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1. INTRODUCTION

In its most basic form, a collateralized debt obligation (CDO) is simply a financial
claim to the cash flows generated by a portfolio of debt securities or, equivalently, a
basket of credit default swaps (CDS contracts). Thus, CDOs can be viewed as the
credit-market counterparts to the familiar collateralized mortgage obligations (CMOs)
actively traded in secondary mortgage markets.

Since its inception in the mid 1990s, the market for CDOs has become one of
the most-rapidly-growing financial markets ever. Industry sources estimate the size
of the CDO market at the end of 2005 to be in excess of $1.5 trillion. Important
reasons for the rapid growth in the CDO market include the recent introduction of
market indexes such as the highly-successful CDX and Itraxx credit indexes and the
emergence of active trading in standardized tranches on these credit indexes. Another
important driving force is the parallel growth in the closely-related CDS and credit
derivatives market which the International Swaps and Derivatives Association (ISDA)
estimates reached $12.43 trillion notional in mid-2005. Recently, CDOs have been in
the spotlight because of the May 2005 credit crisis in which downgrades of Ford’s and
General Motors’ debt triggered a wave of large CDO losses among many credit-oriented
hedge funds and major Wall Street dealers.

This paper conducts an empirical analysis of the market prices of standardized
tranches on the CDX credit index using an extensive data set recently made available
to us by Citigroup. To the best of our knowledge, this is the first large-scale empirical
study of CDO pricing to appear in the academic literature. As such, our first task
will be to provide the reader with an introduction to the CDO market and describe
the fundamental characteristics of index tranche pricing. The data used in the study
cover almost the entire period since the inception of the CDX credit index.

Motivated by an important recent paper by Duffie and Gârleanu (2001) on the
valuation of CDOs, we develop a three-factor portfolio credit model for pricing CDOs.
In the Duffie and Gârleanu framework, three types of default events are possible:
idiosyncratic or firm-specific defaults, industrywide defaults in a specific sector of
the economy, and economywide defaults affecting virtually every industry and sector.
Rather than focusing on the individual “quantum” or “zero-one” states of default for
each firm and aggregating up to the portfolio level, however, this framework takes a
“statistical mechanics” approach by modeling portfolio credit losses directly. Specif-
ically, we allow portfolio losses to occur as the realizations of three separate Poisson
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processes, each with a different jump size and intensity process. Thus, realizations of
the three Poisson events can be mapped directly into the three types of default events
in the Duffie and Gârleanu framework. We take the model to the data by fitting it
to the CDX index spread and the prices of the 0−3, 3−7, 7−10, 10−15, and 15−30
percent CDX index tranches for each date during the sample period.

We first address the issue of how many factors are actually needed to explain the
pricing of CDOs. To do this, we also estimate one-factor and two-factor versions of the
model. We then use a likelihood ratio approach to test whether the two-factor model
has significant incremental explanatory power relative to the one-factor model and,
likewise, whether the three-factor model has significant incremental explanatory power
relative to the two-factor model. We find that the three-factor model significantly
outperforms the two-factor model which, in turn, significantly outperforms the one-
factor model. These results provide direct evidence that the market expects defaults
for the firms in the CDX index to cluster (correlated defaults) and strongly supports
the Duffie and Gârleanu credit modeling framework.

Focusing on the three-factor results, we find that the estimated jump sizes for
the three Poisson processes are on the order of 0.4, 6, and 35 percent, respectively.
Since there are 125 firms in the CDX index, the jump size of 0.4 percent for the first
Poisson process can be interpreted as the portfolio loss resulting from the default of a
single firm, given a 50 percent recovery rate (1/125× 0.50 = 0.004). The jump size of
6 percent for the second Poisson process can be interpreted as an event in which, say,
15 firms default together. Since this represent roughly 10 percent of the firms in the
portfolio, this event could be viewed as a major crisis that pushes an entire industry
or sector into financial distress. Finally, the 35 percent jump size for the third Poisson
process has the interpretation of a catastrophic event that wipes out the majority of
firms in the economy. Our analysis indicates that all three types of credit risk are
present in the market and are important determinants of the pricing of CDOs.

We also estimate the probabilities or intensities of the three Poisson events (under
the risk-neutral pricing measure). On average, the expected time until an idiosyncratic
or firm-specific default is 1.2 years, the expected time until an industrywide default
crisis is 41.5 years, and the expected time until a catastrophic economywide default
event is 763 years. We find, however, that the implied probability of an industry or
economywide default event increased dramatically during the hedge fund credit crisis
in May 2005 triggered by the rating downgrades of Ford and General Motors.

Using the intensity estimates, we decompose the CDX index spread into its three
components. We find that on average, firm-specific default risk represents only 64.6
percent of the total CDX index spread, while industry and economywide default risks
represent 27.1 and 8.3 percent of the index spread, respectively. Thus, the risk of
industry or economywide financial distress accounts for more than one-third of the
default risk in the CDX portfolio. Recently, however, idiosyncratic default risk has
played a larger role. By definition, the same decomposition holds for the default
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spreads of the typical firm in the index. Thus, the event that a firm defaults can be
partitioned into three events: the event that only the firm defaults, the event that the
firm and a number of other firms in the same industry or sector default together, and
the catastrophic event in which the majority of firms in the economy default together.

We then examine how well the model captures the pricing of individual index
tranches. Even though tranche spreads are often measured in hundreds or even thou-
sands of basis points, the root-mean-squared error (RMSE) of the three-factor model
is typically on the order of only two to three basis points, which is well within the
typical bid-ask spreads in the market. Thus, virtually all of the time-series and cross-
sectional variation in index tranche prices is captured by the model. We find that
the largest pricing errors occurred shortly after the inception of the CDX index and
tranche market, but decreased rapidly after several weeks. Thus, despite some early
mispricing, the evidence suggests that the CDX index tranche market quickly evolved
into a more efficient market. We also examine the extent to which dispersion in the
credit spreads of individual firms within the CDX index affect the pricing of CDOs.
We show that spread dispersion has a strong effect on the implied volatility of the loss
distribution even after holding fixed the effect on the CDX index spread.

The paper contributes to the rapidly growing literature on credit derivatives
and correlated defaults. Important recent contributions in this area include Duffie
and Gârleanu (2001), Bakshi, Madan, and Zhang (2004), Jorion and Zhang (2005),
Longstaff, Mithal, and Neis (2005), Das, Duffie, Kapadia, and Saita (2005), Das, Freed,
Geng, and Kapadia (2005), Saita (2005), Yu (2005a, 2005b), Duffie, Saita, and Wang
(2006), and many others. This paper differentiates itself by using the information in
CDX index tranches to provide direct measures of the degree of default clustering or
correlation incorporated into the market prices of credit derivatives.

The remainder of this paper is organized as follows. Section 2 provides an intro-
duction to the CDO market. Section 3 describes the data used in the study. Section
4 presents the three-factor portfolio credit model. Section 5 applies the model to the
valuation of index tranches. Section 6 reports the results from the empirical analysis.
Section 7 summarizes the results and makes concluding remarks.

2. AN INTRODUCTION TO CDOs

CDOs have become one of the most important new financial innovations of the past
decade. It is easiest to think of a CDO as a portfolio containing certain debt securities
as assets, and multiple claims in the form of issued notes of varying seniority. The lia-
bilities are serviced using the cash flows from the assets, as in a corporation. Although
CDOs existed in various forms previously, it was only in the mid-1990s that they be-
gan to be popular. Over subsequent years, issuance experienced exponential growth
until 2000, and has continued to grow at about 10 percent annually since them. An-
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nual issuance now exceeds $100 billion, and the assets securitized by cash CDOs have
broadened to include investment-grade bonds, high yield bonds, emerging market se-
curities, leveraged loans, middle market loans, trust preferred securities, asset-backed
securities, commercial mortgages, and even previously issued CDO tranches. CDOs
play an increasingly important economic role in the markets, allowing portfolio credit
risk and return to be redistributed according to demand among various global investors
with lower and higher risk appetite.1

Over the past few years, the technology of cash CDOs has merged with the tech-
nology of credit derivatives to create the so-called synthetic CDO, which is the main
focus of this paper. Synthetic CDOs differ from cash CDOs in that the portfolios that
provide the cash flow to service their liabilities consist of credit default swaps rather
than bonds or other cash securities. The majority of synthetic securities are based
on corporate credit derivatives, and tend to be simpler (and hence more amenable to
mathematical modeling).

2.1 An Example of a Stylized CDO.

To build up understanding of a full fledged synthetic CDO, we will begin with a
simpler example based on a $100 million investment in a diversified portfolio of five-
year par corporate bonds. Imagine that a financial institution (CDO issuer) sets up
this portfolio, which consists of 100 separate bonds, each with a market value of $1
million, and each issued by a different firm. Imagine also that every bond in the
portfolio is rated BBB and has a coupon spread over Treasuries of 100 basis points.
The CDO issuer can now sell five-year claims against the cash flows generated by the
portfolio. These claims are termed CDO tranches and are constructed to vary in credit
risk from very low (senior tranches) to low (junior or mezzanine tranches) to very high
(the “equity” tranche).

Let us illustrate a typical CDO structure by continuing the example. First, imag-
ine that the CDO issuer creates a so-called equity tranche with a total notional amount
of three percent of the total value of the portfolio ($3 million). By definition, this
tranche absorbs the first three percent of any defaults on the entire portfolio. In
exchange, this tranche may receive a coupon rate of, say, 2500 basis points above
Treasuries. If there are no defaults, the holder of the equity tranche earns a high
coupon rate for five years and then receives back his $3 million notional investment.
Now assume that one of the 100 firms represented in the portfolio defaults (and also
that there is zero recovery in the event of default). In this case, the equity tranche
absorbs the $1 million loss to the portfolio and the notional amount of the equity
tranche is reduced to $2 million. Thus, the equity tranche holder has lost one-third
of his investment. Going forward, the equity tranche investor receives the 2500 basis

1For additional insights into the CDO market, see the excellent discussions provided
by Duffie and Gârleanu (2001), Duffie and Singleton (2003), Roy and Shelton (2004),
and Li, Roy, and Skarabot (2004).
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point coupon spread as before, only now only on his $2 million notional position. Now
assume that another two firms default. In this case, the equity tranche absorbs the
additional losses of $2 million, the notional amount of the equity tranche investor’s po-
sition is completely wiped out, and the investor receives neither coupons nor principal
going forward. Because a three-percent loss in the portfolio translates into a 100-
percent loss for the equity tranche investor, we can view the equity tranche investor
as being leveraged 33 1/3 to 1.

