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information? What conditions increase or reduce the influence of reactive
learning behavior on the amplitude of price fluctuations? How does trading
behavior affect the quality of price as a forecast of economic value?

We specify a model of reactive learning, simulate trading, then compare the
resulting prices to thosc observed when traders behave independently. With the
same distributions of private infermartion and wealth, we compute the excess
volatility and trading volume, if any, induced by the extent of inter-reaction. We
also assess the relative quality of prices, measuring how accurately prices
forecast true economic value when traders react to each other and when they do
not.

Section 2 of the paper describes our model. Section 3 presents the simulation
results and offers interpretations. Section 4 concludes with suggestions for
extensions in fulure research.

2. The model
2.1. General description

We model trade in a market for a single asset in fixed aggregate supply. The
asset makes a liquidation cash payoff ¥, unknown during trading, which
depends on the realizations of fundamental’ variables. Each informed trader
secures private information about one or more fundamental variables and
therewith appraises the present value of V. For simplicity of illustration, trading
occurs over a time Interval short enough that discounting can be ignored.

The financial market is populated by two types of investors-numerous ‘small’
plavers and a few ‘big’ ones. A ‘big’ plaver is defined as someocne with enough
resources to buy or sell a quantity that attracts the attention of others, while
a ‘small’ player’s trades go unnoticed. In cur model, a particular trade is noticed
if it involves at least a given number of units,” a threshold we call a Minimum
Observable Transaction ‘MOT". So, by definition, a ‘big’ plaver can buy/sell at
least a ‘MOT while a ‘small” player cannot. A MOT-sized trade reveals some-
thing about the private signal of the big player: consequently, big players avidly
follow and carefully analyze the observable trades of their fellows.

Small plavers could be regarded as liguidity traders or amateur speculators
who, perhaps owing to their limited resources, do not find it worthwhile to keep
track of the transactions of anyone, either big or small. In aggregate, small
plavers provide a base excess supply function to big players. We assume an
inverse supply function p: R — (LPP, HPP), positively sloped. and asymptotic
to two bounds, the ‘highest plausible price’, HPP, and the lowest plausible

2 A tunit’ would be, for example, a share of stock or a bond.
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price’, LPP. with the small plavers’ market clearing at a price equal to the
average of these beunds. We employ a particular function® with these properties,

P =%(HPP - LPP) + [(HPP - LPP)n)Jtan™ ‘g,

where P is the asset price and g € R 1s the number of units bought {g > 0) or sold
g < 0) cumulatively by big traders. By trading a MOT or more, each big plaver
adds to ¢, raising or lowering price to the value given by this inverse supply
function.

Time is separated into several “signal periods’. During each period, some big
plavers receive private information about the future value of the asser, but no
one hecomes perfectly informed. Hence big players have limited faith in their
own price forecasts. New information becomes available to all or to a subset of
big plavers in each successive signal period.

Trading progresses scquentially, each big player moving dfter observing the
moves of all previous players. After trading once, each big player joins the queue
at the end and has ancther chance to move in the next trading ‘round’ within the
same ‘signal period’. Trading is transparent i that every big player observing
a MOT-sized transaction also knows the perpetrator’s identity.

Big piavers are endowed initially with differing amounts of cash and units of
the asset. Neither short-selling nor borrowing is permitted. Hence, when
a player buys or sells and stops at a certain price, others cannot be sure whether
(a) he ran out of money or asset units, (b) the price reached his signal, or () he is
attempting to mislead others by engaging in strategic behavior. Others are
obliged to assess the relative likelihood of these possibilities after each observed
trade.

We measure the result of their deliberations by a posterior distribution of
value, ¥, derived by each trader by combining his private information with the
information deduced from observing others. Traders are rational in the sense
that Bayes’ Rule is emploved in deriving their respective posteriors. However,
because the infermation of other traders is not perfectly observable. traders act
without coming to complete agreement; their respective posteriors are diverse.

2.2. Formal specification
In each signal period, some big traders receive normally-distributed signals®
about value,

N(©. o7,

*This specification clearlv injects an unrealistic element into our model In its defense are
simplicity and the fact that it would be easy to generalize.

*The symbol ~ denotes *distributed as’ and (...} denotes the normal distribution.
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where S, is the signal received by trader i, @ is the expected signal in a particular
signal period and ¢ is the standard deviation across traders.® Some big traders
recgive no signal.

Every trader possesses the same prior distribution on the mean signal, ©.
a ‘natural conjugate” Normal

O ~ Wiy, %)

whose parameters are common knowledge. For simplicity, we also assume that
the volatility of signals. 7. is common knowledge and the same across traders,
assumptions that can be easily relaxed in subsequent work.

The final value of the asset, V, is assumed to be a weighted average of the
expected signal, @, and random noise, £,

Vo=@ + (1 — x¥,

where the 0 < x < 1 is a constant and { is a completely unobservable Normal
variate with mean @ and variance wunknown to traders. Clearly, E(V) = @.
Hence, by calculating posterior distributions on the expected signal @, traders
are also deriving the best possible estimate of final value, recognizing that they
are risk neutral and that the noise term { is unknowable.

The parameter r, which we call ‘extractability’, measures the maximum
possible information that all traders could derive about final value if they were
to share information completely and agree on a common posterior. This
contrivance is adopted in an effort to measure the impact of reacting and
learning under varying degrees of maximum possible information aggregation. It
is conceivable a priori, for example, that cascades and bubbles arise with greater
frequency when perfectly aggregated information is at best relatively poor (or
vice versa).

