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Systematic Risk in
Corporate Bond Credit Spreads

MonNIcA PEDROSA AND RICHARD ROLL

arge financial institutions around

the world are investing heavily in

systems for measuring market risks.

They are responding to two forees.
First. regulators and investors are insisting on
better information about shori-term fluctu-
ations in firm value. Second, senior execu-
tives are focusing on internal risk monitoring
and control systems, in order to know more
precisely what they should be worried about
every dav

Financizl companies can be regarded
as levered portfolios with long positions in
assets of varying Liquidity and short posinons
in diverse debt obligations. Prailv movements
in interest rates, equirty prices, and exchange
rates affect the overall value of the portfo-
lio/firm. But the portfolios composition 1
under the control of managers who may
choose to restructure the portfolio frequent-
ly in response to market conditions or cus-
tomer demand, and whe employ a mutable
menu of hedging insowuments. As a conse-
quence, portfolio risk estimated from histor-
ical public data such as equity returns can be
seriously off the mark. Even insiders can find
it difficult to cope with sizable swings in
portfolio composition induced by daily trad-
INg activity.

An ideal risk measurement system
would produce a probability distribution of
returnis conditonal on the firm’s current port-
folio composition. If such a distribution were
available in real time, widely employed regu-

latory constructs such as “value at risk” (VaR)
could be calculated easily; VaR. is a level of
loss exceeded with a prespecified frequency.

The ideal is rarely attained. To explain
the causes of this failure, we note that all
assets and liabilicies fall into one of three cat-
egories according to the difficulty of measur-
ing and managing their risks:

1. Liguid positions for which liquid deriva-
tives are available.,

2. Liguid positions without related deriva-
tives.

3. Iliguid assets and Labilizes.

Few financial institutions expose
themselves to market risks that can be inex-
pensively aveided. If in the normal course of
business positions are maintained in the first
category above, thev are typically hedged
with offsetting derivative contracts. For
example, a dealer in long-term government
securities will employ futures to lessen or
even eliminate the risk of adverse move-
ments in interest rates. A corporate bond
dealer faces a more troublesome problem
vis-i-vis risk, because interest rate futures
can hedge only a portion of the price volatil-
ity. At present, there are no convenient
derivatives for hedging changes in credit per-
ceptions. Nonetheless, for corporate bonds
that are relativelv liquid, the firm can alter its
credit exposure simply by liquidating the
position.
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Such an expedient is not available for firms wich
an illiquid portfolio. Prices are not usually available, so
even for that part of an illiquid posidon theoretically
hedgeable with a dervative. the appropriate hedge ratio
is hard o estimate. Even worse, the firm cannot simply
terminate the pesition, Risk management in this case
devolves to the forlorn hope that diversification will
accomplish the bulk of the job, and the remaining risk
is typically ignored.

Since (1) hedgeable positions are hedged. and (2)
illiquid positions are ignored, the risks of many finan-
cial firms agglomerate in the intermediate category of
positions that can be marked reliably to market but have
no available derivatives, Qur article focuses on one of
the most common risks of this type, the sysiematic com-
ponents of credit spreads of fixed-income obligations
subject to default. By “svstematic,” we refer to compo-
nents of credic valuation that are shared by many indi-
vidual bonds and hence tend to resist elimination by
diversification.

To make the focus more specific, think about the
corporate bond trading desk of a investment bank 1n
New York or a2 commercial bank in London. At a given
moment, flow traders will have many individual bond
positions, long and short, accumulated as accommoda-
tions to customers. The net interest rate sensitivity of
the aggregate position can be hedged in large part.
although perhaps not perfectly, with interest rate
derivatives. Changes in the credic quality of individual
companies do not result in significanc volarility either,
provided that the position is well-diversified.

But the interest rate-hedged, well-diversified
position is sdll risky because yield spreads move togeth-
er. As investors become more or less cautious or alter
their beliefs abour the general outlook for the econo-
my, they reassess the probability of default for al! bonds.
Even a desk with the best intentions and skills will
experience losses when spreads shift unexpectedly in
the wrong direction.

In this simation, the probability distribution of
syscernatic changes in credit spreads assumes paramount
importance. Calculation of tail probabilides for VaR,
internal mader control via position limits, regulator
anvieties and actions, and investment performance all
depend heavily on this distribution. Its functional form,
its parameters, and its stabilicy should be the primary
focus of the risk manager’s attention.

Theoretically, a credit spread is attributable
entirely to the corporation’s default option. Rather

8  SvsTEMATIC RUSK N CORPORATE BOnD CREDIT SPREADS

than make the pavments promised on its debt, the cor-
poradon can choose to deliver its assets to the bond-
holders. It would exercise this option, again theoretical-
lv, whenever the present value of the remaining bond
pavments exceeds the value of the assets plus the unex-
ercised option.

Valuing the default option is difficult for several
reasons. The option is relatively long-term and has mul-
tiple possible exercise datgs interspersed with cash emis—-
sions by the corporation. In the event of defaulr, the
legal system intervenes, subverting the contractual spec-
ifications of the bond indenture and creating additional
randomness in the eventual cash setdlement.

Nonetheless, although an exact opticen valuation
formula remains elusive, some gqualitative comparative
starics are available. The oprion’s value should depend
directly on 1) term to expiration (bond maturity), 2) the
likelihood of default (bond rating), and 3) perceived
volarility of the firm’s assets, The Lkelihood of default
itself must depend on the difference between the value
of the firm’s assets and the value of its indebtedness. The
last factor depends inversely on the level of interest rates.

