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A CONTINUOUS TIME APPROACH TO THE PRICING OF BONDS

Michael J. BRENNAN and Eduardo S. SCHWARTZ*

University of British Columbia, Vancouver, BC, Canada

This paper develops an arbitrage model of the term structure of interest rates based on the
assumptions that the whole term structure at any point in time may be cxpressed as a function
of the yields on the longest and shortest maturity default free instruments and that these two
yields follow a Gauss-Wiener process. Arbitrage arguments are used to derive a partial
differential equation which must be satisfied by the values of all default free bonds. The joint
stochastic process for the two yields is estimated using Canadian data and the model is used to
price a sample of Government of Canada bonds.

1. Introduction

A theory of the term structure of interest rates is intended to explain the
relative pricing of default free bonds of different maturities. Complete
theories of the term structure take as given the exogenous specifications of
the economy: tastes, endowments, productive opportunities. and beliefs about
possible future states of the world: then the prices of default free bonds of
different maturities are derived from these exogenous specifications.’
However, most extant theories of the term structure are partial equilibrium
in nature and take as given beliefs about future realizations of the spot rate
of interest, which are combined with simple assumptions about tastes to
derive yields to maturity on discount bonds of different maturities.

The theory of the term structure has been cast traditionally in terms of the
relationship between the forward rates which are inherent in the term
structure and the corresponding expected future spot rates of interest. Thus
the typical version of the pure expectations hypothesis asserts that forward
rates are equal to expected future spot rates.” In contrast to the pure
expectations hypothesis stands the liquidity premium hypothesis which

*The authors are grateful to Peter Madderom of the U.B.C. Computing Centre for extensive
programming assistance, to R. Solanki for research assistance, and to M. Brenner for helpful
comments. Earlier versions of the paper have been presented at seminars at Berkeley, UC.L.A,
the University of Washington and the meetings of the European Finance Association, Bad
Homburg, 1977. The authors retain responsibility for remaining errors.

'For example, Stiglitz (1970), Rubinstein (1976), and Roll (1970).

2{ is now realized that this assumption is incompatible with universal risk neutrality. the
assumption on which this version of the pure expectations hypothesis is usually based. See
Merton (1973), Brennan and Schwartz (1977), Cox, Ingersoll and Ross (1977).
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asserts that forward rates always exceed the corresponding expected future
spot rates by a liquidity premium, which is required to compensate investors
for the greater capital risk inherent in longer-term bonds. The market
segmentation hypothesis can be regarded as a modification of the liquidity
premium hypothesis to allow for positive or negative liquidity premia on
longer-term bonds: this hypothesis recognizes that long-term bonds are not
necessarily more risky than short-term bonds for investors who have long-
term horizons. so that the prices of bonds of different maturitics are
determined by the preferences of investors with different horizons, with the
result that forward rates may bear no systematic relationship to expected
future spot rates. A major limitation of both liquidity premium and market
segmentation hypotheses is their lack of specificity: since the relationship of
liquidity premium to maturity is not specified, there are as many unde-
termined parameters in the model as there are bond maturities considered.

More recently it has been recognized that, if assumptions are made about
the stochastic evolution of the instantancous rate of interest in a continuous
time model, much richer theories of bond pricing can be derived. which
constrain the relationship between the risk premia on bonds of different
maturities. Thus Merton (1973). Brennan and Schwartz (1977). and Vasicek
(1976) have all assumed that the instantaneous spot rate ol interest follows a
Gauss- Wiener process. Then the arbitrage arguments, which are familiar
from the option pricing literature, may be adduced to show that the prices of
riskless bonds of all maturities must obey the same partial differential
equation which contains only a single utility-dependent function. Since the
whole term structure may be derived by solution of this partial differential
equation, it follows that the liquidity premia for all maturities must depend
upon this single function.

A significant deficiency of this arbitrage model of the term structure is the
unrealism of the assumption about the stochastic process for the interest rate.
It is assumed that since the instantaneous interest rate follows a Markov
process, all that is known about future interest rates is impounded in the
current instantaneous interest rate, so that the value of a default free bond of
any maturity may be written as a function of this instantaneous interest rate
and time. This implies that, apart from deterministic shifts over time in
tastes, the whole term structure of intercst rates may be inferred from the
current instantaneous interest rate. This is clearly at odds with reality.