Now imagine that the CDO issuer also creates a junior mezzanine tranche with a
total notional amount of four percent of the total value of the portfolio ($4 million).
This tranche absorbs up to four percent of the total losses on the entire portfolio after
the equity tranche has absorbed the first three percent of losses. For this reason, this
tranche is designated the 3−7 percent tranche. In exchange for absorbing these losses,
this tranche may receive a coupon rate of, say, 300 basis points above Treasuries.
If total credit losses are less than three percent during the five-year horizon of the
portfolio, then the 3−7 percent investor earns the coupon rate for five years and then
receives back his $4 million notional investment. If total credit losses are greater
than or equal to seven percent of the portfolio, the total notional amount for the 3−7
percent investor is wiped out.

The CDO issuer follows a similar process in creating additional mezzanine, senior
mezzanine, and even super-senior mezzanine tranches. A typical set of index CDO
tranches might include the 0−3 percent equity tranche, and 3−7, 7−10, 10−15, 15−30,
and 30−100 percent tranches. The initial levels 3, 7, 10, 15, and 30 percent at which
losses begin to accrue for the respective tranches are called attachment points or
subordination levels. Note that the total notional valuation of all the tranches equals
the $100 million notional of the original portfolio of corporate bonds. In addition,
the total coupon payments to all tranches must equal the total coupon flow from the
entire underlying portfolio. For example, if the coupon spreads on the 0−3, 3−7, 7−10,
10−15, 15−30, and 30−100 tranches were 2500, 300, 50, 30, 20, and 10, respectively,
then the weighted-average coupon spread of .03× 2500 + .04× 300 + .03× 50 + .05×
30+ .15× 20+ .70× 10 = 100 basis points would equal the total coupon spread of the
overall portfolio.

An interesting aspect of the CDO creation process is that because each tranche
has a different degree of credit exposure, each tranche would have its own credit
rating. For example, the super-senior 30−100 percent tranche can only suffer credit
losses if total losses on the underlying portfolio exceed 30 percent of the total notional
amount. Since this is highly unlikely, this super-senior tranche would typically have
a AAA rating. In contrast, the highly-subordinated 3−7 percent mezzanine tranche
might carry a below-investment-grade rating as a reflection of its junior status in the
“capital structure” of the overall portfolio. In general, the credit rating of a tranche
should be similar to those for ordinary corporate bonds with similar coupon spreads.
For example, a 7−10 percent tranche with a coupon spread of 50 basis points will likely
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have a rating similar to corporate bonds with comparable coupon spreads. Note that
if an issuer purchases the underlying bond portfolio, and then sells off each individual
tranche, the issuer no longer has any net economic exposure to credit events in the
portfolio (this is referred to as selling the entire capital structure).

This example also illustrates one of the most important economic functions that
the CDO tranching process fulfills. Specifically, in today’s global economy, the average
rating of corporate debt is BBB, whereas the average risk appetite of fixed-income
investors in aggregate is much lower. Most fixed income investors typically require a
high degree of safety of principal, and include many ultra-risk averse investors such
as central banks. The growth in the savings of today’s global economy, which is
predominantly being generated in Asian and petrodollar countries, is bar-belled in its
risk appetite, seeking either the safety of a AAA rating or equity-like (10 percent-plus)
returns. Yet the universe of AA and AAA rated individual corporate bonds is quite
small. CDO technology has evolved essentially in order to match these demands with
the available profile of fixed-income assets. By issuing CDOs from portfolios of A
and BBB grade bonds, financial intermediaries can create a larger pool of AAA rated
securities. In the example above, up to 90 percent of the tranches constructed (from
10−15 percent to 30−100 percent) would likely be rated AAA, and another three
percent (7−10 percent) would likely be rated AA. Thus, the CDO process would serve
to complete the financial market by creating high-credit-quality securities that would
otherwise not exist in the market.

2.2 Synthetic CDOs.

To take advantage of the wide availability of credit derivatives, credit markets have
recently introduced CDO structures known as synthetic CDOs. This type of structure
has become very popular and the total notional amount of synthetic CDO tranches is
growing rapidly. A synthetic CDO is economically similar to a cash CDO in most re-
spects. The principal difference is that rather than there being an underlying portfolio
of corporate bonds on which tranches are based, the underlying portfolio is actually
a basket of credit default swap contracts. Recall that a CDS contract functions as
an insurance contract in which a buyer of credit protection makes a fixed payment
each quarter for some given horizon such as five years. If there is a default on the
underlying reference bond during that period, however, then the buyer of protection
is able to give the defaulted bond to the protection seller and receive par (the full face
value of the bond). Thus, the first step in creating a synthetic CDO is to define the
underlying basket of CDS contracts.

2.3 Credit Default Indexes and Index Tranches.

In this study, we focus on CDOs with cash flows tied to the most liquid U.S. corporate
credit derivative index, the DJ CDX North American Investment Grade Index. This
index is managed by Dow Jones and is based on a liquid basket of CDS contracts for
125 U.S. firms with investment grade corporate debt. The CDX index itself trades
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just like a single-name CDS contract, with a defined premium based on the equally-
weighted basket of its 125 constituents. The individual firms included in the CDX
basket are updated and revised (“rolled”) every six months in March and September,
with a few downgraded and illiquid names being dropped and new ones taking their
places. CDX indexes are numbered sequentially. Thus, the index for the first basket
of 125 firms was designated the CDX NA IG 1 index in 2003, the index for the second
basket of 125 firms the CDX NA IG 2 index, etc., and so on up to CDX NA IG 5 in
September 2005. While there is considerable overlap between successive CDX NA IG
indexes, there can occasionally be significant changes across index rolls. For example,
the CDX NA IG 4 index (beginning in March 2005) includes Ford and General Motors
while the CDX NA IG 5 index (beginning in September 2005) does not since the debt
for these firms dropped below investment grade in May 2005.

Index CDO tranches have also been issued, each tied to a specific CDX index.
The attachment points of these CDO tranches are standardized at 3, 7, 10, 15, and
30 percent, exactly as in the example above. To illustrate how a index CDO tranche
works, let us use the numbers from our previous example—but instead of bonds,
using the CDX index with a market premium of 50 basis points consisting of 125
CDS contracts of $1 million each (index notional of $125 million). Suppose the equity
tranche holder receives a coupon spread of 2500 basis points. If a default occurs in
one of the 125 index names, however, the equity tranche holder faces the same cash
outflows as the protection seller in a CDS contract on the defaulting firm. Specifically,
the equity tranche investor would have a cash outflow of $1 million dollars if the
recovery of principal (the value of the debt obligation delivered by the protection
buyer) is zero percent, and the notional amount on which future coupon cash flows
are based would be reduced to $2 million (exactly as in the cash CDO example). In a
similar manner, the equity index tranche investor would bear the entire losses of any
subsequent defaults (up to her notional exposure) just as if she were the protection
seller in CDS contracts on the defaulting firms. In essence, we can view the cash
outflows to the various index tranche investors as the equivalent of being the protection
seller on the first three to default, on the fourth through seventh to default, the eighth
through tenth to default, etc. Thus, the initial coupon spread on each tranche is held
fixed over time (but applied to the remaining notional amount within each tranche).

Since these instruments are structured as credit default swaps, when an investor
“buys” a synthetic index tranche from a counterparty, they are selling protection on
that tranche. Their counterparty has bought protection on the same tranche from
them. This highlights a convenient feature of these index tranches—that is, a dealer
need not create and sell the entire capital structure of tranches to investors; rather in-
vestors are free to synthetically create and trade (sell or buy) individual index tranches
(single-tranche index CDOs) according to their needs. For example two investors can
trade protection on the 3−7 percent tranche of the DJ CDX 5 index with each other
without anyone having to create the 0−3 percent, 7−10 percent and other tranches.
As observed earlier, the losses on an N−M percent tranche are zero if the total losses
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on the underlying portfolio are less than N . On the other hand, the total losses on the
tranche are 1.00 or 100 percent if the total losses on the underlying portfolio equals
or exceeds M . For underlying portfolio losses between N and M , tranche losses are
linearly interpolated between zero and one. Because of this, the losses on a N−M
percent tranche can be viewed intuitively as a call spread on the total losses of the
underlying portfolio. This intuition will be formalized in a later section. Just as an
option has a “delta”, that is, an equivalent exposure to the underlying, the tranche
has a delta with respect to its underlying index.

The simplicity of construction, the liquidity of the underlying CDX indexes, the
standardization of attachment points, the availability of tranche pricing models, and
the freedom from creating the full capital structure have all contributed to a great
increase in the volume of trading in index tranches. Therefore, in the past few years,
index tranches have become liquidly traded and quotes and data for them are available
from many dealers in the market daily.

2.4 Other Synthetic CDOs.

Although index tranches are the most liquid synthetic tranches, a synthetic tranche
can be based on any portfolio. A tranche created with a specific non-index portfolio,
and with customized attachment points, e.g. 5−8 percent, is called a bespoke portfo-
lio. Investors use bespoke tranches to buy or sell specific slices of protection on specific
portfolios that they wish to express views on. For example, an investor selling protec-
tion on the 0−4 percent equity tranche of a BB rated portfolio might be expressing
a bullish point of view on the likelihood of defaults in his favorite basket of high-
yield credits, while another investor buying protection on a 5−10 percent basket of 75
investment-grade names might be buying “out-of-the-money” catastrophe protection
on a portfolio she owns (since the likelihood of five percent or more of default-related
losses in an investment grade portfolio in five years is quite small). While the results
in this paper are based on index tranche data, the analysis can equally well be applied
to most bespoke CDO tranches. Finally, there are also full capital structure synthetic
CDOs, created when demand exists for all parts of the capital structure. Provided a
CDO observes the simple type of structure we specified in the example, a model such
as the one in this paper may be used to price its tranches.2

2The analysis in this paper, however, may not apply directly to certain other types
of portfolio derivative products, for example Nth-to-default baskets, CDO-squareds,
and cash CDOs, which have more granular compositions, more complex structures, or
more difficult-to-model cash flows and rules, respectively.
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3. THE DATA

CDOs are a relatively new financial innovation and have only recently begun to trade
actively in the markets. Because of this, it has been difficult for academic researchers
to obtain reliable CDO pricing data. We were fortunate, however, to be given access
by Citigroup to one of the most extensive proprietary data sets of CDO index and
tranche pricing data in existence.

