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The option pricing model developed by Black and Scholes and extended by Merton gives rise
to partial differential equations governing the value of an option. When the underlying stock
pays no dividends - and in some very restrictive cases when it does - a closed form solution
to the differential equation subject to the appropriate boundary conditions, has been obtained.
But, in some relevant cases such as the one in which the stock pays discrete dividends, no closed
form solution has been found. This paper shows how to solve these equations by numerical
methods. In addition, the optimal strategy for exercising American options is derived. A
numerical illustration of the procedure is also presented.

1. Introduction

In their papers on rational warrant pricing, Samuelson (1965) and McKean
(1965) present a warrant valuation model which for the first time takes into
account the non-negative extra value to the warrant-holder of the right to
exercise a warrant at any time in the interval prior to its maturity. Following
Samuelson’s and McKean’s studies, Chen (1969, 1970) derives a functional
equation for the value of a warrant by applying a dynamic programming tech-
nique. The problem with these approaches as Chen recognizes in (1970), is that:
‘in applying the warrant valuation model to compute the theoretical value of
a warrant, the required rate of return on the warrant (i.e. the discount rate)
and on the stock must be known.’

Black and Scholes (1973), in a seminal paper, present a market equilibrium
option valuation model which has had fundamental implications for the valu-
ation of corporate liabilities. This approach to option valuation does not re-
quire knowledge of investors’ tastes (utility) nor their beliefs about the expected
returns on the option or on the underlying common stock. The mathematical
relationship between the option value and the value of the associated stock and
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Smith and Michael C. Jensen for helpful comments.
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time to maturity of the option is obtained by the arbitrage principle that in
market equilibrium there are no riskless profits to be made with a zero net
investment. A zero net investment portfolio is obtained by taking long and short
positions on the stock, the option and the riskless asset. A partial differential
equation governing the value of the option is the result of this analysis, which
together with the boundary condition can be used under certain conditions to
derive an analytical expression for the value of the option. The pricing formulae
obtained depend for the most part, on observable variables.

To derive their option pricing formula Black and Scholes' assume ‘ideal
conditions’ in the market for the stock and the option. These conditions are:
(1) The short-term interest rate is known and constant through time. (2) The
stock price follows a Geometric Brownian motion through time. Thus the dis-
tribution of possible stock prices at the end of any finite interval is log-normal.
The variance rate of return on the stock is constant, (3) The stock pays no divi-
dends or other distributions during the life of the option. (4) The option can
only be exercised at maturity (European type). (5) ‘Frictionless’ markets exist,
there are no transaction costs. The borrowing and the lending rates are equal.
Borrowing and short selling are permitted without restrictions and with full
use of the proceeds.

In a major extension of Black and Scholes’ model, Merton (1973b) proves
that their basic method of analysis also obtains under somewhat less restrictive
assumptions. In particular he shows that in the case where the stock is assumed
to pay continuous dividends, the hedging process described by Black and Scholes
can also be applied and a different partial differential equation obtained. He
points out, however, that, in general, this partial differential equation can not
be solved by analytical methods (i.e., it does not have a closed form solution).

Merton (1973b) also shows that if a stock pays no dividends or the option
is ‘dividend payout protected’, it will never pay to exercise an American option
before maturity and, hence, the value of an American option is equal to the
value of its European counterpart. But if the stock pays dividends and the
option is not dividend protected, it may pay to exercise the American option
before maturity because the option holder foregoes the dividend paid to the
stockholder and, hence, its value may be greater than its European counter-
part. Merton also shows that if a stock pays discrete dividends, it may pay to
exercise an American option just before the stock goes ex-dividend, but never
in between dividend payments dates.

Black (1974) proves that the value of an option on a stock that pays discrete
dividends is also governed by the same partial differential equation derived by
Black and Scholes (1973) for the no-dividend case. The boundary conditions,
however, change at each dividend payment date to reflect the fact that it may

1See Black and Scholes (1973, p. 640). The term ‘option’ is used here to refer to a call
option.
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pay to exercise the American option at those points in time.? No closed form
solution has been found in this case.

This paper develops a numerical procedure for valuing options® on dividend
paying stocks. A general numerical solution to the partial differential equation
governing the value of an option on a stock which pays discrete dividends is
presented.* In addition, the optimal strategy for exercising American options
is derived. For a sufficiently large value of the stock it may pay to exercise the
American option at dividend payment dates. This paper shows how to determine
the ‘critical stock price’ above which it will pay to exercise the option.

In section 2 the differential equation with its boundary conditions is derived
and in section 3 the solution algorithm is given. Finally, section 4 presents a
numerical example.