In this paper we take a step towards a more realistic approach to the
relative pricing of bonds of different maturities by allowing changes in the
instantaneous interest rate to depend not only on its current value but also
on the long-term rate of interest, so that the long-term rate and the
instantaneous rate follow a joint Gauss-Markov process. This expansion of
the state space from one rate of interest to two is intended to reflect the
assumption, which is the basis of both the pure expectations hypothesis and
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the liquidity premium hypothesis. that the current long-term rate of interest
contains information about future values of the spot rate of interest. It
should be clear that the model developed here, viewed simply as a model of
the term structure, is less ambitious than the single state variable models
referred 1o above: where they derive the long-term rate of interest. we take it
as exogenous and attempt to cxplain only the intermediate portion of the
yield curve in terms of its extremities. On the other hand. we avoid the
objectionable implication of the above models that the long rate is a
deterministic function of the current instantancous interest rate. It 1s anti-
cipated that the major contribution of the model developed here will be for
the pricing of interest dependent contingent claims which contain an option
element. such as savings bonds. retractable bonds and callable bonds. Then,
just as the original Black-Scholes (1973) model determines the price of a call
option in terims of the price of the underlying stock. without considering how
the price of the underlying stock itself is determined. this model will permit
the pricing of interest dependent claims in terms of the two exogenously
given intercst rates. However, before advancing to the more ambitious task
of pricing bonds with an option element. it is useful to evaluate the ability of
the model to price straight bonds of different maturities and this is the major
objective of this paper: a subsidiary task is the estimation of the utility
dependent function in the partial differential equation.

In two contemporaneous papers Richard (1976). and Cox. Ingersoll and
Ross (1977) have also developed models of the term structure which
incorporate two state variables. While our model takes these as the
instantaneous rate and the long-term rate, their models take the state
variables as the instantaneous real rate of interest and the rate of inflation.
changes in which are assumed to be independent: from these state variables
thev are able to derive the long-term rate of interest. The advantage of their
models then lies in the endogeneity of the long-term rate of interest, but this
1s obtained at the cost of introducing two utility dependent functions into the
partial differential equation for bond prices, which considerably complicates
the problems of empirical estimation. Our model avoids the need for one of
the utility dependent functions by taking as the second state variuble the
long-term rate of interest which is inversely proportional to an assei price,
the price of the consol bond: the risk associated with this state variable may
then be hedged away. Both Richard and Cox, Ingersoll and Ross avoid the
estimation problems posed by the two utility dependent functions in the
partial differential equation by making explicit assumptions about the tastes
of the representative investor: Richard considers both linear and logarithmic
atility functions while Cox, Ingersoll and Ross consider only the logarithmic
case. We assume that the utility dependent functions are constants and
estimate their values from the data at hand.

In the following section the partial differential equation which must be
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satisfied by the value of any default free discount bond is derived. In
section 3 the parameters of the assumed stochastic process for interest rates
are estimated using data on Canadian interest rates. Section 4 reports the
results of using the model to price a sample of Government of Canada
bonds.

2. The pricing equation for discount bonds

Letting r denote the instantancous rate of interest and ! the long-term rate
of interest which is taken as the yield on a consol bond which pays coupons
continuously, it is assumed that » and [ follow a joint stochastic process of
the general type,

dr=p#,(r,Ltydr+n,(r, 1, 1)dz,,
dl:ﬁz("al,T)df+i72(l”,1,l)dzz, (1)

where t denotes calendar time and dz; and dz, are Wiener processes with
E[dz,]=E[dz,]=0, dz{=dz3=dr, dz;dz,=pdr. f,(.) and B,(.) are the
expected instantaneous rates of change in the instantaneous and long-term
rates of interest respectively, while 5?(.) and »3(.) are the instantancous
variance rates of the changes in the two interest rates. p is the instantaneous
correlation between the unanticipated changes in the two interest rates.
Equation system (1) describes a situation in which changes in the in-
stantaneous and long-term rates of interest are partially interdependent: both
the expected change and the variance of the change in each interest rate may
depend on the value of the other interest rate as well as on its own value. It
18 reasonable to suppose that the expected change in the instantaneous rate
of interest will depend on the long-term rate of interest insofar as the long-
term rate carries information about future values of the instantaneous rate:
further, the expected change in the long rate must also depend on the current
instantaneous rate if the expected rate of return on consol bonds is to be
related to the rate of return on instantaneously riskless securities. In
addition, (1) allows the unanticipated changes in the two interest rates {0 be
correlated. While the degree of correlation is an empirical matter which will
be addressed below. one may envisage the instantaneous rate changing as
expectations of the instantaneous rate of inflation change, while the long rate
responds to changing expectations about the long-run rate of inflation: it
seems reasonable to suppose that changes in these expectations will be
correlated but not perfectly so.

The price of a default free discount bond promising $1 at maturity is
assumed to be a function of the current values of the interest rates, r and |,
and time to maturity, r, which we write as B(r.l, 7). Applying 1t6’s Lemma,
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the stochastic process for the price of a discount bond is

dB/B=pr, 1, r)dr+s,(r, L. T)dz, +5,(r, L1)dz,, (2)
where
p(r, L1y = (B, By + Bafy + 3By 0t +3Byan3 +Byopnin: — Bs)/B,
sir,Lty=Byn/B,
sy(r, L. ty=B, n,/B,
and

B,=¢B/ér, B,=CBJél, By=¢B/it elc.

