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We present a framework to analyze the process location and product distribution problem with uncertain yields for a large
multinational food processing company. This problem consists of selecting the location of processes, the assignment of
products, and the distribution of production quantities to markets in order to minimize total expected costs. It differs from
the traditional facility location problem due to characteristics that are inherent to process industry sectors. These include
significant economies of scale at high volumes, large switchover times, and production yield uncertainty. We model the
problem as a nonlinear mixed-integer program. A challenging aspect of this problem is that the objective function is neither
convex nor concave. We develop an exact approach to linearize the objective function. We present heuristics to solve the
problem and also construct lower bounds based on a reduction of the constraint set to evaluate the quality of the solutions.
This framework has been used to make process choice and product allocation decisions at the food processing company,
and the estimated annual cost savings are around 10%, or $50 million. In addition, the insights from the model have had
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1. Introduction
The worldwide production of processed food reached $4.3
trillion in 2010 (Euromonitor 2011). This figure is poised
to increase due to population growth and consumption pat-
terns that tend toward higher value food products as the
developing economies become richer (Gehlhar and Regmi
2005). In the United States, food manufacturing accounts
for more than 10% of all manufacturing shipments (U.S.
Dept. of Commerce 2006). Despite recent mergers and
acquisitions, the industry remains competitive, and chal-
lenges abound, many of them involving a strong operational
component (Scanlon 2006, Donovan 2009, Arend 2011).
In recent years, several successful applications of opera-
tions research (OR) have been reported for short-term pro-
duction planning in the processed food industry (Rajaram
et al. 1999, Rajaram and Karmarkar 2002, Mehrotra et al.
2011). Another important problem that has received less
attention is deciding where to open (or build) processes,
choosing which product should be assigned to what pro-
cesses, and the transportation of production quantities to
markets in order to minimize total expected costs. This
design/tactical problem is usually solved once or twice a
year, and it also arises in other process industry sectors such

as pharmaceuticals, specialty chemicals, fertilizers, animal
feed, paint, and petrochemicals.

We were exposed to this problem based on our interac-
tion with a large multinational food processing company
that had more than 400 plants in 63 countries.1 On aver-
age, each plant had seven different types of processes such
as refining, extraction, separation, modification, etc. This
company had the option of locating processes and products
across several of their manufacturing plants. In addition,
the company often bought or built plants in several differ-
ent locations. For example, in 2010 they acquired 10 plants
with 65 processes in 5 countries. Thus, the top management
had to rationalize the choice of where to open processes
and decide which products to produce at these processes at
least once every six months. These decisions were impor-
tant because they significantly affected profitability. This
company felt there could be improvements in the current
procedures to make process location and product allocation
decisions by using a more rigorous analytical framework.
However, due to the challenges outlined below, they did not
understand how best to develop such a framework. They
approached the second author in this regard, which led to
our involvement.
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Deciding on where to open these processes, assigning
which product to produce in which processes, and shipping
production quantities to markets to minimize total costs is
a challenging problem for several reasons:

• Opening these processes requires major capital invest-
ments in equipment and installation costs. Depending upon
the capacity, these costs range from $15 up to $60 mil-
lion. Furthermore, customizing each process to include a
particular type of product requires additional and signifi-
cant product inclusion costs up to $0.5 million, which typ-
ically involved configuring the technology and installing in
a manner to match unique product characteristics. Thus to
account for these setup and configuration costs, we need
to choose the correct number of processes and the right
number of products at each process.

• Due to the nature of the product, there are large
economies of scale associated with high volumes of pro-
duction, so it is desirable to maximize production of a prod-
uct at any given process subject to its capacity limitations.
For instance, unit costs at volumes corresponding to 90%
process utilization levels typically are 30% lower than unit
costs at 60% utilization.

• Because each process itself produces a variety of
products, there are significant downtimes when switching
between products. In some cases, these setup times could
consume up to 20% of the available capacity.

• There is yield uncertainty that results in the actual out-
put being between 70% to 99% of plant production, which
leads to backorder costs and inventory holding costs across
the product mix.

Figure 1. Description of the process location and product distribution problem with uncertain yields.

Refining process

Refined product
destinations; unmet
demand is penalized

Markets

Refining process

Yield

Yield

Existing plants where
refining can be opened

Process locations
For example, glucose DE 3,

glucose DE 10, glucose DE 20, etc.

Products

• There are significant distribution costs in moving the
product from the process location to the markets. Depend-
ing on the market location, these costs typically account for
about 10% to 20% of unit price.

Figure 1 shows a schematic description of the problem.
Our model is for a single process type. In the application,
the process type was refining, but the model could also be
used to locate other types. The potential process locations
were the existing plants the company owned. Note that
these plants already had other processes in place, usually
of another type. The specific products we were asked to
consider were different grades of glucose products because
these products constituted a significant proportion of the
company’s sales volumes and profits. The production was
allocated to markets given by countries divided into sales
territories. For example, Germany consisted of seven terri-
tories, while Belgium and The Netherlands had four territo-
ries each. Demand was determined by long-term contracts
that stipulated a penalty in case demand was not met.

Glucose products are distinguished by the concentra-
tion of sugar or dextrose equivalence (DE) levels. They
are produced by refining starch slurry and serve as im-
portant inputs across a range of industries including
pharmaceuticals, food processing, cosmetics, and paper
manufacturing. The refining process consists of several unit
steps or subprocesses, and each glucose level might require
different equipment and a different configuration of unit
steps, which correspond to the inclusion costs and setups
in the model, respectively. The output of the refining pro-
cess is affected by the yield uncertainty, which has two
main causes. First, in contrast with manufacturing where
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yield uncertainty usually can be reduced with more training
and better procedures, here part of the uncertainty comes
from the nature of the biochemical reactions in the process.
This uncertainty cannot be eliminated simply by changing
the procedures. Second, the raw materials. For instance, it
is known that European wheat is different from Canadian
wheat, but even two batches of Canadian wheat can be dif-
ferent depending on the location and when it was harvested.
In the short run, these two sources of yield uncertainty are
beyond the firm’s control.

The problem we present naturally falls into the broad cat-
egory of facility location problems. However, this problem
differs from most problems in this category due to charac-
teristics that are unique to the process industry sectors such
as significant economies of scale at high production vol-
umes, large switchover times, and yield uncertainty in the
production processes. To incorporate these characteristics,
we model this problem as a nonlinear mixed-integer pro-
gram. As we show, these characteristics significantly com-
plicate the solution methods for this model. We develop
heuristics to solve this problem and construct lower bounds
to evaluate the quality of these heuristics. We also report
an extensive computational study using data provided by
the large food processing company to validate the frame-
work. Our model has been applied to make process choice
and product allocation decisions at a large multinational
food processing company, which has led to annual cost
savings of 10%, or around $50 million. In addition, our
work has provided several managerial insights that have
directly influenced the decision making of the top man-
agement and have consequently had significant strategic
and organizational impact at this company. These insights
include understanding the relationship between process
choice and critical aspects within a process such as vari-
ability reduction, yield uncertainty, and switchover times.