To understand the Bayesian updating rule. first consider a trader who ignores
the actions of others. This is necessarily the status also of the very first trader.
Combining his private signal with the common prior, his posterior on expected
value 1s

m(OSy) ~ N[u(S,). p7].
where

P1= P = TOUAT 4 67),

© Since the Normal is unbounded. 1his formulation theoretically permits implausible signals, such
as vaJues below zero. We finesse this difficulty by cheoosing parameters which produce such
implausible results only rarely. Note. however, that negative, or very large values are theoretically
possible, though prices, ias opposed to valuss), arc bounded above zero and below 4 maximum
plausibie level,
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and
WS =ip 7t + Spetipl = [0 (0t = o) ]u = [7 (=7 + a7)]5,.

See Berger (1985), pp. 127-128. This is also the form of the posterier for all
raders who pay no attention to others: the only difference would be that each
trader f's private signal S, replaces S, the first trader’s signal, in the formula.
Since by assumption t and ¢ are common knowledge, the volatility p; will be
identical in posteriors of traders who have o Reaction (NR) to others, hence we
denote it pag. It appears also as one element of posterior volatility when traders
do React to Others (RO),

If everyene's signal were observable without error, the sample mean of all
signals is a sufficient statistic for the population mean. In Bayesian analysis,
a sufficient statistic can be substituted in Bayes’ Rule for all of the individual
sample observations,” Consequently, with §=3 §;/N for N traders, the com-
mon posterior would be

OIS ~ N[u(S), 3,

where p3 = t26°4NT? + ¢%) and u(S) = [e®/ N7 + o2/ N + (=5 + o7/

NS, The signals in our model are not observed without error, so no trader
derives this common posterior. We record it here for later comparison with the
actual posteriors, which diverge from each other.

2.2.1. Incompletely observable signals

Let P;_, denote the prevailing market price, i.e., the price just before trader
j decides to act. Let 8, denote the mean of trader j’s posterior distribution of
© based on his own signal and the actions of all previous traders. Assume alse
that every trader, by acting, provides noisy information about s ewn private
signal according to the following scheme: After he finishes trading, the new price,
P, satisfies

Tty

where the random noise follows

~ N(ag, %) for buyers

S

[T

~ N(ug, v7) for sellers

with » known and x5 < 0 < %5

TS Berger {198%), Lemma 1, p. [27. An early application similar to our set-up is in Grossman
(1976) who shows that price itself is a sufficient statistic for information in some Bayesian updating
circumstances.
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Although the trading noise term & is modeled as 4 random variable. we are
really imagining it as a choice made by each individual trader, a choice
unknowable and hence random from the perspective of other traders. Several
distinet trading proclivities are covered by this single noise specification. First,
a trader could be acting strategically; in an effort to mislead competiters, he
might cease buying (selling) before the price rises {falls) to his current posterior
estimate of value. Second, recognizing the winner's curse, a trader knows thar his
OWD posterior estimate is not perfect and may wish to bias his buving or sclling
toward some perceived plausibie value. Third, cach trader has limited resources
and might stop buving simply because those resources are depleted.

These arguments imply that the reservation price of a buyer (seller) should be
biased downward (upward) relative to the mean of his posterior distribution of
value; hence, the biases % > 0and zg < 0. Bias alone does not, howev er, capiure
the full essence of incomplete signal observability. There must also be some
heterogeneity in behavior across traders induced by div Ersity in resource endow-
ments, strategic trading, etc. We parameterize these concepts with randomness
in the trading noise.

The second trader is the first to witness another trader’s action. He deduces
that the distribution of the first trader’s signal is

Si~ NO 4z, 07 + -9

Conseguently, the second trader’s posterior distribution of value taking account
of the first trader’s action only is

TP ~ NP, pRol.
where
pRo = [T(e” + 77114=7 + ¢* + %) and
WP =0 + 39/ + 0% + 2w+ [T + 0+ 1P + 5

Note that « Is either xp or 25 depending on whether trader #1 buys or sells,

Corubining his posterior distzibution of the first trader’s signal with his own
private signal using Baves Rule, the second trader calculates his own posterior
distribution for value as

AMOP,ASs) ~ R[Bs, p2].

where .02 = propir/(pRo + pNR) and 0, = [prefpio + .O\R)]{Pl + %) + [pRo/
(PRo + p3r)1S,. Trader #2 is motivated 1o buy if this posterior mean is above
Py and to sell otherwise, His decision rule is: stop trading when the new price
P reaches ¢, — £, where & is a single draw from the trading noise distribution.
Note that he will not buy (sell) at all if #, — ¢ turns out to be less {greater) than
the prevailing price P,
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It 13 possible, but tedious. to solve the third and subsequent traders” problems
recursively, each trader combining the actions of all previous traders with his
own signal. However, 2 moment’s reflection reveals that the previous rading
prices contain all the information that any trader has about the signals received
by others. The mean trading price, adjusted for the bias in the signal noise
distribution, is therefore a sufficient statistic for all previous plavers’ informa-
tion. Exploiting the previously mentioned result from Bayesian analysis that
a sufficient statistic can substitute for all of the individual observations, the
posterior of each trader can be expressed solely in terms of the trader’s private
signal and the mean bias-adjusted price over previous trades.