To derive the equilibrium relationship between expected returns on bonds
of different maturities, consider forming a portfolio, P, by investing amounts
X,. X, X3 in bonds of maturity t,. 7,, T3 respectively. The rate of return on
this portfolio is?

dP/P:[-\'1}‘(71)+-\'2ﬂ(fz)+x3/l(f3)]dt
+ [y s (T4 X5 (02) + X35 (13)1d 2,
+[-"152('51)erzsz(‘fz)ﬂLXﬁz(ﬁ)]dzz- (3)
The rate of return on the portfolio will be non-stochastic if the portfolio

proportions are chosen so that the coefficients of dz, and dz, in (3) are zero.
That 1s, so that

X817+ x08, (12) + X551 (13) =0,
X185(Ty) 4 X28,(75) +X35,(13) =0. 4
Then, to avoid the possibility of arbitrage profits, 1t 1s necessary that the

rate of return on this portfolio be equal to the instantaneous riskless rate
ol interest, r. so that

Xy (u(ty) = 1)+ xo(ult) = 1)+ X5 (ults) — 1) =0. (5)

The zero risk conditions (4) and the no arbitrage condition (5) constitute a
set of three linear homogeneous equations in the three portfolio proportions.
They will possess a solution if and only if

) —r= A (r L 1)s (1) + 22(r, I, 1)s,5(1). (6)

*The arguments, r and [, are omitted from the functions (). s,(-) and s,(-) for the sake of
brevity: they are to be understood.
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where the functions 4,(-) and /,( ) are independent of maturity, 7. Eq. (6} is
an equilibrium relationship which constrains the relative risk premia on
bonds of different maturities. It expresses the instantaneous risk premium on
a discount bond of any maturity as the sum of two elements: these are
proportional to the partial covariances of the bond’s rate of return with the
unanticipated changes in the instantaneous and long term rates of interest,
s;() and s,(-) respectively. ~,( ) and A,( ) may then be regarded as the
market prices of instantaneous and long term interest rate risk and will
depend upon the utility functions of market participants. If the expressions
for g( ). s{(-) and s,(-) are substituted in {6) the result will be a partial
differential equation for the price of a discount bond, B(r,/, 1), which will
contain the two utility dependent functions (-} and /,(-).* However. by
making use of the fact that [ is a function of the price of an asset which we
assume to be traded, a consol bond, it can be shown® that /,( ) is given by

Arr Lty = —ny/ I+ (By =P +rD)in,. (7)

Eq. (7) expresses «,( ) in terms of the two rates of interest and the
parameters of the stochastic process for the long-term rate of interest. It
therefore enables us to eliminate this utility dependent function from the
partial differential equation for the price of a discount bond, so that
substitution in the equilibrium relationship (6) of the expressions for u(z),
si{z) and s,(1). and use of eq. (7) to eliminate /.,( ). permits us to re-write the
equilibrium relationship (6) as the partial differential equation

%Bl 1'712 +Byapnin; +%Bzz’7§
+ B (B, — /1) + B3P+ F —¥l)—B; — Br=0. (8)

Given the stochastic process (1) for the two interest rates r and [, (8) 1s the
basic partial differential equation for the pricing of default free discount
bonds. This equation, together with the boundary’ condition specifying the
payment to be received at maturity, say B(r.[.0)=1, may be solved to yield
the prices of discount bonds of all maturities {from which the whole term
structure of interest rates may be inferred. The term structure at any point in
time will depend upon the current values of the state variables r and [ as
well as upon the unknown function 2,(-). The prices of regular coupon
bonds may be obtained by treating them as portfolios of discount bonds:
alternatively, if coupons are paid continuously at the rate ¢, then ¢ should be
added to the left-hand side of the partial differential eq. (8). In addition, this

*This would be identical to the partial differential cquation obtained by Richard (1976) it the
variable { is interpreted as the rate of inflation rather than as the long term rate of interest.
*See appendix
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cquation is valid for all types of default free interest dependent claims, so
that it may be applied for example to the pricing of saving bonds or callable
bonds by the introduction of the appropriate boundary conditions defining
the payoffs on the claims.

It is interesting to note that the partial differential equation is not only
independent of /,(-), the market price of long-term interest rate risk, it is
also independent of ff,( ), the drift parameter for the long term interest rate,
so that the solution is independent of the expected rate of return on the
consol bond. This result is analogous to the finding within the simple Black-
Scholes (1973) model for the pricing of stock options that the function
expressing the equilibrium price of the option in terms of the price of the
underlying stock is independent of the expected rate of return on the
undertying stock. The reason for the two results is the same: there exists an
asset for which the partial derivatives of its value with respect to all of the
state variables is known: in this case the consol bond, and in the Black-
Scholes case the stock. It can be shown that in general the number of
unknown utility dependent parameters left in the partial differential equation
will be equal to the number of state variables, excluding time, less the
number of assets for which the partial derivatives of the value function are
known: in the Black—Scholes case this is zero and in the present case it is
one. The time variable is excluded since the pure reward for the passage of
time is equal to the interest rate. This proposition is illustrated more
formally in the appendix.

