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The optimal portfolio strategy is developed for an investor who has detected an asset pric-
ing anomaly but is not certain that the anomaly is genuine rather than merely apparent.
The analysis takes account of the fact that the parameters of both the underlying asset
pricing model and the anomalous returns are estimated rather than known. The value
that an investor would place on the ability to invest to exploit the apparent anomaly is
also derived and illustrative calculations are presented for the Fama and French SMB
and HML portfolios, whose returns are anomalous relative to the CAPM.

An asset pricing anomaly is a statistically significant difference between the
realized average returns associated with certain characteristics of securities,
or on portfolios of securities formed on the basis of those characteristics,
and the returns that are predicted by a particular asset pricing model. What
is anomalous with respect to one model may be consistent with the predic-
tions of other asset pricing models. For example, an excess return associ-
ated with a security’s dividend yield is anomalous with respect to the basic
capital asset pricing model (CAPM) but is consistent with extensions that
incorporate investor taxes. Some anomalies are inconsistent with any known
rational asset pricing model; they appear to represent “money left on the
table.” Such examples include the NASDAQ anomaly [Brennan, Chordia,
and Subrahmanyam (1998)], the apparent slow adjustment of stock prices
to earnings announcements [Ball and Brown (1968), Bernard and Thomas
(1990)], and the existence of momentum (as well as longer-term reversals) in
individual security returns, which was documented by Jegadeesh and Titman
(1993). Sometimes these anomalies may be explicable within a model that
posits certain “nonrational” behavior on the part of investors.1
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The most prominent anomalies in the contemporary asset pricing literature
are those that are related to firm size2 and the book-to-market value ratio.
Fama and French (1996) have constructed two zero net investment portfolios
that are designed to capture these anomalies. The SMB portfolio is a zero net
investment portfolio that is long in small firms and short in large firms. The
HML portfolio is a zero net investment portfolio that is long in high book-
to-market value ratio firms and short in low book-to-market value ratio firms.
Fama and French report that the mean returns on these zero net investment
portfolios over the period 1963–1993 are 0.28% and 0.46% per month. These
returns are inconsistent with the CAPM, although, as Fama and French argue,
they may be consistent with certain versions of the arbitrage pricing theory
or intertemporal CAPM.
This article is concerned with both normative and positive issues surround-

ing anomalies. From a normative standpoint it is concerned with optimal
dynamic portfolio strategies for exploiting apparent asset pricing anomalies.
An investor who wishes to exploit an apparent anomaly must address at least
three issues. The first is whether or not the apparent anomaly is the result
of “data mining.”3 To the extent that a given anomaly is inconsistent with
any asset pricing model, it lacks an explanation. Under such circumstances
an investor is likely to withhold his full assent to the genuineness of the
anomaly. A reasonable strategy is to assign some probability to the anomaly
being genuine. As time passes and more returns are observed the investor
will revise his probability of the genuineness of the anomaly; this introduces
an element of learning into the investor’s portfolio problem. The second issue
is that, even if the anomaly is genuine, the investor must decide how much
to invest in it, bearing in mind that the anomalous expected return has been
estimated, and is not a known parameter. Since the investor will learn more
about the anomalous return as time passes, this introduces a second element
of learning into the portfolio decision. A third issue that is important for the
investor is whether or not the anomaly, if genuine, can be expected to persist
in the future, or if not, the rate at which it is likely to be eliminated by the
trading of other investors.
We address the first two normative issues: how an investor should revise

his probability assessment of the existence of an anomaly as further returns
are observed; and how he should revise his conditional distribution of asset
returns, taking into account his changing assessment of the probability that
the anomaly is genuine. And how this learning and the prospect of future

2 Brennan, Chordia, and Subrahmanyam (1998) argue that the size anomaly is actually associated with the
volume of trading in a security rather than size—they then argue that this is consistent with liquidity effects
in returns.

3 For one view see Black (1993): “Most of the so-called anomalies that have plagued the literature on invest-
ments seems likely to be the result of data-mining.” Lo and MacKinlay (1990) present a formal analysis
of the effects of data mining on the significance levels of standard statistical tests. Haugen (1995) adopts a
more robust view: “In the course of the last 10 years, economists have been struggling to explain...the huge
predictable premiums in the cross-section of equity returns.”
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learning should affect his optimal portfolio strategy. We do not address the
issue of uncertainty about the rate at which an anomaly will be arbitraged
away by other investors. Nor are we concerned with other issues of equilib-
rium and our investor is not intended to be a representative agent.
From a positive standpoint, we show how to assess the economic value

of an anomaly to an investor with given risk attitudes and horizon. The
economic value of an anomaly may help to assess the probability of an
anomaly being genuine. To adapt the metaphor that is frequently used in
connection with efficient markets, if genuine dollar bills are to be found on
the street, it is more likely that they will be found in denominations of one
dollar than of one hundred dollars. We shall use the Fama and French MKT,
SMB, and HML portfolios to illustrate our approach.
Our study is an application of the analysis of the effects of learning on

optimal portfolio behavior in a setting in which asset prices follow diffu-
sion processes. Several authors4 have studied the effects of learning about
unobservable state variables that affect asset returns on the optimal portfolio
choice problem in this setting. For the most part the class of information
structures that have been considered is based on a Gaussian prior distribu-
tion over the state variables which, combined with the assumption of a linear
relation between the state variables and the drifts of the asset return process,
leads to a Gaussian conditional distribution that is completely characterized
by the vector of conditional means of the state variables, the covariance
matrix evolving in a deterministic fashion. Brennan (1998) and Xia (2001)
have considered specializations of the general model in which the unobserv-
able state variable is a (fixed) parameter of the return generating model;
in one case the mean return on the risky asset (Brennan), and in the other
a regression parameter relating the stochastically evolving mean return to
a vector of observable predictor variables. Detemple (1991), extending the
work of Benes and Karatzas (1983), relaxes the assumption of a Gaussian
prior distribution and shows that this leads to a conditional distribution of the
state variables which is characterized by two sets of sufficient statistics, the
conditional mean vector and a vector of parameters that describe the covari-
ance matrix. A major impediment to the implementation of learning models
is that, for realistic problems in which asset drifts are both unobservable and
evolving stochastically, the number of state variables easily becomes too large
for tractability. Detemple’s analysis demonstrates that a general non-Gaussian
prior exacerbates this problem of dimensionality.
Therefore in this article we follow Brennan (1998) in assuming that the

vector of proportional asset price drifts is constant but unobservable. How-
ever, rather than imposing a Gaussian prior, we consider a situation in which
the investor’s prior distribution over the drifts can be expressed as a mix-
ture of (two) normal densities. This prior is appropriate in a situation in

4 In particular, see Detemple (1986) and Gennotte (1986).
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which the investor is not sure whether a particular asset pricing model holds.
Under the null hypothesis of the asset pricing model, the prior distribution
over the drift vector is assumed to be Gaussian, and under the alternative
hypothesis that the model does not hold, the prior distribution is assumed
also to be Gaussian but with different parameters. The two sets of parame-
ters may be thought of as the constrained and unconstrained estimates of the
mean return vector, where the constraint is that the particular asset pricing
model holds. For example, an investor may be unsure whether the CAPM
holds or whether the expected returns on the Fama and French SMB and
HML portfolios violate the model. Assuming that the covariance matrix of
asset returns is known, the CAPM constrains the mean vector so that there
is only a single unknown parameter to be estimated—the market risk pre-
mium; this may be estimated from historical data. On the other hand, if the
CAPM is not imposed, the expected returns of MKT, SMB, and HML are
unconstrained and their prior distribution may be estimated from historical
data. Thus, depending on whether or not the CAPM is imposed, there are
two different distributions over the asset drift vector. Under standard assump-
tions these may be assumed to be Gaussian. But an investor who places a
y% probability on the CAPM holding will have a prior distribution over the
asset drift vector that is a mixture of normals. A prior that is a mixture of
two normals may also arise if the investor does not take a strong position on
the model holding, but simply uses the model as one element of an algorithm
for constructing his prior. For example, we may not believe that the CAPM
holds exactly because we recognize that we can never observe the relevant
market portfolio; nevertheless we might wish to assign some weight to an
approximate CAPM-type relation with a given market proxy in forming our
prior distribution over the mean return vector. We demonstrate that when the
prior is a mixture of normals, the posterior distribution is also a mixture of
normals, and the vector of realized asset returns is a sufficient statistic for
the posterior distribution. This means that, given the investor’s information,
his perceived opportunity set is described by a set of n state variables if there
are n securities or portfolios, as opposed to the 2n variables that are required
to describe the investor’s posterior distribution for a general non-Gaussian
prior and unobservable but stochastically evolving drifts. When the prior is
a mixture of an exact asset pricing model with estimated coefficients and an
unconstrained normal distribution, the investor assigns a prior probability to
the validity of some asset pricing model,5 and, over time, updates not only
the estimated parameters of the model, but also the probability that the model
is correct.
We solve (numerically) the investor’s dynamic optimal control problem

when there are three risky assets, corresponding to the three Fama and French

5 Although we explicitly consider only a single asset pricing model, the approach is readily adapted to allow
for several alternative asset pricing models.
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portfolios. For the pure Gaussian prior case in which the investor assigns
probability one or zero to the validity of the asset pricing model,6 we char-
acterize the indirect utility function and portfolio strategy of an investor with
an isoelastic utility function and show that the indirect utility function and the
optimal portfolio strategy are determined by a system of ordinary differential
equations.
While we use a mixed normal prior over a given asset pricing model

(CAPM) and an unconstrained (normal) alternative to assess anomalous
returns with respect to that specific asset pricing model (CAPM), this mixed
normal prior setup is also applicable in assessing the relative merits of two
nonnested asset pricing models such as the CAPM and the consumption cap-
ital asset pricing model (CCAPM).7 In this latter case, the mixed normal
prior is based on two asset pricing models, and the investor assigns a prior
probability to the validity of one asset pricing model (CAPM) versus another
(CCAPM). Moreover, the odds ratio, which is the ratio of the posterior proba-
bility that one model holds over the posterior probability that the other model
holds, provides a natural test of the relative merits of each model.
This article is related to recent articles by Pastor (1999) and Pastor and