2. The model
Let

S = price of the common share at time ¢,
W = equilibrium value of a call option on the stock,
T = time to maturity of the option; note that d7" = —dz,
D(S, T) = amount of discrete dividend per share, assumed to be a deterministic
function of S and T; to simplify the presentation and without loss of
generality, we will assume a constant D paid at fixed intervals,

r = risk-free rate (assumed constant),
E = exercise price of the option,
o = instantaneous expected rate of return on the stock,
o? = instantaneous variance of the rate of return on the stock.

Under mild assumptions Merton (1973a) shows that it is possible to write
down the instantancous rate of return on the stock (between dividend payment
dates) as the stochastic differential equation

dS/S = adt+odz, @)

where dz is a Gauss—-Wiener process with zero mean and variance dz.
Then, as shown by Black and Scholes (1973) and Merton (1973b), the partial

2This was also recognized by Merton (1973b).

3The option pricing model as developed by Black and Scholes (1973) and Merton (1973b)
applies strictly only to call options where the net supply of securities is zero. This model,
however, can be assumed to hold approximately for warrants in the case where the common
shares corresponding to the warrants issued represent a small fraction of the total amount of
common shares outstanding. To obtain an explicit pricing formula for warrants it is necessary
to assume that the total value of the firm rather than the value of the common stock follows a
Gauss-Wiener process. Work is currently being done in this area.

“The derivation for the case of continuous dividends payments can be found in Schwartz
(1975).
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differential equation governing the value of the option between dividend pay-
ment dates is

'%O'ZSZWSs‘*‘rSWS—WT—Wr = O. (2)

The boundary conditions are given by:
(a) At maturity the value of the option will be equal to the exercise value, or
zero if the former is negative,

W(S, 0) = max [0, S—E]. 3)

(b) At any time prior to maturity the option is worthless if the stock price
is equal to zero,

W, T) = 0. 4

(¢) At each date on which the stock goes ex-dividend a boundary condition
is imposed to take into account the fact that the price of the stock will drop by
the amount of the dividend and the fact that the option value for the ex-dividend
stock price cannot be lower than the exercise value cum-dividend, because
otherwise the option will be exercised.

Let 7% and T~ denote the instants immediately before and after the stock
goes ex-dividend respectively. (Recall that time to maturity, 7, runs in the
opposite direction to chronological time, ¢.) It is assumed that when the stock
goes ex-dividend its price falls by the amount of the dividend, D. Then if the
stock at time T (cum dividend) is S, the option value at T*, W(S, T™), is equal
to the greater of the cum-dividend exercise value, max (0, S—E), and the ex-
dividend option value W(S— D, T 7). Le.,

W(S, T*) = max [0, S—E, W(S— D, T-)]. (5)

Eq. (5) indicates that it may be profitable to exercise the option immediately
before it goes ex-dividend if the value of the option, when the stock actually
goes ex-dividend, is less than its exercise value prior to going ex-dividend. Fig.
1 shows the relationship between S and W at a dividend date.

The critical stock price, S,, is defined here as the value of the stock cum-
dividend for which the exercise value is equal to the option value when the stock
goes ex-dividend. As can be seen in fig. 1, for values of the stock greater than
S, it will pay to exercise the option.

(d) When the stock price tends to infinity the partial derivative of the option
value with respect to the stock price, Wy, tends to one,®

lim WS, T)=1. (6)

S—>w0

5In between dividend dates W > S—E. Also W < § and W(S) is convex [see Merton
(1973b)]. Therefore (6) obtains.
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Partial differential equation (2) subject to boundary conditions (3), (4), (5),
and (6) has no closed form solution. In the following section a general numerical
solution is derived.

3. Solution algorithm

To solve partial differential equation (2) subject to its boundary conditions
by numerical methods, partial derivatives are approximated by finite differences.®
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Fig. 1. Boundary condition at a dividend date.

The partial derivative of W with respect to S at the point (S, T), Wy(S, T),
can be approximated by
W(S, T) = [W(S+h, T)—W(S, )]/, M

where /1 is the size of the discrete step in the value of S.

Eq. (7) is called the ‘forward difference’ approximation. Wy(S, T) can also
be approximated by

WS, T) = [W(S, T)—-W(S—h, T))h. 8)

Eq. (8) is called the ‘backward difference’ approximation. In fig. 2, the slopes
of the indicated chords represent the forward and backward difference approxi-
mations for W(S, T).