The coefficients of the partial differential eq. (8) arc the utility dependent
function. 2,(*), and the parameters of the underlying stochastic process for
the two interest rates, (1). Empirical application of the model requires that
the parameters of this stochastic process be estimated and this is taken up in
the next section.

3. Estimation of the stochastic process

3.1, The form of the stochastic process

Estimation of the stochastic process for interest rates (1) presupposes some
stronger assumptions about the form of the process than we have made
hitherto. The first restriction comes from the requirement that the excess of
the expected rate of return on the consol bond over the instantaneous rate of
interest be commensurate with the degree of Jong-term interest rate risk of
the consol. This requirement is expressed in eq. (7): solving this equation for

f50), we find

Balr Lt)y=1 —rl+173/14 7,15, (9)
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For empirical tractability it is assumed that A,(-), the market price of long-
term interest rate risk, is constant.

The only other a priori restrictions which can be imposed on the
stochastic process derive from the requirement that dominance by money be
avoided, so that neither of the interest rates can be allowed to become
negative. This possibility is avoided by assuming that

e Lt)y=ro,, n,(r, L ty=lo,, (10)
and requiring that

B.(r,1,1)=0. (11)

Egs. (10) and (11} jointly imply that f,(r,L1)=0. Eq. (10) specifies that the
standard deviation of the instantaneous change in each interest rate is
proportional to its current level.

To reflect the premise that the long-term rate contains information about
future values of the instantaneous rate, it is assumed that the instantaneous
rate stochastically regresses towards a function of the current long-term rate.
This assumption and conditions (10) and (11) are satisfied by taking as the
stochastic process for the logarithm of the instantaneous rate

dinr=oflnl—Inp—Inridt+o,dz,, (12)

which is equivalent to the assumptions that

B Lty=r[xIn(l/pr)+iai], (13)
n(rLny=ro,. (14)

The coefficient o represents the speed of adjustment of the logarithm of the
instantaneous rate towards its current target value, In(//p), and p is a
parameter relating the target value of Inr to the current value of Inl.

Finally substituting for f,(-) and #,(-) from (9) and (10) in eq. (1), the
stochastic process for the long-term rate of interest is

dI=I[l—r+062+i,0,1dt +lo,dz,. (15)

3.2. The linearized form of the stochastic process

Egs. (12) and (15} constitute a non-linear system of stochastic differential
equations governing the behaviour of the two interest rates. In order to
estimate the system it is necessary first to linearize it, and to this end we
approximate [ and r by linear functions of In/ and Inr. Thus, writing | and r
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as functions of In/ and Inr, and expanding in Taylor series about the mean
sample values, ™ and ¢™’,

|—r=eM—ghr

~e"(1 =Inl)—e™ (1 —Inr)+e™Ini—e™Inr. (16)

Then using Itd’s Lemma to obtain the stochastic process for Inl from (15),
and substituting for (I—r) from (16), the linearized stochastic differential
equation for the logarithm of the long-term rate may be written as

dinl=[g—k,Inr+k,Inl]dt+0,dz,, (17)

where

g=e"(1 —Inl)—e" (1 —Inr)+303+ is05.

while we may write the stochastic differential equation for the logarithm of
the instantaneous rate as

dinr=g[Inl—Inr—Inpldt +o,dz,. (18)

This linearized system of stochastic differential equations for the logar-
ithms of the two interest rates is written in matrix notation as

dy(t)=Ay(r)dr + bde +d<(r), (19)

o (Inr(0) (o dz(0)

*‘“"(mur))’ : ([)_<o‘2 dzz(r)>’
[z [ —alnp

A_<—l"1 kz>’ b_< q >

3.3. The exact discrete model

where

AN

While (19) is a system of linear stochastic differential equations, the data
on interest rates which are required to estimate it are available only at
discrete intervals. One approach to estimation when there are prior re-
strictions on the parameters® has been proposed by Bergstrom (1966). This
involves first substituting finite differences for differentials and averages of
beginning and end of period values for the time dated vector y(r), and then

“k, and k, are known and the coefficients of the two variables in the first equation arc known
to be equal in magnitude but opposite signs.
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estimating the resulting lincar equations by standard simultaneous equations
methods. Unfortunately. as Phillips (1972) points out, the undesirable feature
of this approach is the specificatton error which causes the resulting
parameter estimates to be asymptotically biased. A more efficient and elegant
procedure is 1o obtain the exact discrete model corresponding to (19) and to
estimate the parameters from this model.