Stambaugh (1999). Pastor also analyzes the portfolio decision of an investor
who can invest in the three Fama and French portfolios and is uncertain
about the parameters of the joint distribution of asset returns. Our analysis
differs from his in three major respects. First, Pastor considers the investor’s
decision in a single period or myopic context, whereas the focus of this
article is on the effect of future learning on the current portfolio decision of
a long-lived investor. It is worth noting that, in a myopic context in which
asset prices follow diffusion processes, the effect of parameter uncertainty
on the investor’s decision becomes negligible as the decision horizon shrinks
to zero; that is, the investor behaves as though the current assessment of the
mean return vector is known for sure [see Feldman (1992)]. Secondly, while
in Pastor’s analysis the investor believes that (an approximate version of) the
CAPM holds with probability one, and the strength of the investor’s prior
belief in the model is represented by the (inverse of) the covariance matrix
of deviations from the model, in this article the investor assigns a probability
to the validity of (a possibly approximate version of) the CAPM. Thirdly,
while Pastor allows for uncertainty about the variance-covariance matrix of
asset returns, this article, in keeping with the diffusion assumption for asset
prices, takes the variance-covariance matrix as known [see Williams (1977)].
Pastor and Stambaugh (1999) apply a similar analysis to prior beliefs formed
on the basis of (approximate versions) of two other asset pricing models, and
allow for margin constraints. Finally, both articles rely implicitly on quadratic

6 Pastor and Stambaugh (1999) label such a prior as “dogmatic.”
7 We are grateful to a referee for suggesting this.
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utility, while in this article the investor is assumed to have a power utility
function.
In Section 1 of the article we summarize the conflicting evidence on the

size and book-to-market pricing anomalies in order to motivate our analysis
of the decision problem of an investor who is uncertain about the existence
of these anomalies. In Section 2 we analyze the investor’s inference problem
when the asset drifts are constant but unknown. We consider three cases in
turn: first, the case of a general non-Gaussian prior; second, a mixture of
normals prior; and third, the normal prior. The normal prior corresponds to
the standard Kalman–Bucey filter and is included for completeness. We also
show that the investor’s inference problem is affected by whether his prior
is based on an exact or an approximate asset pricing model. In Section 3 we
analyze the investor’s dynamic investment problem for mixture of normal
priors and for the pure Gaussian prior. Section 4 applies the analysis to the
Fama–French anomaly.

1. Stock Market Anomalies and Conflicting Evidence

It seems that no sooner had Michael Jensen (1978) proclaimed the “end of
history” in the debate about the efficiency of stock market prices than dis-
turbing new anomalous results began to appear, at first in a trickle, and more
recently in a torrent.8 However, these results, while apparently offering prof-
itable investment opportunities for investors, have not gone unchallenged.9

The small-firm effect, the apparent abnormal returns on small-firm stocks,
was first discovered by Banz (1981) and Reinganum (1981) in the United
States, and subsequently confirmed in the United Kingdom and a large num-
ber of other countries. Dimson and Marsh (1999) report that a small-cap
portfolio in the United States outperformed a large-firm portfolio by 4.10%
per year over the period 1955–1983, while the corresponding result for the
United Kingdom was 5.90% for the period 1955–1988. The terminal dates
of these sample periods correspond to the end of the “launch periods” in the
two countries for small-cap funds that were designed to exploit the apparent
anomaly. However, over the periods 1983–1997 and 1988–1997 the small-
cap premium was actually minus 2.4% and minus 5.6% for the United States
and the United Kingdom, respectively. Dimson and Marsh label this com-
mercially unfortunate phenomenon “Murphy’s Law”;10 however, the negative
coefficient in the “postlaunch” era is only significant at the 10% level in the

8 For a recent summary of the evidence see Hawawini and Keim (1999).
9 Roll (1994), principal of an investment management firm, confesses that “Over the past decade, I have
attempted to exploit many of the seemingly most promising ‘inefficiencies’ by actually trading significant
amounts of money... Many of these effects are surprisingly strong in the reported empirical work, but I have
never yet found one that worked in practice.”

10 One of the authors notes that ethnic allusions are still apparently acceptable, provided that they are aimed at
the right target groups!
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United Kingdom, so that it is by no means clear that we should reject the
earlier evidence that the premium is positive.11

The book-to-market effect appears to have first been identified by
Rosenberg, Reid, and Lanstein (1984). Fama and French (1992, 1993) show
that the book-to-market and size effects subsume many of the other anoma-
lies.12 In Fama and French (1998), they confirm that the effects are present
in markets around the world, at least during the period 1975–1995. On the
other hand, Breen and Korajcyk (1995) find no evidence of a book-to-market
or size effect when they examine “real-time” Compustat tapes that avoid the
biases created by “backfilling” the data on firms that meet the criterion for
inclusion on the tapes [see also Kothari, Shanken, and Sloan (1995)]. How-
ever, Barber and Lyon (1997) find that the size and book-to-market effects
are present in financial as well as nonfinancial firms which suggests that
they cannot be accounted for by data-snooping biases; they also discount
the “backfilling” bias.13 More recently, La Porta et al. (1997) report that a
significant portion of the relative performance of “value stocks” over the
period 1971–1993 is attributable to systematic expectational errors which are
revealed in the abnormal returns around quarterly earnings announcements.
On the other hand, Loughran (1997) has found that, for large firms, the
book-to-market ratio explains none of the variation in the cross section of
returns outside the month of January and argues that the phenomenon (in
the United States) is driven by the poor performance of small growth firms.
Fama and French (1992, 1993, 1995, 1996) argue that the book-to-market
and size effects are consistent with rational risk pricing, while Lakonishok,
Shleifer, and Vishny (1994) suggest that the book-to-market effect is the
result of investor overreaction, and Daniel, Hirshleifer, and Subrahmanyam
(1998) provide an explanation that is based on systematic biases in investor
decision making. Brennan, Chordia, and Subrahmanyam (1998) argue that
the size effect is really a liquidity effect that is associated with the volume of
trading, while Berk (1995) argues that it is a manifestation of an empirically
inadequate asset pricing model.
Hawawini and Keim (1999) summarize their comprehensive discussion of

the empirical evidence by saying that they believe that proposals to replace
the CAPM by the Fama and French three-factor model “may be premature,”
and remark that the fact “that many of these (anomalous) effects have per-
sisted for nearly 100 years in no way guarantees their persistence in the
future . . . Research over the next 100 years will, we hope, settle many of
these issues.”

11 Knez and Ready (1997) show that for the period 1963–1990 the size effect for NYSE stocks is attributable
to a small number of small firms and disappears when the 1% most extreme observations are removed.

12 But not the Jegadeesh and Titman (1993) momentum effect.
13 Chan, Jegadeesh, and Lakonishok (1995) also argue that the survivorship bias in Compustat data is likely to
be small.
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Thus, after assessing the available scientific evidence, an investor is likely
to agree with these authors that the issue remains in doubt and, if he has a
long-term horizon, to agree that over the course of his investment horizon
further light will be shed on these CAPM anomalies. The issue we address
in this article is how the investor should take account of this uncertainty in
designing his investment strategy today. We turn first to the investor’s infer-
ence problem, and then to how he should incorporate this into his investment
strategy.

2. The Investor’s Inference Problem

Consider a setting in which an investor can invest in n risky assets as well as
a riskless asset. The values of the risky assets follow possibly correlated geo-
metric Brownian motions with constant coefficients. However, the investor is
assumed not to be able to observe the vector of drifts or expected asset
returns; he must then update his prior distribution over the drift vector from
observations of the asset returns.
Then let S ≡ lnP where the (n × 1) vector of asset prices, P, includes

reinvested dividends, and denote the stochastic process for S by

dS = x dt + σ dz, (1)

where x is a constant but unobservable (n× 1) vector, σ is a known (n× n)

matrix, dz is an (n × 1) vector of independent Brownian increments, and
Ω ≡ σσ

′
is the variance-covariance matrix of asset returns.

Let �0 denote the investor’s prior information about the unobserved vector
of asset drifts and let F0(x) denote the investor’s prior distribution over the
unknown vector x. We shall consider first the general case in which the prior
distribution has finite first and second moments and can be characterized by
a distribution function with density f0(x), then the special case in which the
prior distribution is a mixture of Gaussian distributions, and finally the pure
Gaussian prior case.

2.1 The general nonnormal prior
Let �t ≡ {Sτ , τ � t} denote the investor’s information set at time t after
observing the returns on the risky assets up to time t . Then, it follows from
Theorem 5.1 of Benes and Karatzas (1983)14 that, if the investor’s prior dis-
tribution over x has finite first and second moments and can be characterized
by a distribution function with density f0(x), then the investor’s posterior

14 See also Theorem 3.1 of Detemple (1991).
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density function, ft(x), is given by the following lemma:

Lemma 1. The conditional distribution of x, Ft(x) ≡ F(x| �t ), has the
density

f (x;q, t) = exp
[− 1

2 tx
′Ω−1(x − 2q)

]
f0(x)∫

exp
[− 1

2 tx
′�−1

(x − 2q)
]
f0(x)dx

, (2)

where q is (n×1) vector of realized average continuously compounded rates
of return up to time t:

qt = 1

t

[
lnPt − lnP0

]
. (3)

The mean of the conditional density, m(q, t) ≡ E[x|�t ] = ∫
xf (x;q, t)dx

follows the stochastic process,

dm = G(q, t)Ω−1dw, (4)

where m0 = ∫
xf0(x)dx and G(q, t) is the covariance matrix of the condi-

tional distribution of µ:

G(q, t) =
∫

x
′
x exp

[− 1
2 tx

′Ω−1(x − 2q)
]
f0(x)dx∫

exp
[− 1

2 tx
′Ω−1(x − 2q)

]
f0(x)dx

− m(t,q)m(t,q)
′

(5)

and

dw = dS − mdt. (6)

�
Note that in contrast to the case of a nonconstant drift vector that is ana-

lyzed by Benes and Karatzas (1983) and Detemple (1991), the conditional
density of the asset price drifts, f (x;q, t), depends only on the stochastic
vector of realized average continuously compounded asset returns, q.

2.2 The mixture of normals prior
An investor who is uncertain as to whether a particular anomaly is gen-
uine or only apparent may be thought of as a first approximation having a
prior distribution over the mean vector that is characterized by a mixture of
normal distributions. One of the normal distributions will correspond to his
estimates of the asset price drift parameters under the hypothesis that the
apparent anomaly is of a purely statistical origin and the asset pricing model
holds, while the other distribution will correspond to his estimate accept-
ing the validity of the anomaly. The mixing parameter will depend on the
strength of his prior belief that the anomaly is valid. The following theorem,
whose proof is given in the appendix, shows that, when a mixture of normal
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priors is updated using the realized asset returns, the conditional distribu-
tion retains the mixture of normal characteristics of the prior, the additional
information provided by observation of the realized returns modifying the
mean and variance of both distributions, as well as the mixing parameter.
Following the theorem, we shall consider how it is modified if the investor
“takes seriously” the theory underlying his mixed normal prior.