There exists a wide body of literature for both the
deterministic and the stochastic facility location prob-
lems. Comprehensive surveys are given by Aikens (1985),
Brandreau and Chiu (1989), Drezner (1995), Owen and
Daskin (1998), and recently Melo et al. (2009). Reviews
exclusively concerning stochastic location problems are
Louveaux (1986), Berman and Krass (2002), and Snyder
(2006). Of particular interest for this work are publica-
tions dealing with multiple products, such as Geoffrion
and Graves (1974), and nonlinear facility costs, such as
Wollenweber (2008). Louveaux (1986) discusses differ-
ent versions of the p-median and of the stochastic plant
location problem (SPLP) in which demands, production,
transportation costs, and selling prices can be uncertain.
Louveaux and Peeters (1992) present a dual-based heuristic
to solve the stochastic SPLP. Laporte et al. (1994) pro-
pose a branch-and-cut approach to solve the capacitated
facility location problem (CFLP) with stochastic demands.
Balachandran and Jain (1976) consider a capacitated ver-
sion with general cost functions. Daskin (1983) and Ball
and Lin (1993) consider coverage location models where

there is a chance that a server is busy and a probability of
system failure, respectively.

Some of the more recent developments in stochastic
facility location include Shen et al. (2003), who consider
inventory decisions and variable demand; Shu et al. (2005),
who build on the latter and exploit the special structure of
the problem to solve it by column generation; Baron et al.
(2008), who consider congestion and decisions on the num-
ber of servers at each facility; Drezner (2009) who looks
at retail locations considering future demand scenarios; and
Snyder and Daskin (2005), Qi and Shen (2007), and Cui
et al. (2010), who consider reliability models for systems
with facility disruptions. Using the taxonomy described by
Aikens (1985), the problem we study can be considered a
stochastic yield capacitated facility location problem (SYC-
PLP) with nonlinear costs and side constraints. As men-
tioned in Aikens, this is a very complex and under-studied
problem.

Despite the practical relevance and complexity of the
SYCPLP, we found nothing in the academic or manage-
rial literature that specifically addresses this problem for
the process industry sectors. In this context, our objec-
tive is threefold. First, we establish a rich process loca-
tion and product distribution problem, through which we
model relevant characteristics of the process industry sec-
tors like economies of scale, switchover times, and yield
uncertainty. By creating awareness of the problem we hope
to stimulate further research. Second, we develop an exact
approach to linearize a nonlinear model, and we use it to
develop bounds and heuristics. This approach serves as an
alternative to the piecewise linear approximation commonly
used in practice, and it represents our main methodological
contribution. Third, to the best of our knowledge, this is
the first reported implementation of process location opti-
mization methods to the food processing industry. Several
of the techniques we employ to solve the problem—such
the as the subgradient updating rule and our method to
reduce the constraint set based on the law of iterated
expectations—can provide guidance to practitioners facing
similar challenges in other applications.

This paper is organized as follows. In the next section
we formulate the model and formalize its complexity. In
§3 we provide an exact approach to linearize the model.
In §4 we provide lower bounds by reducing the constraint
set based on the law of iterated expectations. In §5 we
generate feasible solutions and upper bounds using three
heuristics. The first is based on methods used by practi-
tioners, and the other two are based on greedy and linear
programming (LP) methods. In §6 we describe a computa-
tional study with data from the large food processing com-
pany. In §7 we discuss the implementation of our methods
and also describe their strategic and organizational impact
at this company. In the concluding section, we summarize
our work and provide future research directions. An elec-
tronic companion to this paper is available as part of the
online version at http://dx.doi.org/10.1287/opre.1120.1087.
It contains the proofs and additional material.
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2. Model Formulation
We formulate the problem of choosing where to locate pro-
cesses with uncertain yields. It is important to reiterate that
the problem we consider is not where to locate plants or
facilities. These are decided on a long-term basis (i.e., 5 to
10 years) and for our purposes are taken as given. How-
ever, at each plant, processes are opened and products are
allocated to processes and destinations depending on mar-
ket conditions on a semi-annual basis. This decision is the
focus of our work.2

We begin by introducing the model notation. We use
indices i ∈ I , j ∈ J , and k ∈K to represent processes, mar-
kets, and products, respectively. The demand for product k
at each market j is deterministic and equal to djk. Here djk

is calculated as the total demand across a planning horizon
of six months. Unmet demand is penalized by a factor gjk
per unit. The transportation cost of product k from pro-
cess i to market j is given by cijk. On the production side,
the fixed cost of opening process i is ei and its capacity
is si. Assigning product k to process i incurs a fixed inclu-
sion cost fik and requires a setup that consumes bk units of
capacity. Also, let ak be the amount of capacity required
to process one unit of product k. The variable cost is given
by the function pik4x5. To consider economies of scale in
the production process, we assume that pik4x5 is increas-
ing and concave with pik405= 0, and �ik4x5 2= pik4x5/x is
decreasing.3 Note that all the parameters are assumed to be
nonnegative.

In terms of the decision variables, let zi be a binary vari-
able that equals one if process i is opened. Similarly, let yik
equal one if product k is assigned to process i. We com-
bine the processing and transportation decisions into one
decision variable: xijk. This amount is the planned quantity
of product k to be processed by process i and destined to
market j , which is a continuous variable, and let wik be
the random yield. Hence, the quantity actually shipped to
market j is wikxijk. The precise value of wik is unknown in
advance, but we assume that the probability distribution of
the different possible values is available.

The SYCPLP can be represented by the following non-
linear, mixed-integer program:

SYCPLP min
∑

i∈I

eizi+
∑

i∈I
k∈K

fikyik+
∑

i∈I
k∈K

pik

(

∑

j∈J

xijk

)

+
∑

i∈I
j∈J 1k∈K

cijkxijk

+
∑

j∈J
k∈K

gjkƐ

[

djk−
∑

i∈I

wikxijk

]+

1 (1)

subject to
∑

j∈J

akxijk¶4si−bk5yik ∀i∈ I1k∈K1 (2)

∑

j∈J 1k∈K

akxijk+
∑

k∈K

bkyik¶sizi ∀i∈ I1 (3)

xijk¾0 ∀i∈ I1 j ∈J 1k∈K1 (4)

yik1zi ∈80119 ∀i∈ I1k∈K0 (5)

Objective function (1) minimizes total expected costs by
the appropriate choice of xijk1 yik1 zi and consists of five
terms. The first term represents the fixed cost associated
with opening each process. The second term is the inclu-
sion cost incurred if product k is assigned to process i.
The third term represents the variable production cost. The
fourth and fifth terms are the expected transportation and
penalty costs, respectively. The expectation is taken with
respect to the random vector wk 2= 4wik5i∈I ∀k ∈K, where
6x7+ = max801 x9. Constraints (2) couple flow and produc-
tion because the binary variable yik has to be set to one if
product k is assigned to process i. Constraints (3) ensure
that production and switchover times do not exceed the
capacity available at process i. Note that this constraint
incorporates the possibility that each product can have dif-
ferent and multiple setups during the planning horizon.
Finally, constraints (4) and (5) define variable domains.

