the floating-rate coupons and the value of the termi-
nal principal payment as given in the previous section. Let F(X, r, 7, T')
represent the value of one floating-rate coupon payment to be made at time
T, where the floating rate is determined at time 7, + < 7. The payoff on this
claim at time 7 is the value of r at time 7 if default does not occur prior to 7',
and (1 — w)r if it does. This payoff function can be expressed as

r(1 —wl,_rp), @)

where I is again the indicator function. Note that the payoff received at time
T is simply the value of r at time 7 multiplied by the payoff function for a
risky discount bond. This similarity will allow us to make direct comparisons
between fixed- and floating-rate payments.

PROPOSITION 2: The value of a risky floating-rate payment is

F(X,r,7,T)=P(X,r,T)R(r,7,T) + wD(r,T)G(X,r,7,T), (8

9 For example, see Chan et al. (1992).
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where

R(r,7,T) = r exp(—Br)

+(“ "2)(1 (- Br))
3 BZ exp(—B7

232
n C(7,iT/n)

GXoror.Ton) = X di=gz -

2
+ (-n—)exp(—BT)(exp( Br) — exp(—B1)),

MGT/n,T),
and where

2

C(r,t) = (% + -g—z)exp(—ﬂf)(exp(ﬁmin(*r,t)) -1)
2

357

The term G(X, r, v, T) is the limit of G(X, r, 7, T, n) as n — ». The
remaining terms are as defined in Proposition 1.

exp(— B7)exp(— Bt)(exp(2 B min(r, ¢)) — 1).

Proof: See Appendix.

The value of a floating-rate coupon payment is an explicit function of X, r,
7, and T'. The ratio X is again a sufficient statistic for the riskiness of the
firm. Numerical simulations show that G(X, r, 7, T, n) converges rapidly to
GX,r,r,T).

This closed-form expression for F(X, r, 7, T') parallels that for P(X , r, T).
From equation (7), the floating-rate coupon payoff at time T is the value of r
at time 7 multiplied by the payoff function for a risky discount bond.
Consistent with this, the first term in equation (8) is simply the price of a
risky discount bond times the expected value of the value of r at time
under the risk-neutral process. However, since r is correlated with X under
the valuation measure, the price of a risky floating-rate payment must reflect
this correlation. The second term in equation (8) adjusts for this correlation
through the term C(r, ¢) which is the covariance of the value of r at time 7
with the value of In X at the time ¢ of its first passage to zero. Note that the
correlation between r and X will generally not equal zero even if the
instantaneous correlation coefficient p is zero. This is because the drift term
for the risk-neutral process for X depends on r, which induces correlation
between r and X when measured over discrete intervals of time.°

This valuation expression has many important implications for the values
of floating-rate securities. To illustrate, recall that the price of a fixed-rate

10 The effects of temporal aggregation on moments of continuous-time processes are discussed
in Longstaff (1989).



Approach to Valuing Risky Fixed and Floating Rate Debt 805

coupon payment is a decreasing function of T. In contrast, the value of a
floating-rate coupon payment can be an increasing function of T. This is
shown in Figure 7, which graphs the price of the floating-rate coupon
payment as a function of 7. The intuition for this property is that when r is
below its long-run average value, the expected value of the payoff equation (7)
is an increasing function of T since r is mean-reverting. As T increases,
however, the discount factor applied to the payoff tends to reduce the value of
the floating-rate payment. For small values of T, the first effect can offset the
second effect, resulting in a positive relation between the value of the
floating-rate payment and 7. As T — o, however, the value of the floating-rate
payment approaches zero.