Suppose, then, that a later trader, j. has witnessed Ny buyers and Ny sellers
that have traded at prices Py, {i =1,..., N5} and Pg, {k=1,..., N} (The
total number of active preceding traders s N = Ny + Ng.) Denote the means of
buying and selling prices, respectively, as

Py =Y Pp/Nyand P = Y, P, /N,
A sufficlent statistic 1s the bias-adjusted mean,
P =[NPy + 24) + Ng(Ps + ag) /N,
Consequently, the posterior distribution of value derived by trader j is
TMOPAS;) ~ N[, 571,
where
0} = pixpd (pfe + pi).
0; = [pe/(pin = pp e, + Lo/ 03 — P2)]S5
pp = [7(e? + YN + (6 + 320N,
and
uPy={l(e® + NG + (07 + 7N = ([ = (a* = FUNTIP.

As trading progresses, and N increases, the posterior becomes ever more heavily
influenced by the mean bias-adjusted price P. Less reliance is placed on both the
trader’s own signal and on the prior mean before the first trade. Nonetheless,
trading will not cease after the first round and will not die out completely
until ¥ becomes so large that all traders possess essentially the same posterior
about ©.

Terms and definitions are presented in the glossary of Table 1 for easy
reference.
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Table 1
Glossary of terms

MOGT Minimum observable transaction (in assct units)

Big player One who can carry out a MOT

¥ Economic value (after resolution of uncertainty)

HPP Highest plausible price

LFP Lowest plausible price

Signal Private information about value

a Expected value of 1 = Expected signal

Extractability, » Aggregate quality of signals; ¥ = k@ — (1 — ») (noise)
Clueless Proportion of big players who receive No signal
Signal diversity, ¢ Cross-trader volarility of signals

Trading noise, Volatility rendering signals incompletely observabic
ag >0 Trading bias of buycrs; i.2.. expected value loss reservation price
x, < 0 Trading bias of sellers

3. Simulations
3.1 Methods

Our simulations® have two basic scenarios - (RO) when big traders React to
Observable trades, combining private information with signals inferred from the
actions of others according to the method previously described, and (NR) when
there is No Reaction to the trades of others, everyone basing decisions solely on
privately-received informatioz.

Within each scenario, sequences of simulated prices and returns are used to
compute a percentage ‘excess volatility” statistic,

0; = [200(61 k0 — 65w}/ (Tiro + Ginplls By

where g, ¢ is the standard deviation across all simulated trades within replication
7 and scenario S.° These scenarios differ only in that private beliefs are revised by
learning under RO, Wealth and private signals are the same in either case.
Clearly, @; > ¢ implies that reacting to others induces higher velatility while
@; < 0 means that it reduces volatility. The average {across T replications}

* The code is avaijable on request.

® At first olance, it may seem unusual to make a comparison betwsen x and 1 by calculating their
difference {x — 1) divided by their average fx — ¥ But since both x and  are subject to sampling
error, using either one as a base {(denominator} in the comparison is subject 1o the difficulty that it
could be vanishingly small just by happenstance. Hence, a random outlier could acquire a spurious
importance. Our statistic reduces the chance that this will occur. The normalizing constant
200 = 100/} simply assures that the statistic lies between + 100% and — 100%.
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excess volatility statistic, w= ) v, T will be reported below for prices and
returns, distinguished with mnemonic subscripts; i.e., @, and @, respectvely.
The excess volatility of rerurns requires no motivation, but some may be
surprised that we also report the excess volatility of price. Our reasoning is that
cascades or bubbles might take the form of stead) price drifts with relatively low
return volatility. For example, imagine a bubble consisting of a constant positive
return at each transaction. The price velatility would be large iaround its sample
mean) while the return volatility would be zero.
We also investigate whether learning from and reacting 1o others helps the
market price approach value, An ‘average valuation mistake’, is defined as:
M= 200{[21‘{595, R
e S22y 3 ~a271i2
- [Zf(é")i. ne — V)] }.s‘{[iz(.@a ko — V71
; P P 27102
- [Zi(sdi, ~e — V)] } 2
where ¢, s 8 the final price at the end of trading under scenario § and
replication i of the simulation, and V; is the economic value revealed after
trading in replication i Essentially, M is a relative'® root mean square predic-
tion error over replications.

Learning could also influence the trading volume. We investigate this issue by
guantifying the excess dollar volume, ¥", analogously to w, and o,

¥y = 20006 r0 — Vina)/(Viro + Uing)]s (3]

where ;g is the dollar volume of trade in replication i and scenario S.!! The
mean excess dollar velume over T replications is just Zﬁ”i,‘ T.

Speculative bubbles are most often defined in the literature as large excursions
by the market price away from fundamental value. In simulated markets, there is
a simple and readily measurable counterpart to the intuitive notion of a bubble;
1t 1s the difference between price and the true expected value of the asset. This
difference can be calculated for every transaction price, so it seems reasonable to
measure a ‘pseudo-bubble’ by the maximum absolute difference during trading,

B = maxl|P;s, — O

where r covers transactions observed during replication i and scenario
S, @, = E(1";) varies only across replications.* The impact of learning on the

10 Relalive across the two basic scenarios.
1Y We have also measured voiume in units of shares rather than dollars. The results are similar.