Note that we formulate our model as a single-stage prob-
lem in which the location and product assignment deci-
sions are made simultaneously with the processing and
transportation decisions. We found this to be a reasonable
assumption in our application and in other process indus-
tries because there is usually little volume or mix flexibility
once a process has been opened and configured to pro-
duce a particular set of products. Furthermore, the shipping
quantities to the different markets are contracted with the
carriers before the realization of the actual yields. Indeed,
the expected yield w̄ik for product k if assigned to pro-
cess i is embedded in the transportation cost cijk for each
market j .

When the support of wik has a positive lower bound wmin
ik ,

the formulation above can be tightened by considering the
constraint wmin

ik xijk ¶ djk yik ∀ i ∈ I1 j ∈ J 1 k ∈K, which can
either replace or be used simultaneously with constraint (2).
It is also worth noting that our formulation can be easily
extended to consider a holding or left-over cost hjk that is
incurred whenever the quantity processed exceeds demand
due to the random yield. In that case, it suffices to redefine
cijk and gjk as cijk +hjkw̄ik and gjk +hjk, respectively. This
transformation follows from the identity x = 6x7+ − 6−x7+.
Using the identity min8x1d9= d− 6d−x7+, it can also be
verified that our problem is equivalent (up to a constant) to
a problem in which the objective is to maximize profits.

As mentioned before, the objective function (1) of the
SYCPLP is nonlinear, with the third and fifth terms being
concave and convex, respectively, in variables xijk. This
structure becomes a major obstacle to solve the prob-
lem in general. However, in practice, the random yield is
either discrete—which was the case in our application (see
Figure 2 in §6 for a representative example)—or has to
be discretized for computational purposes. This fact can
be used to reformulate the model as follows. Let Tik be
the set of yield scenarios for process i and product k, and
let Tk be the cartesian product across processes. We use
the index t ∈ Tk to denote a scenario, where t 2= 4ti5i∈I
and ti ∈ Tik ∀ i ∈ I . Let wt

k 2= 4w
ti
ik5i∈I denote the random
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yield vector under scenario t ∈ Tk, and let Pr4wt
k5 be its

probability. Then, in the objective function, the expected
unmet demand for product k in market j , which is given by
Ɛ 6djk −

∑

i∈I wikxijk7
+ =

∑

t∈Tk
Pr4wt

k56djk −
∑

i∈I w
ti
ikxijk7

+,
can be substituted by

∑

t∈Tk
Pr4wt

k5u
t
jk and the following

two constraints:

∑

i∈I

w
ti
ikxijk + ut

jk ¾ djk ∀ j ∈ J 1 k ∈K1 t ∈ Tk1 (6)

ut
jk ¾ 0 ∀ j ∈ J 1 k ∈K1 t ∈ Tk0 (7)

The auxiliary variable ut
jk represents the unmet demand

under scenario t ∈ Tk. This substitution is valid under the
natural assumption that gjk ¾ 0 ∀ j ∈ J 1 k ∈ K. In fact,
because we are solving a minimization problem, and given
constraints (6) and (7), the variable ut

jk is guaranteed to
be equal to max8djk −

∑

i∈I wikxijk109, ∀ j ∈ J 1 k ∈K such
that gjk > 0.4 With this substitution, the objective function
becomes concave in the xijk variables, and therefore an
optimal solution is guaranteed to exist among the extreme
points of the convex hull of the feasible set. This prop-
erty allows the analysis of the resulting model as discussed
in §3. From now on, we refer to the model in which the
aforementioned substitution has been made as the SYCPLP.

As expected, the penalty parameter gjk plays an impor-
tant role in the SYCPLP. In fact, when gjk is too low, it
is optimal to leave all demand unmet. Indeed, if gjk is
lower than the production and transportation costs, then
ut
jk = djk1 ∀ t ∈ Tk. On the other hand, when gjk becomes

sufficiently large, demand is met in all scenarios and
ut
jk = 01 ∀ t ∈ Tk. The latter is equivalent to solving a deter-

ministic process location problem for the worst-case sce-
nario. Clearly, for intermediate values of gjk, which occur in
practice, some—but not all—scenarios are penalized (i.e.,
ut
jk > 0 for some t). These are the cases for which our

formulation is most relevant.
From the previous discussion, one would expect that in

terms of complexity the SYCPLP is as hard as solving a
location problem without yield uncertainty. That is the case
as shown in the following proposition. Note that all formal
proofs are provided in the electronic companion.

Proposition 1. The SYCPLP is NP-hard.

The proof of Proposition 1 considers the special case
with zero production cost, which is sufficient to show the
result. In general, production costs are nonlinear, which
becomes an additional challenge in the SYCPLP. In the
next section we present an exact approach to linearize
the model.

3. Model Linearization: An Exact
Approach

In the presence of economies of scale, the variable cost
functions pik4 · 5 are (strictly) concave, which makes the
problem nonlinear. To deal with this, a common approach

is to use a piecewise linear approximation to transform
the problem into a mixed integer program (MIP). This
approach requires some trial and error to determine the
right number of breakpoints in the piecewise linear func-
tion. Moreover, it is an approximation that at best can pro-
vide a lower bound to the optimal value. In contrast, here
we present an exact approach based on duality theory to
linearize the SYCPLP so it can be solved as a MIP with
no loss of optimality.

First, we introduce an auxiliary variable vik ¾ 0 that rep-
resents the total amount of product k processed by pro-
cess i, and we add the following linking constraints:

vik ¶
∑

j∈J

xijk ∀ i ∈ I1 k ∈K1 (8)

vik ¾
∑

j∈J

xijk ∀ i ∈ I1 k ∈K0 (9)

Clearly, with these two constraints we can replace
pik4

∑

j∈J xijk5 by pik4vik5 in the objective function (1).
The next step is to relax constraint (9) using multipli-
ers �ik ¾ 0 ∀ i ∈ I1 k ∈K.5 Then we obtain the following
relaxed problem that we denote G4�5:

G4�5 2= min
∑

i∈I

eizi +
∑

i∈I
k∈K

fikyik

+
∑

i∈I
k∈K

(

pik4vik5+�ik

(

∑

j∈J

xijk − vik

))

+
∑

i∈I
j∈J 1 k∈K

cijkxijk +
∑

i∈I
k∈K

gjkūjk1

subject to (2)–(8)1 vik ¾ 0 and ūjk =
∑

t∈Tk

Pr4wt
k5u

t
jk1

∀ i ∈ I1 j ∈ J 1 k ∈K0

The objective function of G4�5 still has the nonlinear
term pik4vik5. To make it linear, we use the fact that pik4vik5
is concave and G4�5 is a minimization problem. Hence,
at the optimum, the variable vik will be as large or as
small as possible—i.e., it will “hit the boundaries”—so we
can assume that vik = 0 or vik =