The data consist of daily closing values for the five year CDX NA IG index (CDX
index for short) for the period from October 2003 to October 2005. As discussed
earlier, the underlying basket of 125 firms in the index is revised every March and
September. Thus, the index data is actually for the five individual indexes denoted
CDX i, i = 1, 2, 3, 4, and 5. This data set covers virtually the entire history of the
CDX index.3 For the primarily descriptive purposes of this section, we report summary
statistics based on the continuous series of the on-the-run CDX index (rather than
reporting statistics separately for the individual CDX series). There are a total of 435
daily observations available during the sample period

In addition to the index data, we also have daily closing quotation data for the
0−3, 3−7, 7−10, 10−15, and 15−30 percent tranches on the CDX index. The pricing
data for most tranches are in terms of the basis point premium paid to the CDO
investor for absorbing the losses associated with the individual tranches. Thus, a
price of 300 for the 3−7 percent tranche implies that the tranche investor would
receive a premium of 300 basis points per year paid quarterly on the remaining balance
in exchange for absorbing the default losses from three to seven percent on the CDX
index. The exception is the market convention for the equity tranche (the 0−3 percent
tranche) which is generally quoted in terms of points up front. Specifically, a price
of 50 for this tranche means that an investor would need to receive $50 up front per
$100 notional amount, plus an premium of 500 basis points per year paid quarterly on
the remaining balance, to absorb the first three percent of losses on the CDX index.
Rather than using this market convention, however, we convert the points up front
into spread equivalents to facilitate comparison with the pricing data for the other
tranches.

In addition to the CDX index and tranche data, we also collect daily New York
closing data on 3-month, 6-month, 12-month Libor rates, and on 2-year, 3-year, 5-
year, 7-year, and 10-year swap rates. The Libor data is obtained from the Bloomberg
system. The swap data is obtained from the Federal Reserve Board’s web site. From
this Libor spot rate and swap par rate data, we use a standard cubic spline approach
to bootstrap zero-coupon curves that will be used throughout the paper to discount

3Data is missing for some days during the earlier part of the sample. We omit these
days from the sample.
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cash flows.4 Since the same zero-coupon curve is used to discount both legs of the
CDO contract, however, the results are largely insensitive to the decision to discount
using the Libor-swap curve; the results are virtually identical when the bootstrapped
Treasury curve is used for discounting cash flows.

Table 1 provides summary statistics for the index and tranche data. As shown,
the average values of the spreads are monotone decreasing in seniority (attachment
point). The average spread for the 0−3 percent equity tranche is 1758.87 basis points
(which translates into an average number of points up front of 39.34). This spread
is many times larger than the average spread for the junior mezzanine 3−7 percent
tranche, reflecting that the expected losses for the equity tranche are much higher
than for more senior tranches. Similar comparisons hold for all the other tranches.
Figure 1 plots the time series of tranche spreads for the various attachment points.

To explore how closely the spreads for the various index tranches move together,
Table 2 reports the correlations for daily changes in the spreads. As indicated, there
is an almost perfect correlation between the CDX index spread itself and the spread
on the 0−3 percent equity tranche. This is understandable given that both would
be impacted by the first few defaults in the portfolio. In contrast, the correlations
between the CDX index spread and the mezzanine tranches range from about 0.67 to
0.80. The correlations between the equity tranche and the various mezzanine tranches
range from about 0.65 to 0.76. This indicates that while these spreads have a high
degree of correlation, there is considerable independent variation in the spreads of
the mezzanine tranches. The correlations among the mezzanine tranches themselves
are also relatively high, but are clearly far from perfect. These correlations tend
to be in the range of 0.65 to 0.90. Thus, the correlations are generally stronger
between adjacent parts of the capital structure, e.g. equity and junior mezzanine,
senior and super-senior mezzanine, and weaker between tranches that are further
apart, e.g. equity and super-senior mezzanine. This is intuitive since we might expect
continuity in the implied loss distribution across tranche boundaries, and demand for
adjacent tranches has overlap among investor segments. These results suggests that
the index tranche spreads are driven by multiple factors.

To provide a more formal analysis of this latter point, we conduct a simple princi-
pal components analysis of the correlation matrix of changes in the respective tranche
spreads. The results from this principal components analysis are consistent with the
features of the correlation matrix described above. The first principal component
explains 81.8 percent of the variation in spreads and is an equity/junior mezzanine
factor. Essentially, this factor appears to shift risk back and forth between the junior
and senior parts of the capital structure. The second principal component explains
an additional 7.4 percent of the variation and is primarily a senior mezzanine factor.

4See Longstaff, Mithal, and Neis (2005) for a more detailed discussion of this boot-
strapping algorithm.
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The third principal component explains an additional 5.7 percent of the variation and
represents a spread between the equity and mezzanine tranches. Together, the first
three principal components explain a total of 94.9 percent of the total variation in
CDX index tranche spreads. Figure 2 plots the first three principal components.

4. THE MODEL

In an important recent paper on modeling CDOs, Duffie and Gârleanu (2001) provide
an intuitive theoretical framework for valuing CDO tranches. In their framework, the
intensity process governing defaults of individual firms has three distinct components:
a marketwide component affecting all firms, an industry or sector component affecting
a subset of firms, and a firm-specific or idiosyncratic factor. In addition, they present a
general jump-diffusion specification for the risk-neutral dynamics of these components.
The results from the principal components analysis in the previous section are very
consistent with the structure of the Duffie and Gârleanu approach. Motivated by their
work, we develop an intuitive valuation model for index tranches that incorporates the
economic structure of their framework while adapting itself to the unique features of
this market.

To explain the logic behind this model, it is useful to first make a short digression
into the modeling of stock index options (such as options on the S&P 100). In theory,
one could model S&P 100 index options by specifying the dynamics of each of the 100
firms in the index and then evaluating a 100-dimensional expectation. In reality, of
course, such an approach would be too cumbersome to be useful or practical. Rather,
the standard approach to valuing index options is to take a more “macro” perspective
and model the dynamics of the index directly.

To date, most modeling of CDOs has likewise been done at an individual firm level.
Typically, practitioners model the losses on, say, the 125-firm portfolio underlying the
CDX index by first simulating the dynamics of each firm, checking whether each
firm is in the “quantum” or “zero-one” state of default, and then aggregating losses
over the entire portfolio. As discussed earlier, however, losses on the tranches are
simple functions of the total losses on the underlying portfolio. Thus, the distribution
of total portfolio losses represents a “sufficient statistic” for valuing tranches (just
as the distribution of the stock index is sufficient for pricing stock index options).
Accordingly, rather than modeling individual “quantum” defaults, we will follow a
“statistical mechanics” based approach of modeling the distribution of total portfolio
losses directly.

In doing this, it is important to stress that we are not implying that individual
firm-level information about default status is unimportant. In fact, for many types
of credit derivatives (such as credit default swaps or first-to-default swaps on small
baskets of firms), individual firm default status is essential in defining the cash pay-
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offs. Rather, we suggest that for many other types of credit related contracts that
are tied to larger portfolios, the “reduced-form” approach of modeling portfolio-level
losses directly may provide important advantages such as simplicity, transparency, and
tractability with little loss in our ability to capture the underlying economics. In gen-
eral, the smaller the single-name risk concentration in a portfolio, the more applicable
is the aggregate loss approach taken here.

Let Lt denote the total portfolio losses on the CDX portfolio per $1 notional
amount. By definition, L0 = 0. To model the dynamic evolution of Lt we assume

dLt

1 − Lt
= γ̄1 dN1t + γ̄2 dN2t + γ̄3 dN3t, (1)

where γ̄i = 1−e−γi , i = 1, 2, 3, where γ1, γ2, and γ3 are nonnegative constants defining
jump sizes, and where N1t, N2t, and N3t are independent Poisson processes. Note that
for small values of γi, the jump size γ̄i is essentially just γi. Thus, for expositional
simplicity, we will take a slight liberty and generally refer to the parameters γ1, γ2,
and γ3 simply as jump sizes. Integrating Equation (1) and conditioning on time-zero
values (a convention we adopt throughout the paper) gives the general solution for Lt

Lt = 1 − e−γ1N1t e−γ2N2t e−γ3N3t. (2)

From this equation, it can be seen that the economic condition 0 ≤ Lt ≤ 1 is satisfied
for all t. Furthermore, since N1t, N2t, and N3t are nondecreasing processes, the
intuitive requirement that total losses be a nondecreasing function of time is also
satisfied.5

These dynamics imply that there are three factors at work in generating portfolio
losses. To illustrate how these factors affect total losses, assume that the three jump
sizes are 0.01, 0.10, and 0.50, respectively, and that there is zero recovery in the
event of a default. When a jump in the first Poisson process occurs, the portfolio
experiences a one-percent loss. Thus, a realization of the first Poisson process could
be viewed as an isolated default affecting only one firm. In contrast, a realization of
the second Poisson process results in a portfolio loss of 10 percent. Thus, this event
could be interpreted as the impact of a major event that decimates the ranks of firms
in a specific sector or industry. Similarly, when a jump in the third Poisson process

5Because portfolio losses on the CDX portfolio consist of payments to protection buy-
ers, it is difficult to imagine a realistic set of circumstances where total losses would
actually decline over time. It would not be sufficient for a defaulted bond to sub-
sequently increase in value since the cash flow to the protection buyer is made at a
specific point in time. Rather, it would require that a protection payment made on a
CDS contract be reversed and rebated back to the protection seller.
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occurs, 50 percent of the remaining firms in the portfolio default, corresponding to
the realization of some catastrophic event affecting the entire economy. Thus, the
model allows for both idiosyncratic or firm-specific default as well as for the broader
systemic risk of multiple defaults within an industry or throughout the economy. This
framework is consistent with the multifactor structure of the model presented in Duffie
and Gârleanu (2001).