Theorem 1. The mixture of normals case. If the investor’s prior informa-
tion about the unknown vector x can be characterised by a distribution func-
tion with density f0(x), which can be written as a mixture of two normal
densities,

f0(x) = π0

(2π)
n
2 |�1| 1

2

exp{− 1
2 (x−µ1)

′ �−1
1 (x−µ1)}

+ 1 − π0

(2π)
n
2 |�2| 1

2

exp{− 1
2 (x−µ2)

′ �−1
2 (x−µ2)}, (7)

then the posterior density can also be written as a mixture of two normal
densities,

f (x;q, t) = π(q, t)

(2π)
n
2 |�̂1(t)| 1

2

exp{− 1
2 (x−µ̂1(q,t))

′�̂
−1
1 (t)(x−µ̂1(q,)t)}

+ 1 − π(q, t)

(2π)
n
2 |�̂2(t)| 1

2

exp{− 1
2 (x−µ̂2(q,t))

′�̂
−1
2 (t)(x−µ̂2(q,t))}, (8)

where

µ̂1(q, t) = (�−1
1 + tΩ−1)−1(�−1

1 µ1 + tΩ−1q) (9)

µ̂2(q, t) = (�−1
2 + tΩ−1)−1(�−1

2 µ2 + tΩ−1q) (10)

qt ≡ 1

t

[
lnPt − lnP0

]
(11)

�̂1(t) = (�−1
1 + tΩ−1)−1, �̂2(t) = (�−1

2 + tΩ−1)−1 (12)

π(q, t) = π0A1(q, t)
π0A1(q, t) + (1 − π0)A2(q, t)

, (13)

and Ai(q, t), (i = 1, 2) is given by

Ai(q, t) = |�̂i (t)| 1
2

|�i | 1
2

exp
−1
2 {µ′

i�
−1
i µi−µ̂i (q,t)

′�̂i (t)
−1µ̂i (q,t)} . (14)

The mean of the investor’s distribution over the expected continuously
compounded rate of return vector x,mt ≡ E[x|�t ] ≡ E[x|q, t] is given by

mt = π(q, t)µ̂1(q, t) + (1 − π(q, t))µ̂2(q, t), (15)
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and its stochastic evolution is given by

dm = G(q, t)Ω−1[dS − m dt], (16)

where the (n × n) matrix G(q, t) has typical element

G(q, t)ij = π(q, t)(σ̂ij, 1 + µ̂i, 1µ̂j, 1) + (1 − π(q, t))

× (σ̂ij, 2 + µ̂i, 2µ̂j, 2) − m(q, t)im(q, t)j (17)

and σ̂ij, l and µ̂i, l (l = 1, 2) are elements of the matrices �̂l(q, t) and
µ̂l(q, t), respectively.

The variance-covariance matrix of the innovations in the mean vector, m,
is given by

(dm)2 = G(q, t)Ω−1G(q, t)′dt ≡ M(q, t)dt (18)

dmdS = G(q, t)dt. (19)

�
While Theorem 1 shows how to update a general mixture of normal priors,

the following theorem applies when one of the normal distributions corre-
sponds to a particular factor pricing model and the mixing parameter, π0,

to the probability that that asset pricing model holds. We shall consider
two model-based priors: the first is based on an approximate factor pric-
ing model, while the second is based on an exact asset pricing model.15

While the parameter updating described in Theorem 1 is appropriate for the
approximate model-based prior, the updating for the exact model-based prior
is constrained by the model: first, the asset returns are used to update the dis-
tribution of the parameters of the asset pricing model under the hypothesis
that it holds; then they are used to revise the probability that the model holds;
finally, the model-based parameter estimates are combined with those esti-
mated under the alternative hypothesis to update the distribution of the asset
price drifts. The following theorem, which uses the results of Theorem 1,
describes this formally.

Theorem 2. Factor pricing model-based prior

(1) Approximate model-based prior

Consider a prior over the mean vector that is a mixture of two normal dis-
tributions. The first distribution is derived from the hypothesis of an approx-
imate K-factor asset pricing model, and the second distribution over x is a

15 The model may be approximate because the empirical factor portfolios may not correspond exactly to their
theoretical counterparts; or the theoretical model itself may be only approximate, as in the Ross (1973)
arbitrage pricing theory.
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multivariate normal distribution N(µ2, �2). The mixing parameter, π0, is the
probability that the approximate factor pricing model holds.

The first K assets are the factor portfolios and the asset price drifts, xi ,
of the remaining N − K assets satisfy

xi = ci +
K∑
k=1

βikxk + ηi, (20)

where ci ≡ r − 1
2�ii + ∑K

k=1 βik(
1
2�kk − r), r is the riskless interest rate,

1
2�ii is the (i, i)th element in the variance-covariance matrix of the sample
returns �, and the factor loadings, βik , are defined by

dSi = ζidt +
K∑
k=1

βikdSk + dξi, (21)

where ξi is a Brownian motion.
Under the approximate factor pricing model hypothesis, ηi is the deviation

from the exact factor pricing relation and its prior is distributed N(0, σ 2
η ).

Under the unconstrained normal hypothesis, ηi ≡ xi − ci −∑K
k=1 βikxk and

its prior distribution, which is given in Appendix B, is derived from the prior
on x.

Then (i) the vectors of the expected asset price drifts at time t , m1, t ≡
E(x1|q, t) for the first K assets, and m2, t ≡ E(x2|q, t) for the remaining
N − K assets, are given by

m1, t = π(q, t)µ̂x1, 1
+ (1 − π(q, t))µ̂x1, 2

; (22)

m2, t = π(q, t)
[
µ̂η, 1 + c + βµ̂x1, 1

]
+ (1 − π(q, t))

[
µ̂η, 2 + c + βµ̂x1, 2

]
, (23)

where c is a vector of ci , µ̂x1, i
, µ̂η, i , i = 1, 2 are the posterior means of

the factor drifts, x1, and of the deviations from the factor pricing model, η,
under the two hypotheses; expressions for them are given in Appendix B.
(ii) The variance-covariance matrix G ≡ E((x − m)(x − m)′|q, t) has

typical elements:

G(q, t)ij = π(q, t)(σ̂ij, 1 + µ̂i, 1µ̂j, 1) + (1 − π(q, t))

× (σ̂ij, 2 + µ̂i, 2µ̂j, 2) − m(q, t)im(q, t)j , (24)

where µ̂j, k and σ̂ij, k (k = 1, 2) are elements of µ̂k and �̂k , the posterior
mean vectors and covariance matrices of the asset drifts respectively.
(iii) The posterior probability of the asset pricing hypothesis, π(q, t), is

given by Equations (13) and (14).
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(2) “Exact” model-based prior

Consider a prior over the mean vector that is a mixture of two normal
distributions. The first distribution is derived from the hypothesis of an exact
K-factor asset pricing model, and the second distribution over x is a mul-
tivariate normal distribution N(µ2, �2). The mixing parameter, π(q, t), is
the probability that the factor pricing model holds. Under the factor pricing
model the first K assets are the factor portfolios and the asset price drifts,
xi , of the remaining N − K assets satisfy the exact pricing model:

xi = ci +
K∑
k=1

βikxk, (25)

where ci ≡ r − 1
2�ii +∑K

k=1 βik(
1
2�kk − r).

Then (i) the vector of posterior mean factor and nonfactor asset drifts is
given by Equations (22) and (23) with µ̂η, 1 = 0, which implies that µ̂i, 1,
the posterior mean drift for asset i (i = K + 1, . . . , N ), satisfies the asset
pricing relation:

µ̂1, i + 1

2
�ii = r +

K∑
k=1

βik

(
µ̂1, k + 1

2
�kk − r

)
,

i = K + 1, . . . , n. (26)

(ii) The variance-covariance matrix G ≡ E((x − m)(x − m)′|q, t) has
typical elements given by Equation (24).
(iii) π(q, t), the posterior probability of the factor pricing model, is given

by Equation (13) where A1(q, t) is

A1(q, t) = |�̂11, 1(t)| 1
2

|�11, 1| 1
2

exp
−1
2 µ′

1, 1�
−1
11, 1µ1, 1−µ̂1, 1(q,t)

′�̂11, 1(t)
−1µ̂1, 1(q,t)} (27)

and A2(q, t) is given by Equation (14).

Proof. See Appendix B.
While Theorem 1 applies to any mixture of normal priors, Theorem 2

specializes it to a prior that is based on a factor pricing model such as the
arbitrage pricing theory or the CAPM (K = 1).16 When the prior is based
on a mixture of an approximate factor pricing model and an unconstrained
normal distribution, the application of Theorem 1 is direct: the posterior

16 While we do not treat the CCAPM, the pure CCAPM-based prior and the mixed prior based on CCAPM
and an unconstrained alternative would be similar to the CAPM-based prior, with uncertainty about the risk
aversion of the representative agent replacing the uncertainty about the market risk premium. The treatment
of a mixed normal prior based on two model-based priors such as CAPM and CCAPM is also similar: under
CAPM, the prior market risk premium is assumed to be normally distributed; under CCAPM, it is derived
from the prior distribution of the risk aversion of the representative agent. In this case the odds ratio, given
by π(q, t)/(1 − π(q, t)), provides a natural test of the relative merit of one model against the other.
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factor means, m1, t , are weighted averages of the posterior means under the
two distributions, µ̂x1, i

, and the posterior means of the N − K “non-factor”
assets, m2, t , are constructed as the sum of the prediction from the factor
pricing model using the posterior factor means, c + βµ̂x1, i

, and the posterior
means of η under the two distributions, µ̂η, i . When the prior is based on
a mixture of an exact factor pricing model and an unconstrained normal
distribution, the posterior factor means and the posterior means of the N−K

“nonfactor” assets are constructed in the same way except that µ̂η, 1 = 0, and
π(q, t) is the posterior probability that the factor pricing model holds.17

Theorem 1 establishes that q, the vector of realized average returns, and t

are sufficient statistics for the investor’s posterior distribution. We note that
for the pure Gaussian case (π0 = 0, 1) m is a linear function of q [see
Equations (13] and (15)], so that m, the vector of current assessments of the
drift, and t are also sufficient statistics.

2.3 The Normal Prior
For completeness, and to relate the above to the classic Bucey–Kalman filter-
ing problem, we consider the special case in which π0 = 1, so that the prior
distribution over x is Gaussian, and the filtering problem and the conditional
distribution over x are also Gaussian, as shown in the following corollary.
For simplicity we drop the subscript 1 from the parameters of �1 and µ1 of
the prior distribution.

Corollary 1 (Kalman Filter). When π0 = 1, the investor’s posterior density
over x simplifies to

f (x;m, t) = 1

(2π)
n
2 |�̂(t)| 1

2

exp{− 1
2 (x−m)′�̂

−1
(t)(x−m)}, (28)

where the variance covariance matrix of the conditional distribution over the
drifts is

�̂(t) = (�−1 + tΩ−1)−1 (29)

and the conditional mean vector, m, is given by

m = (�−1 + tΩ−1)−1(�−1µ + tΩ−1q). (30)

17 Note that when an approximate factor pricing model is used to construct the prior, π(q, t) cannot be interpreted
as the posterior probability that the model holds, because the posterior means of the model deviations are not
equal to zero.
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The stochastic evolution of m is given by

dm = G(t)Ω−1[dS − m dt] (31)

(dm)2 = G(t)Ω−1G(t)′ dt ≡ M(t) dt, (32)

where now the (n × n) covariance matrix G(t) is

G(t) = �̂(t) = (�−1 + tΩ−1)−1. (33)

Hence the only difference between the Gaussian prior case and the mixture
of normal priors case is in the definition of the matrix, G, which is the
variance-covariance matrix of the investor’s conditional distribution over x.
In the Gaussian case the matrix is deterministic, being the solution of the
familiar Ricatti equation. In the mixture of normals case, the matrix depends
on the stochastic vector q as shown in Equation (17).
In the following section we consider the implications of the different priors

for optimal dynamic portfolio strategies.