∑

j∈J xijk1 ∀ i ∈ I1 k ∈K.
Intuitively, the case vik =

∑

j∈J xijk occurs when
pik4

∑

j∈J xijk5 < �ik

∑

j∈J xijk and vik = 0 occurs when this
last inequality is reversed. To distinguish between these two
cases, we introduce a binary variable qik ∈ 801 19 and link
it to the xijk and vik variables through the constraints

vik ¶ Bikqik ∀ i ∈ I1 k ∈K1 (10)
∑

j∈J

xijk ¶ �−1
ik 4�ik5qik +Bik41 − qik5 ∀ i ∈ I1 k ∈K1 (11)

with Bik 2= 4si − bk5/ak. Then in the objective function
of G4�5, we replace the variable production cost pik4vik5
by �ik �

−1
ik 4�ik5qik, where �ik4x5 = pik4x5/x.6 Recall that

�ik4x5 is decreasing by assumption, which implies that �−1
ik
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is well defined and is also decreasing. With this MIP trans-
formation we obtain the following modified dual function
that is contingent on the value of the multipliers �¾ 0:

H4�5 2= min
∑

i∈I

eizi +
∑

i∈I
k∈K

fikyik

+
∑

i∈I
k∈K

�ik

(

�−1
ik 4�ik5qik +

∑

j∈J

xijk − vik

)

+
∑

i∈I
j∈J 1k∈K

cijkxijk +
∑

i∈I
k∈K

gjkūjk1

subject to (2)–(8)1 (10)–(11)1 vik ¾ 01 and

ūjk =
∑

t∈Tk

Pr4wt
k5u

t
jk1 ∀ i ∈ I1 j ∈ J 1 k ∈K0

As expected, the multiplier �ik determines the variable
processing cost of product k in process i. Note that
if vik = 0, then �ik serves as a linear cost; whereas
if vik =

∑

j∈J xijk > 0, then �ik determines the fixed cost
�ik �

−1
ik 4�ik5. However, when we maximize with respect to

� ¾ 0, the optimal solution satisfies �−1
ik 4�ik5 =

∑

j∈J xijk
(see Proposition 2 below). Therefore, the optimal value is
the same regardless of whether vik is positive or not.

Let ZNL be the optimal value of the SYCPLP. From weak
duality we know that G4�5 ¶ ZNL1 ∀� ¾ 0, and because
the SYCPLP corresponds to the minimization of a non-
linear concave function we should expect a duality gap.
Note that H4�5 corresponds to a MIP problem. It can be
shown that H4�5¶G4�51 ∀�¾ 0, so H4�5 also provides
a lower bound for ZNL. Remarkably, in our case the fol-
lowing proposition shows that this lower bound is tight and
strong duality actually holds.

Proposition 2. Let H4�5 denote the optimal value of the
MIP transformation and let ZNL denote the optimal value
of the nonlinear SYCPLP. Then, max�¾0 H4�5 = ZNL and
there exists an optimal solution such that

�∗

ik

∑

j∈J

x∗

ijk = pik

(

∑

j∈J

x∗

ijk

)

1 ∀ i ∈ I1 k ∈K0 (12)

Proposition 2 shows that the nonlinear SYCPLP can be
solved as a sequence of MIPs parameterized by the multi-
pliers �. In turn, the maximization with respect to � can be
done with a traditional subgradient method, although there
is a caveat. In this method, the standard rules would dictate
the following updating formula:

�
�+1
ik = max

{

01 ��
ik − ��

(

∑

j∈J

xijk − vik

)}

1 (13)

where �� is a certain step size. Note that if �ik is suffi-
ciently large,

∑

j∈J xijk − vik equals 0, and the multiplier
remains unchanged. At this point, we would not be able
to improve the solution of SYCPLP using Equation (13).

An alternative is to leverage Proposition 2. Indeed, we can
use Equation (12) to obtain an upper bound for the val-
ues of the multipliers. On the other hand, the multipliers
should at least be comparable to the penalty for not meeting
demand, so we can use the latter as a lower bound. Com-
bining these two observations with Equation (13) provides
a modified updating procedure that prevents the procedure
from stalling and is also more robust because it does not
depend on the starting values. The modified updating for-
mula is the following:

�
�+1
ik = min

{

max
{

min
j∈J

gjk1 �
�
ik − ��

(

∑

j∈J

xijk − vik

)}

1

pik4
∑

j∈J xijk5
∑

j∈J xijk

}

0 (14)

To apply Proposition 2 we need to compute H4�5 for any
given vector of multipliers �. This computation itself can
be challenging because of the extremely large number of
variables ut

jk and constraints (6). Indeed, for the instances
we consider in §6 where there are 7 yield scenarios and 10
potential process locations, the commercial ILOG CPLEX
solver ran out of memory at the preprocessing stage (see §6
for a description of the computational resources used). Note
that any other approach to deal with the nonlinear produc-
tion cost—e.g., a piecewise linear approximation—would
also face this issue. To deal with this, in the next section
we describe the procedure we used to reduce the number
of constraints.

4. Constraint Set Reduction
As mentioned, for real-size instances, the SYCPLP is com-
putationally intractable due to memory requirements. In
fact, the number of scenarios �Tk� is O4n

�I �
k 5, where nk is the

average number of yield scenarios across processes for
product k. In other words, the number of variables ut

jk

and constraints (6) increases exponentially with the num-
ber of processes �I �. To reduce the constraint set, we take
advantage of the probabilistic structure of the problem.
First, we aggregate constraints (6) over all scenarios for a
given w

ti
i , and then we divide the inequality by Pr4wti

i 5.
This transformation yields a reduced model with fewer con-
straints/variables denoted SYCPLP-R and for which Propo-
sition 2 continues to hold. Below we provide the complete
formulation of SYCPLP-R for a given vector of multipli-
ers �. Note that in this formulation it is convenient to
redefine the variable xijk to be the fraction of demand djk

processed by process i.

SYCPLP-R min
∑

i∈I

eizi +
∑

i∈I1k∈K

fikyik

+
∑

i∈I1j∈J 1k∈K

4cijk +�ik5djkxijk

+
∑

i∈I1k∈K

�ik4�
−1
ik 4�ik5qik − vik5

+
∑

j∈J 1k∈K

gjkdjkūjk1 (15)
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subject to
∑

j∈J 1 k∈K

akdjkxijk +
∑

k∈K

bkyik ¶ sizi

∀ i ∈ I1 (16)
∑

j∈J

djkxijk¶Biyik ∀ i∈ I1 k∈K, (17)

vik ¶
∑

j∈J

djkxijk ∀ i ∈ I1 k ∈K1 (18)

vik ¶ Biqik ∀ i ∈ I1 k ∈K1 (19)

ūjk =
∑

ti∈Ti

Pr4wti
k 5u

ti
jk

∀ j ∈ J 1 k ∈K1 (20)

w
ti
ikxijk+

∑

l∈I\8i9

Ɛ6wlk �w
ti
ik7xljk+u

ti
jk¾1

∀ j ∈ J 1 k ∈K1 i ∈ I1 ti ∈ Ti1 (21)

xijk1 ūjk1 u
t
jk ¾ 01

∀ i ∈ I1 j ∈ J 1 k ∈K1 t ∈ T 1 (22)

yik1qik1zi ∈80119 ∀i∈ I1k∈K0 (23)

Note that the variables ūjk and u
ti
jk in the formulation

above have a direct probabilistic interpretation. Indeed, let
Ujk be the random variable that represents the amount of
unmet demand for product k at market j . Then ūjk rep-
resents the expected unmet demand Ɛ6Ujk7, and constraint
(20) is an application of the law of iterated expectations
with u

ti
jk = Ɛ6Ujk � w

ti
ik7. Given the applied nature of our

model, this reduction is of immense practical importance
because it provides a substantial reduction in the number
of constraints and variables. In fact, consider a product k;
then for each market j there are �Tk� constraints (6) in
model SYCPLP (which is equal to çi∈I �Tik� if the yields
are independent). On the contrary, there are only

∑

i∈I �Tik�
constraints (21) in model SYCPLP-R. To illustrate the dif-
ference, suppose there are 10 independent processes and
�Tik� = 51 ∀ i ∈ I . Then for product k, the cardinality of con-
straint (6) is 510 ≈ 1010001000 compared to only 50 con-
straints (21).