The fact that the model incorporates both firm-specific and multiple-firm defaults
allows the model to capture the notion of default correlation. To see this, consider the
hypothetical situation in which the intensities of the second and third Poisson processes
were zero. In this case, only idiosyncratic or uncorrelated defaults could occur. At
the other extreme, consider the situation where the intensities of the first and second
Poisson processes are zero. In this situation, only highly correlated systemic defaults
could occur in the economy. In between these two extremes, a full spectrum of possible
default correlations could arise based on the relative magnitudes of the intensities of
the Poisson processes.

The intensities of the three Poisson processes are designated λ1t, λ2t, and λ3t,
respectively. To complete the specification of the model, we assume that the dynamics
for the intensity processes are given by,

dλ1t = (α1 − β1 λ1t) dt + σ1

√
λ1t dZ1t, (3)

dλ2t = (α2 − β2 λ2t) dt + σ2

√
λ2t dZ2t, (4)

dλ3t = (α3 − β3 λ3t) dt + σ3

√
λ3t dZ3t, (5)

where Z1t, Z2t, and Z3t are standard independent Brownian motion processes. These
dynamics insure that the intensities for the three Poisson processes are always nonneg-
ative. Furthermore, since these intensities are stochastic, it is clear from the previous
discussion that this framework allows default correlations to vary over time.

To value claims that depend on the realized losses on a portfolio, we first need to
determine the distribution of Lt. From Equation (2), Lt is a simple function of the
values of the three Poisson processes. Thus, it is sufficient to find the distributions for
the individual Poisson processes, since expectations of cash flows linked to Lt can be
evaluated directly with respect to the distributions of N1t, N2t, and N3t.

Since many of the following results are equally applicable to each of the three
Poisson processes, we will simplify notation whenever possible by dropping the sub-
scripts 1, 2, and 3 when we present generic results and the interpretation is clear from
context. Standard results imply that, conditional on the path of λt, the probability of
NT = i, i = 0, 1, 2, . . . , can be expressed as
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exp
(
− ∫ T

0
λt dt

)(∫ T

0
λt dt

)i

i!
. (6)

Let Pi(λ, T ) denote i! times the probability that NT = i, conditional on the current
(the time-zero unsubscripted) value of λ. Thus,

Pi(λ, T ) = E


exp

(
−
∫ T

0

λt dt

)(∫ T

0

λt dt

)i

 . (7)

For i = 0, the Appendix shows that this expression is easily solved in closed form from
results in Cox, Ingersoll, and Ross (1985). For i > 0, the results in Karlin and Taylor
(1981), pp. 202-204 can be used to show that Pi(λ, T ) satisfies the recursive partial
differential equation,

σ2λ

2
∂2Pi

∂λ2
+ (α − βλ)

∂Pi

∂λ
− λ Pi + i λ Pi−1 =

∂Pi

∂T
. (8)

The Appendix shows that this partial differential equation for Pi(λ, T ) can be solved
in closed form to give,

Pi(λ, T ) = A(T ) e−B(T )λ
i∑

j=0

Ci,j(T ) λj , (9)

where

A(T ) = exp
(

α(β − ξ)T
σ2

)(
2ξ

β + ξ − (β − ξ)e−ξT

) 2α

σ2

, (10)

B(T ) =
2ξ(β + ξ)

σ2(β + ξ − (β − ξ)e−ξT )
− β + ξ

σ2
, (11)

and ξ =
√

β2 + 2σ2. The first Ci,j(T ) function is C0,0(T ) = 1. The remaining
Ci,j(T ) functions are given as solutions of the recursive system of first-order ordinary
differential equations,
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dCi,i

dt
= i Ci−1,i−1 − (σ2B(t) + β) i Ci,i, (12)

dCi,j

dt
= i Ci−1,j−1 − (σ2B(t) + β) j Ci,j + (j + 1) (α + jσ2/2) Ci,j+1, (13)

dCi,0

dt
= α Ci,1, (14)

where 1 ≤ j ≤ i− 1. These differential equations are easily solved numerically subject
to the initial condition that Ci,j(0) = 0 for all i > 0.

With these solutions, the expectation of an arbitrary function F (Lt) of the port-
folio losses (satisfying appropriate regularity conditions of course) can be calculated
directly by the expression

E[ F (Lt) ] =
∞∑

i=0

∞∑
j=0

∞∑
k=0

P1,i(λ1, t)
i!

P2,j(λ2, t)
j!

P3,k(λ3, t)
k!

F (Lt). (15)

Although the summations range from zero to infinity, only the first few terms generally
need to be evaluated since the remainder are negligible.

5. VALUING TRANCHES

Given the solutions for the Poisson probabilities and the equation above, it is now
straightforward to value securities with cash flows tied to the realized credit losses of
an underlying portfolio such as the CDX index. In practice, cash flows for the CDX
index and its tranches occur discretely (typically on a quarterly frequency) and these
contracts can be valued by applying Equation (15) to each discounted cash flow and
then summing over all cash flows. To build intuition about these contracts, however,
this section provides formal expressions for the values of the CDX index spread and
the spreads on its tranches using the convenient assumption that cash flows are paid
continuously. Observe, however, that these formal expressions are simply illustrative;
the empirical results presented in the paper are based on the actual discrete cash flows
and are valued using Equation (15) to evaluate expectations under the risk-neutral
measure.

Let D(t) denote the present value (as of time zero) of a zero-coupon riskless bond
with a maturity date of t. Turning first to the CDX index, recall that a protection
buyer pays a fixed annuity of c on the remaining balance of the CDX portfolio in
exchange for protection against default losses as they occur. Thus, the value of the
premium leg can be expressed as
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c E

[∫ T

0

(1 − Lt) e
−
(∫ t

0
rsds
)

dt

]
. (16)

This expression reflects that the fixed annuity is received continuously on the remaining
notional amount of the index, 1 − Lt. The exponential term in the integral is the
discount factor applied to the fixed annuity payments. For simplicity, we will assume
that the riskless interest rate is independent of the Poisson and intensity processes.
Similarly, the value of the protection leg is given by

E

[∫ T

0

e
−
(∫ t

0
rsds
)

dL

]
, (17)

where dL represents the change in the total cumulative losses on the portfolio, which
is just the instantaneous realized loss. Since Lt is a nondecreasing process, the integral
in the above equation represents a standard Riemann-Stieltjes integral. The Appendix
provides a closed-form solution for the value of c implied by the two expressions above.

As an aside, we note that a much more convenient expression for the value of c
can be obtained by slightly modifying the definition of the cash flows received from the
CDX index. Specifically, by assuming that the cash flows from both legs of the CDX
contract are paid on the unamortized balance (rather than the amortized balance),
the value of c can be expressed as

c =

∫ T

0 D(t) (γ̄1 E[λ1t] + γ̄2 E[λ2t] + γ̄3 E[λ3t]) dt∫ T

0
D(t) dt

. (18)

where the expected value of an intensity process is given by

E[λt] = e−βtλ +
(

α

β

)
(1 − e−βt). (19)

Since the same amortization is applied to both legs on the contract, this simplification
has very little effect on the value of c. In the special case where the intensity processes
follow martingales (α = β = 0), Equation (18) reduces further to give

c = γ̄1 λ1 + γ̄2 λ2 + γ̄3 λ3. (20)

Thus, the CDX index spread becomes a simple linear combination of the current jump
intensities for the three Poisson processes in this special case.
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Turning now to the valuation of tranches, we observe that the total losses on an
individual N−M percent tranche can be modeled as a call spread on the underlying
state variable Lt. Specifically, the total losses Vt on a N−M tranche can be expressed
as

Vt =
1

M −N

(
max(0, Lt − N) − max(0, Lt −M)

)
, (21)

where N and M are denoted in decimal form. This expression reflects that if the total
loss on the underlying portfolio Lt is less than N , then the loss on the tranche Vt is
zero. If Lt is midway between N and M , the total loss on the tranche Vt is 0.50 or 50
percent. If Lt equals or exceeds M , the total loss on the tranche Vt equals 1.00 or 100
percent. As with the total losses on the underlying portfolio, Vt is a nondecreasing
function of time.

As with the index, an investor in a index tranche receives a fixed annuity of h
on the remaining balance 1 − Vt of the tranche, in exchange for compensating the
protection buyer for the losses dV on the tranche. Thus, the value of the premium leg
of a N−M percent tranche is given formally by,

h E

[∫ T

0

(1 − Vt) e
−
(∫ t

0
rsds
)

dt

]
. (22)

Similarly, the value of the protection leg of the N−M percent tranche is given by

E

[∫ T

0

e
−
(∫

T

0
rsds
)

dV

]
, (23)

where this integral is once again a Riemann-Stieltjes integral. Setting the value of the
two legs equal to each other and solving for the value of the tranche spread h gives,

h =

∫ T

0
D(t) E[dV ]∫ T

0
(1 − E[Vt]) D(t) dt

. (24)

The expectation E[Vt] in this expression is easily evaluated by substituting the closed-
form solutions for the Poisson probabilities into Equation (15). Although dV is itself
expressible as a linear combination of call options on Lt, it is generally much more
convenient to evaluate E[dV ] numerically by solving for the difference between E[Vt+ε]
and E[Vt] for some suitably small value of ε.
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6. EMPIRICAL ANALYSIS

In this section, we estimate the model using the times series of CDX index values and
the associated index tranche prices. We then examine how the model performs and
explore the economic implications of the results.

6.1 The Empirical Approach.

To make the intuition behind the results more clear, we focus on the simplest spec-
ification of the model in which each of the intensity processes follows a martingale.
Thus, we assume that the α and β parameters in Equations (3) through (5) are zero.
As we will show, even this simplified specification provides strikingly good results.

In this specification, there are six parameters that need to be estimated: the three
jump size parameters γ1, γ2, and γ3, and the three volatility parameters σ1, σ2, and
σ3. In addition, the values of the three intensity processes need to be estimated for
each date. Our approach in estimating the model will be to solve for the parameter
and intensity values that best fit the model to the data. In doing this, we estimate
the model separately for each of the five CDX indexes. The reason for this is that
there are slight differences in the composition of the individual indexes, potentially
resulting in minor differences in parameter values.