Another surprising implication of this model is that the value of the
floating-rate coupon payment can be an increasing function of r. This is also
shown in Figure 7. One reason for this is that an increase in r again has the
effect of increasing the expected payment while reducing the discount factor
applied to the payoff. For small values of T, the first effect can dominate the
discount-factor effect. A second reason for this property is related to the
correlation between changes in interest rates and the returns of the firm.
When the correlation is positive, an increase in r implies that larger values
of X are more likely, which decreases the default risk of the firm and leads to
an increase in the value of the floating-rate coupon payment. This feature
illustrates that the correlation between interest rates and the returns of the
firm can play a significant role in determining the values of risky corporate
debt.
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Figure 7. Values of floating-rate coupon payments for different values of r. The
parameter values used are X = 2.0, w = 0.50, 02 = 0.04, p = —0.25, a = 0.06, B =1.00, 7% =
0.001,and 7=T.
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To provide some additional insights into the pricing of risky floating-rate
debt, we compute the ratio of the price of a risky floating-rate coupon
payment to that of a riskless floating-rate coupon payment. The ratio pro-
vides a measure of percentage size of the discount for risk. The ratio of the
risky to riskless prices is shown in Figure 8 for different horizons and values
of X. As illustrated, the shape of the relation between risky and riskless
floating-rate payments depends critically on the value of X. The value of the
ratio is also affected by the correlation coefficient p.

This expression for valuing floating-rate coupon payments can easily be
extended to value coupon payments that are tied to a specific yield rather
than to r, or to a specific yield plus a spread. For example, from equation (4),
the yield on a ¢-maturity riskless bond is given by B(¢)r/t — A(t)/t, which is
a linear function of r. Thus, the value of a claim that pays the z-maturity
yield determined at time 7 as a floating-rate coupon at time T is simply
BW)F(X, r, 7, T)/t — A@#)P(X, r, T)/t. Again, the value of a stream of
floating-rate payments equals the sum of the values of the individual pay-
ments.

IV. Empirical Analysis

The valuation framework for risky debt presented in this article has many
empirical implications for fixed-income markets. One of the most important of
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these is that credit spreads for corporate bonds are driven by two factors: an
asset-value factor and an interest-rate factor. Furthermore, the correlation
between the two factors plays a critical role in determining the properties of
credit spreads. In contrast, the traditional approach implies that credit
spreads depend on only an asset-value factor.

To provide some evidence about the properties of actual credit spreads for
corporate bonds, we collected monthly data for Moody’s industrial, utility,
and railroad corporate bond yield averages for the 1977 to 1992 period as well
as the corresponding yields for 10-year and 30-year Treasury bonds. Since the
bonds used in the Moody’s yield averages have varying -maturities, we
compute the average maturity of the bonds in the sample using the average-
maturity data reported in Moody’s Bond Record. We then compute credit
spreads by taking the average of the 10-year and 30-year Treasury yields
that matches the maturity of the corporate yield average for that month, and
then subtracting the Treasury average from the corporate yield.!'! For most
bonds, 190 months of data are available. For the Aaa-rated utility yields, data
for ten months are missing. In addition, the railroad yield average was
discontinued in 1989, resulting in a time series of 149 monthly observations
for these bonds. In addition to computing credit spreads, we also calculate
relative credit spreads by dividing the corporate yield by the corresponding-
maturity Treasury yield.

Table I presents summary statistics for the credit spreads and relative
credit spreads stratified by industry and credit rating. As expected, credit
spreads increase in both absolute and relative terms as the credit rating of
the bond decreases. In general, the same is true for the standard deviation of
the credit spread. It is important to observe that bonds with the same credit
rating but from different industries or sectors need not have similar credit
spreads. This demonstrates that credit rating is not a sufficient statistic for
the risk of a corporate bond.

To examine whether the properties of credit spreads are consistent with
the implications of our two-factor framework, we regress changes in credit
spreads on proxies for the two factors. As a proxy for the changes in the
interest rate, we use changes in the 30-year Treasury yield. As a proxy for the
return on the underlying assets, we use the returns computed from Standard
and Poor’s industrial, utility, and railroad stock indexes. Let AS denote the
change in the credit spread. Similarly, let AY denote the change in the
30-year Treasury yield and let I denote the return on the appropriate equity
index. The regression equation is given by

AS =a + bAY + cl + &, )

where a, b, and c are regression coefficients.