3. Optimal Portfolio Strategies for Anomalies

For simplicity, and to emphasize the role of the investment horizon, the agent
is assumed to be concerned with maximizing the expected value of a mono-
tone increasing concave von Neumann–Morgenstern utility function, defined
over wealth at time T , which we denote by U(WT ). As Gennotte (1986) has
shown in a similar setting of incomplete information, the investor’s decision
problem may be decomposed into two separate problems: an inference prob-
lem such as we have described in Section 1, in which the investor updates
his distribution over the current value of the unobserved vector, x, and an
optimization problem with a completely observed state in which the state is
described by the sufficient statistics for the investor’s distribution over the
unobservable vector. Since the inference problem is different for the normal
and mixed normal cases, we shall treat them separately.

3.1 Normal prior distribution
Since q and t , or equivalently m and t under a normal prior [see Equation
(30)], are sufficient statistics for the investor’s conditional distribution over x,
define J (W,m, t) as the expected value at time t ≺ T of the utility of wealth
at time T , under the optimal policy, when the investor’s current wealth is W
and his current assessment of the drift vector is m. Then

J (W,m, t) = max
α

E[U(WT )|�t ], (34)
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where α is the (n × 1) vector of portfolio allocations, and the maximization
is subject to the dynamic budget constraint

dW = W [r + α′(m∗ − ri)] dt + Wα′σdz, (35)

where m∗ ≡ m + 1
2diag(Ω) is the vector of expected instantaneous rates of

return, r is the riskless interest rate, and i is a vector of units.
Then the Bellman equation for the optimal control problem can be written

as

max
α

(1
2
JWWW

2α′Ωα + 1

2
tr{MJmm′ } + Wα′GJWm,

+ JWW [r + α′(m∗ − ri)] + Jt

)
= 0, (36)

where Jmm′ is an (n × n)matrix and JWm is an (n × 1) vector.
The vector of optimal proportional portfolio allocations, α∗, follows from

the first-order conditions:

α∗ = −JW

WJWW

Ω−1(m∗ − ri) − 1

WJWW

Ω−1GJWm. (37)

In the normal prior case, which corresponds to the dogmatic prior that
the anomaly either does or does not exist, the matrices M and G are func-
tions only of t , defined by Equations (32) and (33). Then there exist simple
expressions for the investor’s indirect utility function and optimal investment
strategy when the investor’s utility function is of the isoelastic family, as
shown in the following theorem which may be verified by substitution in
Equations (36) and (37).

Theorem 3. Optimal Strategies for Normal Priors. If the investor’s utility
of terminal wealth may be written as

U(W) = W 1−γ

1 − γ
(38)

and the investor’s prior distribution over the unobserved vector, x, is normal
of the form of Equation (28), then
(i) The investor’s indirect utility function is given by

J (W,m, t) = W 1−γ

1 − γ
e{A(t)+B(t)m+ 1

2m
′C(t)m}, (39)
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where A(t) is a scalar, B(t) is a (1×n) vector, C(t) is an (n×n) matrix, and
A(t),B(t), and C(t) satisfy the system of ordinary differential equations:

C′MC + 1 − γ

γ

(
Ω−1 + Ω−1GC + CGΩ−1 + C′MC

)
+ Ct = 0 (40)

BMC + 1 − γ

γ
(BGΩ−1 − ri′Ω−1GC − ri′Ω−1 + BMC) + Bt = 0 (41)

1

2
tr{MC′} + 1

2
BMB′ + (1 − γ )r + 1 − γ

2γ

× (r2i′Ω−1i − 2ri′Ω−1GB′ + BMB′) + At = 0 (42)

with boundary conditions: A(T ) = 0; B(T ) = 0; and C(T ) = 0.
(ii) The vector of the investor’s optimal proportional allocations to the

risky assets is given by

α∗ = 1

γ

[
Ω−1(m∗ − ri) + Ω−1G (B(t) + C(t)m)

]
. (43)

3.2 Mixture of normal priors
When the prior is a mixture of normals which, as we have argued, is likely to
be the case when some of the portfolio returns are anomalous, the matrices
M and G are functions of q as well as t ; in this case there is no analytic
solution to the control problem which must therefore be solved numerically.
It follows from the definition of q that

dq = m(q, t) − q
t

dt + σ

t
dw. (44)

Since q and t are sufficient statistics for the investor’s conditional distri-
bution over µ, define J (W,q, t) as the expected value at time t ≺ T of the
utility of wealth at time T under the optimal policy, when the investor’s cur-
rent wealth is W and the vector of realized average returns on the portfolios
is q. The Bellman equation for the investor’s optimal control problem is then

max
α

(
1

2
JWWW

2α′Ωα + 1

2t2
tr{ΩJqq′ } + 1

t
Wα′ΩJwq + JWW

× [r + α′(m∗(q, t) − ri)] +
(m(q, t) − q

t

)′
Jq + Jt

)
= 0. (45)
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For the isoelastic utility function of Equation (38), the investor’s indirect
utility function may be written as J (W,q, t) = W 1−γ

1−γ
φ(q, t), where

max
α

(
1

2t2
tr{�φqq′ } + 1

t

(
(1 − γ )α′Ω + (m(q, t) − q)

)
φq

+ (1 − γ )[r + α′(m∗(q, t) − ri) − 1

2
γα′Ωα]φ + φt

)
= 0. (46)

The first-order conditions for Equation (46) are

α∗ = 1

γ

[
Ω−1(m∗(q, t) − ri) + 1

t
ξ(q, t)

]
, (47)

where ξ(q, t) = [φq1/φ, φq2/φ, φq3/φ]
′
.

Both the drift and the diffusion of the stochastic process for q,
Equation (44), are time dependent. As t → ∞, q,m → x; that is, the average
realized return vector and the investor’s assessment of the drift vector both
approach the true drift vector, x. However, q becomes ill-behaved for small t .
Therefore, in our numerical analysis we define the state variable as q̂t ≡ tqt

for t ≤ 1. The expressions that are used for µ̂1(q, t), �̂1(t) and π(q, t) that
enter m(q, t) in the control problem [Equation (46)] depend on whether the
prior is based on an approximate or an exact factor pricing model. In the
latter case, µ̂η, 1 = 0 and A1(q, t) is given by Equation (27).

4. Assessing the Fama and French CAPM Anomalies

To illustrate the effects of both model and parameter uncertainty on opti-
mal portfolio strategies, and to estimate the economic value of the CAPM
anomaly represented by the Fama and French SMB and HML portfolios, the
optimal portfolio strategy was computed for an investor with a 20-year hori-
zon and an isoelastic utility function using parameter estimates derived from
historical returns on the market portfolio and the Fama and French SMB and
HML portfolios.18 The data are drawn from the period July 1963–December
1991. Panel A of Table 1 reports the vector of (arithmetic) mean returns in
excess of the Treasury-bill rate and associated standard deviations, as well
as the correlation matrix for the three-factor returns, and the standard errors
of the means. All estimates are annualized by multiplying the corresponding
monthly figures by 12 or the square root of 12 as appropriate. The figures
show the familiar high reward to risk ratio of the HML portfolio and, to a
lesser degree, of the SML portfolio.

18 We are grateful to Eugene Fama for making these available to us.
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Table 1
Statistics for Fama and French factor portfolios

Correlations
Mean excess Standard Standard deviation

return deviation of mean Market SMB HML

Panel A. July 1963–December 1991
Market 5.21% 15.7 2.94 1.0 0.32 −0.38
SMB 3.25% 10.0 1.89 0.32 1.0 −0.08
HML 4.78% 8.8 1.65 −0.38 −0.08 1.0

Panel B. January 1959–December 1978
Market 5.95% 14.5 3.27 1.0 0.39 −0.25
SMB 6.35% 10.5 2.30 0.39 1.0 −0.03
HML 9.45% 8.4 1.86 −0.25 −0.03 1.0

This table gives summary statistics for Fama and French (1996) portfolios from July 1963 to December 1991. The market return
is the return in excess of the Treasury-bill rate. All returns are annualized by multiplying the monthly figure by 12.

4.1 Pure prior distributions
We consider first the case in which the investor places all his probability
on either an exact version of the CAPM or assigns zero probability to the
model and employs an unconstrained normal prior; in both cases we assume
that the parameters of the investor’s prior distribution of the mean returns
are derived from the historical data, and that the real riskless interest rate is
3%. For example, for the CAPM prior we assume that the investor takes the
volatility of the return on the market portfolio as 15.7% and known, while
his distribution over the mean of the excess return on the market portfolio is
normally distributed with mean 5.21% and standard deviation of 2.94%. The
investor’s information is analogous for the unconstrained prior except that the
means and standard deviations are augmented by the correlation matrix which
is also assumed to be known. The opportunity set looks much less risky to the
investor with an unconstrained prior than to the CAPM investor because of
the negative correlation of the return on the HML portfolio with the returns
on the market and SMB portfolios: for example, using the data in panel A
of Table 1 we can reject the null hypothesis that the true Sharpe ratio is zero
at the 0.06% level for the unconstrained prior, but only at the 10.7% level
for the CAPM prior.19 These two cases of pure CAPM or pure unconstrained
priors are examples of the normal prior analyzed in Section 2.3. Therefore the
investor’s optimal strategies in the two cases are given by Equation (43). The
ordinary differential equations [Equations (40)–(42)] were solved by finite
difference approximation and used to calculate the optimal portfolio strategy
[Equation (43)]. The results for an investor with a 20-year horizon are shown
in panel A of Table 2. In this table the results for the CAPM prior are shown
in bold italics, while those for the unconstrained normal prior are shown in
normal type.