The exact discrete model corresponding to (19) is”

vy =t =Ly AT et = T+ L. (20)

where

J(t)= .\' o “‘d;’(.s‘).

r-ot

and the variance covariance matrix of errors is

1.
E[dm]=f e 'Xe ! ds, (21)

3]

where X is the instantancous vartance covariance matrix with elements o7,

a3 pe, a8

The matrix ¢! is defined by

o E'['UJT*]‘ (22)
where
7

e 0
e = ,
o o)

and v, and v, are the characteristic roots of the matrix 4, while T is the
matrix of characteristic vectors. In this case the characteristic roots are

vy =y =4 (ks — %) —4(k, - ko))

(B8]

vy =(ky — = (ks — ) =4k, —k,))2. (23)

and the matrix of characteristic vectors is

“See Bergstrom (1966). Phillips (1972). Wymer (1972).
“It can be shown that |} et X e ds = X, so that the variance covariance matrix of errors from
. . - u ~
(20) provides good cstimates of 7,0, and 6,, =po,a,.
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Inverting 4 and carrying out the appropriate matrix multiplications in (20)
the exact discrete model to be estimated is

1
\1([):\ .y ferdky —vy)—e i (ky—v)]y(1—1)
17 V2
1 . .
o Lk vk — v (e — e ]y, (= 1)
ky(vi—v,)
1

B ke s — v ) — (ks —va) vy —
T T vy eLReLe R v = ey =va) vy v

—oky (e —e )]+ gLk, (ky —vi)(ky — vy )t —e?) ak,

—e¥(ky —vy) e (ky —v) + vy — v+ (). (25)
ke o 1 . ,
pa)= @y (= ) ek, — vo) = ek, = v st = 1)
ViV, Vi —V,
{ ‘ ,
+ —— - dIn plk;[e"(ky —vy) —e"(ky = vy) + vy — V3]

(ky = kadyy —vs)
—otky (" —e" )]+ gl(ky —vi)ky—vy)le" —e™?)/a
—e"(ky—vy) ek, —vy )+ _"2]} +{5(0). (26)

Summarizing the analysis to this point, the system of stochastic differential
equations (1) was first specialized by assuming that the standard deviation of
the unanticipated instantaneous changes in each interest rate is proportional
to the current level of that rate (10); by requiring that the instantaneous
expected rate of return on a consol bond be commensurate with its degree of
long-term interest rate risk (9), where 4,(-), the market price of long-term
interest rate risk, is taken as constant; and by requiring that the logarithm of
the instantaneous interest rate stochastically regress towards a target value
which depends on the current value of the long-term rate (12). The resulting
system of stochastic differential equations, (12) and (15), was then linearized
to vield the system (19), where y,(r) and y,(¢r) are the logarithms of the
instantaneous rate and the long-term rate respectively. Finally, since the
equation system is to be estimated using data on r and [ at discrete time
intervals, the exact discfete model, (25) and (26), corresponding to the
linearized form (19) was found.

34. Empirical results

The three coefficients of the equation system (25), (26) to be estimated are
4, Inp and ¢. In addition we require an estimate of the variance-covariance

B
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matrix X, since the elements of this matrix appear as coefficients in the
partial differential eq. (8) for the value of a bond. The estimation was carried
out using a non-lincar procedure described by Malinvaud (1966) and
employed by Phillips (1972) in a similar context. The data for the in-
stantaneous rate of interest were the yields on 30-day Canadian Bankers’
Acceptances converted to an equivalent continuously compounded annual
rate ol interest. while the long-term rate of interest was the continuously
compounded equivalent of the average yields to maturity on Government of
Canada bonds with maturities in excess of 10 years. Both interest rates series
are mid-market closing rates on the last Wednesday of each month from
January 1964 to December 1976.°
The estimated equation system is

dInr=0.0701{Inl;r —0.0599]dr +0.0736dz,

(0.0050) (0.0050)
d In 1= [0.0060 —0.0051 In r-+0.0058 In [1d: +0.0250d=,.
(0.0020)

where the standard errors of the estimated coefficient are in parentheses and
the coefficients of —Inr and In! are the computed values of k; and k,. The
estimated correlation between the errors in the two equations, p, is 0.3747,
and the adjustment coefficient of 0.0701 in the first cquation implies that half
of the adjustment in the instantaneous rate occurs within 10 months.

In terms of the cocfficients of the basic partial differential eq. (8) for the
pricing of discount bonds, the parameter estimates imply

W =ro, =0.0736r, n,=lo,=0.02501 p=0.3747,
B Lty=r[xin(/pr)+307]
=1[0.0701(Inl/r —0.0599) + 1(0.07367)].

4. Bond pricing and the term structure of interest rates
Re-writing the partial differential cq. (8) to take account of the specific
stochastic process for r and [/ assumed in the previous section, we have,
substituting for B, (). 1, (-yand n,( ).
IB, 1?6} + B rlpo o, + 1 Byslio3

) (27)
+ B, r[aIntl/pry+ Yo7 — /20 1+ Byl[a3+1—r]— By —Br=0.