If required in an application, the reduction SYCPLP-R
can be tightened even further by using alternative partitions
of the scenario space Tk to obtain other valid cuts similar
to constraints (20) and (21). This constraint generation can
be done incrementally in a way that resembles the seminal
cutting-stock problem (Gilmore and Gomory 1961). The
approach is outlined in the electronic companion. Finally,
the following proposition confirms that the reduced prob-
lem SYCPLP-R effectively provides a lower bound to the
original subproblem.

Proposition 3. The reduced problem SYCPLP-R is a
relaxation of SYCPLP. Therefore, the former provides a
lower bound for the latter.

In our implementation, we solve SYCPLP-R to obtain
feasible solutions to the SYCPLP (see §5), and per Propo-
sition 3 we have a lower bound to assess the performance

of the heuristic solutions. Computing this lower bound took
at most eight hours for the real-size instances at the food
processing company; see §6. However, because SYCPLP-
R is still a facility location problem, for other applications
it can be a hard to solve. In that case, further decomposi-
tions such as Lagrangian relaxation (Geoffrion 1974, Fisher
1981) might be necessary. The details on how to decom-
pose SYCPLP-R are available from the authors.

5. Practitioners, Greedy, and LP-Based
Heuristics

This section focuses on calculation of feasible solutions for
the SYCPLP. Because the latter has a number of constraints
that is exponentially large, the heuristics described below
are applied to the reduced problem SYCPLP-R, and the
solutions found are then evaluated in the objective function
of the SYCPLP. This evaluation is easily done by recom-
puting the penalty in the scenarios with unmet demand.
Because the SYCPLP is a minimization problem, these fea-
sible solutions provide upper bounds.

In what follows we describe a heuristic used by practi-
tioners at this food processing company. Then we develop
a greedy approach that fixes the location decision and
solves the remaining subproblem. Finally, we propose an
LP-based heuristic, which starts with the solution of the
LP-relaxation and provides a feasible solution by iteratively
fixing the location variables. In the electronic companion
these heuristics are formalized in pseudo-code.

5.1. Practitioners Heuristic

To decide which processes to open, the company uses
a straightforward approach that we call the practitioners
heuristic (PRAC) in which all processes are sorted by
their capacity-to-fixed-cost ratios, and then processes are
opened sequentially until total market demand is met. Then,
to assign products and markets to a process, all market-
product combinations 4j1 k5 ∈ J × K are sorted by their
demand. After that, these combinations are assigned to
the process location with least transportation costs. If the
remaining capacity ri of the closest process location i is
not sufficient to cover demand in the worst yield scenario,
then the portion unmet is assigned to the next closest pro-
cess location. Note that the practitioners heuristic does not
explicitly take into account economies of scale in produc-
tion, penalties, or inclusion costs.

5.2. Greedy Heuristics: ADD and DROP

Well-known construction heuristics for facility location
problems are the so-called ADD and DROP heuristics,
which can be applied to the SYCPLP-R as well. Starting
from a solution with all processes closed, the basic idea
of the ADD approach is to open iteratively one new pro-
cess and solve the remaining subproblem. The process that
provides the highest gain in the objective is opened perma-
nently. The algorithm will open one additional process in
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each loop if this improves the best known solution and will
terminate if no further improvement is possible. A second
greedy approach, the DROP heuristic, could also be applied
to the SYCPLP-R. In contrast to the ADD approach, it
starts with all processes open and closes iteratively the one
that provides the highest reduction in the objective value.

5.3. LP-Based Heuristic

One drawback of the greedy heuristics is that they can
be computationally intensive when there is a medium to
large number of processes that can be opened. We con-
struct an LP-based heuristic as an alternative way to find
upper bounds for the SYCPLP-R. In the first step of this
heuristic we relax the integrality condition for the process
variables zi, then solve the remaining problem and provide
a feasible solution by rounding the nonintegral z∗

i to 0 or 1.
In the second step, we improve the solution through local
search. These steps are described in detail below.

Step I. When the process binary variables zi are relaxed,
the remaining problem still has the product inclusion binary
variables yik, but in our case this is not a challenge because
the inclusion costs are relatively small compared to the
fixed cost of opening a process. In fact, the ratio fik/ei is in
the order of 10−2 for all pairs 4i1 k5. Therefore, the relaxed
problem can be solved using a commercial MIP solver
(ILOG CPEX in our implementation). Often, this solution
is not feasible for SYCPLP-R. Therefore, it is crucial to
identify a rounding rule that provides a good feasible solu-
tion. The simplest rounding rule is to set every z∗

i ¾ 005 to
1 and the remaining z∗

i to 0. After that, the remaining sub-
problem can be solved and a feasible solution is obtained.
Experimental evidence in Wollenweber (2008) shows that
better results can be achieved using an iterative approach
that fixes only one variable in each iteration. For that we
suggest the following rounding rule: set the largest nonin-
tegral variable z∗

i to 1 if its value is higher than a certain

Figure 2. Examples for the yield distribution (left) and the nonlinear production cost function (right). The axes of the
latter have been scaled.
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threshold �; otherwise, the z∗
i with the smallest value is set

to 0. The underlying assumption is that the fractional value
of z∗

i is a good indicator of the “worthiness” of opening
process i, and the cutoff � determines the set of processes
worth opening and those worth closing. The parameter �
should not be too high because any positive z∗

i that has
not been fixed indicates there is still some unmet demand
(in our numerical experiments we used � = 001). Because
in each iteration one additional location variable is fixed,
step I needs no more than �I � iterations in total.

Step II. Once a feasible solution is obtained in Step I, we
try to improve it by doing a local search. Specifically, given
the incumbent solution, let the ADD-neighborhood be all
the solutions with one additional process open. The local
search consists in exhausting the ADD-neighborhood until
a local optimum is reached, which then becomes the incum-
bent solution. For each new incumbent solution, a new
ADD-neighborhood is generated, and the local search is
repeated until no further improvements are made. In our
implementation we tested other types of local variations of
the incumbent solution, such as dropping one process or
swapping two processes, but the additional computational
effort did not pay off.