19 Under the null hypothesis of the CAPM with a zero market risk premium the squared Sharpe ratio for the
period is distributed F1, 341; under the unconstrained normal prior the corresponding distribution is F3, 339. See,
for example, Mackinlay (1995).
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Table 2
Optimal portfolio strategies and certainty equivalent returns

α∗ Certainty equivalent return
Prior mean

γ Security risk premium αM αH Unconstrained Constrained Unconstrained Constrained

Panel A. Investor with a 20-year horizon and two alternative priors over the mean return vector
2.0 Market 5.21% 1.06 −0.27 0.79 0.80 5.5% 5.4%

Market 5.21 1.78 −0.38 1.40 0.32 17.4% 7.7%
SMB 3.25 1.03 −0.10 0.93 0.00
HML 4.78 4.41 −1.34 3.07 0.68

3.0 Market 5.21% 0.70 −0.21 0.49 0.49 4.5% 4.5%
Market 5.21 1.19 −0.32 0.87 0.25 11.7% 6.9%
SMB 3.25 0.69 −0.04 0.65 0.00
HML 4.78 2.94 −1.12 1.82 0.00

4.0 Market 5.21% 0.53 −0.18 0.35 0.35 4.1% 4.1%
Market 5.21 0.89 −0.26 0.63 0.28 9.2% 5.9%
SMB 3.25 0.52 −0.02 0.50 0.00
HML 4.78 2.20 −0.92 1.28 0.00

5.0 Market 5.21% 0.42 −0.14 0.28 0.28 3.9% 3.9%
Market 5.21 0.71 −0.22 0.49 0.19 7.8% 5.2%
SMB 3.25 0.41 −0.00 0.41 0.00
HML 4.78 1.76 −0.77 0.99 0.00

Panel B. Investor with a 10-year horizon and two alternative priors over the mean return vector
2.0 Market 5.21% 1.06 −0.16 0.90 0.86 5.7% 5.7%

Market 5.21 1.78 −0.21 1.57 0.34 19.3% 7.8%
SMB 3.25 1.03 −0.10 0.93 0.00
HML 4.78 4.41 −0.74 3.67 0.66

3.0 Market 5.21% 0.70 −0.13 0.57 0.57 4.7% 4.7%
Market 5.21 1.19 −0.18 1.01 0.32 13.1% 7.3%
SMB 3.25 0.69 −0.07 0.62 0.00
HML 4.78 2.94 −0.64 2.30 0.68

4.0 Market 5.21% 0.53 −0.11 0.42 0.42 4.3% 4.3%
Market 5.21 0.89 −0.15 0.74 0.29 10.3% 6.9%
SMB 3.25 0.52 −0.06 0.46 0.00
HML 4.78 2.20 −0.52 1.68 0.71

5.0 Market 5.21% 0.42 −0.09 0.33 0.33 4.0% 4.0%
Market 5.21 0.71 −0.12 0.59 0.25 8.7% 6.2%
SMB 3.25 0.41 −0.04 0.37 0.00
HML 4.78 1.76 −0.44 1.32 0.75

The priors are the CAPM and an unconstrained normal prior where the mean vectors and covariance matrices are estimated
from monthly data from July 1963 to December 1991 as shown in Table 1; the risk-free interest rate is 3%. Figures shown
in bold italics are for the CAPM prior; other figures relate to the unconstrained normal prior. αM is the fraction of wealth
allocated to each security in the optimal myopic portfolio; αH is the additional allocation to each security to hedge against
changes in parameter estimates; α∗ is the optimal total allocation to each security. The certainty equivalent rate of return is
the sure rate of return up to the horizon that would leave the investor as well off as having $1 of current wealth and 20 or 10
years, respectively, to invest with the currently assessed investment opportunity set. Columns labeled “constrained” impose the
constraint that portfolio allocations (including riskless asset) be nonnegative.

The column αM denotes the optimal portfolio for an investor who behaves
myopically, selecting his portfolio simply on the basis of the instantaneous
mean-variance trade-off.20 The column αH denotes the vector of asset allo-
cations (as a proportion of the investor’s wealth) to a hedge portfolio which

20 As shown in Equation (43), αM = 1
γ
Ω−1

(m∗ − ri).
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is designed to hedge against changes in the investor’s perceived investment
opportunities.21 α∗ ≡ αM + αH denotes the investor’s aggregate portfolio
allocation vector.22 The certainty equivalent rate of return is such that the
investor with the stated value of γ would be indifferent between earning this
rate of return for sure up to the horizon on the one hand, and on the other
hand, receiving $1 today with the opportunity to invest for the 20 years,
given the perceived investment opportunity set and the prospect of learning
more about it as time passes. In other words, the investor would be as well
off with a riskless investment opportunity offering the certainty equivalent
rate of return as he would be with $1 of initial wealth and the perceived
investment opportunity.
The results for γ = 1 (not shown) correspond to the case of log utility. It

is well known that in this case the investor does not hedge against changes
in the perceived investment opportunity set, so that the optimal portfolio is
the myopic portfolio, and the investor allocates 2.11 times his wealth to the
market portfolio.
For γ = 2 the CAPM investor not only halves his myopic allocation to

stocks to 1.06 times his wealth, but takes a short position in the hedge portfo-
lio equal to 27% of his wealth, so that his net allocation to stocks drops from
2.11 times wealth to only 0.79 times wealth. As Brennan (1998) has shown
in a similar setting, parameter uncertainty has a large effect on the optimal
allocation to risky assets for a (nonlog) investor with a long horizon. The
certainty equivalent rate of return for this investor is 5.5%, or 2.5% above
the riskless interest rate. However, for the same investor, the certainty equiv-
alent rate of return is 17.4% if he assigns all the probability to the uncon-
strained hypothesis and is able to take unconstrained portfolio positions. The
investor with an unconstrained prior also takes short positions in the three
factor portfolios to form his hedge portfolio; however, it is noticeable that
the ratio of the short positions in the hedge portfolio to the long positions in
the myopic portfolio is much less for the unconstrained prior investor than
for the CAPM investor. The fact that the positions in the hedge portfolio are
short for both the CAPM investor and the unconstrained prior investor can be
understood in terms of intertemporal diversification. If the early returns on,
say, HMB are negative, the investor will revise down his estimate of m3(t)

and will tend to earn lower returns in the future; this means that his assessed
future investment opportunities will deteriorate (improve) when a current low
(high) return occurs; by taking a short position in the hedge portfolio today
he hedges or diversifies his risk over time. The magnitude of the hedge posi-
tion depends on the elasticity of the marginal utility of wealth with respect
to the state variables, JWm in Equation (37) or ξ(q, t) in Equation (47).

21 From Equation (43) the hedge portfolio is given by αH = 1
γ
�−1G(B(t) + C(t)m).

22 The columns labeled “constrained” report the results when the investor is prohibited from taking short positions
or borrowing. Unless otherwise stated, our discussion relates to the unconstrained results.
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Table 3
Optimal portfolio strategies and certainty equivalent returns

α∗ Certainty equivalent return
Prior mean

γ Security risk premium αM αH Unconstrained Constrained Unconstrained Constrained

Panel A. Investor with a 20-year horizon and an exact model mixed (50:50) normal
prior over the mean return vector

2.0 Market 5.21% 1.42 −0.69 0.73 0.67 10.2% 6.8%
SMB 2.16 0.52 −0.78 −0.26 0.00
HML 1.84 2.20 −2.40 −0.20 0.33

3.0 Market 5.21% 0.94 −0.53 0.41 0.48 7.1% 5.8%
SMB 2.16 0.34 −0.57 −0.23 0.00
HML 1.84 1.46 −1.77 −0.31 0.00

4.0 Market 5.21% 0.71 −0.43 0.28 0.32 5.9% 5.1%
SMB 2.16 0.26 −0.45 −0.19 0.00
HML 1.84 1.10 −1.38 −0.28 0.00

5.0 Market 5.21% 0.57 −0.36 0.21 0.24 5.2% 4.7%
SMB 2.16 0.21 −0.37 −0.16 0.00
HML 1.84 0.88 −1.13 −0.25 0.00

Panel B. Investor with a 10-year horizon and an exact model mixed (50:50) normal
prior over the mean return vector

2.0 Market 5.21% 1.42 −0.40 1.02 0.68 10.8% 7.8%
SMB 2.16 0.52 −0.48 0.04 0.00
HML 1.84 2.20 −1.46 0.74 0.32

3.0 Market 5.21% 0.94 −0.32 0.62 0.57 7.6% 6.1%
SMB 2.16 0.34 −0.36 −0.02 0.00
HML 1.84 1.46 −1.13 0.33 0.43

4.0 Market 5.21% 0.71 −0.26 0.45 0.50 6.3% 5.5%
SMB 2.16 0.26 −0.29 −0.03 0.00
HML 1.84 1.10 −0.90 0.20 0.50

5.0 Market 5.21% 0.57 −0.22 0.35 0.32 5.5% 5.1%
SMB 2.16 0.21 −0.24 −0.03 0.00
HML 1.84 0.88 −0.74 0.14 0.00

The prior distribution over the mean vector is a mixture of normal distributions that correspond to the approximate CAPM prior
(ση = 0%) and an unconstrained normal prior where the mean vectors and covariance matrices are estimated from monthly
data from July 1963 to December 1991 as shown in Table 1; the risk-free interest rate is 3%. Figures shown in bold italics
are for the CAPM prior; other figures relate to the unconstrained normal prior. αM is the fraction of wealth allocated to each
security in the optimal myopic portfolio; αH is the additional allocation to each security to hedge against changes in parameter
estimates; α∗ is the optimal total allocation to each security. The certainty equivalent rate of return is the sure rate of return up
to the horizon that would leave the investor as well off as having $1 of current wealth and 20 and 10 years, respectively, to
invest with the currently assessed investment opportunity set. Columns labeled “constrained” impose the constraint that portfolio
allocations (including riskless asset) be nonnegative.

As shown in Table 3, under some priors it is possible for the negative
hedge positions in SMB and HML to exceed the positive positions in the
myopic portfolio, making it optimal for a long-horizon investor to short these
portfolios, despite their current high expected returns. As the risk aversion
increases, the myopic portfolio allocation, the certainty equivalent return, and
the absolute value of the hedge positions decline monotonically; however, the
ratio of the hedge portfolio value to the myopic portfolio value increases.
Panel B of Table 2 reports the corresponding results when the investor’s

horizon is 10 years. The general effect of reducing the horizon is to reduce
the size of the short positions in the hedge portfolio. The certainty equivalent

926



Assessing Asset Pricing Anomalies

rates of return are lower the longer is the horizon. Pastor and Stambaugh
(1999), in comparing portfolio choices implied by different asset pricing
models under parameter uncertainty, calculate annualized one-month certain
equivalent returns. It is therefore of interest to note that the annualized one-
month certainty equivalent return can differ significantly from the 10-year
certainty equivalent return in this model; for example, when γ = 3 the
annualized one-month return for the three-factor model is 15.3%, while the
10-year return is only 13.1%.