Using a sample of dollar-denominared bonds, we
study the empirical distributions of systematic credit
spread changes. The distributions turn out to be mor
complex than stationary-Gaussian. We provide evidence
about the nature of the intertemporal instability and doc-
ument the influences of credit quality, marurity, and
industry, proxdes for determinants of default option value.

1. DATA

Bloomberg Financial Services provides daily on-
line indexes of bond credit spreads. Each index is an aver-
age of individual corporate bond yields wathin a maturity,
industry, and credit rating category spread relatve to a
corresponding US. Treasurv vield. The spreads are
“adjusted” for embedded options (presumably for call or
convertibility, not default), but we have no mformation
about the adjustment methods. Alse, we cannot verify
how well the corporate bonds are matched in duration to
their allegedly comparable Treasuries.

We secured indexes for five marturities: two, five,
seven, ten, and thirty vears; four industry groupings:
Industrials, Utlities, Financials, and Yankees; and three
credit ratings: AA, A, and BBB — a roal of sixty differ-
ent indexes.? The time period of the sample spans Octo-
ber 3, 1995, through March 26, 1997, 366 trading dar
observazions. The latest date in the sample was just prio
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to commencement of this project. The first date was
selected mainly for convenience, although we had ter-
dary reasons: first, to collect a sufficient number of
ohservations for statistical reliability, and second, to
mimic practicing risk managers and regulators, who
tend to focus on the recent past.”

Exhibit 1 plots the credit spread levels over the
sample perod.

II. TESTS OF TIME SERIES STATIONARITY

We begin the empirical analysis of credit spread
indexes by recording evidence about their intertempo-
ral stadonarity, that is, about whether their time series
are consistent with the presence of a unit root. If the
existence of a unit root cannot be rejected, the series
should be at least first-differenced before being used in
any statstical model. Time series with unit roots will
not usually produce reliable statistical results because
asymprotic distributions are never achieved.

A standard unit root test involves the augmented
Dickey-Fuller {1981] regression:

S, =0 +pS.y +

P
Z'Yj (Sei = Se 1) T &,

swhere S_denotes the credit spread on date t; @, 0, and ¥,
are parameters to be estimated; and € is a spherical dis™
rurbance. Although the number of lags, p, can be select-
ed in advance, a common practice is to use the highest
significant lag from the autocorreladon functon of S.°
Allowing for a deterministic time trend in S, the
null hvpothests of 2 unit root (non-stationariry) 1s
rejected when the parameter p is significantly less than
unity. Norte that such a test is designed to err on the safe
side: the point estimate of p might be considerably less
than unicy, but if the estimate is not significantly below
unity, the tdme series 1s deemed dangerously close to
having a unit root, It would then be safer ro use first
differences, after they too are checked for 2 umit root.
Exhibit 2 reports Dickey-Fuller t-test results of
H. p 21, for levels and first-differences of credit
spreads.” The cridcal 90% value is —2.57. A smaller t-
statistic rejects the null hypothesis; 1.e., it1s a one-sided
test. For the credit spread levels, the BBB-rated, two-
vear Yankee is the sole series out of sixry that rejects the
mall hypothesis of a unit root ac the 90% level.® A few
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other series are close, and one might very well surmuise
that they probably do not have umit roots. Indeed, it
seems implausible that asy vield spread would actually
explode, as 2 unit roat process could. The power of unit
roor tests is notoriously low against near unit root alter-
narives: nonetheless, first-differencing seems prudent for
all these series.

The first-differences in Exhibit 2 display an enure-
Iy opposite pattern. Every series rejects the unit oot
hypothesis at the 90% level, mosc by a substantial margin.
Even at the 99% level, whose critical value is —3.43, all but
one series reject. First-differences appear to be safe.

As an aside, the number of lags (p) required In the
Dickev-Fuller first-difference regressions vary widely
across the series. Many series are strongly autocorrelat-
ed; the p’s range from a minimum of one o 2 rmaximum
of nineteen over the SIXTy series.

We zso investigate whether the sixty credit
spread series are cointegrated. The test procedure is to
run a regression of one credit spread (level) on the fifty-
nine others, and thereafter examine the regression resid-
uals for the presence of a unit root. If the residuals sull
display a unit root, the sixty serles are not cointegrated.
Basically, this implies that non-statonarity within an
individual series cannot be explained bv the non-sta-
tiomarity in other series.

In the cointegrating regression with the AA two-
vear Industrials selected arbirrarily as the regressand, the
R2is 0.897, and the Durbin-Watson is 1.349. This already
indicates probable cointegration. A formal Dickey-Fuller
test on the regression residuals gives a t-test statistic of
—6.31, which, compared against the O0% crincal value of
—4.70 and the 99% critical value of ~3.52, is indeed strong
evidence of cointegration. Since the residuals do not have
2 unit oot the sixty credic spreads share their non-sta-
tionarity in commoen.

The economic jntuition for this resuit pomnts to
common option-theoretic characteristics of credit spreads.
Even across industries, maturities, and rating categories,
there must be underlying systematic state variables driv-
ing default option values. Indeed, we have already men-
vioned one such common variabie, the (default-free)
interest rate, whose movements change the present val-
ues of corporate liabilicy promises. Other possible com-
mon factors include consensus perceptions about volatil-
ity and asset values.