6. Computational Study
The first step in convincing the large food processing com-
pany to implement our methods was to test and vali-
date our heuristics and bounds using real data provided
by this company. The test data included all input data
required by the model for a 10-process, 30-product, 20-
market problem. The random yields for each combination
of product and process were given by a discrete distribution
with seven scenarios. The distributions were independent
across processes and products. Figure 2 shows an example
of the discrete yield distributions considered. This figure
also illustrates the concave shape of the production cost
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Table 1. Three data sets considered: small, medium,
and large.

No. of No. of No. of
Instance processes, �I � markets, �J � products, �K�

Small 4 10 8
Medium 10 10 8
Large 10 20 30

functions in the data set. The cost for opening a process ei
ranged from $30 to $60 million, while the inclusion cost fik
ranged from $100 K to $500 K per product. The average
transportation cost cijk ranged from $75 to $250 per unit
depending on market destination, and the setups bk ranged
from 0.5% to 20% of average process capacity.

We also considered a small and a medium-size version
of the original instance in which we reduced the num-
ber of processes, customers, and/or products. This way, we
obtained three data sets that are described in Table 1. For
each one of the three data sets we modified the capacity
and penalty parameters in order to explore a wider range
of instances. For that, we defined the following two ratios:

CR =

∑

i∈I si
∑

j∈J 1k∈K djk

1 PR =

∑

j∈J 1k∈K djkgjk
∑

j∈J 1k∈K djk

/∑

i∈I ei
∑

i∈I si
0

The capacity ratio (CR) measures the capacity availabil-
ity with respect to total demand. In the original data, the
value of this ratio was 4.4. To test other possible values, we
rescaled the capacities to obtain instances with CR equal
to 1.5, 2.0, and 4.0. The penalty ratio (PR) measures the
average penalty cost with respect to the average unit cost
of capacity. Based on discussion with the food processing
company, we adjusted the penalty parameters and consid-
ered three possible values for PR: 1.0, 1.5, and 5.0.

Given all the possible combinations described above, in
total we obtained 3 × 3 × 3 = 27 instances. The algorithms
and procedures described in the previous sections were
coded in C Sharp (C#). The computational tests were run
on a workstation with a 2.4 GHz Intel Core2Duo T7700
processor, 2 GB of RAM, and Windows XP Service Pack 3
as the operating system. For the MIP subroutine calls we
used ILOG CPLEX 11.1 with a maximum running time
of 200 seconds per call. Furthermore, in the linearization
approach we allowed for only 15 subgradient iterations.

Table 2 summarizes the results obtained for the 27
instances considered. The performance of the heuristics are
presented in terms of the suboptimality gap with respect
to the lower bound obtained from Proposition 3. The first
three columns in Table 2 describe the instances. The fourth
column reports the gap obtained with the practitioner’s
heuristic PRAC (see §5), which requires a negligible com-
putational effort and represents the solution that was in
practice. Columns five and six show the gap and running
time of the ADD greedy heuristic, which consistently out-
performed the DROP heuristic. Therefore, we do not report

Table 2. Suboptimality gap with respect to the
SYCPLP-R lower bound for the three heuris-
tics: PRAC, ADD, and LP-based.

PRAC ADD Time LP-based Time
Instance PR CR (%) (%) (sec) (%) (sec)

Small 100 105 3603 406 19 401 47
100 200 3808 103 6 103 40
100 400 5000 1505 2 1506 124
105 105 2909 206 23 109 37
105 200 3301 503 18 506 48
105 400 4407 1001 2 1002 57
500 105 2607 506 242 1101 103
500 200 2907 402 26 304 72
500 400 4002 700 2 700 33
Minimum 2607 103 2 103 33
Maximum 5000 1505 242 1506 124
Average 3606 602 38 607 62

Medium 100 105 4308 006 24 008 69
100 200 4305 102 39 102 65
100 400 4106 306 22 309 133
105 105 3209 108 708 105 21145
105 200 3306 201 622 108 162
105 400 3002 109 63 200 139
500 105 2705 501 181069 504 31015
500 200 2800 501 131574 504 11434
500 400 2306 1109 778 1300 55
Minimum 2306 006 22 008 55
Maximum 4308 1109 181069 1300 31015
Average 3309 307 31767 309 802

Large 100 105 4807 504 181406 608 61951
100 200 4805 702 101503 509 41987
100 400 4800 1601 21281 1406 41167
105 105 4306 509 231240 603 81408
105 200 4302 604 201606 604 61022
105 400 4204 1409 21371 1304 31239
500 105 3705 2504 201696 1407 81489
500 200 3700 708 231840 800 81538
500 400 3207 807 51652 1003 51704
Minimum 3207 504 21281 509 31239
Maximum 4807 2504 231840 1407 81538
Average 4204 1009 141177 906 61278

the latter. The gap and running time for the LP-based
heuristic are shown in columns 7 and 8. In each row, the
suboptimality gap in boldface represents the lowest one
among the PRAC, ADD, and LP-based heuristics.

Several observation can be made from Table 2. First,
although the practitioner’s heuristic PRAC is computation-
ally very fast, the suboptimality gaps are large, especially
compared to the other two heuristics. Second, for the small
and medium-size instances, the ADD heuristic achieves
slightly better gaps than the LP-based, but many times it
is at the expense of a significantly higher computational
effort. Third, for the large instances, the LP-based heuristic
seems to dominate the ADD approach because on average,
the LP-based heuristic achieves smaller gaps than the ADD
approach, and it is also faster. Recall that the LP-based
heuristic performs no more than �I � iterations in Step I
plus a few local interchanges in Step II, whereas the ADD
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greedy approach solves a number of subproblems that is
anywhere in between �I � and �I �2/2. That explains why
the running time for the LP-based heuristic spans a much
narrower interval than the ADD approach. The fact that
for large instances the LP-based heuristic also achieves a
smaller gap confirms that the LP relaxation, i.e., remov-
ing the integrality constraint for the zi variables, provides a
good starting point to generate feasible solutions in location
problems. Similar observations have been reported in the
literature (see, for instance, Barahona and Chudak 2005,
Wollenweber 2008). For the three data sets, the running
times in Table 2 tend to increase as PR increases and CR
decreases. In other words, as the penalty increases and the
capacity is tightened, the process location problem becomes
more challenging. The LP-based heuristic is again notewor-
thy because across the 27 instances in Table 2 it achieved
a gap lower than 16% in less than 2.5 hours.

To reduce the suboptimality gap below 10% and con-
vince the management at the food processing company
about the efficacy of our methods, we used a branch-and-
bound (B&B) procedure that was able to narrow the gap
in all the large instances with an average and maximum
final gap of 5.4% and 8.1%, respectively (the details of
the B&B procedure are available in the electronic com-
panion). The small gaps achieved indicate that the feasi-
ble solutions obtained are near optimal, and it also means
that the lower bound is tight. This observation was crit-
ical in providing confidence to the management that our
approach not only could improve upon current procedures
but also had a measure of optimality attached to it. This
performance assessment in turn convinced them to imple-
ment the LP-based heuristics and its insights as described
in the next sections. The small gaps also show that the
constraint aggregation method based on the law of iterated
expectations presented in §4 was quite effective for the 27
instances considered above. For these instances we did not
have to strengthen the reduced problem SYCPLP-R with
the inclusion of additional cuts. However, it could be nec-
essary for larger penalty values because the unmet demand
converges faster to zero in the reduction SYCPLP-R than
in the original problem SYCPLP, which adds to the sub-
optimality gap. This situation is illustrated through a small
numerical example in the electronic companion.