Let us illustrate the estimation approach with the specific example of the CDX 1
index. The CDX 1 index was the on-the-run index from October 20, 2003 to March
20, 2004, and there are 65 observations for this index in the data set. To estimate the
model, the algorithm first picks a trial set of values for the six γ and σ parameters.
Then for each of the 65 days in the sample period (and conditional on the parameter
values), we solve for the three values of the intensity process in the following way.
First, we require that the values of the intensity processes fit exactly the market value
of the CDX index spread. The other identification conditions are provided by requiring
that the values of the intensity processes minimize the sum of squared errors between
the market and model-implied tranche spreads for the 0−3, 3−7, 7−10, 10−15, and
15−30 percent tranches. Thus, we are using six market prices (the index and five
tranche spreads) to identify the three intensity processes for each date (conditional
on the parameter values). Once we have estimated the values of the three intensity
processes for each of the 65 days, we then evaluate the sum of squared errors for
the five tranches over all 65 days. Finally, we iterate the process over different sets of
parameter values until we find a single set of parameter values that minimizes the sum
of squared errors over all 65 days in the sample period, given that the intensity values
are chosen to match the CDX index exactly and minimize the sum of squared errors
for the five tranches on each date. This algorithm is essentially nonlinear least squares
and has been widely used in the finance literature in similar types of applications.6

6See Longstaff, Mithal, and Neis (2005), Liu, Longstaff, and Mandell (2006), and many
others.
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We use a similar procedure to estimate the model for the other CDX indexes.

It is important to note that estimated parameter values and intensities are relative
to the risk-neutral pricing measure. A more general analysis might be to follow an
approach such as Duffie and Singleton (1997) or Pan and Singleton (2005) in which
both the risk-neutral parameters and market prices of risk are estimated by maximum
likelihood. To estimate these market prices of risk accurately, however, one would
likely need to have more than just the two years of data available to us given the well-
known difficulty in estimating the drift of a diffusion process (and, therefore, market
prices of risk). Accordingly, we limit our analysis to the estimation of parameters and
intensity processes under the pricing or risk-neutral measure.

6.2 Testing for the Number of Factors.

One of the fundamental issues that needs to addressed at the outset is the question
of how many factors are actually needed in pricing CDOs. So far, we have presented
a three-factor version of the model. Clearly, however, the model could be adapted
to allow only one or two factors by simply setting the values of two or one of the
intensity processes to zero.7 In this section, we explore the issue of how many factors
are needed by testing whether the two-factor version has incremental explanatory
power relative to the one-factor version, and then whether the three-factor version
has incremental explanatory power relative to the two-factor version. The testing
methodology is based on straightforward chi-square tests of difference in the log sum
of squared pricing errors.

These tests for the number of factors needed to price tranches also provide insight
into an issue that is of fundamental importance in credit markets—default correlation.
To see this, imagine the hypothetical situation where defaults are purely idiosyncratic
and independent of each other. Furthermore, assume that the value of the intensity
process for each firm in the CDX is a constant 0.01, and that the default of any firm
results in a loss of 1/125 of the value of the portfolio (equal weights). Recall that the
sum of independent Poisson realizations is itself a Poisson random variate with inten-
sity equal to the sum of the intensities of the individual independent Poisson processes.
In this independent default case, the total losses on the portfolio could be modeled
as the realization of a single Poisson process with intensity of 125 × 0.01 = 1.25, and
where each event results in a jump of 1/125. This means that only one factor would
be needed to capture CDO pricing if defaults were in fact independent. On the other
hand, if defaults are not independent and some correlation or clustering in default oc-
curs, it would no longer be possible to represent total portfolio losses as the realization
of a single Poisson event. Rather, we would expect to find that more than one Pois-
son process is needed to explain the cross section of tranche spreads across different
attachment points. Thus, finding that a one-factor model is not sufficient to explain

7Similarly, the model could be extended to allow for four (or even more) factors by
adding an intensity process in the obvious way.
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CDO pricing would represent direct evidence that the market expects correlation or
clustering in the defaults of CDX firms.

Table 3 presents summary statistics for the pricing errors obtained by estimating
one-factor, two-factor, and three-factor versions of the model. In each case, the values
of the intensity processes are chosen to match the CDX index spread exactly. In the
two-factor and three-factor models, the RMSE of the difference between market and
model implied spreads for the five index tranches is also minimized. The table reports
the RMSEs for each of the 0−3, 3−7, 7−10, 10−15, and 15−30 percent tranches
individually, as well as the overall RMSE over all tranches. Table 3 also reports
the p-values for the chi-square tests of the two-factor vs. one-factor and three-factor
vs. two-factor specifications. In the one-factor specification, we estimate the two
parameters γ1 and σ1, as well as N values of λ1, where N is the number of days in
the sample. In the two-factor specification, we estimate the four parameters γ1, γ2,
σ1, and σ2 as well as N values each for λ1 and λ2. Thus, the one-factor specification
is nested within the two-factor specification by imposing N + 2 restrictions; the chi-
square statistic has N +2 degrees of freedom. Similarly for the test of the three-factor
vs. two-factor specification.

As shown in Table 3, the RMSEs for the one-factor version of the model are very
large across all of the tranches. The overall RMSEs range from about 30 to 41 basis
points. Increasing the number of factors to two results in a significant reduction in
the RMSEs, both overall and across tranches. Typically, the overall RMSE for the
two-factor version of the model is between about 5 and 14 basis points. For each
CDX index, the incremental explanatory power of the two-factor version relative to
the one-factor version is highly statistically significant.

The three-factor version of the model results in very small RMSEs. With the
exception of the CDX 1 index, the overall RMSEs are all on the order of two to three
basis points. In fact, the RMSE for CDX 5 is actually less than one basis point.
Again, with the exception of the CDX 1 index, the incremental explanatory power of
the three-factor version relative to the two-factor model is highly significant. Thus,
the three-factor model provides a very close fit to the data. Accordingly, we will report
results based on the three-factor version of the model throughout the remainder of the
paper.

6.3 The Parameter Estimates.

Table 4 reports the parameter estimates obtained from the three-factor model. Fo-
cusing first on the estimates of the jump sizes, Table 4 shows that there is a strong
uniformity across the different CDX indexes. In particular, the jump sizes associated
with the first Poisson process are in a tight range from 0.00387 to 0.00469. Since each
firm in the CDX index has a weight of 1/125 = 0.008 in the index, a jump size of, say,
0.004 is completely consistent with the interpretation that a jump in the first Poisson
process represents the idiosyncratic default of an individual firm, where the implicit
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recovery rate for the firm’s debt is 50 percent. If we adopt this interpretation, then
the implied recovery rates implied by the estimated jump sizes are 56.6, 51.4, 50.3,
48.4, and 58.6 percent for the individual CDX indexes, respectively.

The jump sizes for the second Poisson process are also very uniform across the
CDX indexes, ranging from roughly 0.052 to 0.066. These values are consistent with
the interpretation of the second Poisson process reflecting a major event in a spe-
cific sector or industry. As one way of seeing this, observe that virtually every broad
industry classification is represented in the CDX index. In particular, the CDX in-
dex includes firms in the consumer durables, nondurables, manufacturing, energy,
chemicals, business equipment, telecommunications, wholesale and retail, finance and
insurance, health care, utilities, and construction industries. If we place the CDX
firms into these 12 broad industry categories, then this implies that there are 125/12
= 10.42 firms per category. Assuming a 50 percent recovery rate, a major event that
resulted in the loss of an entire industry would lead to a total loss for the index of
10.42/125×0.50 = 0.042, which is on the order of magnitude of the jump size estimated
for the second Poisson process.

The estimated jump sizes for the third Poisson process display somewhat more
variation than for the other two Poisson processes, with values ranging from about
0.17 to 0.52. The average value across all five indexes is about 0.35. Again assuming
a 50 percent recovery rate, a jump size of 0.35 associated with a realization of the
third Poisson process can be given the interpretation as a major economic shock to
the entire economy in which as many as 70 percent of all firms default of their debt.
This is clearly a nightmare scenario that is difficult to imagine occuring. Potential
examples of such a scenario might include nuclear war, a worldwide pandemic, or a
severe and sustained economic depression. We note that the latter would need to be
much more severe than any the U.S. has yet experienced.

Turning now to the estimates of the volatility parameters, Table 4 shows that
the volatility estimates of each of the three intensity processes are generally of the
same order of magnitude. Specifically, with the exception of the first CDX index, the
volatility parameters range from roughly 0.10 to 0.30 across all three processes and
across all the CDX indexes. Recall from Equation (20) that the CDX index spread can
be approximated as a linear combination of the three intensity processes. Thus, the
volatility of the CDX index spread could be related to these volatility parameters. The
results in Table 4 indicate that the volatilities of the intensity processes, or equivalently,
the volatilities of the CDX index and tranche spreads, are important determinants of
market CDO prices.

6.4 The Intensity Processes.

Fig. 3 plots the time series of the estimated values of the three intensity processes.
Table 5 presents summary statistics for these estimated values.

As shown, the first intensity process λ1 ranges from roughly 0.50 to 1.50 during
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the sample period. For the majority of the sample period, this process takes values
between 0.60 to 0.90 and displays a high level of stability. During the credit crisis of
May 2005, however, this intensity process spiked rapidly to a value of 1.517, but then
declined to just over 1.00 by the middle of June 2005. Thus, this spike was relatively
short lived. Given the average value of λ1 during the sample period, the expected
waiting time until a firm-specific default is 1.16 years.

The second intensity process λ2 ranges from a high of about 0.04 to a low of
about 0.01 during the sample period. The value of this process is generally declining
throughout the period. During the credit crisis, the value of this process doubled from
about 0.015 to just over 0.030. After the crisis, the value of this process continued
to decline. This suggests that the market implied probability of a major industry or
sector crisis declined significantly during the past several years. Put another way, the
expected waiting time for this type of event declined from roughly 28 years to 125
years during the sample period. The average waiting time for a realization of the
second Poisson process is 41.5 years during the sample period.