Apparently, ail of the non-stationaricy in credit
spread indexes can be attributed to chese underlying
common influences.
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ExHIBIT 1
Credit Spread Levels
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EXHIBIT 2

Unit Root Tests for Credit Spread Indexes H Levels and First-Differences

Critical Value (90%) = -2.570

Maturity {vears) 2 5 7 10 30 2 5 7 10 30
“AA — Level” “AA — First-Difference”
Industrials -2.354 —1.778 -{.584 —(.928 -(.836 -4 977 —3.660 —4.833 -5.965 —6.206
Utsilities -1.99% 1687 —2.158 —2.438 -1,104 —4.513 —5.390 —4.578 -5.607 —4.778
Financials 2130 —1.9%4 —1.15% —(1.938 ~1.486 -5.204 —6.086 —5.10% —6.460  —4.421
Yankees —0.290 1.081 —0.774d 0.085 —0.134 —6.500 -7.034  -7.538 —8.484 —4.609
“p — Tevel”"A — First-Difference”
Industrials -2.056 -0.961 -0.630 -0.584 -1.621 4366 -35.703 =7.957 —6.431 —5.382
Utilines —1.442 —3.3606 —1.084 -1.311 —1.431 -4.776 -3.943 —5.430 —6.491 —4.310
Financials -1.01t —1.057 0.050 --1.604 —1.434 -4 878 —4.416 —6.788 -5.57 —3.785
Yankees —2.199 -1.174 -1.279 —0.224 —1.404 —6.106 —5.372 —4.437 -3.205 3721
“BBB — Level"“BBB — First-Difference”

Industrials -2.451 =1.845 -0.403 —.495 0.129 5321 -5.439 —4.954 -7.097 -5.014
Utlities -0.539 -1.095 -1.381 —1.984 -1.250 5480 —5.108 —=5.323 —4433 -3.299
Financials -1.122  -1.2%98 -1.261 —1.398 ~0.413 43507 3112 3584 -5.038 —4.101
Yanlkees —2.711 -1.080  -0.844 —0.420 -2.042 4193  6.881 —4.664 6430 3773

Searionarity is an important topic for further
investigation because many leading models of credit
derivatives assurne implicitly that spreads follow station-
ary processes; e.g., see Das and Tufano [1996] or Jarrow,
Lando, and Turnbull [1997].

111, CHARACTERISTICS OF
CREDIT SPREAD CHANGES

Continuously compounded percentage changes
in spreads between successive tading days were com-
puted as first-differences n the logs of spread levels.
Exhibit 3 presents summary statistics for each spread
change during this sample period. Exhibits 4-6 plot
estimated volatility, skewness, and kurtosis.

Volatility displays a pronounced and consistent
pattern across the four industry groups. Higher ratings
and shorter maturities have greater volatilities.
Although spreads are always higher for lower ratngs,
their percentage changes are typically smaller in magni-
rude. Similarly, spreads are usually (but not invariablv)
higher for longer maturires, but their percentage
changes have smaller amplitudes, Yield spread percent-
age change voladlity is quite large compared to, sav,
return volatility. Most of the volatilities in Exhibic 3 are
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well above 2% per day, and the shortest AA series exceed
5% per day; (approximately 86% per vear.)

Spread changes are correlated. All the estimated
1,770 pairwise correlation coefficients among the smxry
fime series are positive. The mean is 0.581, and the min-
imum and maximum are 0.281 and 0.932, respectively.
Correlations are higher for similar maturiries, but they
are toughly the same within and across industries and
credit ratings.’

Evidence Against the
Gaussian Distribution

If vield spread changes were normally distributed,
the kurtosis statistics in Exhibit 3 would not differ mate-
rially from zero. There would be some sampling scatter,
of course, but about as many negative as positive values.
As Exhibit 6 shows, however, every one of the vield
spread changes has excess kurtosis. All the estimates are
positive, and mary are very large. This implies a partic-
ular tvpe of departure from the normal distriburion that
can have troubling implications for risk management.”

Excess kurtosis 1s cansed by “thick” tail areas in the
unconditional probabilicy distribuden. There are w00
many extreme observations relative to what would have
occurred if the data were normally distributed. But such

Trr Journar of Exep Incoms 11



EXHIBIT 3

Yield Spread Changes, (%/Day), Univariate Statistics B

October 3, 1995-March 26, 1997 extremes are preciselv the object of most nter-
est in many risk systems such as in VaR calcu-