' Since changes in the 10-year and 30-year Treasury yields are almost perfectly positively
correlated, the empirical results are robust to the way that the 10-year and 30-year Treasury
yields are weighted in computing credit spreads.
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Table I

Summary Statistics for the Credit Spreads in Moody’s Utility,

Industrial, and Railroad Bond Yield Averages
The credit spread is the difference between the corporate yield and the yield for a Treasury bond
with the same maturity. The relative spread is the ratio of the corporate yield to the yield for a
Treasury bond with the same maturity. Yields and spreads are in percentage terms. The sample
period is from April 1977 to December 1992.

Mean of Std. Dev. of Mean of Std. Dev. of No. of
Credit Spread Credit Spread Relative Spread Relative Spread Observations
Aaa Utilities ‘0.930 0.349 1.0975 0.034 180
Aa Utilities 1.276 0.431 1.1314 0.038 190
A Utilities 1.660 0.667 1.1696 0.054 190
Baa Utilities 2.077 0.758 1.2116 0.057 190
Aaa Industrials 0.481 0.373 1.0560 0.051 190
Aa Industrials 0.809 0.452 1.0888 0.059 190
A Industrials 1.231 0.580 1.1321 0.071 190
Baa Industrials 1.835 0.654 1.1972 0.084 190
Aa Railroads 0.191 0.869 1.0284 0.092 149
A Railroads 0.794 0.770 1.0887 0.088 149
Baa Railroads 1.240 0.821 1.1337 0.097 149

The two-factor model has a number of interesting implications for the
coefficients in these regressions. First, the fixed-rate valuation expression in
equation (6) can be shown to imply that

b <O0. (10)

Thus, the model implies that credit spreads narrow as interest rates increase.
The reason for this counterintuitive implication is that an increase in the
interest rate increases the drift of the risk-neutral process for V, which in
turn makes the risk-neutral probability of a default lower. Consequently, the
credit spread is inversely related to the level of interest rates in this model.
In addition, the inverse relation is more pronounced for firms with higher
default probabilities.

A second implication of the model is that credit spreads are negatively
related to returns on the firm’s assets or equity,

c <0. (11)

The reason for this is simply that an increase in the value of a firm’s assets or
equity decreases the probability that the default boundary will be reached.
Again, this negative relation between credit spreads and returns should be
stronger for firms with higher default probabilities.

Finally, differentiating credit spreads implied by equation (6) numerically
shows that the interest-rate sensitivity of credit spreads, holding X fixed,
increases with the value of p. The intuition for why the interest-rate sensitiv-
ity of credit spreads increases with p is similar to the intuition why the credit
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spread itself increases with p. When p is negative, changes in r tend to be
reversed by changes in X. Thus a change in r has less of an effect on the
credit spread than when the value of p is zero or positive. The correlation
with changes in the 30-year Treasury yield is —0.5894 for the returns on the
utility stock index, —0.2652 for the returns on the industrial stock index, and
—0.1609 for the returns on the railroad stock index. Since b measures the
interest-rate sensitivity of credit spreads, this implies that the value of b
estimated for utility spreads should be closer to zero than the value of b
estimated for industrial spreads, which in turn should be closer to zero than
the value of b estimated for railroad spreads. Thus, we can test this implica-
tion of the two-factor model by comparing the values of b across bonds with
different values of p but with similar values of c.

Table II reports the regression results. The empirical results appear consis-
tent with the implications of the two-factor model. The estimated coefficients
b are negative for each of the 11 credit spreads. With the exception of the
Aaa-rated utility bonds, all of the estimates of b are statistically significant.
The t-statistics for the estimates of 4 for the industrial and railroad bonds
are all in excess of twelve.