The third intensity process λ3 has more apparent variability across CDX indexes
than do the other two intensity processes. In particular, the value of this process
increases rapidly for the CDX 1 index, but then generally takes lower values for the
other four CDX indexes. As with the second intensity process, the third intensity
process essentially doubles around the time of the credit crisis. The average value
for this intensity process throughout the entire sample period is 0.00131. Thus, the
implied risk-neutral probability of a catastrophic meltdown scenario is very small with
an expected waiting time of about 763 years on average.

6.5 CDX Index Spread Components.

There are several ways in which the marginal impact of each type of default risk
on the overall CDX index spread can be evaluated, each of which gives very similar
results. One particularly intuitive way of doing this is simply to adopt the slightly
modified definition of CDX index contract cash flows discussed in Section 5. Recall
that this implies that the CDX index spread can be expressed as a linear combination
of the three intensity processes. Thus, we can decompose the CDX index spread into
three distinct components to measure the approximate overall economic impact of
idiosyncratic, industry, and economywide default risks. In particular, the idiosyncratic
component of the CDX index spread is given by γ̄1 λ1, the industry component is given
by γ̄2 λ2, and the economywide component is given by γ̄3 λ3. Recall from Equation
(20) that the sum of these three components approximates the value of the CDX index
spread.

Table 6 reports summary statistics for these three components. As shown, id-
iosyncratic default risk accounts for about two-thirds of the total value of the CDX
index spread across the different indexes. Interestingly, however, the percentage of the
CDX index spread due to idiosyncratic default risk has increased steadily throughout
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the sample period. In particular, the percentage has increased from about 58 percent
for the first two indexes to more than 82 percent for the CDX 5 index.

The portion of the CDX index spread due to industry or sector default risk de-
clined significantly during the sample period. In particular, the portion due to industry
default risk is about 33 percent for the CDX 1 index, but only about 10 percent for the
CDX 5 index. This decline reflects the dramatic decrease in the value of the second
intensity process λ2t during the sample period.

Economywide default risk accounts for an average of about 7 to 12 percent of the
total CDX index value. There is no clear trend in the size of this component during
the sample period. We note, however, that this component takes its largest value for
the CDX 4 index which spans the period during the May 2005 credit crisis.

In summary, these results indicate that idiosyncratic default risk constitutes the
majority of the CDX index spread. The combined effects of industry and economy-
wide risk, however, are also significant and have represented more than 40 percent
of the total CDX index spread. Even though the probabilities of industrywide or
catastrophic economywide default events are much smaller than the probability of an
isolated idiosyncratic default, the economic impact of these types of events is much
more severe. Thus, industry and economywide default risks have a disproportionately
larger influence on the value of the overall CDX index.

Since the CDX index spread is an average of the default spreads for the underlying
125 firms in the index, the decomposition of the index into the three types of default
events is equally applicable to the typical firm in the index. Thus, our results imply
that the event of default for the typical firm can be partitioned into three mutually
exclusive events: the event that only the firm defaults, the event that the firm and
many of the other firms in its industry or sector default together, and the event that the
firm and the majority of all firms in the economy default. On average, the probabilities
of the three types of default events are 64.6, 27.1, and 8.3 percent, respectively, of the
total default probability for the typical firm in the index.

6.6 The Time Series of RMSEs.

Although Table 3 reports summary RMSE statistics for the three-factor model, it is
also interesting to examine the time series variation in the ability of the model to
capture market tranche spreads more closely. Accordingly, Figure 4 plots the time
series of daily RMSEs obtained by fitting the model to the five tranches.

As shown, the ability of the model to match market tranche spreads increased
significantly during the sample period. Initially, some of the RMSEs are as large as 19
basis points. The RMSEs decline rapidly, however, and are on the order of five basis
points by early 2004. By mid 2004, the RMSEs decline further and hover around two
basis points for most of the sample period. The only exception is around the May 2005
credit crisis when the RMSE increases slightly to about five basis points. After the
crisis, however, the RMSEs decline rapidly and reach values below one basis point near
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the end of the sample period. The small spikes in the RMSEs at the beginning and
end of each index series are potentially due to the effects of investors rolling positions
from tranches based on the previous index to tranches based on the new on-the-run
index.

These results provide evidence consistent with the view that while the fledging
index tranche market may have experienced some inconsistencies in the relative pricing
of individual tranches, the market matured rapidly and pricing errors were quickly
arbitraged away. In fact, this market now appears to be very consistent in terms of
the relative pricing of tranches. In particular, the fact that the RMSEs increased to
only about five basis points during the credit crisis of May 2005 makes a strong case
that the model captures the underlying economics of the market.

6.7 Pricing Errors.

We turn next to the pricing errors, defined as the difference between the model implied
spreads and the market spreads for the various CDX index tranches, and examine their
properties. Figure 5 plots the pricing errors for the various tranches. Table 7 presents
summary statistics and reports t-statistics for the significance of the average pricing
errors.

As shown, the pricing errors from the three factor model are surprisingly small
across all indexes and tranches. In particular, the average pricing errors are all within
10 basis points of zero and most are within one or two basis points of zero. Recall
from Table 1 that the average sizes for the 0−3, 3−7, 7−10, 10−15, and 15−30 percent
tranche spreads are about 1759, 240, 82, 34, and 12 basis points, respectively. Thus,
average pricing errors of only a few basis points are extremely small in percentage
terms as well.

The pricing errors for the equity 0−3 percent tranches are particularly small.
With the exception of the CDX 1 index, the average pricing errors for the equity
tranche are all within 1.5 basis points of zero. Pricing errors this small would clearly
be well within the bid-ask spread for these securities. Even the average pricing error
of −7 basis points for the CDX 1 index is well within one percent of the average size
of the 0−3 percent tranche spread.

The pricing errors for the junior mezzanine 3−7 percent tranche are uniformly
small across all the indexes. In most cases, the average pricing errors are inside of a
single basis point. Again, this is remarkably small in terms of the average size of the
spreads for this tranche. The pricing errors for the mezzanine 7−10 percent tranche
are the smallest of all of the tranches. The pricing errors for the senior 10−15 percent
tranche are also generally small. For the CDX 3, 4, and 5 indexes, the average pricing
errors for this tranche are all less than one basis point in magnitude.

Finally, the pricing errors for the senior 15−30 percent tranche are also generally
small. Since the average spread on this tranche is only about 12 basis points, however,
the percentage pricing errors on this tranche are probably the largest among all of the
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tranches. Despite this, these average pricing errors are generally well within the two
to three basis points bid-ask spread for this tranche observed in the market.

Table 7 also reports the t-statistics for the mean (correcting for the persistence
in the pricing errors). As shown, the only statistically significant mean pricing errors
occur for the CDX 1 index. Specifically, the pricing errors for the 0−3 percent equity
and 15−30 percent senior tranches have significant means for the CDX 1 index. Thus,
these results are consistent with the interpretation that there may have been arbitrage
opportunities across CDX tranches during the early stages of the market. As shown
in Figure 5, however, these pricing errors dissipated rapidly and were largely gone by
the beginning of 2004.

6.8 Spread Dispersion.

Industry sources often suggest that there is a relation between CDO pricing and the
dispersion of CDS levels of the individual firms within the index. Intuitively, the idea
is that market tranche spreads should differ between the case where all 125 firms in
the CDX index have a CDS spread of 100 basis points and the case where half of
the firms have a spread of 50 basis points and half have a spread of 150 basis points
(one firm with a spread of 100 basis points), even though in both cases, the CDX
index spread would be 100 basis points. Intuitively, the substance of the dispersion
argument is that the CDX index spread is not a sufficient state variable for pricing
tranches, a claim that is consistent with our evidence that multiple factors affect the
pricing of CDX index tranches.

To explore whether dispersion in the CDS levels of the individual firms affects
the pricing of CDOs we do the following. First, for each date in the sample period,
we solve for the standard deviation of the loss distribution implied by the fitted model
at the five-year horizon. Second, we regress the implied standard deviation of the
loss distribution on the level of the CDX and the dispersion of individual CDS levels.
The dispersion measure is given by the cross-sectional standard deviation of CDS
levels for the 125 individual firms in the CDX index.8 The intuition behind this test
approach is that since the mean of the loss distribution tends to be almost completely
determined by the CDX level, any effects of dispersion would likely show up in the
second and/or higher moments of the loss distribution. Finding that the dispersion
measure has significant explanatory power would provide evidence that dispersion
affects the relative pricing of CDX index tranches and that the effects of dispersion
are captured within the model.

Table 8 reports the results from the regression. As shown, both the CDX index
spread and the dispersion measure have significant explanatory power for the implied
standard deviation of the loss distribution. The sign of the coefficient for the dispersion

8The data for the individual CDS levels in the CDX indexes are also provided by
Citigroup.
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measure is positive, indicating that greater dispersion or heterogeneity in CDS levels
tends to increase the volatility of the loss distribution.

These results can be viewed as additional evidence against the hypothesis that
defaults are uncorrelated. Specifically, if defaults were uncorrelated, then the losses
for the CDX portfolio could be modeled based on the realizations of a single Poisson
process. Recall that the first and second moments of an individual Poisson process
are equal. Thus, if defaults were uncorrelated, then the second moment of the loss
distribution would be completely determined by its first moment, or equivalently, by
the CDX index spread.

7. CONCLUSION

This paper conducts an in-depth empirical analysis of the pricing of synthetic CDX
index tranches in the financial markets. Motivated by the Duffie and Gârleanu (2001)
multifactor framework, we develop a new portfolio credit model in which three types
of Poisson events generate portfolio credit losses. Using an extensive data set of CDX
index and tranche spreads, we estimate the model and evaluate its performance.

A number of interesting results emerge from this analysis. For example, we find
that one-factor and even two-factor models are insufficient to explain the relative
pricing of CDX index tranches in the market. In contrast, a three-factor model that
allows for jumps of approximate sizes 0.004, 0.06, and 0.35 explains virtually all of
the cross-sectional and time-series variation in the index tranche data. Assuming a 50
percent recovery rate, a jump of 0.004 has the clear interpretation of an idiosyncratic
default of a single firm out of the 125 firms in the CDX index (0.50 × 1/125 = 0.004).
Similarly, a jump size of 0.06 has the interpretation of a default event in which roughly
10 percent of the firms in the index default together. This could be viewed as an event
in which an entire industry or sector experiences financial distress. Finally, a jump
size of 0.35 represents the realization of a financial catastrophe in which more than 50
percent of the firms in the economy default on their debt. The results indicate that
under the risk-neutral measure, the average expected time until a realization of these
three types of events is 1.2, 41.5, and 763 years, respectively.