12 The intuitive notion of a bubble relates to a large deviation between price and value, but since
large” has never been specified by any authority, we simply record the maximum excursion,
whatever it may be.



164 R. Chalrabarti, R. Roll /Jownal aof Financial Markets 2 (1999) [33-17&

propensity for markets to depart on bubble trajectories can then be measured by
an excess bubble statistic, defined as

#; = [20008; 20 — Bine)/Biro + Binel]- (4)

In general, each market phenomenon may or may not depend upon market
conditions. This is what we are seeking to ascertain. Market conditions we Vary
across simulations include the minimum noticeable trade size. or ‘MOT;
diversity of the signals across players; the aggregate quality of all swnals
‘extractability’; and the extent of trading noise induced by strategic trading or
endowments, (of both cash and assets). We also inv estigate the interactions of
market parameters and document whether phenomena such as bubbles are
more likely to occur under certain combinaticns.

3.2 Parameters, (ie., market characteristics)

Average excess price and return volatility and average valuation mistake were
computed for all combinations of the parameters values listed in Table 2

The price at the beginning of every Signal Period {replication) is initialized to
100. Then trading begins by rounds, individual Big Traders following in the
same order within each round. Since there are five trading rounds and twenty
Big Players, there are 100 transactions in each simulated Signal Period. Price

Table 2
Market Conditions (Paramerers) for simulated trading

Parameters held constant

Highest plausible price (HPP) 200
Lowest plausible price (LPP) 0
Mean of the common prior on value, i 100
Number of replications (signal periods) 30
Number of hig plavers 20
Number of trading rounds per signal period 5

Parameters varied

Yolatility of prior,* ¢ 2 30 7.3
Signal diversity, ¢ 2 3.0 7.5
Trading noise, 7 i 2 3
Buyer bias relative 1o signal, 2, 1 2 3
Seller bias relative to signal, o, -1 =2 -3
MOT 0.0023 0.0073 0.0123
Clueless, % vl 25 30
Exrractability 0.23 0.3 0.75

“Just 10 keep things manageable, in all simulations we se1 the volatility of aggregate information
noise, { equal to the volatility of the prior.



7

R Chairabari, R. Roll Jownal of Financial Markers 2 (1999, 153178 Les

and return volatilities are computed from these 100 observations. The ‘valuation
mustake” or pricing error is computed at the end of each signal period by
comparing the final market price to value; (Cf. The definition of ‘extractability’
in the Table 1 glossary.)

3.3, Simulation results: The influence of reactive learning on volatility

The excess price volatility (see Eq. (1}). w,. averaged across all parameter
values, was — 28%, l.e. reactive learning lowered price volatility substantially
on average over our parameter space. The overall average of the excess return
volatility &,, was similar, — 30%. Within the artificial setting of these simula-
tiens, trader interaction appeurs to stabilize market prices and returns, at least
on average for the chesen parameter values.

There is. however, considerable variation in this stability gain across different
market conditions (parameter sets}. This is partly attributable to randomness, of
course, but also partly due to the market conditions themselves. The maximum
observed w, for any parameter set was 123% and the minimum was — 121%.
The maximum @, was 162% and the minimum was — 139%. There is evidently
some cross-replication asymmetry in the distribution of the excess return volatil-
ity statistic.

In accordance with ‘no trade’ literature, we noticed that the decreased return
volatility was often associated with a reduction in the number of trades over time
accompanied by a stabilized price and virtually zero returns across later transac-
tions.

To summarize compactly the various influences of individual parameters, we
repert regressions with parameter values as explanatory variables. Ordinary
least squares (OLS) regressions are reported in Table 3. whose panels are for
different dependent variables: average excess price volatility @, in the upper
panel. and average excess return volatility @, in the lower. The explanatory
variables, the parameters, vary as shown in Table 2 and the sample size is the
total number of different unique parameter sets.!?

it may seem a bit unusual to report simulation results by regressions of the
simulation output on input parameters. In this case, however, the procedure
seems warranted. Our simulated market is complex and is characterized by eight
varying conditions aleng with some fixed conditions (Table 2). We have ne
a priori intuition about how these conditions should influence market attributes
such as volatility and pricing error nor whether such influences have a particular
functional form ner whether they have strong interactions. It would be exceed-
ingly tedious to vary just one parameter at a time and cbserve the impact on
market phenomena. Moreover, to the extent that parameters interact, this could

¥ There are 3% = 6361 different combinations of parameters.
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Table 3 =
Excess volatility from reactive learning: marginal influences of market characierisuics

Market artribuate Coeflicient T-sratistic

Dependent variable: average excess price volatility, @,

Votlatility of prior, = — 163 - 1134
Signal diversity. ¢ 3.46 242
Trading noisc, 7 339 643
Buver bias. o5 6.25 17.4
Seller bias, #. — 6.30 — 176
MOT 207 288
Clueless, %% 0108 754
Extractability 0161 0112
Adjusted R 0684

Dependent variable: average excesy return volatility, w,

Volatility of prior, © ~ 20,2 — 109
Signal diversity, o 6.89 37.3
Trading Noise, v 138 299
Buyer bias. oy 0.922 2.00
Scller bias, =, — 1.44 — 312
MOT 315 : 3.40
Clueless, % 0.301 271
Extractability 0.439 0.238