The magnitude of the estimates of b implies that the relation between
credit spreads and interest rates is economically important as well as statisti-
cally significant. For example, the regression results imply that a 100-basis-
point increase in the 30-year Treasury yield reduces Baa-rated utility credit
spreads by 18.4 basis points, Baa-rated industrial credit spreads by 62.6 basis
points, and Baa-rated railroad credit spreads by 82.3 basis points. This effect
is illustrated in Figures 9, 10, and 11, which graph changes in Baa-rated
credit spreads for utility, industrial, and railroad bonds against changes in
the 30-year Treasury yield. The net effect of this negative relation between
credit spreads and interest rates is to make the duration of corporate bonds
shorter than would be the case for Treasury bonds. The reason for this is that
an increase in the riskless rate is partially offset by a decline in the credit
spread, implying that the change in price for a risky bond is less than for a
riskless bond. As implied by the model, the coefficient b generally decreases
with the credit rating of the bonds. Exceptions include the Baa-rated utility
and A-rated railroad credit spreads.

Table II also shows that all of the estimates of ¢ are negative. In addition,
most of the estimates are statistically significant although not as significant
as the estimates of . With the exception of the railroad credit spreads, the
estimates of ¢ decline monotonically with the credit rating of the bonds. The
economic magnitude of these estimates is also important. For example, a 10
percent return, I = 0.10, reduces Baa-rated utility credit spreads by 16.2
basis points, Baa-rated industrial credit spreads by 20.2 basis points, and
Baa-rated railroad credit spreads by 5.9 basis points. These results are
consistent with the evidence of Jones, Mason, and Rosenfeld (1984), who find
that equity returns are related to prices of below-investment-grade bonds,
and argue that allowing interest rates to be stochastic may improve the
performance of the traditional model.
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CHANGE IN CREDIT SPREAD

& T

2 45 1 05 0 05 1 15 2
CHANGE IN TREASURY YIELD
Figure 9. Plot of monthly changes in the credit spread for Moody’s index of Baa-rated
utility bonds as a function of monthly charges in the 30-year Treasury yield for the
1977 to 1992 period. Spreads and yields are multiplied by 100.
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Figure 10. Plot of monthly changes in the credit spread for Moody’s index of Baa-
rated industrial bonds as a function of monthly changes in the 30-year Treasury yield
for the 1977 to 1992 period. Spreads and yields are multiplied by 100.



812 The Journal of Finance

N

-
(2]
f
"
"

sy
L

o
Q

S
Q@

CHANGE IN CREDIT SPREAD
= o

L

T T T

45 -1 05 0 05 1 15 2
CHANGE IN TREASURY YIELD
Figure 11. Plot of monthly changes in the credit spread for Moody’s index of Baa-
rated railroad bonds as a function of monthly changes in the 30-year Treasury yield
for the 1977 to 1989 period. Spreads and yields are multiplied by 100.
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These results for & and ¢ provide clear evidence against the traditional
approach to valuing risky debt in which the interest rate is assumed to be
constant, and firm value is the only factor determining credit spreads. In fact,
the variation in credit spreads due to changes in the level of interest rates is
more important for these investment-grade bonds than the variation due to
changes in the value of the firm. To see this, note that the standard deviation
of monthly changes in the 30-year Treasury yield during the sample period is
36.8 basis points. Similarly, the standard deviations of monthly returns for
the utility, industrial, and railroad stock indexes are 0.029, 0.036, and 0.053
respectively. Multiplying these values by the parameter estimates b and ¢
implies that a one-standard-deviation increase in the 30-year yield reduces
the Baa-rated utility credit spread by 6.8 basis points, while a one-standard-
deviation positive return for the utility index reduces the credit spread by 4.7
basis points. The corresponding measures for the Baa-rated industrial credit
spread are 23.1 basis points and 7.3 basis points, and the corresponding
measures for the Baa-rated railroad credit spread are 30.3 basis points and
3.1 basis points.

The third implication of the two-factor model focuses on the relation
between the values of b and the correlation coefficient p, holding ¢ fixed. As
shown in Table II, the implications of the model appear to be supported by
the regression estimates. For example, the value of ¢ is roughly comparable
across Aaa-rated utility and industrial and Aa-rated railroad bonds. The
corresponding ranking of b coefficients for these bonds is precisely as implied
by the two-factor model. Similar results hold for the other rating categories.
Casual observation of Figures 9, 10, and 11 clearly shows that the interest
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rate sensitivity of credit spreads is as predicted by the model. These results
suggest that the correlation between asset returns and changes in the
interest rate has an important effect on the interest-rate sensitivity of credit
spreads, which in turn is the major source of variation in the credit spreads of
these investment-grade bonds. Equivalently, these results imply that the
correlation coefficient p is major determinant of a risky bond’s duration.