4.2 Mixed prior distributions
We consider next the case in which the investor’s prior distribution over x
is derived by assigning probability π0 to the CAPM hypothesis and (1−
π0) to the unconstrained normal hypothesis. The parameters of the prior dis-
tributions of the mean returns under both hypotheses are derived from the
historical data for the period July 1963–December 1991 shown in panel A of
Table 1. During this period the returns on the SMB and HML portfolios were
anomalous with respect to the CAPM, so that the investor is implicitly allow-
ing for the possibility that the anomaly is genuine. We consider two versions
of the CAPM hypothesis; under both versions the expected returns on the
HML and SMB portfolios are determined mechanically from the expected
return on the market portfolio by the familiar CAPM relation, with the betas
which are estimated from the historical data being treated as known; under
the exact version of the CAPM hypothesis, the variance-covariance matrix
of the prior means, �1, is singular with typical element �ij = βiβj�11, 1.
The approximate version of the CAPM hypothesis allows for errors in the
CAPM, due for example to mismeasurement of the market portfolio, so that
the model may not hold exactly; in this case the diagonal elements of the
variance-covariance matrix are augmented by σ 2

ηi
for i > 1.

Figure 1 shows the prior distributions over xi (i = 1, . . . 3), for the three
portfolios, for π0 = 0, 0.5, and 1. π0 = 1 corresponds to the pure exact
CAPM hypothesis, π0 = 0 corresponds to the unconstrained normal hypoth-
esis, and π0 = 0.5 corresponds to a situation in which the investor assigns
a 50% probability to the validity of the (exact) CAPM. Note that while the
marginal distribution for the market drift is normal, for SMB the prior distri-
bution is clearly nonnormal and for HML it is actually bimodal for π0 = 0.5.
We have distinguished between a prior based on an exact pricing model

(“exact model prior”) and a prior based on an approximate pricing model
(“approximate model prior”). For the exact model prior, π(q, t) is the
investor’s assessment of the probability that the CAPM holds and his assess-
ment is updated as described in part (2) of Theorem 2. For the approximate
model prior, π(q, t) is simply a parameter of the posterior distribution, and
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Figure 1
Plots of the marginal density functions of drift parameter for (A) market, (B) SMB, and (C) HML
portfolios
The dotted lines (· · · ) represents the pdf’s for parameter estimates derived from historical data for the period
July 1963–December 1991 under the exact CAPM hypothesis (π0 = 1); the dashed lines (− − −) represent
the pdf’s for parameter estimates derived from the same historical data under the unconstrained normal model
(π0 = 0); the solid lines ( ) represent the pdf’s for parameter estimates derived from the same historical
data under the mixed distribution (π0 = 0.5).

the prior is updated as described in part (1) of Theorem 2. Thus the posterior
mean vector, m(q, t), is affected by whether or not the prior is based on an
exact or an approximate model, and, as we shall see, this affects the portfolio
policy.
Tables 4 and 5 reports results for an approximate mixed normal prior

distribution; the prior distribution is a mixture of an approximate version of
the CAPM and the unconstrained normal distribution. The mixing parameter
π0 is 0.5. ση is set equal to 1%, 2%, and 4%, cov(ηi, ηj ) = 0, i �= j ,
and horizons of 10 and 20 years are considered. Thus in forming his prior,
the investor is assumed to place equal weight on parameter values from the
(approximate) CAPM and the alternative hypothesis; under the approximate
CAPM the model is assumed to predict the mean returns on the SMB and
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Table 4
Optimal portfolio strategies and certainty equivalent returns

α∗ Certainty equivalent return
Prior mean

γ Security risk premium αM αH Unconstrained Constrained Unconstrained Constrained

Panel A. Investor with a 20-year horizon and an approximate model (ση = 2%) mixed (50:50) normal
prior over the mean return vector

2.0 Market 5.21% 1.42 −0.58 0.84 0.62 8.6% 6.3%
SMB 2.16 0.52 −0.37 0.15 0.00
HML 1.84 2.20 −1.53 0.67 0.38

3.0 Market 5.21% 0.94 −0.44 0.50 0.51 6.4% 5.4%
SMB 2.16 0.34 −0.26 0.08 0.00
HML 1.84 1.46 −1.10 0.36 0.49

4.0 Market 5.21% 0.71 −0.36 0.35 0.32 5.4% 4.7%
SMB 2.16 0.26 −0.21 0.05 0.00
HML 1.84 1.10 −0.85 0.25 0.00

5.0 Market 5.21% 0.57 −0.30 0.27 0.25 4.8% 4.3%
SMB 2.16 0.21 −0.17 0.04 0.00
HML 1.84 0.88 −0.69 0.19 0.00

Panel B. Investor with a 10-year horizon and an approximate (ση = 2%) model mixed (50:50) normal
prior over the mean return vector

2.0 Market 5.21% 1.42 −0.35 1.07 0.66 9.4% 6.4%
SMB 2.16 0.52 −0.25 0.27 0.00
HML 1.84 2.20 −1.04 1.16 0.34

3.0 Market 5.21% 0.94 −0.28 0.66 0.54 6.9% 5.6%
SMB 2.16 0.34 −0.18 0.16 0.00
HML 1.84 1.46 −0.79 0.67 0.46

4.0 Market 5.21% 0.71 −0.23 0.48 0.48 5.8% 5.1%
SMB 2.16 0.26 −0.15 0.11 0.00
HML 1.84 1.10 −0.63 0.47 0.52

5.0 Market 5.21% 0.57 −0.19 0.38 0.44 5.1% 4.6%
SMB 2.16 0.21 −0.12 0.08 0.00
HML 1.84 0.88 −0.52 0.36 0.54

The prior distribution over the mean vector is a mixture of normal distributions that correspond to the approximate CAPM prior
(ση = 2%) and an unconstrained normal prior where the mean vectors and covariance matrices are estimated from monthly data
from July 1963 to December 1991 as shown in Table 1; the risk-free interest rate is 3%. Figures shown in bold italics are for
the CAPM prior; other figures relate to the unconstrained normal prior. αM is the fraction of wealth allocated to each security in
the optimal myopic portfolio; αH is the additional allocation to each security to hedge against changes in parameter estimates;
α∗ is the optimal total allocation to each security. The certainty equivalent rate of return is the sure rate of return up to the
horizon that would leave the investor as well off as having $1 of current wealth and 20 or 10 years, respectively, to invest with
the currently assessed investment opportunity set. Columns labeled “constrained” impose the constraint that portfolio allocations
(including riskless asset) be nonnegative.

HML portfolios with a standard error of 1, 2, or 4% per year.23 In this
case of an approximate prior, while the CAPM is used to construct the prior
distribution, the posterior mean vector µ̂1(t) does not necessarily satisfy even
the approximate CAPM relation for t > 0 since the posterior mean of η will
in general be nonzero. Comparing Table 4A (ση = 2%) with Table 2A,
we see that the mixed prior (π0 = 0.5) leads to certainty equivalent return

23 Pastor (1998) considers prior distributions of possible mispricing of the SMB and HML portfolios within the
CAPM which have standard deviations of up to 10% per year. However, Pastor implicitly restricts the mixing
parameter π0 to 1.0.
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Table 5
Optimal portfolio strategies and certainty equivalent returns

α∗ Certainty equivalent return
Prior mean

γ Security risk premium αM αH Unconstrained Constrained Unconstrained Constrained

Panel A. Investor with a 20-year horizon and an approximate (ση = 1%) model mixed (50:50) normal
prior over the mean return vector

2.0 Market 5.21% 1.42 −0.58 0.84 0.62 8.1% 6.3%
SMB 2.16 0.52 −0.38 0.14 0.00
HML 1.84 2.20 −1.58 0.62 0.38

3.0 Market 5.21% 0.94 −0.45 0.49 0.51 6.4% 5.3%
SMB 2.16 0.34 −0.27 0.07 0.00
HML 1.84 1.46 −1.14 0.32 0.49

4.0 Market 5.21% 0.71 −0.36 0.35 0.44 5.1% 4.7%
SMB 2.16 0.26 −0.21 0.05 0.00
HML 1.84 1.10 −0.88 0.22 0.56

5.0 Market 5.21% 0.57 −0.30 0.27 0.24 4.6% 4.3%
SMB 2.16 0.21 −0.18 0.03 0.00
HML 1.84 0.88 −0.72 0.16 0.00

Panel B. Investor with a 20-year horizon and an approximate (ση = 4%) model mixed (50:50) normal
prior over the mean return vector

2.0 Market 5.21% 1.42 −0.53 0.89 0.65 11.2% 6.5%
SMB 2.16 0.52 −0.29 0.23 0.00
HML 1.84 2.20 −1.31 0.89 0.35

3.0 Market 5.21% 0.94 −0.41 0.53 0.49 7.7% 5.5%
SMB 2.16 0.34 −0.21 0.13 0.00
HML 1.84 1.46 −0.96 0.50 0.00

4.0 Market 5.21% 0.71 −0.34 0.37 0.34 6.3% 4.8%
SMB 2.16 0.26 −0.17 0.09 0.00
HML 1.84 1.10 −0.75 0.35 0.00

5.0 Market 5.21% 0.57 −0.28 0.29 0.25 5.6% 4.4%
SMB 2.16 0.21 −0.14 0.07 0.00
HML 1.84 0.88 −0.61 0.27 0.00

The prior distribution over the mean vector is a mixture of normal distributions that correspond to the exact CAPM prior (ση =
1% or 4%), respectively and an unconstrained normal prior where the mean vectors and covariance matrices are estimated from
monthly data from July 1963 to December 1991 as shown in Table 1; the risk-free interest rate is 3%. The mixing parameter is
the investor’s probability assessment that the approximate CAPM holds. Figures shown in bold italics are for the CAPM prior;
other figures relate to the unconstrained normal prior. αM is the fraction of wealth allocated to each security in the optimal
myopic portfolio; αH is the additional allocation to each security to hedge against changes in parameter estimates; α∗ is the
optimal total allocation to each security. The certainty equivalent rate of return is the sure rate of return up to the horizon
that would leave the investor as well off as having $1 of current wealth and 10 years to invest with the currently assessed
investment opportunity set. Columns labeled “constrained” impose the constraint that portfolio allocations (including riskless
asset) be nonnegative.