“Taken from the Bank of Canada Review, Cansim Serics 2560.33 and 2560.13.
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Then the value of a discount bond promising $1 at maturity, =0, is given
by the solution to eq. (27) subject to the boundary condition

B(r,1,0)=1. (28)

Using the values of «, Inp, p, o, and ¢, estimated in section 3, eq. (27)
with boundary condition (28) was solved!? for values of 7,, the market price
of instantaneous interest rate risk, of —0.04, 0.0, 0.09. The resulting values of
B(r.l,t) are present value factors: for a given value of /,,B(r.l, 1) is the
present value of $1 payable with certainty in t periods when the in-
stantaneous and long-term rates of interest are r and | respectively.

A sample of 101 Government of Canada bonds was priced using the
present value factors computed for each of the three values of 4,. The bonds
were priced on the last Wednesday of each quarter from January 1964 to
January 1977 by applying the present value factors appropriate to the
prevailing instantaneous and long-term rates of interest to the promised
coupon and principal payments for each bond. The sample includes all
Government of Canada bonds with maturities less than 10 years for which
prices were available in the Bank of Canada Quarterly Review and which
were neither callable nor exchangeable. The root mean square price prediction
error was calculated for each of the three values of %,. and quadratic
interpolation was used to estimate the value of A, which minimizes the root
mean square prediction error.!’ This estimated value of 4, was 0.0355 and
the bonds were then priced for this value of 4.

In addition. for each of the four values of .4,, yiclds to maturity were
calculated based on the predicted bond values each quarter and these
predicted yields to maturity were compared with the actual yields to
maturity. The comparison of actual and predicted bond values and yields to
maturity is reported, for each value of 4,, in table 1: in this table all bonds
are treated as having a par value of 100. Thus for the estimated value of 7,
=0.0355. the root mean square prediction error for bond prices is 1.56 and
the mean error is —0.17. For the same value of 4,, the root mean square
prediction error for yields to maturity is 0.67 ¢, and the mecan error is 0.24°;.
It is to be anticipated that the model will be less successful in predicting
yields to maturity than in predicting bond prices, since a small error in the
predicted bond price will cause a very large error in the predicted yield to
maturity for short dated bonds.

"The solution procedure is described in the appendix.

""That is, a quadratic curve was fitted to the threc pairs of RMSE and 4,. and the RMSE
minimizing value of £, was computed. When the bonds were priced using this value of 7, the
RMSE agreed with the interpolated value. This non-linear estimation procedure leads o a
maximum likelihood estimator under the usual assumption of normal, independent. homoscedas-

tic errors. A more efficient estimator which would allow for a generalized error structure was
contemplated but ruled out on the basis of computational cost.
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For both bond prices and viclds to maturity. the actual values were
regressed on the predicted values and the resulting regression statistics are
reported in table 1 also. For unbiased predictions the intercept term (%)
should be zero, and the slope coefficient (f) should be equal to unity. The
actual slope coefficients for £, =0.0355 are 0.93 for bond prices and 0.79 for
yields to maturity. While these regression results should be treated with
caution since there is no assurance that the errors are either independent or
normally distributed, it is encouraging to observe that there is a strong.
though certainly not perfect, correspondence between the actual and predicted
values.

Tables 2 and 3 report the results of predicting bond values and yields to
maturity for the last Wednesday of each January from 1964 to 1977. These
results are representative of those obtained for the other quarters for which
predictions were made. While there is reasonable stability in the relationship
between actual and predicted bond values, the relationship between actual
and predicted vields to maturity is much more ecrratic. This reflects the
greater difficulty in predicting this variable. referred to above, and also
suggests that there are factors which are not encompassed m our model
which determine the shape of the term structuve.

Fable |
Predicted and actual bond prices and viclds to maturity for alternative values of 7, y-ratios in
parentheses).

Values of 7,

- 1,04 0.0 0.0333 0.09
Bond prices
RMSE 1.95 1.635 1.56 1.74
Mean error - 1.05 -0.59 - (017 (.41
b4 13.44 10.01 7.2% 4.12
(21.44) {15.40) (10.46) (5.04)
i 0.87 0.90 0.93 095
(134.04) (134.44) {129.57) (11423
R- 0.92 043 0.93 091
Yields to marurity
RMSE (") 0.81 0.72 0.67 0.64
Mean error (7)) 0.32 0.37 .24 (.06
27, 112 1.15 1.18 1.23
(18.40) (18.24) (18.23) (18.40)
I 0.77 .78 0.79 0.80
(90 63) (87.61) (84,44 (79.30)
(.85 0.83

R-

0.86

0.86
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One factor which has been neglected in the model developed in this paper
is the role of income taxes and their differential impact on coupon income
and capital gains. To test whether income taxes cause the coupon stream of
a bond to be valued less highly than the principal repayment at maturity, the
predicted value of the principal payment was subtracted {rom the actual
bond price and the difference was regressed on the predicted value of the
coupon stream. If income taxes are important in the pricing of bonds, the
resulting rcgression cocfficient should be less than unity, the difference
between unity and the estimated regression coefficient measuring the effective
tax rate on coupon income. The regression results are reported in table 4 for
the different values of /,. The cvidence presented in this table suggests that
the effect of income taxes is slight: for the estimated value of 4, =0.0355, the
estimated tax rate is only 4%, and even for 7, =0.09 the estimated tax rate is
only 8°,.