Adjusted R*: 0.693

Note: In a Hnear regression, the dependent variable was the value of the average excess volatility
statistic Eq. {1}, observed for a given set of market conditions, {(parameter values). The independent
variables are the parameier values. The number of observations in the regression. 6361 1s the
number of difierent combinations of parameter values.

be quite misleading. Regressions offer an informative and concise device for
reporting the essential features and the complexities of our simulated markets,

The observations in these regressions are independent by construction be-
cause different random numbers were drawn for each replication. However, the
regressions might be mis-specified because of non-linearity or heteroskedastic-
ity, two potential problems that we investigate below,

For each regression, we report -statistics and adjusted R-squares, but one
should be forewarned that these are somewhat arbitrary; presumably, they
could be raised (perhaps to perfection with the correct non-linear functicnal
form) simply by increasing the grid density of parameter values. The grid of
parameter values listed in Table 2 is sufficiently dense to produce significant and
meaningful inferences and vet sparse enough 1o be computationally tractable,
We make no assertion that it is optimal.
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The results in Table 3 for both price and return reveal that the reduction of
volatility from learning 1s strongly enhanced by a more diffuse prior. The
marginal influence of the prior’s volaulity, 7. is sharply negative. Learning is
more effective in reducing market velatility when there is more to learn, iz,
when traders do not possess strong prier convictions and hence place greater
emphasis on the actions of others. A diffuse prior implies also that they would
weight their private signal more in the no learning {NR) case. but this 18
overwhelmed in the learning (RO) case by assigning greater credence to the
actions of others.

Signal Diversity, o, significantly increases volatility under learning (RO)
relative to no iearning, (NR). Similarly, a large component of trading noise, 7,
seems to mislead good Bavesians attempting to learn from others; it too raises
both price and return volatility under RO relative to NR. The same marginal
effect can be observed for the buyers’ and sellers’ mean biag, (1.e., the difference
on average between their posterior mean signal and their reservation price.)
When these biases become larger in absoluie value. other traders are misled
enough to induece an increase in market volatility.

A smaller minimum observable transaction, or ‘MOT", enhances the volatility
reduction induced by learning. Even though traders are misled by others
emitting false or volatile signals, they are astute enough to learn on average.
Consequently, observing more individual events, (a smaller MOT), improves
their ability to come to an agreement and thereby results in smaller price and
return velatility. We observe a similar phenomena in the variable ‘Clueless’
which measures the fraction of traders who receive no signals at all. Increasing
that fraction significantly worsens the volatility improvement under learning.
So, even though some actions arg misleading, it is better on average to observe
more of them.

Finally, ‘extractability’, the average forecast quality of private signals, has no
influence whatsoever on excess volatility. At first, this may seem puzzling. But
prior to the final revelation of value, traders have no information about value
other than their own private signals and what can be deduced from the actions
of others. Their trading can depend only on this infermation. Reacting 1o others
reduces volatility on average, but that reduction cannot be related to something
unknowable, the aggregate signal quality,

3.4. The quality of price as a forecast of value

As in the case of excess price volatility and excess return voiatility. a negative
value of M, the average valuation mistake (Eq. (2)), indicates that players are
{collectively) forecasting value better when they react to each others” trades than
when they ignore the information embedded in those trades.

Under many different market conditions, reactive learning increases the
forecasting quality of the final transaction price. Across all parameter values, the
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overall average valuation mistake, M. was — 12.2%, a material reduction in the
root mean square forecasting error provided by reactive learning. The improve-
ment was not confined to a few outliers; In over 78% of paramecter combina-
tions, the average valuation mistake was negative.

The marginal influences of the parameters en M Is summarized by the OLS
regressions in Table 4. In an interesting contrast with the volatility results
reported in Table 3, the influences of a diffuse prior and of signal diversity are
reversed. A Jess diffuse prior and larger cross-trader dispersion in private signals
significantly increase the accuracy of the market price when learning {RO)1akes
place, relative to the pricing accuracy when there is no learning (NR).

This intriguing result was quite surprising, at least to us. Evidently, a diffuse
prior diminishes volatility under learning or raises it under no learning (or both}
while it also decreases the accuracy gained through learning. Similarly, greater
signal diversity tends to exacerbate volatility under learning relative to no
learning, but it enhances the ability of learning to increase accuracy.

These findings suggest that markets should not be judged by volatility alone.
Indeed, a high level of volatility induced by traders reacting to each other may
actually be associated with a more informative price. We see here. for instance.
that greater heterogeneity in private signals, though causing more volatility,
brings the market price at the close of trading closer to fundamental value.
Similarly. the extent of the diffuseness of the common prior has opposite effects
on volatility and pricing error.

Another contrast between Tables 3 and 4 is the influence of ‘extractability”. It
had no influence on volatility (Table 3) but significantly reduces the pricing
mistake (Table 4} This is intuitively plausible in that the average quality of

Table 4

The quality of price as a forecast of value: margial influences of market characteristics
Market atiribute Coefficient T-statistic
Volauhty of prior, < 0,304 4.30
Signal diversily. — 151 —214
Trading noise, ¥ 0.356 1.63
Buver bias, oz 1.46 691
Scller bias, x, — 0.697 — 330
MOT 91.8 217
Clueless, % 0.243 287
Extractability — 179 21z

Adjusted R%: 0217

Note: In a linear reeression, the dependent variable was the value of the average valuation mistake
M, Eg. (2), observed for a given set of market conditions, (parameter values). The independent
variables are the parameter values. The number of observations in the regression, 6561, is the
number of different combinations of parameter values.
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private signals 5 closer to the true value when extractability is large. Hence,
reactive learning improves the market’s ability to aggregate those higher quah’tyi
private signals. Simifarly, as one would have anticipated. the pricing mistake ig
lower when more agents receive signals and also react to each other.