Maturity Standard  Excess : ; T &
Rating (years)’ Mean Deviation Skewness Kaurtosis lavtLons. Risk monitoring ofte ac-tempts to pre=
dict large losses, extreme negauve OUCOTIES.
Industrials Ignoring the excess kurtosis of yield spread
A — 51401 §3575 5357 1601 changes can understate the true probabilicy of a
AA 3 _0).0981 6.835 0288 3,329 large loss, perhaps by an order of magnitude.
AA 7 -0.0668 6.004 0.101 1.993 To illustrate this etfect, consider a tvp-
AA 1] -0.0566 5.740 0.292 3.474 ical situation that induces excess kurtosis, a
AA 30 -0.0367 3519 0,141 1.898 mixture of two normal distriburions. Intu-
A 2 -0.1203 6.261 -0.333 2.100 itively. we might imagine that credit spreads
A E 'D-QBH 3.046 -0.115 4-25; fluctuate with only a modest amplitude dur-
A 7 -0.0837 4.428 0.249 3.418 ing “quiet” epochs while they move dramarti-
A 10 00603 4274+ -0.064 3.770 A N
. o - S o cally during “exciting’ times. For simplicity
A 3 -0.0163 2397 o i of Hlustration, assume that spread changes are
BEB 2 -(1.0689 4580 -0.464 1.877 . T - ..
BBB 5 00671 3 785 1,289 3 601 Gaussmn, but tl'fat the smndard deviation
BER 7 -0.0933 3935 0.097 2437 jumps randomly from one regime (o another.
nER 10 _0.0510 3.063 _0.002 3933 Exhibit 7 plots the excess kurtosis and
BBE 30 _0.0537 1.976 0.061 1.504 standard deviations from such a mixture of
Tolites two normal distributions, one distribution
AAT 2 -0.1062 7403 0.178 2.256 with 2 standard deviation of 1.0 and the sec-
; AA 5 -0.1126 6.928 -0.336 2.984 ond distribution with a standard deviation of
P AA 7 -0.0630 3.735 0.344 4.752 3.0, The axcess kurtosis and standard devia-
AA 10 -0.0741  5.354 011 4.232 tion of the mixture is plotted against the
; AA 30 -0.0196 3.343 -0.196 L.26 probability that the lower standard deviation
A 2 -0.0695 5.096 -0.027 1.160 . . . . .
N z . o regime will occur on a given date.
A i -0.0687 +.339 0219 0827 As the graph makes evident, excess
A 7 00452 4246 0044 6215 - Sraph graent, =en
A 10 -0.0328 3334 G355 500 k.ur.cosm is .prodm.:ecli at all mixing probabl}l—
A 30 00442 5 283 0.055 3154 des. but it is maximized when the probability
BBB 2 01212 3162 0427 0,448 of the higher standard deviacion is relativelv
BBB 5 03,0562 2820 _0.420 2 446 low. In practical terms, i a fusual” regime
! BBB 7 -0,0299 2,840 0.072 8.499 with low volatility is interrupted infrequently
‘ BEB 10 0.0046 2.400 -1.332 12.120 by an “eventful”’ regime with high volatilicy,
BBB 30 -0.0440  2.124 -0.515 4.601 one will observe significant excess kurtosis.
Financials
AR 3 00283 3 695 5183 0687 Implications for Risk Management
| AA E _O'O§3O 4.965 *0'944 23 22 Calculations of loss probabilities, such as
A T owm o asn o On Gam VR wilbe serioudy compromert by 8 5
: AA 30 _0,1089 5731 0205 {172 manager who rehes. mapprgprmcely on an
A 2 200397 4.99% 0012 1.154 assumption of normaliry and ignores the possi-
A 5 0 0666 4112 0171 5 064 bility of shifting regimes. Lets take 2 typical
A 7 00703 3730 0.352 3477 example from Exhibit 7, say, & probability of
A 10 _0.0233 3113 0116 21315 the low volatility regime of 0.85; this corre-
A 30 -0.0707 2.319 0.135 4.681 sponds to an unconditional standard deviation
BBB 2 -0.032% 3.548 -0.304 1.277 of about 1.48 and an excess kurtosis of 5.06.
BBB 5 -0.0738 3.122 -0.553 3.179 The 1% VaR of a normal distribution with
BBB 7 -0.0248 2.751 0.416 5.483 volatilicy 1.48 is -3.45 below the mean of the
BBB 10 0.0290  2.098 0.186 2.587 distribution. But the 1% VaR. of an 85%/15%
BBB 30 01284 1.618 -85 12.280 mixwure of low and high volatilicy regimes, with
ii 12 SysremaTic RIsK v CORPORATE BOND CREDIT SPREADS DrecEvVBER 1998
|
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EXHIBIT 3 (CONTINUED)

Yield Spread Changes, (%/Day), Univariate Statistics
W October 5, 1995-March 26, 1997

spread changes have posicive skewness. Since
orice changes have the opposite skewness of
vield changes, positive vield skewness
implies that the left tail of the loss distribu-

ton (for a long position) confalns more

Maturity Standard  Excess
Rating (years) Mean Deviation Skewness Kurtosis probability than a normal distribution.
Again, a mindless calculation of VaR. will be

o Yankees - understated. On the other hand, for those
AA ‘?‘ -0.0184 3'%2" -0.012 0.628 cases of negative vield spread skewness, VaR
AA > -0.127 5.528 -0.197 2.943 .

- i N can actually be overstated.
Af ! -0.0662 5460 0.370 6.402 Thé degree of skewrness varles by
AA 10 00458 4130 . 0201 2.958 _ gre e e
AA 30 _0.0484 3133 0,054 1.854 industry; twelve of the fifteen Yankes
A 2 0.0481 4:154 0:108 1321 spreads are positively skewed, but only five
A 5 _0.0561 3 468 0,031 2817 of the fifteen industrial spreads. There 1s a
A 7 _0.0103 3.549 0.158 7183 slightly greater tendency toward positve
A 10 -0.0339 2.310 0.087 2.322 skewness in the longer maturides.
A 30 -0.0012 1.968 0.274 2.607
BBB 2 0.0730 3.594 0.162 1.433 IV. MODELING CREDIT SPREAD
BBB 5 0.0016 2.745 0.370 3273 CHANGES WITH RANDOMIZED
BBB _i' -0.0001 2.721 0.533 11.940 GAUSSIAN MIXTURES
BEBB 10 -0.0224 2.004 0.209 2.549

5 4 I - e
BBB U 0.0163 1.668 0.035 2327 Thick tails occur under many proba-

the same volatilivy, 1.48, has a VaR —4.50 below the mean.