The results provide a number of insights into the important issue of default clus-
tering. In particular, we find that the market expects significant clustering to occur.
Our results allow us to partition the event that a firm defaults into three distinct
events: the event that only the firm defaults, the event that the firm and others in
its industry or sector default together, and the catastrophic event that the firm along
with more than 50 percent of the other firms in the economy default together. We
show that roughly one-third of the value of the default spread for the typical firm in
the CDX index is due to events in which multiple firms default together.

This paper is only a first attempt to understand how the market prices CDX index
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tranches. The results, however, strongly suggest that the pricing in these markets is
highly efficient. This true even during the credit crisis of May 2005 which resulted in
major losses for a number of major credit-oriented hedge funds. Furthermore, these
results indicate that modeling credit losses at a portfolio level—rather than at an
individual firm level and then aggregating up—provides an accurate, tractable, and
computationally efficient framework for valuing credit derivatives when the cash flows
are based on portfolio credit losses.
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APPENDIX

There are several ways in which the partial differential equation for Pi can be derived.
For example, the approach outlined in Karlin and Taylor (1981) pp. 202-204 leads
directly to the partial differential equation. To provide an alternative approach,
recall that

Pi = Et


exp

(
−
∫ T

0

λs ds

)(∫ T

0

λs ds

)i

 . (A1)

Let

Ht =
∫ t

0

λs ds. (A2)

This implies

dHt = λt dt. (A3)

Now, rewrite Pi as

Pi = Et


exp

(
−
∫ t

0

λs ds −
∫ T

t

λs ds

)(∫ t

0

λs ds +
∫ T

t

λs ds

)i

 , (A4)

= Et


exp

(
−Ht −

∫ T

t

λs ds

)(
Ht +

∫ T

t

λs ds

)i

 . (A5)

From this expression, Pi can be expressed explicitly as a function of λt, Ht, and
τ = T − t. An application of Itô’s Lemma gives

dPi = (α − βλ)
∂Pi

∂λ
dt + σ

√
λ

∂Pi

∂λ
dZ +

σ2λ

2
∂2Pi

∂λ2
dt

−∂Pi

∂τ
dt − λ Pi dt + i λ Pi−1 dt. (A6)

28



Since Pi is a martingale, however, the expected value of dPi = 0. Thus,

σ2λ

2
∂2Pi

∂λ2
+ (α − βλ)

∂Pi

∂λ
− λ Pi + i λt Pi−1 =

∂Pi

∂τ
, (A7)

which is Equation (8) (at t = 0). For i = 0, the boundary condition is P0(λ, 0) = 1.
For all other i, the boundary condition is Pi(λ, 0) = 0.

For the case i = 0, the solution to the partial differential equation is identical
to that provided by Cox, Ingersoll, and Ross (1985) in obtaining zero-coupon bond
prices. The solution for this case can be expressed as shown in Equation (9) with
i = 0. For i > 0, we conjecture that the solution is of the form shown in Equation (9).
Differentiating the conjectured solution for Pi(λ, T ), substituting into Equation (10),
and collecting terms in the powers of λ leads to the system of first-order differential
equations shown in Equations (12), (13), and (14). This system can be solved
recursively following in the order C1,1, C1,0, C2,2, C2,1, C2,0, C3,3, C3,2, C3,1, C3,0,
etc. Thus, for each i, we solve for Ci,j , where j runs backwards from i to 0.

Turning now to the derivation of the CDX index value in Section 5, we observe
that conditional on the path of the intensity process, the expectation of exp(−γNt)
is

E
[
e−γNt | · ] = exp

(
−γ̄

∫ t

0

λs ds

)
, (A8)

This follows from the definition of the moment generating function for Poisson vari-
ates. Similarly, the conditional expectation of dNt is λt dt. Since Nt and dNt are
conditionally independent (but not unconditionally), the conditional expected value
of terms involving the product e−γNt dNt is simply the product of these two condi-
tional expectations. From Equation (A8), one minus the expected loss conditional
on the paths of the intensity processes is given by

1 − E[Lt | ·] = exp(−
∫ t

0

γ̄1 λ1s + γ̄2 λ2s + γ̄3 λ3s ds). (A9)

Using the results above in conjunction with Equations (16) and (17) implies
that the CDX index spread can be expressed formally as
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c =

∫ T

0 D(t) E
[
exp(− ∫ t

0 γ̄1λ1sds + γ̄2λ2sds + γ̄3λ3sds)(γ̄1λ1t + γ̄2λ2t + γ̄3λ3t)
]

dt∫ T

0 D(t) (1 − E[Lt]) dt
.

(A10)

To evaluate this expression, we need to provide solutions for the unconditional mo-
ments that appear in the numerator and denominator. The unconditional expecta-
tion for the portfolio loss E[Lt] is

E[Lt] = 1 − E[e−γ1N1t] E[e−γ2N2t] E[e−γ3N3t ], (A11)

where

E[e−γNt] = E

[
exp

(
−γ̄

∫ t

0

λs ds

)]
= Â(t)e−B̂(t)λ, (A12)

and where Â(t) and B̂(t) are the same as in Equations (10) and (11) except that ξ is
replaced by the constant

√
β2 + 2σ2γ̄. This result is obtained by a simple extension

of the approach used in Cox, Ingersoll, and Ross (1985) in valuing zero-coupon bonds.
These results imply that

1 − E[Lt] = Â1(t)Â2(t)Â3(t) exp(−B̂1(t)λ1 − B̂2(t)λ2 − B̂3(t)λ3), (A13)

where the subscripted values of Â(t) and B̂(t) correspond to the respective Poisson
processes in the obvious way.

Multiplying out the expression in the numerator of Equation (A10) leads to
products of terms of the form given in Equation (A12) and also terms of the form,

E

[
exp

(
−γ̂

∫ t

0

λs ds

)
λt

]
. (A14)

These latter expectations, however, can be evaluated directly from the results in
Duffie, Pan, and Singleton (2000). Specifically, the expectation in Equation (A14)
has the form Ã(t) exp(−B̂(t)λ)(1+ C̃(t)) where B̂(t) is as defined above in Equation
(A12), C̃(t) is the solution to the following ordinary differential equation,
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dC̃

dt
= −(σ2 B̂(t) + β) C̃(t) − α C̃(t)2, (A15)

with boundary condition C̃(0) = 1, and Ã(t) is given as

ln(Ã(t)) = α

∫
C̃(s) − B̂(s) ds, (A16)

with boundary condition Ã(0) = 1. From the expressions for these unconditional
expectations in Equations (A12) and (A14), we can then solve for the unconditional
expectation in the numerator of Equation (A10). Specifically, this expectation is
given by

γ̄1 Ã1(t)e−B̂1(t)λ1(1 + C̃1(t))Â2(t)e−B̂2(t)λ2Â3(t)e−B̂3(t)λ3

+ γ̄2 Â1(t)e−B̂1(t)λ1Ã2(t)e−B̂2(t)λ2(1 + C̃2(t))Â3(t)e−B̂3(t)λ3

+ γ̄3 Â1(t)e−B̂1(t)λ1Â2(t)e−B̂2(t)λ2Ã3(t)e−B̂3(t)λ3(1 + C̃3(t)). (A17)

Similarly, the expectation in the denominator of Equation (A10) is given from Equa-
tion (A13). Substituting these expressions into Equation (A10) gives the closed-form
solution for the CDX index spread c.
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Duffie, D., and N. Gârleanu, 2001, Risk and Valuation of Collateralized Debt Obli-
gations, Financial Analysts Journal 57 (January/February), 41-59.

Duffie, Darrell, Jun Pan, and Kenneth J. Singleton, 2000, Transform analysis and
asset pricing for affine jump-diffusions, Econometrica 68, 1343-1376.

Duffie, D., L. Saita, and K. Wang, 2005, Multi-Period Corporate Default Prediction
with Stochastic Covariates, Journal of Financial Economics, forthcoming.

Duffie, Darrell, and Kenneth J. Singleton, 1997, An econometric model of the term
structure of Interest-Rate Swap yields, Journal of Finance 52, 1287-1321.

Duffie, D., and K. Singleton, 1999, Modeling Term Structures of Defaultable Bonds,
Review of Financial Studies 12, 687-720.

Duffie, D., and K. Singleton, 2003, Credit Risk: Pricing, Measurement, and Man-
agement, (Princeton University Press, Princeton, NJ).

Jorion, P., and G. Zhang, 2005, Intra-Industry Credit Contagion: Evidence from
Credit Default Swap and Equity Markets, Working Paper, University of California
at Irvine.

Karlin, S., and H. Taylor, 1981, A Second Course in Stochastic Processes, Academic
Press Inc, Orlando, Florida.

Li, D., R. Roy, and J. Skarabot, 2004, A Primer on Single-Tranche CDOs, Citigroup
Global Structured Credit Research, Citigroup, New York, NY.

Liu, J., F. Longstaff, and R. Mandell, 2006, The Journal of Business, forthcoming.

Longstaff, F., S. Mithal, and E. Neis, 2005, Corporate Yield Spreads: Default Risk or
Liquidity? New Evidence from the Credit Default Swap Market, Journal of Finance
60, 2213-2253.

Marshall, A., and I. Olkin, 1967, A Multivariate Exponential Distribution, Journal

32



of the American Statistical Association 62, 30-44.

Pan, J., and K. Singleton, 2005, Default and Recovery Implicit in the Term Structure
of Sovereign CDS Spreads, Working Paper, Stanford University.

Roy, R., and D. Shelton, 2004, Trading Credit Tranches, Citigroup Global Structure
Credit Research, Citigroup, New York, New York.

Saita, L., 2005, The Puzzling Price of Corporate Default Risk, Working Paper,
Stanford University.

Yu, F., 2005a, Correlated Defaults in Intensity-Based Models, Mathematical Finance,
forthcoming.

Yu, F., 2005b, Default Correlation in a Reduced-Form Model, Journal of Investment
Management 3(4), 33-42.