The other market conditions such as endowment differences, "Clueless’. and
"MOT have the same marginal effects that they had on volatility, though the
significance levels are considerably smaller.

3.3 Trading volume

Across all parameter combinations, the excess dollar volume (Eq. (3)) aver-
aged — 37.5%, a substantial reduction in volume induced by reactive learning,
However, there was significant variation across replications with a maximum
47.3% and minimum of — 72.3%. The average, maximum and minimum for the
excess share voiume were approximately the same as the excess dollar volume.
These results are compatible with the basic thrust of ‘no-trade’ theorems in the
sense that reactive learning tends to diminish trading.

Marginal mfluences of market conditions, (i.e.. of parameters) on excess dollar
velume are provided by the regression reported in Table 5.1*

Excess volume mirrors the behavior of volatilitv, which is strikingly apparent
in comparing Tables 3 and 5. An empirical association between volatility and
volume has long been documented in the literature: of. Karpoft (1987) or
Gallant, Rossi, and Tauchen {1992). It has generally been supposed that this
connection arises when new information arrives and evokes trading; however.
we see from these simulation resuits that an information event is not necessary.
The volume/volatility connection can arise spontancously from trader interac-
tion.

There is nonetheless one parameter which seems to influence volatility differ-
ently than volume: viz.. the trading biases («s) of sellers and buyers. As Table 3
reports, a bigger absolute bias decreases the volatility reduction induced by
learning behavior. The signs of both #’s are reversed in the trading volume
regression reported in Table 3, thereby indicating that greater bias increases the
volume reduction from learning. Admirtedly. the coefficients in Table 5 are oniy
marginally significant,

We can think intuitively of these trading biases, the average difference be-
tween a trader’s signal and his reservation price, as measures of endowments,
inter alia. A larger bias implies that a typical buyer (seller} runs out of money
{shares) farther away from his posterior assessment of the asset’s value, belore he
has bought (sold) as many shares as his posterior would have dictated in the

“ Results for share volume are very similar and are not reported Lo save Epace. They will be
provided 1o interested readers upon request.
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Table 5
Marginal influences of market characteristics on volume

Market attribute Coeficient T -statistic
Volatility of prior, t —26.5 — 113
Signal diversity, ¢ 8.56 40.9
Trading noise, 7 234 435
Buver bias, % —1.03 — 1.76
Seller bias, z, 1.2 218
MOT 470 402
Clueless, % 0924 39.5
Extractability (.334 0.143

Adjusted R*: 0.732

Note: In a linear regression, the dependent variable was the value of the average valuation mistake
47, Eq. (3}, observed for a given set of market conditions. {parameter values). The independent
variables are the parameter values. The number of observations in the regression, 6361, is the
number of different combinations of parameter values.

absence of a resource constraint. Evidently, the possibility of resource exhaus-
tion interacts with learning to increase volatility but decrease volume. Again
intuitively, the volume reduction arises because trading ceases soomer but
volatility at the same time increases because the information conveyed to other
traders is less precise.

3.6. The prevalence of bubbles

On average over all parameter values in our simulations, the excess preva-
lence of bubbles (Eq. {4)) had a mean value of — 13.0%, indicating a moderate
reduction in bubbles induced by learning There was, however. considerable
variability across market conditions (parameters.) The standard deviation was
24%, and the maximum and minimum were 82.0% and — 71.6%, respectively.
Evidently, under some conditions. learning exacerbates the tendency for mar-
kets to form bubbles.

To shed some light on what particular market conditions might cause learn-
ing to exacerbate bubble formation, Table 6 records the marginal influences of
various parameters. One might have anticipated that the results would be
somewhat like the excess price volatility reported in Table 3 because greater
excursions of price from value are likely also to represent greater departures of
individual transaction prices from their mean. Indeed, this has occurred.
Tables 6 and 3 have similar sign patterns and significance levels. The only sign
difference is for Trading Noise. 7. which is negative in Table 6. Apparently,
though trading noise and learning interact to produce more volatility, very large
excursions from fundamental value, ie., bubbles, are less likely when traders
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Tabie 6
Marginal influences of market characteristics on bubbles

Market aturibure Coetlicient T-statistic
Volatility of prior, < — 8.1 — 896
Signal diversity, 295 22
Trading noise, 3 — 0.308 ~ 222
Buyer bias, xp 243 10.6
Seller bias, %, —2.30 — 10.0
MOT 142 3.09
lueless, % 0.299 7
Exrractability 0.394 0.430

Adjusted R%: 0.612

Note: In a linear regression, the dependent variable was the value of the cxcess bubble statistic. B,
Eq. (4], observed lor a given set of market conditions, (parameter values). The independent variables
arc the parameter values. The number of observations in the regression, 6361, is the number of
different combinations of parameter values.

realize that they should be cauticus in reacting when other traders are generat-
ing iots of noise.