SFor a detailed explanation of the method, see McCracken and Dorn (1964) and Forsythe
and Wasow (1960).
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The numerical procedure requires that we consider a finite number of dis-
crete values of the variables involved. Thus, for S we consider n+1 discrete
values (i = 0, . . ., n) such that the difference between two consecutive values is
the step size /1. Then, if the lowest value of S is zero we can use the following
notation to represent the discrete values that S can take:

S, = ih, i=0,...n. )

Likewise, we consider m+1 discrete values for 7 (j = 0, . . ., m) such that the
difference between two consecutive values is the step size in time to maturity of

W
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Fig. 2. Forward and backward differences. The slope of the chord between [S, W (S, T)] and

[S+h, W(S+h, TH]is the forward difference approximation, and the slope of the chord be-

tween [S—h, W(S—h, T)} and (S, W(S, T)] is the backward difference approximation of
Ws(S, T).

the option, k. Then, if the lowest value of T is zero we can use the following
notation to represent the discrete values that T can take:

T, =jk, j=0,..,m. (10)

Using this notation, the values of W for the discrete values of S and 7" can be
written as

W(S, T) = W(S,, T) = W(h, jky = W, ;. (11

To obtain a better approximation of W we use the average between the

forward difference (7) and the backward difference (8). Using the notation
defined in (9), (10) and (11), W can then be written as

W = [Wi+1, i ”/i~1,j]/2h- (12)
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The approximation for W, using a forward difference, is
Ws(S, T) = [Ws(S+h, T)— Ws(S, T)/h. (13)

If forward differences are now substituted for W, the result would be biased in
the forward direction. In order to avoid this effect, backward differences are
used. Substituting backward differences for W (S+#k, T) and W(S, T) in (13),
simplifying, and using the notation introduced in (9), (10) and (11), Wgg can be
written as

Wss = [Wigr, j=2W;, j+ Wiy, 0>, (14)

The partial derivative of W with respect to Tis approximated by
Wr =W, ;=W ;-1lk. 1%
Notice that in (15) we use the backward difference for W, because we want to

relate the value of the option at time j to its value at time j— 1.7
Substituting (9), (13), (14) and (15) into (2) we obtain

a2 Wien, j=2W, i+ Wiy ;0 Wiy = Wiy
1o%(ih)? J 2 L L4 r(ih) 12/1 z
W. —W. ..
SRR ANSARES bk S /74 ;=0. (16)
k B
Rearranging terms we obtain
aWi g, jFo Wi j+eiWiiy, ;= Wi j-1 17

i=1L..,.0=-0, j=1,...,m,
where

a; = Wrki—36%ki?,

;= (1+7k) +02ki?,

[wil
i

¢; = —Yrki—3o%ki®.

7As will be seen shortly, the numerical procedure works by solving a system of linear
equations which give the values of the option at time j as a function of the values of the option
at time j—1. Knowing the value of the option at maturity (j = 0) for different stock prices,
the method proceeds backward in chronological time (increasing time to expiration) by a step
wise process. Eq. (15), when introduced into (2), is the only expression that relates option
values at different times to expiration.
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By reducing the step sizes 4 and k any desired degree of accuracy in the solu-
tion can be achieved,® but at the expense of increased computational cost.
m and n represent the number of steps in the time dimension and stock value
dimension respectively; the former is chosen to correspond to the maturity of
the option under consideration, while the latter must be sufficiently large for the
boundary condition (6) to be well approximated at the maximum stock value
considered.

The boundary conditions can be written in finite difference form:
(a) Atexpiration (3) can be written as

W: o=ih—E, for iz Elh, (18)
W; o=0, for i< E/h.

(b) Atany time prior to maturity (4) can be written as
We ;j =0, j=0,1,...,m. (19)

(c) On a dividend date the exercise option gives rise to (5) which can be
written as

Wi, j+ = Wi—D/h, j=» fOI‘ Wi—D/h, j- g lh'—E, (20)
Wi, Jt = lh—‘E, fOI' Wi—D/h, - é lh""E.
The values of W, ;+, for i =0, ..., D/h, are equal to zero because the stock

(and the option) will be worthless after the payment of the dividend.
The critical stock price (if it exists), S, = zh, is defined for the value of i = z,
for which

Wz-—D/h, j- = Zh‘—E, (21)
or

z=W._pm, - +E)/h.
(d) For ‘high’ stock values (6) can be approximated by
Wn,j_Wn—l,j=h’ fOl‘ j=0,...,m. (22)

For any given value of j (17) constitutes a set of (n—1) linear equations in
(n+1) unknowns, W; ;(i =0, ..., n). The remaining two equations come from

8By setting D = 0, the numerical solution can be compared with the analytical solution
obtained using the Black-Scholes formula. When this was done [see Schwartz (1975)], the
solutions differed always by less than 0.3 percent for a stock price step of $0.25 and time step
0f 0.25 months.
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boundary conditions (19) and (22). The resulting set of (n+ 1) linear equations
enable us to solve for W, ; in terms of W, ;_,. Since W, , is given by (18)
the whole set of W, ; may be generated by repeated solution of this set of
equations, taking into account the boundary condition (20) imposed by the
exercise option at each dividend date.