that is intermediate between the pure prior cases (π0 = 0, 1). The mixed
prior does not affect the prior mean market return, but significantly reduces
the prior risk premia of SMB and HML relative to the pure unconstrained
normal prior (π0 = 0), since it shrinks them toward their CAPM values. This
affects the composition of the myopic portfolio: as compared with the pure
unconstrained normal prior, the allocation to the SMB and HML portfolios is
roughly halved, while the allocation to the market portfolio also declines, but
by only about 20%. The effect of the mixed prior on the hedge position is
generally to raise the dollar size of the position, and in every case to raise the
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size of the position relative to holdings in the myopic portfolio. For example,
for γ = 3, the hedge portfolio allocations to the market, SMB and HML rise
from 22%, 7%, and 34% of the myopic allocations to 47%, 76%, and 75%,
respectively.
The importance of taking account of learning, which is manifest in the

size of the hedge portfolio, is striking. For example, for γ = 3, the myopic
portfolio allocations are 0.94, 0.34, 1.46. These drop to 0.50, 0.08, and 0.36
when account is taken of learning and the horizon is 20 years. Even when
the horizon is only 10 years (Table 4B), the corresponding figures are 0.66,
0.16, and 0.67, so that the optimal portfolio allocations are reduced relative
to the myopic allocations by 30%, 53%, and 54%, respectively.
Table 5A and B shows the effect of changing the degree of the CAPM

approximation parameter, ση. The smaller the value of ση, the tighter is the
prior about the CAPM, the larger the size of the hedge positions, and the
lower is the certainty equivalent return.
Table 3A and B reports the results when the exact version of the CAPM is

used to construct the prior distribution: in this case the posterior mean vector
µ̂1(t) satisfies the CAPM relation for t > 0. Note that whenever an approx-
imate prior is used, µ̂1(t) → µ̂2(t) → q(t) for large t and π(t) → 0.5.
The effect of an exact CAPM prior distribution is to impose a restriction in
updating µ̂1(t), which prevents it from converging to q(t) unless the CAPM
is supported by the realized returns. This makes it possible for π(t) to con-
verge to 0, in which case the influence of the CAPM prior on the posterior
distribution is eliminated. The effect of imposing the exact CAPM prior is
dramatic. The certainty equivalent rate of return (for γ = 3, T = 20 years)
rises from 6.4% when ση = 1% to 7.1% for the exact model prior (ση = 0).
We conjecture that this is because resolution of parameter uncertainty is
accelerated by the restrictions on parameter updating that are introduced by
the exact model prior.
The sensitivity of the investor’s expected utility to the instantaneous rate

of return is greatly increased under the exact model prior. This is apparent
in the much larger hedge positions, particularly in the (CAPM anomalous)
SMB and HML portfolios [see Equation (47)]. For example, for γ = 3,
the hedge positions in the three portfolios increase from (0.45, 0.27, 1.14)
when ση = 1% to (0.53, 0.57, 1.77) for the exact model prior (ση = 0). This
increased sensitivity of the investor’s expected utility to the instantaneous
asset returns is due to the more rapid resolution of parameter uncertainty
under the exact model prior.
Note that the myopic allocation with the model (50:50) mixed normal

prior shown in Tables 3 and 4 is a simple average of the allocations under
the CAPM prior and the unconstrained normal prior shown in Table 2: this
is because the myopic portfolio is determined by the prior mean, and the
prior mean under the mixed prior is a simple average of the two pure priors.
However, the hedge portfolio under the mixed prior is very different from the
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average of the hedge portfolios under the two pure priors; indeed the size of
the hedge positions for the mixed prior is greater than that for either of the
pure priors. This is because the mixture of normals prior is associated with
another layer of uncertainty—model uncertainty—in addition to the param-
eter uncertainty considered under the pure priors. This implies much greater
uncertainty about the mean vector than either of the pure priors, and the
additional allocation to the hedge position may be roughly interpreted as the
effect of model uncertainty. Indeed, the uncertainty about the mean vector for
the mixed normal prior is so great that the optimal investments in the SMB
and HML portfolios actually become negative for an investor with a 20-year
horizon. The hedge positions are smaller for the approximate model (50:50)
mixed normal prior shown in Tables 4 and 5 than for the exact model-based
prior in Table 3; this is consistent with the result in Tables 4 and 5 that the
size of the hedge position is decreasing in the approximation parameter. As
seen in Equation (47), the size of the hedge position depends on the elasticity
of the indirect utility function with respect to the realized returns; this is evi-
dently greater for the exact model-based prior, because the rate of learning is
greater the more precise are the two distributions underlying the mixed prior.
For the sake of completeness, the optimal portfolio strategies were also cal-

culated subject to the constraints that there be no short positions or borrow-
ing. When these constraints are imposed it is no longer possible to distinguish
simply between the myopic and hedge components of the portfolios. There-
fore in Tables 2–5 we report, under the columns headed “constrained,” the
optimal portfolios and the corresponding certainty equivalent rate of return.
In almost all cases except for the pure CAPM prior (π0 = 1), the constraints
significantly reduce the certainty equivalent returns, and it is striking that for
neither the 10-year nor the 20-year horizon is it optimal to hold any position
in the SMB portfolio; and while it is generally optimal to take a long posi-
tion in the HML portfolio, the general effect of imposing the constraints is
to increase the relative importance of the market component of the optimal
portfolio.
Table 6 shows the optimal portfolios as a function of the investor’s prior

probability that the exact version of the CAPM holds, π0, for 10- and 20-year
horizons. Surprisingly, even a 1% deviation from the dogmatic prior that the
CAPM does not hold (π0 = 0) can have a dramatic effect on the optimal port-
folio composition. For a 20-year horizon the 1% possibility that the CAPM
holds decreases the optimal holding in the market portfolio from 87% to
68%, in the SMB portfolio from 65% to 29%, and in the HML portfolio
from 182% to 143%.

5. Simulated Portfolio Strategies

In order to illustrate the differences in portfolio strategies induced by the
different priors, normal prior distributions for the asset drifts were cali-
brated using historical data on the monthly portfolio returns for the period
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Table 6
Optimal portfolio strategies for an investor with an exact model mixed normal prior over the mean
return vector under different prior probability that the CAPM holds

Unconstrained CAPM

π0 0.00 0.01 0.50 0.99 1.00

Panel A. Horizon: 20 years
Market
Myopic 1.19 1.18 0.94 0.71 0.70
Hedge −0.32 −0.50 −0.44 −0.29 −0.21
Optimal 0.87 0.68 0.50 0.42 0.49

SMB
Myopic 0.69 0.68 0.34 0.01 0.00
Hedge −0.04 −0.39 −0.27 −0.10 0.00
Optimal 0.65 0.29 0.07 −0.10 0.00

HML
Myopic 2.94 2.91 1.46 0.03 0.00
Hedge −1.12 −1.48 −1.13 −0.32 0.00
Optimal 1.82 1.43 0.33 −0.29 0.00

Panel B. Horizon: 10 years
Market
Myopic 1.19 1.18 0.94 0.71 0.70
Hedge −0.18 −0.28 −0.27 −0.15 −0.09
Optimal 1.01 0.91 0.67 0.55 0.57

SMB
Myopic 0.69 0.68 0.34 0.01 0.00
Hedge −0.07 −0.21 −0.18 −0.04 0.00
Optimal 0.62 0.47 0.16 −0.04 0.00

HML
Myopic 2.94 2.91 1.46 0.03 0.00
Hedge −0.64 −0.79 −0.77 −0.14 0.00
Optimal 2.30 2.12 0.69 −0.11 0.00

The prior distribution over the mean vector is a mixture of normal distributions that correspond to the exact CAPM prior
(ση = 0%) and an unconstrained normal prior where the mean vectors and covariance matrices are estimated from monthly data
from July 1963 to December 1991 as shown in Table 1; the risk-free interest rate is 3%. The mixing parameter is the investor’s
probability assessment that the approximate CAPM holds. π0 is the prior probability that the approximate version of the CAPM
holds. The investor’s risk aversion parameter, γ , is 3.

1959–1978, both with and without imposing the CAPM. The parameters
of these distributions are given in panel B of Table 1. An exact model
prior distribution was constructed by combining the exact CAPM with the
unconstrained normal distribution with a value of π0 = 0.5. An approxi-
mate model prior distribution was constructed by combining an approximate
CAPM (ση = 2%) with the unconstrained normal distribution with π0 = 0.5.
Note that for the exact model prior, πt corresponds to the investor’s posterior
probability assessment that the CAPM holds; it has no such interpretation in
the approximate model prior.
Then, for each of these prior distributions, the control problem,

[Equation (46)] was solved24 for an initial horizon T = 20 years and γ = 3.

24 The problems differ for the two priors in the expressions that are used for µ̂1(q, t), �̂1(t), and π(q, t) that
enter m(q, t) in the control problem [Equation (46)]. For the approximate model prior the expressions in
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Figure 2
Plots of the time series of the mixing parameter of the posterior distribution
The figure shows the time series of π(q, t), the mixing parameter of the investor’s posterior distribution which
depends on the prior and the realized vector of asset returns, q, over the period January 1979–December 1998.
The prior distribution is obtained by combining the CAPM-based prior and the unconstrained normal prior
based on the historical parameter estimates for the period 1959–1978 reported in panel B of Table 1 with a
mixing parameter π0 = 0.5. The dashed lines (− − −) correspond to the approximate (ση = 2%) model prior
in which π(q, t) is simply a mixing parameter. The solid lines ( ) correspond to the exact model prior in
which π(q, t) is the investor’s posterior probability that CAPM holds.

Next the realized average return vector q(t) was calculated for every month
from January 1979 to December 1998, and was used to calculate both the
posterior mean vector m(t) and the mixing parameter π(q, t) under both the
exact model prior and the approximate model prior. Finally, values of q(t)
were used to construct the optimal portfolio vectors α∗(q, t) under the two
different priors.
Figure 2 plots the realized values of π(q, t) under both the approximate

and the exact model priors. It is interesting to note that for both priors π(q, t)
initially rises rapidly to above 90%; this appears to be due to low returns

the first part of Theorem 2 apply; for the exact model prior the corresponding expressions from the second
part of the theorem are used.
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realized on the HML and SMB portfolios over the period 1979–1981 which
bring their posterior means close to the CAPM predictions. However, from
mid-1981 π(q, t) drops rapidly for both priors, and by 1984 for the investor
using the exact model prior, the probability that the CAPM restriction holds
is very close to zero, although it rebounds to around 6% briefly in 1991, once
again reflecting low returns on HML. It is noticeable that π is much more
volatile under the approximate model prior than it is under the exact model
prior, where it sinks to zero. The reason for this is that under the exact model
prior the posterior mean vector, µ̂1(t), always satisfies the CAPM restriction,
whereas under the approximate model prior it evolves toward the realized
sample mean return vector q(t); as a result the differences between µ̂1(q, t)
and µ̂2(q, t) tend to disappear over time under the approximate model prior
but not under the exact model prior.
Figure 3 plots the posterior means mi(q, t) under the two priors for the

three portfolios (i = 1, . . . 3). Whether the prior is approximate or exact
makes no difference for the market mean return, but at times relatively large
differences for the SMB and HML portfolio: these differences are mainly
due to differences in the mixing parameter π(q, t) under the two priors as
seen in Figure 2.
Figure 4 plots the allocations to the three portfolios under the two priors.

Note first that, although the expected market return is independent of the
prior, the allocation to the market portfolio does depend on the prior slightly.
The steep increase in the allocation to the market portfolio through the sample
period for both priors is due in part to the increasing posterior mean, which is
visible in Figure 3; but it is also due to the reduced size of the short position
in the hedge portfolio as the horizon is approached. In January 1979 the
allocation to the market portfolio under the exact prior is equal to 28.6% of
wealth. This consists of a long position in the myopic portfolio of 61.1% of
wealth, offset by a short position in the hedge portfolio of 32.5% of wealth;
this hedge position goes to zero as the horizon approaches.
The choice of prior makes a large difference to the allocation to the SMB

portfolio at the start of the sample period. This is entirely due to the dif-
ferences in the hedge portfolio; as the uncertainty is resolved more quickly
with the exact model prior, the absolute size of the (short) hedge position
(76.1% of wealth) is larger than under the approximate model prior (37.3%
of wealth). A similar phenomenon is apparent for the HML portfolio.