3.7. Specification diagrostics

The regressions reported in the previcus section are compact devices for
presenting simulatien results. They are not necessarily well-specified statistical
maodels. A priori, there are at least two reasons to anticipate mis-specification.
First, although the observarions are independent by construction, possible
non-linearity might have produced dependence in the disturbances. QLS fits
a hyper-plane through the observations. If the true functional form has curva-
ture, there might be dependence across successive disturbances when the obser-
vations are ordered by any one of the explanatory variabies. Second, there is
every reason to anticipate heteroskedastic disturbances, Both of these problems
can be corrected. heteroskedasticity by econometric methods and non-linearity
by estimating an appropriate functional form.

Te correct for heteroskedasticity, we re-computed the previous regressions
with the White (1980} heteroskedasticity-consistent disturbance covariance esti-
mate. The results were virtually ideatical to the simple OLS resuits,’”

Since we have no intuition about the extent and complexity of the hyper-
surface curvature, if any, we utilize an agnostic investigative tool, a series

"2 A copy of the tables will be furnished on request o interested readers.
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expansion that can approximate any differentiable function. Let ¥ denote the
dependent variable and x; the /" explanatory variable related by an unknown
surface y = Fixy, x5, ... ). A Tayior series expansion is

yo=Flug, pta, ...} + Zj(xj —pu)F; + %Z_,-Zk(xj — uxy — uF
+ higher-order terms,

where F; = ¢Féx;and F;, = 8°F;¢x,éx,. To fit such an expansion empirically,
terms higher than second order can be discarded and u; specified as the sample
mean of explanatory variable j. In addjtion, each variable can be scaled by its
sample standard deviation ¢; to help reduce multicollinearity, which might
otherwise be a quandary.*® Scaled variates in regressions would then all have
sample mean zero and sample standard deviation unity.

The regression analog of the Taylor series expansion is

: _2 -
(v — ,H,\J Gy = d + Zjbj:j T z‘fcﬁj + }:JZ* >jdj,k—'j""k_-

[ wiiie;. Esti-
mated regression coefficients can be interpreted as functions of hyper-surface
parameters; ie.,

where a, b, ¢. and d are coefficients to be estimated and =i —

Intercept:

a = [Fliy, iy, ...) — 1, ]/o,.
Linear Terms:

bi={o;/a,)6F/ix,
Quadratic Terms:

¢; = Hotio)AtF “exi.
Cross-product Terms:

d_j.k = ((,TJ'G;\..‘-".G}‘)C?ZF‘;"JC_‘:XJ;EXk.

The r-statistics’” from volatility surface estimation are reported in Table 7.
Reassuringly, the linear terms have exactly the same pattern and higher levels of
significance than their corresponding coefficients in the Table 3 regressions,
This impiies that surface curvature does not cause egregious mis-estimation of
marginal linear influences, even when a simple plane is fit to the data. The

*®For instance, (x; — t)ie; and [(x; — u)'e;]", though functionally dependent, are likely to be
less co~linear than the taw variates x; and X7

'" To save space, we repart only the 1-statistics and adfusied R*s. All other results will be provided
to interested readers. The regressions employ the White (1980) heteroskedastic consistent covariance
marrix.
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adjusted R”’s have increased materially, an improvement to be expected when
the surface is non-linear. Several parameters have highly significant quadratic
terms and there are numerous sirong interactions.

For both price and return excess volatility, Signal Diversity. ¢, Diffuseness of
the Prior, 7 and Trading Noise volatility. 7, ail have significant positive quad-
ratic terms, thereby implying a concave downward surface near their respective
mezans. These parameters also display significant interactions, negative berween
g and both v and . positive between © and -. A negative interaction implies
a reduction in the slope of the surface when both parameters increase, and
VICE Versa.

To give a conerete example, consider the influence of Signal Diversity on the
excess volatlity from learning. Its linear effect is positive. thus indicating that
greater cross-trader heterogeneity in signals reduces the mitigating effect of
learning on volatility. However, this lincar effect is reduced when the prior
distribution is more diffuse; i.e., the more uncertain traders are Prior to seeing
the actions of others, the smaller the marginal influence of Signal Diversity on
the learning-induced reducticn in volatility,

Another interesting example involves the interactions between buver and
seller biases, 2y and s, respectively, and trading noise volaulity, . The two
biases reduce learning-induced volatility reduction; their estimated linear effects
show an increase in excess volatility with an increase in their absolute values.
These marginal effects are both reduced by higher trading noise volatility. The
cross-product term for ag and y (x5 and y) is negative (positive). Understandably, less
precise information about the trading biases mitigates their influence on learning.

Similar interpretations could be drawn out for other combinations of para-
meters. The general impression is a rather complex surface contouring the subtle
influences and delicate interactions of market conditions. Although these results
are imtuitively plausible once they are disclosed by the simulations. it would
probably have been difficult to conceive of them a priori.

Turning now to the non-linear aspects of the Average Valuation Mistake, M,
the results in Table 8 reveal a slight improvement in explanatory power with the
additien of non-linear explanatory variables. The adjusted R has increased
from 0.217 to (.283.

Again, there are no surprises; the linear effects all have the same sign and
slightly greater significance than the planar regression of Table 4. As with excess
volatility, the Average Valuation Mistake surface is convex downward near the
mezans of the volatility parameters. 7, ¢, and 7. The interaction effects, however,
are distinctly different.