In this section we have shown how the numerical solution to the partial
differential equation starts from the expiration date of the option where the
boundary conditions are known and, in the spirit of dynamic programming, by
a step wise process proceeds to compute the value of the option for different
stock prices at increasing times to expiration.

4. Some numerical results

The American Telephone and Telegraph (ATT) warrant maturing on May
15, 1975 was selected as an example to illustrate the methods described in the
preceding sections. This section reports the effects of variation in selected para-
meters on warrant valuation and on the relationship between critical stock prices
and time to maturity.

The ATT warrant was issued in April 1970, entitling the holders to subscribe
to 31,375,540 shares of common stock (which represented 5.71 percent of the
outstanding number of shares) at a price of $52.00 a share beginning November
15, 1970 and up to May 15, 1975, The parameters for the ATT warrant, as of
November 1970, are:

Variance rate 0.0017 per month,®
Risk-free rate 0.0637 per annum,
Quarterly indicated dividend $0.65,

Exercise price $52.00.

4.1. The early exercise issue

When the ATT warrants expired on May 15, 1975 only 3.1 million warrants
(about 10 percent of the outstanding issue) had been exercised.!® At the time of
expiration the stock price was fractionally below the exercise price. The first
question we address is whether or not the majority of investors behaved ration-
ally in not exercising the warrants,

It will be recalled that an investor should exercise his warrant on an ex-
dividend date only if the stock price exceeds some critical value. Using the above
mentioned data this critical stock price for the ATT warrant is infinite for all
dividend dates but the final dividend before expiration. This result should not be

9The variance of the monthly rate of return was computed using 60 monthly observations
from July 1965 to June 1970.
19For details see the Wall Street Journal of May 19, 1975,
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surprising. Merton (1973b) has shown that if a stock pays a constant continuous
dividend rate, d, the sufficient condition for no premature exercising of the
warrant is given by

d < Er. (23)

With a dividend of $2.60 per year (5 percent of the exercise price) condition (23)
is satisfied for the continuous equivalent of our problem. Only on the last
dividend date, one and a half months before expiration, does the discreteness
of the problem become significant because the effective dividend rate increases
substantially,11-12

The critical stock price for the final dividend date was $54.75. At that time
the stock was actually selling for $49 so that the optimal strategy was clearly not
to exercise since not only was the stock price below the critical stock price, it
was also below the exercise price ($52.00). It is to be presumed that the ten
percent of the warrants actually exercised were exercised at an earlier period
when the stock price exceeded the exercise price.

4.2. Comparative static analysis

To illustrate the comparative statics of critical stock prices, selected para-
meters of the ATT example were varied. Fig. 3 shows how the critical stock
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Fig. 3. Critical stock prices as a function of dividends and time to expiration. Variance rate =
0.0017 per month; risk free-rate = 6.37 percent per annum.

This is because $0.65 of dividend for one and a half months represents a dividend rate of
$5.20 per year or 10 percent of the exercise price.

!2The increments used in the computation were $0.65 for the stock price step and 0.25
months for the time step. Note that for accuracy the stock price step should be a factor of the
dividend.
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price varies as a function of time to maturity for three different assumed divi-
dends. To obtain interesting results the value of the dividends selected are such
that condition (23) is not satisfied. Were condition (23) satisfied the critical
stock price would again be infinite except for the final dividend. Fig. 4 and fig. 5
show the same relationship between critical stock price and time to maturity for
different assumed variance rates and interest rates, respectively.
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The effect of dividends on warrant values is illustrated in fig. 6 for three
different dividends 54 months prior to maturity (on November 15, 1970). For
a dividend of $1.1 per quarter the warrant curve approaches the exercise line
because one and a half months later the warrant is exercised if the stock price
surpasses $65.38 (see fig. 3). Naturally, the warrant curve for a zero-dividend
corresponds to the original solution obtained by Black and Scholes.
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Fig. 6. Warrant values as a function of stock prices for different dividends. Variance rate =
0.0017 per month, risk-free rate = 6.37 percent per annum.