6. Conclusion

In this article we have shown how to calculate the optimal dynamic invest-
ment strategy when asset returns follow diffusion processes with constant
coefficients but the drift coefficient is unknown to the investor and must be
inferred from the observed returns. When the prior distribution over the asset
price drift is normal, the posterior is also normal, and we show that for an
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Figure 3
Plots of the time series of the posterior asset drift parameters under the two different priors for (A)
market, (B) SMB, and (C) HML portfolios
The figure shows the time series of m(q, t), the mean of the investor’s posterior distribution which depends
on the prior and the realized vector of asset returns, q, over the period January 1979–December 1998. The
prior distribution is obtained by combining the CAPM-based prior and the unconstrained normal prior based
on the historical parameter estimates for the period 1959–1978 reported in panel B of Table 1 with a mixing
parameter π0 = 0.5. The dashed lines (− − −) correspond to the approximate model prior in which an
approximate version of the CAPM (ση = 2%) is used. The solid lines ( ) correspond to the exact model
prior.

investor with power utility the expected utility and optimal portfolio strategy
can be determined as the solution to a recursive set of ordinary differential
equations. More interesting is the case in which the prior is a mixture of nor-
mal distributions; in this case, following earlier results of Benes and Karatzas
(1983) and Detemple (1991) we show that the investor’s perceived investment
opportunities can be summarized in terms of the realized asset returns, and
solve the resulting control problem numerically. We argue that the mixture
of normal priors is a natural one for an investor who places some weight on
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Figure 4
Plots of the time series of optimal portfolio holdings under the two different priors for (A) Market, (B)
SMB, and (C) HML portfolios
The figure shows the time series of α∗(q, t), the investor’s optimal portfolio holdings, which depend on the
prior and the realized vector of asset returns, q, over the period January 1979–December 1998. The prior
distribution is obtained by combining the CAPM-based prior and the unconstrained three-factor prior based
on the historical parameter estimates for the period 1959–1978 reported in Panel B of Table 1 with a mixing
parameter π0 = 0.5. The dashed lines (− − −) correspond to the approximate model prior in which an
approximate version of the CAPM (ση = 2%) is used. The solid lines ( ) correspond to the exact model
prior.

a particular asset pricing model which constrains relative asset returns, but
also allows the possibility that an empirical finding about asset returns may
represent a genuine anomaly. Such an investor must take account of the fact
that he will learn more about the anomaly over his investment horizon. We
solve the investment problem of an investor who places some weight on the
CAPM and some weight on the empirical findings of Fama and French that
the HML and SMB portfolios have returns that are anomalous with respect
to the CAPM.
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Our findings are striking. Consider, for example, an investor with a coeffi-
cient of relative risk aversion of 3 who would place 70% of his wealth in the
market portfolio if he knew that the CAPM was valid and that the market
risk premium was equal to the average market excess return over the period
1963–1991. This investor, taking account of the fact that the market risk pre-
mium is only estimated rather than known, will reduce his investment in the
market portfolio to 49% of his wealth if his horizon is 20 years, and 57% if
his horizon is 10 years. For the 10-year investor, the investment opportunity
set with its estimated market risk premium offers a certainty equivalent rate
of return of 4.7%, which is 1.7% above the riskless interest rate; that is, the
investor would be as well off with a single riskless asset offering 4.7% return
as with the actual investment opportunity set. The same investor, if he is sure
that the CAPM does not hold, and uses the historical data to estimate the
returns on the three portfolios, will conclude that the capital market offers a
certainty equivalent rate of return of 13.1%, even after taking account of the
fact that the mean returns on the portfolio are estimated. In other words, he
will conclude that the dollar bills lying on the sidewalks of Wall Street are
of pretty high denomination!
We also demonstrate that model uncertainty, uncertainty about the genuine-

ness of the anomaly, can have a major effect on portfolio choice. Consider,
for example, an investor with an horizon of 20 years and a coefficient of
relative risk aversion of 3 who would place 49% of his wealth in the market
portfolio if he knew that the CAPM was valid (and take zero positions in
the SMB and HML portfolios). The same investor, if he were only 99% sure
that the CAPM holds, would reduce his investment in the market portfolio to
42% of his wealth and take short positions in the SMB and HML portfolios
of 10% and 29%, respectively.

Appendix

Proof of Theorem 1. Consider the mixture of normal prior distributions over the (n× 1) mean
vector, x:

f0(x) = π0

2π
n
2 |�1| 1

2

exp
{
− 1

2
(x − µ1)

′�−1
1 (x − µ1)

}
+ 1 − π0

2π
n
2 |�2| 1

2

exp
{
− 1

2
(x − µ2)

′�−1
2 (x − µ2)

}
. (A.1)

Then it follows from Lemma 1, Equation (2) that the posterior distribution over the mean
vector at time t , ft (x), is given by

ft (x) ≡ f (x; q, t) = exp
{− 1

2
tx′�−1(x − 2q)

}
f0(x)∫

exp
{− 1

2
(tx′�−1(x − 2q)

}
f0(x)dx

, (A.2)

where qt = 1
t
[ln(Pt ) − ln(P0)].
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Then, substituting for f0(x) from Equation (A.1) in Equation (A.2), ft (x) may be written as

ft (x) ≡ ξ(t, x, q)∫
ξ(t, x, q)dx

, (A.3)

where

ξ(x, q, t) ≡ π0

(2π)
n
2 |�1| 1

2

exp
−1
2 [x′�−1

1 x−2x′�−1
1 µ1+µ′

1�
−1
1 µ1+tx′�−1(x−2tq)]

+ 1 − π0

(2π)
n
2 |�2| 1

2

exp
−1
2 [x′�−1

2 x−2x′�−1
2 µ2+µ′

2�
−1
2 µ2+tx′�−1(x−2tq)] . (A.4)

Simplifying Equations (A.3) and (A.4), we obtain

ft (x) = π(t, q)
1

(2π)
n
2 |�̂1(t, q)| 1

2

exp− 1
2 {(x−µ̂1(t,q))

′�̂−1
1 (x−µ̂1(t,q))} (A.5)

+ (1 − π(t, q))
1

(2π)
n
2 |�̂2(t, q)| 1

2

exp− 1
2 {(x−µ̂2(t,q))

′�̂−1
2 (x−µ̂2(t,q))},

where µ̂i (t, q) = (�−1
i + t�−1)−1(�−1

i µi + t�−1q), and

π(t, q) = π0|�−1
1 + t�−1| 1

2 |�1| −1
2 exp{ −1

2 (µ′
1�

−1
1 µ1−µ̂′

1�̂
−1
1 µ̂1)}(

π0|�−1
1 + t�−1| 1

2 |�1| −1
2 exp{ −1

2 (µ′
1�

−1
1 µ1−µ̂′

1�̂
−1
1 µ̂1)} +

(1 − π0)|�−1
2 + t�−1| 1

2 |�2| −1
2 exp{ −1

2 (µ′
2�

−1
2 µ2−µ̂′

2�̂
−1
2 µ̂2)}

)
.

(A.6)

Then Equation (17) for G(q, t) follows from substituting for f0(x) from Equation (7) in
Equation (5).

Proof of Theorem 2. It is convenient to recognize explicitly that under distribution one, the
approximate factor pricing hypothesis, the investor is updating x1, the drift term of the factors,
and η, the factor model deviations.

Define the observable signals of the model deviations by

dŜi ≡ dSi −
K∑
k=1

βikdSk − ci dt = ηi dt +
(
σi −

K∑
k=1

βikσk

)
dz (A.7)

i = K + 1, . . . , N.

Then partition µ1, the vector of mean drifts under the approximate factor pricing hypothesis,
into its first K elements, µx1 , 1

, and its remaining N − K elements, µx2 , 1
, and partition q, �,

and Ω conformably.
The vector of factor returns and signals, [dS1, . . . , dSK, dŜK+1, . . . , dŜN ]

′
, has a variance-

covariance matrix

�̂ =
[
�11 0

0 Ω22 − Ω21Ω
−1

11 Ω12,

]
,

where �11 is the variance-covariance matrix of the K factor returns; and �12 and �22 are defined
similarly.

The prior under the approximate factor pricing hypothesis may be written as

[x1, η]
′ ∼ N

([
µx1 , 1

µη, 1

]
,

[
�x1x1 , 1

0

0 �η, 1

])
,

where µη, 1 = 0 and �η, 1 is a diagonal matrix with σ 2
ηi
as the (i, i) element.
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The prior distribution over the mean vector x ≡ [x1, x2]
′
under the alternative hypothesis can

be written as a distribution over [x1, η]
′
, which is

N

([
µx1 , 2

µη, 2

]
,

[
�x1x1 , 2

�x1η, 2

�ηx1 , 2
�η, 2

])
,

where

µη, 2 ≡ µx2 , 2
− βµx1 , 2

− c, (A.8)

�η, 2 ≡ �x2x2 , 2
+ β�x1x1 , 2

β
′ − 2β�x1x2 , 2

, (A.9)

�ηx1 , 2
≡ �x2x1 , 2

− β�x1x1 , 2
, (A.10)

�x1η, 2
= �

′
ηx1 , 2

. (A.11)

Therefore Theorem 1 can be applied to derive the posterior for [x1, η]
′
. Part (1) of Theorem

2 follows from the relation between x2 and η:

η = x2 − βx1 − c. (A.12)

Part (2) of Theorem 2 follows by letting maxi (σηi ) → 0, and noting that µ̂η, 1 → 0 at the
limit.

The interpretation of π(q, t) as the probability that the factor pricing model holds can be
derived from the posterior distribution of x:

f (x|q, t) ∝ L(q|x)f0(x)

= π0L(q|x)f0(x|H1) + (1 − π0)L(q|x)f0(x|H2)

= π0p(q, x|H1) + (1 − π0)p(q, x|H2)

= π0p(q|H1)f (x|q, H1) + (1 − π0)p(q|H2)f (x|q, H2)

∝ p(H1|q)f (x|q, H1) + p(H2|q)p(q|H2)f (x|q, H2). (A.13)

Substituting in the prior distributions under hypotheses of H1 and H2 and the likelihood func-

tion, we find that p(H1|q) ∝ A1(q, t) ∝ π(q, t) and p(H2|q) ∝ A2(q, t) ∝ (1 − π(q, t)).

Therefore π(q, t) is the posterior probability that hypothesis 1 (the factor pricing model) holds.
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