To put this into practical terms, if a VaR. of $100
million had been calculated with the present internal
model under these conditions, it would have been
sbout 30% too small. The true 1% VaR would have
been about $130 million.

The VaR error induced by non-normal thick tails
becormes worse, percentagewise, with 2 lower cutoff level;
e.g.. the error for a 1% VaR is generally worse than the
error for a 5% VaR. Also, the error generally increases
with kurcosis, but the effect is complex: it depends on the
number of different regimes generating the data, the prob-
abiliies of each regime, and the persistence of a regime.

On a more reassuring note, the effect of excess
kurtosis is likely to be somewhat attenuated by diversi-
fication. A relatvely large portfolio will usually have
less kurrosis than many of its individual consutuents.
This diversification benefit will, however, be less
marked when individual returns are highly correlated.
Since the correlations among credit spread changes are
relatively large, particularly for sumilar maturites, one
should expect that a portolio of corporate bonds will
rerain 2 troubling degree of excess kurtosis.

Turning finally to skewness, Exhibits 3 and 5
reveal that slightly more than half of the sixty vield

DeceMBER 1998

bility distributions, but there is a strong a pri-
. ori reason to think that a Gaussian law oughi
to be a good model for credit spread changes, at least over
» short horizon. The reason stems from the Gaussian’s
posidon as the limiting distribution for surns of indepen-
dent random increments with finite variance.’® Since the
actions of manv market participants are reflected in bond
prices and hence in credit spreads, some more or less
bell-shaped limiting distribution is likely to occur.

If, in addition, markets undergo periodic changes
in turbulence, the simplest and most straightforward model
would be a mixrmure of several Gaussian laws. We under-
take an excursion into this terrain by estimating the likely
number of disinct Gaussian laws, their respective proba-
bilities of occurrence, and their associated parameters for
the sixty credit spread change indexes in our sample. The
techmnigue assurnes that each member of the mixture has a
fixed probability of occurrence everv day. It does not
attempt to ascermin whether regimes persist once thev
occur. That topic is reserved for the next section.

Denote by gfs) the unconditional density func-
tion for s, the log first-difference in the vield spread.!’
The simple mixmures model can be expressed as

T [QURNAL OF FIXED [NCOME 13



ExuisIiT 4
Volaiility of Yield Spread Changes (% Dav) B October 5, 1995-March 26, 1997

| [ Utilities i

L Industrials

Volatility (%/Day)
Volatility (%/Day)

Maturity (Years) 2

i Yankees ]

I financials 1

Yolatility (%/Day)
Volatility (%/Day)

Maturity (Years) i

where K is the number of distinct Gaussian elements of
the mixture, f (s) is the k-th Gaussian density, with
mean W, and standard deviation G, and %, is the prob-
ability of a regime whose density is f (s), Z, 1T = 1.

parameters, [, G, and %, k = 1. ... K. A conditonal
likelihood value can be calculated for K = 1, 2, ..., untd
a K is found for which there is no evidence that K + 1
improves the overall fit.

Let 5. denote a sample observation of the yield

spread change on date t. a single observation drawn
from g(s). Conditional on K, the likelihood function
for a sample of size T is

which can be maximized with respect to the 3K - 1

14 SysTEmatic RisE 1v CORPORATE BonD CREDIT SPREADS

The decision rule examines the sequence of like-
lihood ratios, L . L and terminates when the test
statistic 1s no longer significant at a prespecified level
(which we chose a priori as 95%). The critical value
(7.81) does not vary with K because the reduction in
degrees of freedom equals the number of additional
restrictions imposead.

The lLikelihcod function 1s non-linear in the
parameters. A simultaneous analytic solution for al

parameters becomes intractable {or at least very tedicus,

Deceverr 1998
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EXHIBIT 5
Skewness of Yield Spread Changes M October 5, 1995-March 26, 1997

| industrials I i Utilities ]

o8 o8

a4 0.4
0z o2
§ =]
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gon E 003
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& ]
o2 02

0.4-4 0.4 -3

T
Maturity (Y ears) * B

£
v

Maturity (Years) %

[ Financials 1 | Yankees 1

1B v
Maturity (Years 30 .
v ) @lAs WA JBBB Maturity (Years)

for K > 1. Consequently, we use a numerical algorithm apparent, but it is certainly not perfect and appears to be

for solving a svstem of non-linear equations. ™ slightly non-linear.

The results are presented in a series of figures Exhibic 10 plots the estimated probabilities of
organized to reveal interesting features of the data.™ To oceurrence and standard deviations (percent/day) for the
begin with, Exhibit 8 reports the log likelihood ratio mixture of two normals (K = 2). There is a consistent
statistic for whether a single Gaussian distribution s pattern: a relatively high probability of a low-volatility
adequate, as opposed to a mixture of at least two Gaus- regime (i.e., the quiet regime), and a smaller probability
sians. The critical 93% level is 7,81, and the adequacy of a high-volatdlity regime (i.e., the exciting regime). In
the low-volatility regime, estimated standard deviations
decrease with maruritv and increase with credit qualicy.
rated, two-year Utilities, the series with the lowest A similar pattern can be discerned in the Indus-
excess kurtosis (see Exhibit 3.) trials sector during the high-volatility regime, but the

Exhibit 9 plots the sixty Iikelthood ratio test other three sectors have an opaque patcern, if any at all
Also, one nught be tempted to think that Utilives are
less likelv to experience high-volatility regimes, but

of a single distribution is rejected for fifty-nine of the
sixty time series. ‘The only exception is for the BEB-

statistics for a two-distribution mixture against the
computed kurtoses. The cross-sectional relation is
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EXHIBIT 6

Excess Kurtosis of Yield Spread Changes B October 3, 1995-March 26, 1997

¢ Industrials i

Excess Kurlosis

7
Mattrity (Years} * 34

{ Financials ]

T

I Utilities i

Excess Kurtosis

I Yankees -

9 8 o
n 5
E s £ %
=1 }i
=] v
P o
g g
o &
L pas
. p:1 ? 1u
Maturity {Years) ] Masurity {Years) =
Haa A 0888

there are a few maturicy/credit quality exceptions to
this tendency.

