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Shanken (1985) derives a test for the zero-beta capital asset pricing model (CAPM) which. as he
points out, i8 equivalent 1o a test of the mean /variance efficiency of the market portfolio. This note
illustrates the geometry of Shanken’s test in the mean /variance space.

1. Introduction

In an interesting contributicn to the econometric literature of finance,
Shanken (1983) derives a cross-sectional regression (CSR) test for the
mean/variance efficlency of a particular market index. The test statistic is
based on a quadratic form invelving the sample covariance matrix and, as
such. it is related to the classic Hotelling 72 statistic; thus, the name CSR T
test. As Shanken peints cut, testing the mean/variance efficiency of a given
portfolio 15 equivalent to testing the validity of the zero-beta capital asset
pricing model with a given index employed as the "market portfolio’. This note
is really just an appendix to Shanken’s paper. It derives the geometry of his test
in mean/variance space, This geometry illustrates the intuition of Shanken’s
test.

2. The geometry of Shanken’s test

The test statistic is a residual sum of squares from a generalized least squares
{(GLS) cross-sectional regression. Using Shanken's notation. the statistic is
expressed as

O=Te'V i, (1)

*The comments and suggestions of Chi-Cheng Hsia. Bob Korkie. and Jav Shanken are gratefully
acknowledged.
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where
T = ume series sample size,
e = vector of residuals from a generalized least squares (GLS) cross-sectional

regression of mean returns of ‘betas’ for N + 1 assets,
Vo= sample covariance matrix [(N + 1) x (N + 13].
The residual vector e is computed as
e=R-91-95, {2)

where %, and %, are GLS coefficients, and

vector of individual mean returns,
vector of ones,

To o
I

= vwvector of beta coefficients.

All three of these vectors are [( N + 1) =11
The cross-sectional coefficients "= (Yo 1) are given by

P=(x¥ %) (x¥ 'R), (3)
(see Shanken), where
X=(18)=[1(q7q) vg). 4)

and where ¢ is an {(N + 1} x 1] column vector of the investment proportions of
the particular market index being tested for efficiency.

Shanken analyzes this statistic in an ‘errors-in-variables’ framework, noting
that the regressors in the cross-sectional regression (3) should be the true betas:
the 8 m (4} is supposed to be computed from the true covariance matrix ¥, not
from its estimate V.

Operationally, the sample estimate of £ is used in the cross-sectional
regression. The sample estimate of beta is a function of ¥, ie, X=
(1 4= [1 (q’f’q)’lf/q}. This suggests that there is really no errors-in-variables
problem in the usual econometric sense of the phrase. If we substitute for X in
(3), betas disappear completely and ¢ can be expressed in terms of ¥ and R
alone. The sampling distribution of ¢ depends on the joint sampling distribu-
don of the mean vector R and the covariance matrix V. The intermediate step
(3) can be finessed and, m doing so. the errors-in-variables problem is
eliminated.” This is not to say that the problem is simple; indeed, the sampling

"This is true, however enly when the index contains no individual assets other than those used in

computing K and I*. The index need not contain all of these '~ 1 assets, but it must not contain
others.
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Fig. 1. The geometry of Shanken's test. Noze: His test statistic is Q= TQ¢o, — 62.)/(9, — ).
where T 1s time series sample size and the value of £2 1s determnined by the sample efficient frontier
(see fig. 2). The CSR regression coeﬁiclents ¥, and 4 have the values indicated.

distribution of the test is extremely complex. It is just not an errors-in-variables
problem. Using X in (3) and thereby eliminating § also permits us to derive
the geometric properties of the test statistic. The necessary algebra is given in

the appendix.

Fig. 1 iilustrates the geometry of Shanken’s test. First note that Shanken'’s
GLS regression coeflicients have a natural interpretation. The coefficient ¥, is
the ‘excess return’ on the market index m over its ‘zero-beta’ portfolio return.
Since m is not exactly (sample) efficient, there are zero-beta portfolios at all
return levels [Roil (1980})], and the particular one selected by the GLS
regression is positioned as indicated by ,,.”