Table 4
The influence of taxes on bond prices: (bond price predicted value of principal)
=+ [§ (predicted value of coupons).

Values of 7,

~-0.04

0.0 0.0355 0.09
b3 0.62 0.67 0.71 0.78
(8.03) 9.11) (10.04) (11.28)
I 1.03 0.99 0.96 0.92
(249.33) {234.09) (256.38) (256.24)

R? 0.98 0.98 0.98 0.98

5. Conclusion

In this paper we have developed a theory of the term structure of interest
rates based on the assumption that the value of all default free discount
bonds may be written as a function of time and two interest rates, the
instantaneous rate and the long-term rate. which follow a joint Markov
process in continuous time. This assumption permitted us to derive in
section 2 a partial differential equation which must be satisfied by the values
of all default free discount bonds. The partial differential equation contains
two utility dependent functions. £, () and /,(-), but /() was climinated by
making usc of the assumption that there exists a traded asset, a consol bond.
which corresponds to one of the state variables, the long-term rate of
interest. )

In section 3 the stochastic process for the two interest rates was specialized
and estimated using data on Canadian interest rates. The partial differential
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cquation was then sohved using the estimated parameters and sclected values

ncous mteresi rate risk. 4,0 1o fnd the value

¢

for the marker nrce of instan

of 7, which minimized the price prediction errors for @ sample of Canadian
sovernment bondssand the prca’;ic'i\c z>'h.illi\' of the model was ovalunted: the

rool mean square prediciion crror for bond prices was of the order of 1.5
i 4 o

1

hat models ul‘ 'hf\

It s anticipated $j~ peowill hive application o the

in
management of bond portfolios and studies of the efficioncy of band markets.,
Perhips the m

1 apphviaiion s to the pricing of bonds which
contain an option such as callable bonds wnd suving bkaLl\ The latter are

i mnterestin

fi 1,

defoult free securities allowing the holder the right of redemption prior

1

o
mattriny at a predetermined serics of redemption prices. While instrunients
of this type are commen in North America and several Puropean countries.
mcluding France, Germany, laly and the United Kmgdom. they have
ceeeived virtually o atiention to date fom finaneial ceonomints. Work
corrently in progress to apnly the model developed in this paper to Canadian
savings bonds,

This model should be seen as a st step i the application of a4 new
approach 1o the term siructure of nterest rates and the pricing of defauit free
securitdes, Further work is required on the specification and estimation of
both the stochastic process for the interesi mates and the market price of

interesi rate risk.

Appendix

AL The markei price of long-rernn interest vate risho s, 0

it is shown here that if there exvists w consol bond, the uniny dependent
market price of fong-termi interost rate risk may be expressed in terms of the
two interest rates and the parameters of the stochastic process for the long-
term rate of interest. Let ¥7(0) Jdenote the price of a consol bond paving &
continuous coupon at the rate of ST per period. Then the fong-term rate of

interest s defined by
Gyt /‘?())

<o that. applying 1o Lemma. the stochasue process for the price of o consol

bond Is

AV V=t - gy hdr -y, hdz, {30)

Then. defining s, (7 3 and s,0 7 as the partial covariances of the consol’s
hond’s rate of return with the unanticipated changes i the two interest rates.
it follows from eq. (30} that H(’/ :(}‘ sal 7)== —ips Lo burther, defining
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as the expected instantaneous rate of return on the consol bond including
both the expected capital gain which is obtained from (30) and the rate of
coupon payment per dollar of principal,

W) =02 P =B+ (31)

Now the expected rate of return on the consol bond must also satisfy the
equilibrium risk premium equation, (6), so that substituting in this equation
for p(= ). s;(») and s,(> ) and solving for Z,( - ), we obtain

2ol L= = /14 (B =+ 1), (32)

which is eq. (7) of the text.