A pictorial example of the technique is present-
ed in Exhibit 11. Panel A plots the two separate ele-
ments of the Gaussian mixture estimated for the A-
rated seven-vear Financials along with the overall mixed
densitv. Panel B compares the estimated mixture with
an ordinary Gaussian having the same mean and vari-
ance and with a non-paramerric density estimated from
the sample.*

The non-parametric density estimate might be
regarded as a curve fit through the sample observations.
so differences with either the ordinary Gaussian or che
mixed Gaussian reveal areas where these parametric

16 SvsTemaTiC RISK 13 CORPORATE BOND CREDIT SPREATS

estirnates fail to fit the data perfectly. Clearly, the mixture
provides a substantially better overall fic.

Panel C shows that the mixture has much more
probability in the tails than the ordinary Gaussian, as
would be expected. The mixture deviares from the non-
parametric density tail areas primarily because the latter
are multimodal. We think this non-monotonicity in the
non-parametric density is evidence of sampling error
that is prone to be exaggerated in the tail areas. Conse-
quently, the mixture estimator might very well provide
more reliable tail probability calculations and a better
tool for risk managers.

For mixtures of three Gaussian laws, Exhibit 12
plots the likelihood ratio test statistics, and Exhibit ]

DECEMSER. 1998
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EXHIBIT 7
Excess Kurtosis and Volatility for Mixtures of Two Distributions
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plots estimated mixture probabilities and standard devi-
ations.”> The pawern of the lowest volatility regime
appears to be almost idendcal to that reported in
Exhibit 10, which assumes just two components in the
mixture. The higher-volatilicy regime of the two-com-
ponent mixture has now been splic further into two
parts. The first part, labeled an “average™ regime in
Exhibit 13, has an estimated volatility somewhat greater
than the “quiet” regime.

The third component comes in two distinct
forms. For many series, it is a regime of minuscule
volatility, undoubtedly associated with trading days on
which credit spreads did not change at all. The associ-
ated probability of this mixture component is essential-
ly the frequency of zero change observations. There are
some series, however, with verv large estimated volatil-
iries, vervy “cxcitng” epochs indeed.

Exhibit 14 reports the likelihood ratio test statis-
tics for the necessity of a four-distribution mixture, as
compared to a mixture of at least three Gaussians. Miss-
ing bars indicate cases for which a three-element mix-
fure is not necessary. At the 95% critcal level, four
components are required for only two of the sixty time

DECEMBER 1998

series: the A-rared, five-vear Industrials and the A-rated
ten-year Financials.

V. PERSISTENCE OF REGIME SHIFTS

Although the previcus results suggest that credit
spreads display intertemporal changes in volatiliey, they
provide no direct evidence about the validity of our
working assumption that regime shifts occur randomly
on a daily basis. Indeed, we regard this assumption as a
priori implausible, and made it merely for convenience
in the previous section.

The polar opposite of a daily regime switch is a
slow evolution of volatilicy over time, as exemplified
by a GARCH process.'® GARCH provides a condi-
tional prediction of volatility at date t based on the
specification:

P 2 3 2
=0y + X0s., T X090
=t =1

~
T

c

where s, is the observed credit spread (log) change on
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ExHIBIT 8
Likelihood Ratio Test Values for a Mixture

Corical Value (335 = 7

of Two Normals

381

date t, O, is the estimated (conditional) volatility of
spread changes for date t and the ofs and % are param-
eters obtained with the method of maximum likeli-
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s

120.00
- 10000
= 80,00
-&0.00
‘Yankses, 8BB
Financuais, 888
Urifines, BBR .
Irdustriais. BBE 20yrs
Yankeas, A
Finansials, A *Qyrs
Lhiltities, A
industriats, A 7yrs
Yarkens. AA
Finanoials, A& Byes
Wiilmias, AA
Ingusirials, Af; 2y
Maturity
Type/Rating 2yrs 5yrs 7 yrs 10 yrs 30 yrs
Industrials, AA 64.82 36.16 16.00 42,78 2852
Utilities, AA 30.35 36.63 57.18 49.22 34.94
Financials, AA 8.50 33.537 50.0% 30.28 23.69
Yankees, AA 9.45 42,66 49.37 25.17 37.45
Industrials, A 34.63 41.25 40.85 52.28 44.16
Urilities, A 19.17 24.95 49.76 19.80 43.23
Financials, A 25.20 26.57 47.00 24.89 78.47
Yankees, A 17.24 44.67 5949 22.54 36.36
Industrials, BBB 23.66 33.8C 34.28 42.04 35.62
Uilides, BBB 3.67 28.35 64.53 74.21 59.14
Financials, BEB 14.60 38.37 46.87 277 108.70
Yankees, BEB 19.75 37.16 82.38 29.39 64,82

hood. In general, the orders p and g of the process can
be wvaried to obtain the best fir; 2 parsimonic
exploratory initial choice is p = g = 1. Resules for this
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EXHIBIT 9
Likelihood Ratio Test Statistics versus Kurtosis
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Mixture of Two Normals: Probabilities

specification are reporied m kxhibic 13,

The intercept term, ¢, 15 alwavs positive and
significant as it should be. The “ARCH” coefficient o,
on the lagged squared observation is significantly posi-
tive for fifty-nine of the sixty credit spread series; the
only exception i1s BBB thirty-year Financials. This
implies persistence 1n volatility at a single dav’s lag.