Finally, it is important to acknowledge that the two-factor model does not
capture all of the variation in credit spreads. This is particularly true for
utility bonds where the R?2s for the regressions range from 0.015 to 0.146. For
the other bonds, however, the regression R”s are quite high and range from
0.459 to 0.742. Thus, the majority of the variation in credit spreads is
captured by the two-factor model for these bonds. Note that the R2%s are
generally higher for lower-rated bonds.

To provide additional insights into the properties of credit spreads, we also
regress changes in relative credit spreads on percentage changes in the
30-year Treasury yield as well as the returns on the various stock indexes.
Let AR be the change in the relative credit spread and let PY be the
percentage change in the 30-year Treasury yield. Table III reports the results
from estimating the regression

AR =qa +bPY + cl + &. (12)

The implications of the two-factor model for the regression parameters can be
shown to be similar to those described earlier.

In general, the results from this regression parallel those reported in Table
II. If anything, the implications of the two-factor model are more strongly
supported by these results. In particular, the estimates of & now decrease
monotonically as we move from higher to lower credit ratings. Similarly, the
relation between b and the correlation coefficient p, holding ¢ fixed, is even
more striking. One major difference between the two regressions is that the
R2?s in Table III are generally much higher than those in Table II. For
example, the two-factor model is able to explain 65 and 77 percent of the
variation in the relative spreads of Baa-rated industrial and railroad bonds.
Similarly, this regression specification now allows the two-factor model to
explain more than 38 percent of the variation in the relative spreads of
Baa-rated utility bonds.

V. Conclusion

This article develops a simple new framework for valuing risky corporate
debt that incorporates both default risk and interest-rate risk. We apply this
model to derive closed-form valuation expressions for fixed-rate and floating-
rate debt. An important feature of our approach is that it can be applied
directly to value risky debt when there are many coupon payment dates or
when the capital structure of the firm is very complex. In addition, this
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approach allows us to relax the assumption of strict absolute priority which
underlies the traditional approach to valuing risky debt.

A number of important insights about the valuation of risky debt emerge
from this analysis. We show that the correlation of a firm’s assets with
changes in the level of the interest rate can have significant effects on the
value of risky fixed-income securities. We also show that the term structure
of credit spreads can have a variety of different shapes. In addition, our
model implies that credit spreads are negatively related to the level of
interest rates. Finally, our model has many implications for hedging the
interest rate and default risk of corporate debt.

The empirical results suggest that the implications of this valuation model
are consistent with the properties of credit spreads implicit in Moody’s
corporate bond yield averages. In particular, credit spreads are negatively
related to the level of interest rates. Furthermore, differences in credit
spreads across industries and sectors appear to be related to difference in
correlations between equity returns and changes in the interest rate. We also
find that changes in interest rates account for more of the variation in credit
spreads for investment-grade bonds than changes in the value of the assets of
the firm. The results provide strong evidence that both default risk and
interest rate risk are necessary components for a valuation model for corpo-
rate debt.

Finally, we observe that while traditional approaches to modelling risky
debt provide important conceptual insights, they have not provided practical
tools for valuing realistic types of corporate securities. The primary advan-
tage of this model is that it is easily applied to all types of corporate debt
securities and, therefore, can be used to provide specific pricing and hedging
results rather than just general implications. In particular, the model pro-
vides a simple theoretical benchmark against which the observed properties
of risky corporate debt prices can be compared. Future research should focus
on testing whether this two-factor model is able to explain the actual level of
corporate bond yields using detailed cross-sectional and time-series data for
individual bonds and firms.