To conclude this section, in Table 3 we compare the solu-
tions obtained with the PRAC and LP-based heuristics for
the large instance with PR = 500 and CR = 400. Because

Table 3. Comparing the PRAC and LP-based solutions for the large instance with PR = 500 and CR = 400.

Total savings breakdown of LP-based solution
(cost component savings as a fraction of total savings) (%)

Processes Products per Expected unmet
Heuristic open process demand Opening Inclusion Production Shipping Penalty

PRAC 3 22.4 0.0 — — — — —
LP-based 3 11.3 2.0 8 13 84 7 −12

Notes. The last five columns show the cost component savings as a fraction of the total savings achieved by the LP-based solution. Penalty
costs increase, so it has a negative contribution.

the capacity ratio in the original data was approximately
4.0, the PRAC heuristic applied to this scenario provides
the solution in practice prior to this project. The second col-
umn in Table 3 shows that both heuristics need to open only
three processes to accommodate production. The reason is
that the processes in this instance have ample capacity as
measured by the CR ratio. Interestingly, there is only one
process in common among those that are opened by each
heuristic. In fact, while the PRAC heuristic opens the three
processes with the lowest capacity-to-fixed-cost ratios, the
LP-heuristic opens processes with slightly higher ratios but
lower capacity so the total fixed cost decreases. Although
the overall number of processes is the same in both cases,
the third column in Table 3 shows that the LP-based solu-
tion assigns less products per process than the PRAC solu-
tion. This allocation is because the PRAC heuristic does not
incorporate economies of scale, and also because it aims to
cover demand in all possible yield scenarios, as shown in
the fourth column. The last five columns show the break-
down of the total cost savings obtained by the LP-based
solution. Because the penalty costs increase compared to
the legacy PRAC solution, it has a negative (−12%) con-
tribution to savings. However, this is largely offset by the
reduction in all the other cost components. In particular,
13% of savings come from lower inclusion costs, 84%
comes from lower production cost. Remarkably, the LP-
based solution also achieves savings in terms of shipping
costs. At first sight, this could be counterintuitive because
concentrating production means that some products travel
a longer distance to reach market. Although this does hap-
pen, the total volume being shipped also decreases, as it
attempts to cover only 98% of demand on average (here
the average is across yield scenarios). The reduction in vol-
ume outweighs the higher per-unit cost, which explains the
overall decrease in shipping costs.

Despite the increase in penalty costs, allowing for a very
small fraction of unmet demand and concentrating produc-
tion to take advantage of economies of scale pays off, as
shown by the performance of the LP-based heuristic in
Tables 2 and 3. This trade-off is absent in the PRAC heuris-
tic because it aims to cover demand in the worst yield
scenario, which happens with very low probability. The
results of the computational study just described motivated
the company to adopt the LP-based heuristic. The outcome
of this implementation is described next.
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7. Application and Discussion

7.1. Model Implementation

The methods described in the paper were applied at the
large multinational food processing company described
in §1. The problems considered by the company were com-
parable to the large instance described in §6. The model
was run using ILOG CPLEX to execute the first step of the
LP-based heuristic and a specialized C++ program to exe-
cute the second step. These programs were integrated using
Microsoft Visual Basic, which also provided an Excel-
based interface to input the data and export the results. The
model was maintained by the strategic operations depart-
ment at this company and run by the senior managers, such
as the director and assistant director at this department, who
had been involved in all aspects of this project.

The LP-based heuristic was used to solve the model
for several critical product families and processes chosen
by the management. Based on this analysis, several prod-
ucts were reassigned to different processes, some processes
were closed and consolidated to other plants. For exam-
ple, before this project there were 14 refining processes
in all of the 14 plants in Northern Europe. Based on the
recommendations of this model, 5 smaller processes were
moved to the larger plants, so that they currently operate
with 9 processes across these 14 plants. Also, 15 products
were reassigned across processes based on the results of
the model to reduce switchover times and achieve greater
economies of scale. Further product/process assignments to
several markets were suitably changed. It is worth noting
that the company ran the LP-based heuristic under different
scenarios and then selected a solution that was modified
to accommodate business conditions not captured by the
model. For instance, the management decided to open 5
more processes to have some redundancy in case of dis-
ruptions or because it envisioned certain growth opportuni-
ties in the short term. The company estimates the overall
annual cost savings in using our approach to be at least
10%, or $50 million. These numbers were calculated using
estimates of the total costs one year before and one year
after the implementation of the recommendations of this
model at each plant and then aggregating these costs across
all plants.

7.2. Sensitivity Analysis: Managerial
Insights on Process Choice

In addition to the implementation aforementioned, we used
the LP-based heuristic to generate some managerial insights
on process choice, which have directly influenced decision
making of the top management and have led to signifi-
cant strategic and organizational impact. To better under-
stand the impact of process variability on process choice,
we split the choice of processes under two categories: high
variability processes with coefficient of variation (COV) of
the yield distribution at 33%, and low variability process

with the COV at 3%. To isolate the impact of variability,
we made sure the split between the high and low vari-
ability processes were not correlated to the capacity lev-
els and, we changed only the standard deviations of the
yield distributions. We found that when the per-unit capac-
ity costs were the same across processes, then low variabil-
ity processes were preferred to those with high COV. When
the per unit capacity costs increased with process capac-
ity, we found that processes with higher per-unit capacity
cost and low variability were preferred over processes with
lower per-unit cost but high COV. This happens because
the reduction in penalty costs for unmet demand com-
pensates for the increased per-unit capacity costs, and it
illustrates the importance of variability reduction in these
processes. Finally, if the goal is to reduce the total number
of processes or fixed costs, then variability reduction should
be targeted at the highest volume processes. This insight
was particularly useful to the management of this company
because this showed a direct link between decreasing vari-
ability and fixed cost reduction, a relationship that is useful
in justifying further variability reduction schemes such as
increased automation and more effective process control.

To further assess the impact of capacity costs on process
choice, we used the same yield distribution across all the
processes and considered the case when per-unit capacity
costs decreased with process capacity. Our analysis showed
that the processes with highest capacity and lowest per-unit
costs were preferred. This observation was consistent with
the management view of developing high-volume processes
to the extent possible. However, in some plant locations,
due to scarcity of existing space, adding another process
would entail significant investments in real estate. This fact
leads to per-unit capacity costs that increase with process
capacity. Under this scenario, we would still pick the pro-
cesses with lowest per-unit costs, but as expected, more
processes must be opened to meet the same demand level.

We next wanted to analyze the impact of product
switchover times bk on process choice. We found that as
switchover times increased as a percentage of average pro-
cess capacity, more facilities are opened to compensate for
these switchover times and avoid backorder penalty costs.
Furthermore, this also led to consolidation of products to
processes to the extent possible.