The test statistic Q can be expressed as
0=T12[(0;~0..)/a; 05}, (3)

*The zero-beta portfolic whose return is %, is not itself on the mean/variance frontier. It is.
however, the global minimum variance zero-beta portiolio for m. See Roll {1980, p. 1008).
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where o is the index’ sample variance, ol is the sample variance of a
portfolio that is (sample) mean/variance efficient and has the same mean
return as m, and of is the sample global minimum variance. The scalar
quantity {2, a constant given the sample, will be discussed momentarily. As the
illustration shows, the ratio (s, - 62.) /(0 — 62) lies between zero and one
and it measures the horizontal distance of m from the sample efficient frontier,
relative to a normatization factor, o — o2, which is the horizontal distance of
m from the global minimum variance portfolio,

The reader can readily verify that this ratio makes a lot of intuitive sense.
When m is far away from the sample frontier. @ is large (and this rejects the
hypothesis that m is ex ante efficient). The normalization is important. For
example, market indices near the global minimum variance portfolio must be
very close indeed to the frontier to avoid being judged inefficient while indexes
with large variance can be quite far from the frontier without being so
penalized. This too is sensible because the sampling variability of a portfolio
far away from the global minimum /variance is considerably larger.

The sample statistic £ has its own interesting features. The value of 2 is
determined entirely by the sample efficient frontier and is unrelated to the
particular market index being tested. As shown in the appendix,

R=b(r,—r), re=0,? (6)

where r, is the return on a sample efficient portfolio positioned on a ray from
the origin through the position of the sample global minimum variance
portfolio (whose return is #o). The slope of this ray is 4. (See fig. 2.)

Fig. 2 illustrates the effect of the components of { on the overall test
statistic {. The larger b, the larger Shanken’s Q. As the figure shows, b 1s
larger when the global minimum variance portfolio is closer to zero, i.e., when
there 1s less correlation among returns and less variability in general. But given
b, Shanken’s statistic is larger the further is the special portfolic 1 from the
minimum variance portfolio. In other words, the more acute the curvature of
the sample frontier (dashed curve), the lower ¢ and the less likely the index is
to be judged inefficient. The curvature is influenced by correlations among
individual returns. The relative value of time series and cross-sectional sample
sizes (7 and N + 1, respectively) partially determine the values of r, — ry and
b ASIN+1) =T, r,>r,and b— = naturally. the test has no power when
there are as many assets as time series observations and the statistic cannot
then be computed.

*In the special case =0, 2=RF 'R
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Fig. 2. The effect of the position of the sample efficient frontier on Shanken’s test statistic. Noze:

Dashed curve indicates a particular sample frontier and solid curve a differenl sample [rontier

(both with the same global minimum variance peint). In Shanken’s test, the paramerer 2 is given
by bir — i

3. Remarks

The geometry illustrates why small sample exact distributions for tests of
portfolio efficiency are difficult to obtain. The ratio (o}~ 0.-)/(0; — o7)
characterizes m’s position relative to the sample efficient frontier; but the
sample frontier is itself a random variable. In the decomposiiion of Q given by
(5). the first term & is entirely attributable to the sample efficient frontier and
is unrelated to the index being tested. We can see in figs. 1 and 2 that the Q
statistic is determined not only by the index’ (m’s) position in mean,/variance
space, but also by the position of the sample frontier. The latter constitutes the
main problem in determining the finite sampling distribution of Q. The
sampling distribution of the position of m is relatively easy to derive.

If the asvmptotic {chi-square) distribution of  is used to test the index’
efficiency, one is likelv to reject efficiency too often, as Shanken emphasizes.
The geometry helps elucidate why this happens. The positively-sloped segment
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of the sample efficient frontier is likely to be positioned to the left and above
the positively-sloped segment of the true frontier. This is due to the frontier
being the solution to a minimization problem. It traces out minimum variance
portfolios in the sample. But the sampie contains random errors s0. roughly
speaking, the sampie frontier minimizes over both population values and
sampling errors,

To help alleviate this problem, Shanken presents an adjusted  statistic
which does not reject too often asymptotically, i.e., as (7 — N) - =¢. However,
the adjusted statistics still reject too often in small samples.* Jobson and
Korkie (1980) illustrate this small sample problem by showing that the
expected value of the sample slope, 5, of the ray shown in fig. 2 exceeds the
population slope, E(b)= [(T-1)/(T— N—1]b, and that the *Sharpe ratio’,
the slope of the tangent line to the frontier in mean /standard deviation space,
has a similar upward bias. See also Jobson and Korkie (1982).