The coefficient of the lagged conditional vari-
ance, @, is not statistically significant for the majority of
the Induscrial, Udlity, and Yankee series. In contrast,
most of the Financial series are significant, including all
of the BBBs. In the urlities group, the AA and A rwo-
year series have significant 0, but the A and BBB seven-
vear series are aberrations, significantly negative. Only
ane of the Yankee series displays a highly significant ..

Since the ARCH coefficient 0, is so uniformly
significant, we also compute a GARCH model with p
=2 and g = 1 to test for second-order lagged ARCH
effects (not reported, but available on written request.)
The first-order coefficients remain virtually unchanged
while the new second-order coeficient, ,, is insignif-
icant for most series. Only four of the sixty series have
associated t-statistics for this coefficient greater than

DECEMBER 1998

2.0, while seven t-statistics are less than —2.0. Apparent-
Iy, the volatility persistence in these series is quite simple
and short-term. There is little evidence that it persists
for more than a single trading day.

Since the volatlity of credit spread changes seems
to be driven mainlv by the observed squared credit spread
change on the previous trading day, the basic assumption
in our Gaussian mixtures models appears to be appropri-
ate for most credit spreads. Every day, the volaality of the
regime is drawn anew (aithough it is at least pardy deter-
mined by the ex post observation on the previous day).

For many series, there is no evidence of long-
term persistence in the volatility; the lagged conditional
volatlity as measured by the GARCH coefficient ¢, 1s
not a significant determinant of the subsequent day’s con-
ditional volatilizy. There are a few series, however, main-
lv the Financials and particularly the lower-rated Finan-
cials, where persistence is significant. For these serzes, a
simple mixtures process could be mmproved upon.

VI. SUMMARY AND CONCLUSIONS
Most large financial institutions have a plethora of

Tas Journas F Fixen Income 19




Exuaisir 10
Mixture of Two Normals: Standard Deviation
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hedging instruments available for reducing the market
risk of positions taken during the normal course of
business. Typically, they employ hedges whenever pos-
sible while thev diversify to reduce non-hedgeable
risks. But there are some systematic (non-diversifiable)
risks for which hedging mstruments are illiquid or nor
even available. Among the most prominenc of these are

20 SvsTEMaTIC RUSK IN CORPORATE BOND CREDIT SFREADS
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corporate bond credit yield spreads.

Corporate bond twaders and investors can use
interest rate derivatives to hedge part of the position risk
in bond portfolios. Changes in individual company cred-
it quality can be diversified. Unfortunately, average cred-
it spreads still fluctuate dramatically, apparentdy driven
common underlving influences on the default optons
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ExugIisIiT 11

Fstimated Mixture of Two Gaussian Densities for A-Rated 7-Year Financial Credit Spread Changes Compared
with Non-Parametric Density Estimator and Gaussian Density with Same Mean and Standard Deviation

PANEL A: Density of Estimated Mixture and its Gaussian Components

Prehunéity Detsity

L
T Ganesn? 185 ZTH
T TGausman2 215 FO6
=T Mars 372

Weedd Sl Cranges (X1 bay 1

I . Y

PANEL C: Right Tail of Estimated Mixture of Two
Densities, Gaussian Density, and Estimated
Non-Parametric Density

PANEL B: Comparison of Estimated Mixture with
Gaussian Density having the same Mean and
Standard Deviation and a Non-Parametric Density

Prohuniliy density

——NPLE

Eromamlivy Benne
Saasaen

= = -Meooure

01

A % = 23

H 5 “ I s ¥
Yrzld Srreal Chunpss (S0}

et Spread Chaogpet (T

used with confidence.

Our sixty credit spread time series appear to be coln-
tegrated, suggesting that the observed non-stanionar-
ity is actributable to common underlying influences.
Changes in credit spreads exhibir substantial depar-
tures from the Gaussian distribution. Most seriously,
changes have thick tails, which could compromise
management calculations of probable loss such as
value ar risk, (VaR.) If VaR. assumes normalicy, loss
probabilities can be seriously understated.

Gaussian mixtures appear to provide reasonably good
models for the thick-tailed diswributions of credit

embedded in corporate bonds. This risk is not diversifi-
able, and there are few extant hedging instruments.