In contrast to the volatilities. the important extractability parameter displavs
ne significant non-linear {quadratic) effect. Increasing extractability augments
the benefits from learning in forecasting value, (its linear coefficient is negative),
but this effect is reduced, as might have been expected. by a more diffuse prior
and by greater heterogeneity in private signals.
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For excess volume and bubble prevalence, surface estimation again reveals
non-linearity and frequent interaction effects.”® The volume sign pattern is very
similar to that for volatility, reported in Table 7. The explanatory power is also
high, an adjusted R* of 0.939. For bubbles, the linear effects have the same signs
and slightly greater significance than those reported in the planar regression.
The adjusted R* rises substantially to 0.903, u clear indication of surface
curvature and parameter interaction.

4. Conclusions and future research

Simulation is a standard method for allowing realistic features into an
otherwise Intractable mathematical model. We use it to investigate how market
phenomena are influenced by traders reacting to one another.

To conform with actual markets, we assume that traders cannot fully know
the beliefs or resources of competitors; they must attempt to deduce these
attributes from trading activity. Beliefs based on private information are revised
after observing earlier transactions, particularly transactions executed by agents
with substantial resources. Trading progresses sequentially as each agent com-
putes a posterior estimate of value by combining private information with
inferences drawn from prior trading about the information possessed by others.
The size and direction (buy or sell} of successive transactions are determined by
the prevailing price compared with the posterior estimate of value and the
tracder’s resources.

Reacting to fellow traders substantially reduces volatility under many market
conditions. On average over all the market conditions (parameters) we studied,
price swings were lowered by about 28% in amplitude and return volatility was
reduced by approximately 30%. These reductions in volatility are accompanied
by a 37.5% reduction in the dollar volume of trading.

A more diffuse prior distribution on value results in a greater reduction of
volatility from reactive learning. When the prior is more diffuse, it is weighted
less during Bayesian updating; greater weight is placed on the actions of
other traders who in aggregate actually do have better information about
value.

In contrast, more diversity in private signals reduces the ability of reactive
learning to decrease price and return volatility, Traders mislead one another
when they are prompted to trade by erroneous private information. In some
cases, this can exacerbate the prevalence of bubbles, ie., excursions by the
market price far away from fundamental value. We observe a similar effect when

**To conscrve space, these results will he given to inlerested readers upon request.
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more traders receive no signal at all. Thev are totally uninformed except by what
they learn from watching others, but they trade nonetheless and therebv mislead
their competitors.

When traders have limited resources, bias their bids and offers 1o correct for
the winner's curse. or engage in strategically misleading transactions, there is
a smaller reduction in volatility induced by learning. {All three of these trading
behaviors are subsumed in our trading ‘neise’ specification.) If such activities are
frequently large and other market conditions are not dominant, volatility can
actually be increased by learning, In such circumstances, the market would be
more stable if traders ignored one another.

When traders react to each other, the market price is a better forecast of value,
bn average over our parameters by about 12%. Price possesses a lower root
mean square prediction error and is closer to value more frequently. The
Improvement in price accuracy from learning increases with (1) the fraction of
traders who receive signals, (2) the accuracy of aggregated private information,
and (3) the diversity of private signals.

Notice that greater diversity in private signals is associated with learning
increasing volatility and yet improving the accuracy of price as a forecast of
value. This interesting result shows that volatility per se is not an appropriate
indicator of market quality. When private signals are quite diverse, reacting to
others increases volatility but, at the same time, the price established by the end
of trading is closer to the asset’s true value. Hence, markets with greater
volatility can also have more informative prices.

On average, the prevalence of bubbles is reduced by about 13% through
iearning. Bubble prevalence behaves similarly to volatility, as might have been
expected.

Peering deeper into the simulation results, we see that market phenomena
such as volatility and price accuracy react in a highiv non-linear fashion to
market conditions such as heterogeneity of private information and differential
resources. In addition, there are strong interaction effects among market condi-
tions. For instance, greater information (signal) diversity reduces the ability of
learning to lower volatility, but this effect is mitigated by a more diffuse prior
distribution on value. Although many of these findings make intuitive sense
a posteriori, they would have been hard to imagine a priori, before seeing
the simulation output. A market is indeed a complex, subtle, and delicate
contraption.

Several questions for future research are suggested by our results, Among
others, we would like to know the answers to the following:

fa) Would agents be willing to invest to improve the quality of their private
signals? If so. how would market quality be affected?

(b) Aretraders who emit misleading signals in early periods able to recoup their
losses later?
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{c) How realistic is our assumption of transparency? Would there be benefits in
splitting up orders in an effort to hide private information? How would
learning be influenced by such behavior?

(d) How robust are the results to relaxing unrealistic assumptions: ¢.g., the form
of the excess supply function of small traders or the nisk neutrality of
everyone?

(2) Would market quality be affected by institutional arrangements such circuit
breakers or the imposition of a single-price auction prior to a round of
continuous sequential trading?

There are many important and interesting unresolved questions about how
traders behave, particularly when they learn from and react to each other
Closed form answers would be very desirable, but may prove a daunting
challenge. The numerical approach is much easier for a system as complex as
a financial market. Though it cannot provide uneguivocal proof of any proposi-
tion. simulation may nonetheless offer useful insights and a practical guide for
market organizers, traders. and regulators,
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