A test related to Shanken’s® was derived by Kandel (1984). [See also
Gibbons (1982).] This test involves a likelihood ratio computed from the
sample position of the index in mean /variance space relative to the sample
efficient frontier. The test statistic is T times the logarithm of the ratio @,
where

2 ok 2
NS b V4 (7)
Ur;" (rm* Y*)/O}E

This is illustrated in fig. 3. Kandel proves that v* is less than Shanken’s CSR
regression coefficient 9, and greater than a lower bound Y, which, as fig. 3
indicates, is positioned where a line from m* through C intersects the return
axis. The geometry can be used to prove that @, lies between the bounds
given by (7). The exact value of y* can be computed from the sample but there
does not seem to be a convenient analytic representation.

Appendix: Derivation of the geometric properties of Shanken’s estimator O

Shanken’s T2 estimator is
Q=T e’V L.

where

[18]=1[1kVq],

R—xTI. X

Il

e

“Shanken derives a small sample approximation to the adjusted ¢ statistic.

*Shanken's test is a transformation of the one-siep version of the likelihood ratio test See
Gibbons (1982, p. 10y,
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Fig. 3. The Gibbons,/Kandel likelihcod ratio test. Nore; The test statistic lnvolves the similarity of
the two triangles outlined by dashed lines (y*0g and y*mh).

and

ko= (gVgt=1/0],
g = investment proportions vector [(N + 1)x 1] of market index m, where

N + 1 15 number of assets,

Il

h_j)‘:’_ H

time series sample size,

[( & + 1} x 1] vector of ones,
sample covariance matrix,
(%,9,) = Shanken’s estimators for the zero-beta return {7,) and the

market’s excess return (), "= (XX XPTIR)Y,

vt

5‘1

For
Thus,

simplicity of notation, drop the hats on ¥ and T.

Q/T=(R-XI')V Y(R—-XT)

=RV R+T'XV X[ -2RVXT

a— RV X (x VX)X ViR

[(N +1)Xx1] vector of individual asset mean returns,
g'R is the (scalar) mean return on the index.
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where
a=RV'R.
Note that a is one of the efficient set constants [Roll (1977, app.)].

Since X =[1 kVyg], we can simplify the expression above to

Q/T=a—wk%ﬂz EJTJLL

where b= 1'F™'R and c¢=1'V"!1 are the other two ‘efficient set constants’,
Simplifving again,

o b* = 2bkr,, + ckr?
Q/ =da c— k

k.

ac — p? a—2br, +cr?
ok ac — b*
The expression o,.=(a — 2br,, + cr2)/(ac — b*) can be recognized as the
variance of the efficient portfolio whose mean return is the same as 7,
Simplifying again, :
2_ .2

— 0,

., . O
Q= Ta(f(ac—b')———2

" - G(f’ ‘
where we have used the fact that o = 1/¢ is the variance of the (sampie)
global minimum variance portfolio. It can be easily shown [Roll (1977, app.)]

that
Q=oi(ac—by=5b(r,—ry),

where b is the slope of a ray from the origin through the global minimum
variance portfolio and r, 1s the return of the other efficient portfolio (besides 0)
which lies along this same ray.

The geometric interpretation of Shanken’s estimators ¥, and %, in the
cross-sectional regression of mean returns on betas can be derived directly
from his formulae,

F=(xvx) (xV'R).

Substituting for X, we have

el e
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[
1w

or
T RRNVEY A
r={2=| He—k).
.,Yl,] \Crm_b”‘"( )
Simplitving,
fo"ni — B9
R al— o5
F = i - 0— Y
O, 0g

It is easily shown that these estimates are positicned as indicated in fig. 1 of the
1exi.
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