Using a sample of dollaz-denominated average
credit spreads categorized*by industry, maturity, and
rating, we have recorded some salient features of their 3.
probability distributions. The conclusions are:

[R8)

1. The hypothesis of non-stationarity for credit spread
levels cannot be rejected. Most of the series seem
alarmingly close to having unit roots, and hence
should not be used in statistical models without the 4.
atmost caution. First differences, however, can be
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ExHIiBIT 12
Likelihood Ratio Test Values for a Mixture of Three Normals

Yarkeas, BSB_
Financiars, 8887
Utilitiss. BRE B
Industriats, BEB“
Yankaes. A
Financiais, A_
Uilitias, A .
Industrals, A-.
Tankees, AA
Financiats, A& Syes
Util#ies, AA- L agy

2 yrs
Inoustriais. AA

Critical Value {3%; = 7.81

Maturity
Type/Rating 2 yrs 5 yrs 7 yrs 10 yrs 30 yrs
Industrials, AA 3.2 10.42 7.05 0.48 12.19
Utiliries, AA 2.25 4.03 i4.40 12.62 19.29
Financials, AA 7.78 6.66 +.96 0.94 2.10
Yankees, AA 1.96 3.20 5.05 12.51 6.58
Industrials, A 1.32 10.50 6.4 1.78 1.33
Utilities, A 3.64 3.97 4.04 3.84 7.06
Financials, A 3.01 14.17 775 8.77 10.72
Yankees, A 8.66 2.55 7.07 4.86 432
Industrials, BBB 6.37 7.55 4.08 0.45 11.21
Utllities, BBB 8.62 7.46 4.85 11.93
Financials, BBB 4.18 5.54 4.19 7.91 2325
Yankees, BBB 7.10 12.33 4.38 10.00 3.12
spread changes. We esdmate mixing probabilites erated by two or three distinet regimes that occur
and parameters for each element of the mixture, randomly on a daily basis. In the two-regime model,
Most credit spread series behave as if they were gen- quiet epochs are incerspersed, but only rarely, with
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ExgHIBIT 13
Mixture of Three Normals: Standard Deviations

Quier Regimes Average Regimes Exciting or Very Quiet Regimes
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substantially more volatile periods. simpie; the conditional voladlity on 2 trading day
5. GARCH models reveal some differences among the depends only on the observed squared credit spread on
the preceding day. For a few series, however, there 1s

credit spreads across rating and indusury classifications.
evidence of longer-term volatlity persistence.

[n most cases, the persistence of volaufity is rather

DR
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ExHIBIT 14
Likelihood Ratio Test Values for a Mixture of Four Normals

Yanwess, 868
Financials, BBBV
Utdities, EBB‘

Ingustrials, BRE

Yarkess, A

Financials, A

Utlities, A

Indusinials, A Tyrs

Yanxeas. AA
Financ.ais. AA syrs
Utititiss, AA

- 23
fnaustrals, AR

Critical Value {5%) = 7.81

Maturity
Type/Rating 2 yrs 5 yrs 7 yrs 10 yrs 30 yrs
Industrdals, AA 1.14 0.09
Uldlities, AA 2,46 0.71 6.07
Financials, AA
Yankeses, AA 3.04
Industrials, A 7.87
Utilities, A
Financials, A 2.49 3.81 4.73
Yankees, A 5.01
Industrials, BBB 2.23
Utilities, BBB 5.79 6.33
Financials, BBB 2.38 3.84
Yankees, BBB 5.19 1.49
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The authors thank Eduardo Schwartz and Walrer
Torous for their suggestions and comments.

“The vield spread is the difference between a bond’s
yield, adjusted for embedded options except default, relative
to an otherwise equivalent default-Fee securiry such as 2
Treasury.

“We are grateful to J.P. Morgan for assembling,
checking, and providing the data.

For instance, the Basle Committes associated with
the Bank for International Settlements recommends that
VaR calculations use a sample spanning the most recent
twelve months. See Jorion [1997, p. 30].

*See SIIAZAM User’s Reference Manual [1997, p.
168]. The SHAZAM software uses the highest lag significanc
at a 95% level.

’In an effort to assure symmetry, we adopt the com-
monplace procedure of using log levels and first differences.

°If the series were independent of each other, about
six rejecuons out of sixty could be anticipated at the 10%
level, even if every series has a unit root. Our single rejec-
tion 15 not encugh. As reported later, however, the series are
quite correlated, so the paucity of rejections is less suspicious
than it might at first appear.

“The full matix of individual correlation coefficients
is availabie to interested readers upon request.

A comprehensive treatment of excess kurtosis as a
problem in VaR. calculations is provided by Duffie and Pan
[1997).

“Except, of course, at the extreme probabilities of
zero and one. .

“More generally, for increments without convergent
integrals for the second morment, one might posit that a non-
Gaussian member of the stable family would be appropriate.

“Lower case “s” denotes the first difference of upper
case “S8.7

“Starting values were generated with the EM algo-
rithm (see Dempster, Laird, and Rubin [1977]}, while the
rapid BHHH algonthm (Bemndt, Hall, Hall, and Housman)
11974] was used to provide estimares and standard errors
unless it did not converge, in which circumstance it was
replaced by the slower but more relisbly convergent EM
algerithm. See Constrained Maximum Likelihood Applica-
tion Manual [1997, pp. 6-37] and alse Hamilton [1994, pp.
685-689].

BTables with the exact values of all results are avail-
able from the authors upon request.

““The non-parametric density esdmate employs a
Gaussian kernel and the “normal” reference rule (Scout
(1992, p. 131])

"*In Exhibit 12 and later analogous figures, a series is
omirted if it has an insignificant likelihood ratio at an even

26 SysTeMATIC RIS v CORPORATE BOND CREDIT SPREADS

lower value of K. [z this instance, if there were no evider -
that 2 two-component mixture was required, a thres-cor
nent mixture was not estimared.

PGARCH is Generalized Auro-Regressive Condi-
tonal Heteroscedasticity; see Bollerslev [1936]. An intermedi-
ate case, not nvestigated here, could be something liks a
Markov switching model; see Hamilton [1994, ch. 22].
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