To understand the impact of economies of scale on
product choice, we systematically increased the degree of
concavity of the production curve for a particular prod-
uct across all the processes, which led to lower marginal
costs at higher volumes or higher economies of scale. As
expected, this showed consolidation of products across pro-
cesses. However, what was interesting is that the number
of open processes itself did not change. Management was
intrigued by this insight because they had always felt the
production characteristics were a key driver to the num-
ber of processes. This analysis showed that one could be
responsive to the market if necessary by producing prod-
ucts with lowered economies of scale without increasing
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the fixed costs of product allocation, as long as one is care-
ful about how these products are allocated to processes.

7.3. Qualitative Impact

Our sensitivity analysis on how process variability affects
process choice had a significant impact on the policies of
this company. Although the benefits of variability reduc-
tion for a single process were well known to the com-
pany, in part due to the influence of lean production and
Six Sigma, its impact on process choice was less well
understood. After our project, variability reduction initia-
tives have been prioritized to start with high volume pro-
cesses in order to reduce total fixed investments at this
organization. Furthermore, process improvement and prod-
uct development teams now work closely in an integrative
manner as the importance of reducing process variability
concurrently with new product introduction became appar-
ent after this research. In the medium term, management
has also asked process engineering to reduce switchover
times at key processes. They now believe this is criti-
cal to reducing backorder and distribution costs. Addition-
ally, this allows this organization to be more responsive to
customers, which is crucial in maintaining customer ser-
vice levels, market share, and long-term profitability. Over-
all, management estimated that the return on investments
resulting from these changes was on average 4%, vary-
ing from 3% to 5% across various product families. This
improvement is significant given that products are com-
modities with market-defined prices and small margins, and
consequently, making continuous improvements matters to
remain competitive in the long run.

While management was intrigued by our analysis relat-
ing to the impact of capacity costs on process choice, they
felt that it might not be feasible to achieve such decreases
in per-unit capacity costs in the medium term because that
would require substantial investments in new technology
or increases in existing capacity. Their preference was to
reduce process variability and do more with less capital
investment in the process. Similarly, after discussing with
R&D, they found that it might not be feasible to alter pro-
duction characteristics of the product without substantial
investments. Therefore, they decided not to alter the prod-
uct design decisions at this time.

The organizational impact of this model has been sig-
nificant. Initially, decisions on process location and prod-
uct and market choice were based on subjective opinion,
seniority, and anecdotal evidence. Furthermore, there was
considerable skepticism about whether a structured and rig-
orous approach would improve on current practice, mostly
because the managers at this organization were not famil-
iar with OR-based methodologies. Furthermore, they felt
that an analytical approach could not sufficiently capture
all the aspects of what they considered to be an immensely
complicated problem. A key step in convincing them about
the efficacy of our method was to run the model in par-
allel to their manual approach. This process enabled them

to understand how and why our model outperformed their
methods and to more broadly accept that OR as an effec-
tive discipline to deal with complexity. As a direct conse-
quence of this project, the strategic operations department
at this company is actively identifying complicated prob-
lems across various functions in this organization that can
be modeled and solved using OR-based methodology.

Going forward, the management at this company has
decided to use our model at least once in six months
to compare the existing decisions on which process are
opened and the allocation of products to processes and mar-
kets. The purpose is to compare the costs of the model and
existing decisions and see how this could be reconciled.
This procedure will also be repeated at all major change
points that involve introducing a new product or acquisition
of a new company. We expect this organization to sustain
and improve the use of our framework several years into
the future.

8. Conclusions
In this paper, we consider the process location and product
distribution problem with uncertain yields typically found
in several process industry sectors. In this problem, we
choose the location of processes, the assignment of prod-
ucts to these processes, and the transportation of production
quantities to markets in order to minimize total expected
costs. This problem is very challenging due to character-
istics that are unique to the process industry sectors such
as economies of scale, large product switchover times, and
yield uncertainty.

We model this problem as a nonlinear mixed-integer pro-
gram. The complexity of this problem precludes its solution
using even the most powerful commercial solvers. There-
fore, we develop three heuristics to solve this problem. The
first is a practitioners heuristic that opens processes with
the least ratio of capacity to fixed costs and allocates prod-
ucts to process locations that minimize transportation costs.
The second heuristic is a greedy procedure, and the third
one is LP-based.

We develop a lower bound to assess the quality of the
heuristic solutions. To circumvent the nonlinearity of the
objective function, we derive a strong duality result that
allows us to solve the nonlinear problem iteratively as a
sequence of linear MIPs. Because this problem is still hard
to solve due to the exponential number of yields scenarios,
we propose a technique using the law of iterated expecta-
tions to aggregate the constraint set.

To test our methods, we used real data from the leading
food processing company that motivated this project. Our
computational study is encouraging. For the large instances
we obtained solutions within 8.1% of the lower bound in
the worst case and within 5.4% on average. The compu-
tational running times were within seven hours, which is
reasonable given the complexity of the problem.

The LP-based heuristic has been used by this company
to assess their product choice and product allocation
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decisions. In particular, this has led to products being
reassigned, processes being closed at some plants and
consolidated at other plants. In addition, there has been
change in the assignment of process/product combination
to markets, which has led to annual savings of 10%, or
$50 million. In addition, this heuristic has generated sev-
eral managerial insights. These include understanding the
relationship between process choice and critical aspects
within a process such as process variability due to yield
uncertainty and switchover costs, and the relation between
process choice, capacity costs, and product allocation deci-
sions. Some of these insights have directly influenced the
decision making of the top management and have conse-
quently had significant strategic and organizational impact.

This paper opens up several opportunities for future
research. First, further work could be done to improve
the heuristics and lower bound to reduce the suboptimal-
ity gap. Second, although not relevant in our application
context, this problem could be extended to include the loca-
tion of warehouses between processing plants and markets.
Third, another extension would include multiple time peri-
ods with inventory constraints at the different locations,
which could be important in other settings. Undoubtedly,
both of these extensions would require significant modi-
fications to the computational methods to solve the gen-
eral problem. Finally, our model could be applied in other
industrial contexts. We are currently exploring this possi-
bility in the pharmaceutical industry.

Electronic Companion

An electronic companion to this paper is available as part of the
online version at http://dx.doi.org/10.1287/opre.1120.1087.

Endnotes

1. For confidentiality due to the strategic nature of our work, the
company has not been disclosed. However, verification of this
work has been provided by the company to the department editor.
2. There is a lower decision level that deals with the production
sequence within a six-month time window; see Rajaram and Kar-
markar (2002). However, this decision level is too granular for
our model’s purpose.
3. Most variable cost functions used in practice satisfy these con-
ditions, e.g., C xa with 0 < a < 1, which follows from a Cobb-
Douglas production model with the sum of technology factors
greater than one.
4. From this property we can assume that ut

jk is bounded by
djk ∀ j1 k1 t.
5. To be precise, constraint (9) needs only to be dualized for
those pairs 4i1 k5 for which pik4 · 5 is nonlinear.
6. Because p4v5= �4v5v, it follows that p4�−14�55=��−14�5.
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