4.3. Comparison of market and model values

The final analysis on the ATT warrant consists of a comparison between the
actual warrant price in the market and the theoretical value obtained by three
different procedures:
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(i) the numerical solution with discrete dividends presented in this study,!3
(ii) the Black and Scholes formula, disregarding any dividend payment,'*
(iii) the Black and Scholes formula, assuming a constant dividend yield (a
dividend proportional to the value of the stock).!?

To avoid the problem of establishing exactly when the stock goes ex-dividend,
the warrant value is estimated using the three above mentioned methods and
compared with the market price just midway between two dividend payments,
during the period when exercising was permitted, November 15, 1970 to
November 15, 1974.

For the warrant value estimates the actual riskless interest rate, the indicated
quarterly dividend, and the closing stock price for the particular date were used;
but the same variance rate estimated from the period 1965 to 1970 was used.
These data are tabulated in table 1. In table 2 the warrant market price is com-
pared with the three theoretical prices at the selected dates.

According to these results the two formulations that take into account
dividend payments give consistently lower values than those in the market.

Table 1
Data used in the estimation of theoretical ATT warrant prices.

Time to Riskless Quarterly  Stock

expiration  rate dividend price
Date (months) (% per year) ($) (6]
Nov. 16, 1970 54 6.37 0.65 45.0
Feb. 16, 1971 51 5.31 0.65 52.375
May 14, 1971 48 6.02 0.65 47.125
Aug. 16, 1971 45 6.39 0.65 44.5
Nov. 15, 1971 42 5.50 0.65 42.25
Feb. 15,1972 39 5.51 0.65 44.0
May 15,1972 36 5.69 0.65 42.5
Aug. 15, 1972 33 5.92 0.65 41.875
Nov. 15,1972 30 6.03 0.70 50.25
Feb. 15.1973 27 6.61 0.70 51.125
May 15,1973 24 6.78 0.70 53.125
Aug. 15,1973 21 7.75 0.70 47.5
Nov. 15, 1973 18 6.96 0.70 475
Feb. 15,1974 15 6.77 0.77 51.75
May 15,1974 12 8.24 0.77 47.0
Aug. 15, 1974 9 8.64 0.77 42.35
Nov. 15, 1974 6 7.65 0.85 47.5

13Tn the solution procedure it was assumed that the actual indicated quarterly dividend
would remain constant up to the expiration of the warrant.

14Gee Black and Scholes (1973).

15Gee Merton (1973b). The formula actually applies only to an European warrant because
for high stock prices there is always a positive probability of premature exercising. The dividend
yield used was computed by dividing the actual indicated dividend per year by the closing
stock price for the particular date.
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Table 2

Comparison between ATT warrant market price and three estimated
values for selected dates.

Warrant prices ($)

Time to
expiration Market Numerical B-S no B-S with
(months) price method dividends dividends
54.000 8.000 3.270 8.580 2.600
51.000 11.500 6.090 12.550 5.380
48.000 9.675 3.720 8.730 3.090
45.000 9.000 2.630 6.710 2.120
42.000 7.125 1.430 4.210 1.090
39.000 7.675 1.810 4.750 1.460
36.000 6.875 1.310 3.610 1.030
33.000 5.675 1.090 3.000 0.850
30.000 7.500 3.890 7.590 3.500
27.000 7.250 4,400 8.000 4.040
24,000 6.675 5.420 8.960 5.070
21.000 4.875 2.440 4.640 2.200
18.000 4.750 1.930 3.630 1.750
15.000 4.375 3.410 5.540 3.180
12.000 2.750 1.240 2.280 1.120
9.000 1.500 0.160 0.340 0.130
6.000 1.250 0.570 0.950 0.510

It is interesting to note the similarity between the numerical solution and the
Black and Scholes solution for constant dividend yield, although in all cases the
former gives a value closer to the market price. The Black and Scholes solution
without considering dividends is much closer to the market price.

There are three possible reasons which may account for the fact that model
prices differ from market prices:

(i) The model is not an accurate description of the market. The assumptions
made are too restrictive.

(i) The model gives the ‘right’ values, but the market either ‘under’ or ‘over-
values’ the option. If this is the case, there should be some profit oppor-
tunities.

(iii) The model is an accurate description of the market, but the historical
variance used in the model is not the same variance used by the market
to price the option.

This paper has offered a procedure for valuing call options on dividend paying
stocks. Further empirical research is required to determine whether possible
discrepancies are accounted for by model limitations or by market inefficiencies.
The example presented in this section is intended only to be illustrative.
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