33



Table 1

Summary Statistics for the CDX North American Investment Grade Index and Index Tranches. This table reports summary statistics
for the market spreads (measured in basis points) for the indicated time series. Results are reported for the combined on-the-run time series. The
sample period is from October 2003 to October 2005.

Standard Serial
Mean Deviation Minimum Median Maximum Correlation N

CDX Index 54.52 6.95 41.00 54.50 78.00 0.977 435

0−3 Tranche 1758.87 245.30 1282.52 1780.28 2914.55 0.978 435
3−7 Tranche 240.07 85.66 103.50 232.00 411.00 0.992 435

7−10 Tranche 82.27 36.73 24.75 74.75 158.00 0.992 435
10−15 Tranche 34.43 14.49 11.88 29.50 66.50 0.989 435
15−30 Tranche 11.54 2.89 5.00 11.88 20.75 0.962 435



Table 2

Correlation Matrix for Daily Changes in Spreads. This table reports the sample correlations for the daily changes in spreads for the indicated
time series. Results are reported for the combined on-the-run time series. The sample period is from October 2003 to October 2005.

CDX 0−3 3−7 7−10 10−15 15−30

CDX 1.000
0−3 0.992 1.000
3−7 0.790 0.762 1.000

7−10 0.685 0.648 0.879 1.000
10−15 0.690 0.662 0.839 0.861 1.000
15−30 0.669 0.651 0.773 0.751 0.764 1.000



Table 3

Root Mean Squared Errors (RMSE) from Model Fitting and Tests of the Number of Factors. This table reports the overall RMSEs
and the RMSEs for the individual CDX index tranches resulting from fitting the indicated models. All RMSEs are measured in basis points. The
p-value is for the test of n vs. n− 1 factors. N denotes the number of observations for the indicated CDX index. The sample period is from October
2003 to October 2005.

Tranche RMSE
Number Overall

of Factors Index 0−3 3−7 7−10 10−15 15−30 RMSE p-Value N

One Factor CDX 1 13.13 78.55 17.78 40.15 13.44 41.11 − 65
CDX 2 26.90 54.02 47.08 47.50 13.37 40.73 − 108
CDX 3 39.21 65.48 41.22 24.75 9.29 40.55 − 118
CDX 4 31.81 39.76 47.65 23.28 12.38 33.35 − 127
CDX 5 49.58 29.92 26.37 13.83 6.21 29.25 − 17

Two Factors CDX 1 9.89 20.24 8.46 6.73 9.82 12.01 0.000 65
CDX 2 5.60 17.17 5.12 5.89 3.02 8.90 0.000 108
CDX 3 3.78 5.77 3.28 1.68 3.07 4.74 0.000 118
CDX 4 22.40 14.30 9.95 7.39 10.85 13.98 0.000 127
CDX 5 2.24 1.95 7.13 6.99 0.66 4.67 0.000 17

Three Factors CDX 1 11.01 4.62 8.68 10.37 8.31 8.88 0.997 65
CDX 2 2.52 1.31 3.04 6.08 4.68 3.90 0.000 108
CDX 3 0.99 0.76 3.36 2.80 2.06 2.23 0.000 118
CDX 4 1.18 1.19 4.52 2.27 2.46 2.63 0.000 127
CDX 5 0.29 0.28 1.10 0.61 0.46 0.63 0.000 17



Table 4

Parameter Estimates. This table reports the parameter estimates for the indicated CDX indexes. The sample period is from October 2003 to
October 2005.

Index γ1 γ2 γ3 σ1 σ2 σ3 N

CDX 1 0.00453 0.06093 0.17091 0.03016 0.10847 0.00098 65
CDX 2 0.00411 0.06498 0.35104 0.20854 0.19569 0.14246 108
CDX 3 0.00402 0.06621 0.35347 0.11955 0.16863 0.18110 118
CDX 4 0.00387 0.05260 0.51615 0.14003 0.25083 0.16539 127
CDX 5 0.00469 0.05628 0.33801 0.17315 0.27763 0.29674 17



Table 5

Summary Statistics for the Estimated Intensity Processes. This table reports summary statistics for the first, second, and third intensity
processes for the indicated CDX indexes. Values for the intensity processes represent estimates under the risk-neutral pricing measure. The sample
period is from October 2003 to October 2005.

Intensity Standard
Process Index Mean Deviation Minimum Median Maximum N

First CDX 1 0.72561 0.04280 0.64748 0.73229 0.80964 65
CDX 2 0.85419 0.02374 0.79102 0.85175 0.90252 108
CDX 3 0.76570 0.04105 0.68886 0.75330 0.86144 118
CDX 4 1.02303 0.15058 0.73804 1.00283 1.51795 127
CDX 5 0.81643 0.02452 0.79326 0.81125 0.86468 17

Second CDX 1 0.03063 0.00307 0.02336 0.03108 0.03560 65
CDX 2 0.03489 0.00450 0.02367 0.03632 0.04309 108
CDX 3 0.02115 0.00411 0.01464 0.01999 0.03077 118
CDX 4 0.01639 0.00669 0.00841 0.01395 0.03216 127
CDX 5 0.00869 0.00065 0.00790 0.00864 0.00978 17

Third CDX 1 0.00263 0.00118 0.00029 0.00261 0.00498 65
CDX 2 0.00092 0.00040 0.00001 0.00091 0.00188 108
CDX 3 0.00093 0.00013 0.00062 0.00095 0.00119 118
CDX 4 0.00136 0.00048 0.00043 0.00127 0.00244 127
CDX 5 0.00102 0.00013 0.00087 0.00101 0.00131 17



Table 6

Percentage of the Spread Due to Different Types of Default Risk Events. This table reports summary statistics for the percentages of the
total CDX index spread due to the indicated Poisson processes. The percentage for the first Poisson process is given from the ratio of γ1 λ1 to the
total CDX index value, and similarly for the other two Poisson processes. Sample period is from October 2003 to October 2005.

Poisson Standard
Process Index Mean Deviation Minimum Median Maximum N

First CDX 1 58.83 2.24 53.36 58.43 63.59 65
CDX 2 57.70 2.38 54.11 56.85 64.44 108
CDX 3 64.19 2.26 59.08 64.85 67.54 118
CDX 4 71.56 4.37 61.57 72.91 80.01 127
CDX 5 82.17 1.41 79.23 82.79 83.50 17

Second CDX 1 33.34 2.79 29.34 32.19 40.24 65
CDX 2 37.02 3.17 29.02 38.00 41.99 108
CDX 3 28.88 2.98 23.65 28.20 34.82 118
CDX 4 15.92 7.11 7.81 13.24 30.16 127
CDX 5 10.48 0.69 9.83 10.12 11.71 17

Third CDX 1 7.83 3.03 0.91 7.83 13.31 65
CDX 2 5.28 2.32 0.06 5.27 10.82 108
CDX 3 6.93 1.18 4.07 6.86 9.77 118
CDX 4 12.52 3.77 5.04 12.26 19.97 127
CDX 5 7.35 0.84 6.38 7.29 9.43 17



Table 7

CDX Index Tranche Pricing Errors. This table reports summary statistics for the pricing errors for the indicated CDX index tranches. The
t-statistic for the mean is corrected for first-order serial correlation. Pricing errors are measured in basis points. The sample period is from October
2003 to October 2005.

Standard t-Statistic
Tranche Index Mean Deviation for the Mean N

0−3 Tranche CDX 1 −7.00 8.56 −1.66 65
CDX 2 −1.27 2.18 −1.33 108
CDX 3 −0.19 0.97 −0.26 118
CDX 4 −0.20 1.17 −0.55 127
CDX 5 0.02 0.29 0.32 17

3−7 Tranche CDX 1 −3.21 3.34 −1.98 65
CDX 2 −0.51 1.21 −1.16 108
CDX 3 −0.21 −.73 −0.55 118
CDX 4 0.00 1.19 0.01 127
CDX 5 −0.03 0.28 −0.42 17

7−10 Tranche CDX 1 −2.60 8.34 −0.66 65
CDX 2 0.03 3.06 0.04 108
CDX 3 0.61 3.32 0.30 118
CDX 4 −0.27 4.53 −0.15 127
CDX 5 0.16 1.12 0.51 17

10−15 Tranche CDX 1 −6.62 8.05 −1.67 65
CDX 2 −2.07 5.74 0.57 108
CDX 3 −0.45 2.77 −0.22 118
CDX 4 −0.27 2.26 −0.53 127
CDX 5 −0.76 0.62 −0.31 17

15−30 Tranche CDX 1 −8.09 1.88 −9.13 65
CDX 2 −2.98 3.63 −1.66 108
CDX 3 −0.83 1.90 −0.64 118
CDX 4 −0.62 2.39 −0.72 127
CDX 5 0.06 0.46 0.45 17



Table 8

Regression of the Standard Deviation of the Loss Distribution on the CDX Index Spread and CDX Index Dispersion. This table
reports the results from the regression of the standard deviation of the loss distribution implied by the fitted model each day on the corresponding
CDX index spread and the cross-sectional standard deviation of the CDS spreads for the 125 individual firms in the CDX index. The sample period
is from October 2003 to October 2005.

Std.Deviationt = a + b CDXt + c Dispersiont + εt.

a b c ta tb tc R2 N

0.0089 3.3763 0.8002 10.59 18.95 10.30 0.681 435
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Fig. 1. CDX Index and Tranche Spreads. This figure graphs the time series of the
CDX index and its tranche spreads for the October 2003 to October 2005 sample period.
Spreads are in basis points. The vertical division lines denote the roll from one CDX index
to the next.
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Fig. 2. Principal Components of Daily Changes in Tranche Spreads. This figure
graphs the first three principal components of the daily changes in CDX tranche spreads for
the October 2003 to October 2005 sample period.
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Fig. 3. Intensity Processes. This figure graphs the estimated intensity processes. The
vertical division lines denote the roll from one CDX index to the next.
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Fig. 4. Time Series of Overall RMSEs. This figure graphs the time series of daily
overall root mean squared error (RMSE) from the fitting of the five CDX tranches. RMSEs
are measured in basis points. The vertical division lines denote the roll from one CDX index
to the next.
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Fig. 5. Pricing Errors. This figure plots the difference between the model implied and
actual market spreads for the indicated CDX tranches. Pricing errors are measured in basis
points. The vertical division lines denote the roll from one CDX index to the next.