Appendix

Proof of Proposition 1. Let P(X, r, T) = D(r, TX1 — wQ(X, r, T)). Differ-
entiation shows that equation (3) is satisfied if Q(X, r, T') is the solution to

o? n?
7X2QXX + PO"’IXQXr + —Z—er + (7' - PO"’IB(T))XQX

+(a— Br—n’B(T)Q, - Q; =0, (A1)

subject to the initial condition Q(X, r, 0) = I, 7. Using the results in

Friedman (1975), Q(X, r, T) is the probability that the first passage time of
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In X to zero is less than T, where probabilities are taken with respect to the
time-dependent processes

dinX=(r-0%/2 — ponB(T - t))dt + o0dZ,, (A2)
dr = (a — Br — n’B(T - t))dt + ndZ,. (A3)

Integrating the dynamics for r from time zero to time 7 implies that

a n?
r,=rexp(—Br) + E - —ﬁ—g)(l — exp(~—pB7))

2

+
2p2

exp(— BT )(exp( Br) — exp(—B7))

+ nexp(—Br) [0 "exp( Bs) dZ,. (A4)

Integrating the dynamics for In X, substituting in for the value of r from the
above equation, and evaluating the resulting double integral by applying
Fubini’s Theorem implies that

In Xp =In X + M(T,T) + = [7(1  exp(~ B(T — 1)) dZ, + of"dz,. (a5)
BJo 0

Thus, In X, is normally distributed with mean In X + M(T, T') and variance
S(T). Similarly, the joint bivariate distribution of In X, and In X, implies
that In X, conditional on In X, = 0, is normally distributed with mean
M(T,T) — M(¢, T) and variance S(T') — S(¢). Let ¢(0, 7| In X, 0) be the first
passage density of In X to zero at time 7 starting from In X at time zero.
From Buonocore, Nobile, and Ricciardi (1987) 2.2a, the first passage density
is defined implicitly by the integral equation

—-In X — M(,T)
S(t)

M@+, T) — M, T)
S(t) — S(7)

T,

(A6)

) - ftq(O,'rl In X,0)N
0

where 7 < ¢ < T. Dividing the period from time zero to time T into n equal
subperiods and discretizing the above integral equation gives the following
system of linear equations

i
N(a) = Y ¢;N(,;), i=1,2,...,n. (AT
j=1
where

q;=q(0,iT/n|In X,0)T/n. (A8)
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These equations are easily solved as a recursive system for the g; terms. The
sum of the g; terms provides an approximation to the value of Q(X, r, T'). As
n increases, the approximation Q(X, r, T, n) converges to the value Q(X, r,
T).

Proof of Proposition 2: Following the same approach as in Proposition 1
implies that the value of the floating-rate coupon can be expressed as

F(X,r,r,T) =D(r,T)E[r,] — wD(r,T)E[r,IysT], (A9)

where the expectations are taken with respect to the processes (A2) and (A3).
From equation (A4), the expectation E[r.] is R(r, 7, T). The results in
Buonocore, Nobile, and Ricciardi (1987) can also be used to show that

E[r.I

TY

ol = foTE[rTlln X, = 0]¢(0, ¢ | In X, 0) dt. (A10)

Standard results for the bivariate normal distribution can be used to derive
the conditional expectation

C(r,t)

E[r,IlnX,=0] =R(r,r,T) — S

M@, T), (A11)

where C(r, t) is the covariance between r, and In X,. This covariance can be
obtained from equations (A4) and (A5),

2

C(r,t) = (L;n + %2- exp(—B7)(exp( B min(7,?)) — 1)
2
_ 2”;2 exp(— B )exp(— Bt)(exp(28 min(r, 1)) — 1). (A12)

Discretizing the integral in equation (A10) gives the following approximation
for E[r.|In X, = 0]

oz C(r,iT/n)
= i§1 qi(R(r,T,T)—WM(lT/n,T) ,
=R(r,7,T)QX,r,T) - G(X,r,r,T,n). (A13)

As n increases, the approximation G(X, r, 7, T, n) converges to the value
G(X, r, 7, T). Substituting into equation (A9), and recalling the definition of
P(X,r,T), gives F(X, r, v, T).
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