A.2. Asset prices and state variables
This section illustrates for eq. (6) that the number of utility dependent
functions left in the partial differential equation is equal to the number of
state variables, excluding time, less the number of assets for which the partial
derivatives of the value functions are known. Substitute in the equilibrium
condition (6) the expressions for u( ), s,{ ) and s,( ) to obtain
B\fy+Byfi,+3B, 3 +3Bona + Byapiy, — By —rB
=/By,+7:Ban5. (32)
Now suppose that there exists an asset with value G, all of whose partial
derivatives with respect to the state variables are known. The value of the
asset must also satisfy the same partial differential equation.
G S+ Gafa+3G, miGaans +Grapininy— Gy —rG
=7.,G i +2,G,H5. (34)
Then to eliminate 2, and f, eq. (34) is multiplied by B,/G, and subtracted
from (33) to yield
(By = B1G,/Gy)f + 5By, = B,G /Gy
+5(Byy =By G,,/Go)ny +(Byy — B2 Gy o/Go)pn s
—(B3;—B,G3/G,)—r(B—=B,G/G,)
=4(By =BG /Gy, (35)

Since G and all of its partial derivatives are known functions, (35) contains
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only a single utility dependent function. / (-}, and the drift parameter for the
corresponding state variable, f,. If G is the consol bond, then substitution of
the appropriate partial derivatives in (35) will yield our partal differential
¢q. (8). It should be clear that if G, were not zero. it would have been
possible to eliminate ~, and f; instead of 7, and .. and that if a second
distinct asset exists whose partial derivatives are known it will be possible to
eliminate all four parameters.

A3, Solution of the partial differentiul equation

Since therc is no known analytic solution to the differential eq. (27) we
apply a finite difference solution procedure. This requires that the equation
be transformed to take advantage of the natural boundary conditions which
occur as the interest rates approach zero and infinity.

To transform the equation, define the new state variables u, and u,
where' -

wy,=1/(1+nr), u,=1/1+nl),

and let B(r, L, t)=h(u,.u,,1).
Writing the partial derivatives of B(-) in terms of those of b( ), we have
B, = —nuih,. By= —nuib,.
By =n"uth, +2nuth,. By,=n"uib,, +2n%ulb,.
B, =bh;.
Substituting for ./ and the derivatives of B{-) in (27), we obtain the
transformed equation
shyuitl —uiat + by sy (1 —u ) —uy)puyuy +Shsaud(l — uijo?
bl —u oty —u) = x(nu (1 — ) puy(l—u,)+ 7,6, ]
Dyt =y = a3y — (1 =) muy 4 (1 —uy) 'y ]
—by—=h(l—u,)nu, =0. (30)
The solution to this differential equation must satisfy the maturity

boundary condition which 1s defined by assuming that the bond pays $1 at
maturity:

"*The parameter i was chosen so that approximately one haif of the range of 1, and > (0, 1)
relates o the relevant range of interest rates. 020, in which solution accuracy is required, ie.

n=40.



M.J. Brennan and E.S. Schwartz. Pricing of bonds 153

bluy 115, 0)=1. (37)

In addition we have the following natural boundarics obtained by letting
u,. 1, approach zero and one'? in the differential eq. (36):

iy Forr=>(u,=0), I=x(u,=0).

Multiply (36) by nu, and let u; and u, approach zero to obtain

b{0,0,7)=0. a8)
(i) For r=x(u,=0) [+ =.

Multiply (36) by nu, and let u, approach zero to obtain the ordinary
differential equation

b5(0, ti5. Tt (1 —115) — b(0, 115, 1) =0.

Solving this equation and imposing the requirement that b(0,u,,7)=1, we
have

b0, u,,7)=0. (39)
(i) For l=»(u,=0), rx.

Divide (36) by Inu, and let u, approach zero to obtain
auy (1= )b {uy, 0,7)=0,
and since b(0,0,7)=0 from (38), this implies that
b(u,0,7)=0. (40)

The boundary conditions (38)-(40) state that if either interest rate is
infinite, the value of the bond is zero.

(iv) For r=0 (u,=1), I=0(u,=1).

Setting u, and u, equal to unity in (36),
by(1,1,7)=0.
Combining this with the maturity value boundary, (37), we obtain

b(1,1, 1)=1. (41)

U This corresponds 1o letting the interest rates r and [ approach infinity and zero respectively.
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The Onite diffcrence approvimation 1o (36) 1s obtained by deftung

discrete intervals.
o o e b by ek
IR § R TR IR S S {47
where foand o are the siep sives for the nterest ruic and e 16 molure
VICTE 71 and g oare ihe siep swes o the mterest rades and ame 1o maturiiy
r wely: sinee i, aund lefined on the meread 7000, Jon=1. Then

writing finite differences in place of partial derivatives, (36) may be approxi-

mated by

= e b m— 10 e (46}

where ¢/ cte, are coeflicients derived from the neters of the equation,

(461 15 a system of (- 1) equations i the 1o 0 17 unknowns b, (1)
=0, 1., m): the remaining -bn equations are provided by the natural bound-
ary conditions (i) {viy above’™ The augmented system of equaiions mav bhe

solved recursively for the anknowns b, i terms of b, L since the values

HValues of bloot) are obtained by solving the finite difference approximation to 42
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b; ;.o are given by the maturity boundary condition (37). To take advantage
of the structure of the coefficient matrix the equations were solved by the
method of successive over-relaxation.!*

""Westlake (1968).
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