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Abstract

We study a microprocessor company selling short-life-cycle products to a set of buyers that

includes large consumer electronic goods manufacturers. The seller has a limited capacity for

each product and negotiates with each buyer for the price. Our analysis of their sales data

reveals that larger purchases do not always result in bigger discounts. While existing theories

cannot explain this non-monotonic pattern, we develop an analytical model and show that the

non-monotonicity is rooted in how sellers value capacity when negotiating with a buyer. Large

buyers accelerate the selling process and small buyers are helpful in consuming the residual

capacity. However, satisfying mid-sized buyers may be costly because supplying these buyers

can make it difficult to utilize the remaining capacity, which is too much for small buyers but not

enough for large buyers. We briefly discuss the implications for capacity rationing and posted

pricing and potential applications to other industries.

[Keywords: data-driven; revenue management; pattern analysis; bargaining; semiconductor]
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1 Introduction

Price and quantity are the most common business concepts. While conventional wisdom suggests

that larger purchase quantities are generally associated with lower prices (e.g., Spence 1977, Oren et

al. 1982, Jeuland and Shugan 1983, and Weng 1995), our empirical observations raise doubts. In this

research, we interacted with managers of a large semiconductor company and obtained a sales data

set that spans a three-year period. As we examine the data, we observe some compelling instances

wherein larger-quantity buyers pay higher prices. Five such examples are illustrated in Table 1.

For each of the five products, we sort buyers about equally into three groups—small, medium, and

large—according to their total purchase quantities. We then calculate the average price received by

each group by summing the total purchase value and dividing it by the total quantity. Interestingly,

the average price received by the medium-quantity group is less than those obtained by the other

two groups. Further, the large-quantity group received the highest average price in four of the five

examples. In fact, many other “anomalies” are observed beyond the five examples. In particular, if

we rank buyers of a product according to their total purchase quantities, we find that in about 26%

of the cases, a buyer pays a higher average price than a neighboring, smaller-quantity buyer does.

These pricing “anomalies” may lead to overall non-monotonic price patterns for some products. In

order to check whether a non-monotonic price-quantity relation generally exists, we conduct more

rigorous analyses in this paper, both empirically and analytically.

In the first step, we use a set of linear and nonlinear regressions to control for other possible

influences on price. Although total payment increases with total quantity in almost all cases, the

Table 1: Quantity-Weighted Average Price for Three Customer Segments

Product Category
Number of
Customers

Lifespan
(year)

Small Amt.
Avg. Price

Medium Amt.
Avg. Price

Large Amt.
Avg. Price

1
Desktop

CPU
40 2.77 $ 58.38 $ 55.32 $ 58.78

2
Desktop

CPU
5 0.98 $ 29.13 $ 27.45 $ 45.01

3
Desktop

CPU
6 0.90 $ 27.54 $ 25.33 $ 28.46

4
Desktop

CPU
11 0.86 $ 92.50 $ 91.06 $ 93.43

5 Memory 9 0.87 $ 2.59 $ 2.47 $ 2.51
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discount received by a buyer is statistically a non-monotonic function of the buyer’s demand share

(or relative size) for a product. Specifically, the discount increases with demand share for small

quantities. However, as demand share increases, the discount decreases and then increases again. In

brief, we observe an N-shaped discount curve, which cannot be explained by the existing literature.

To gain a deeper understanding of the observed phenomenon as well as to provide a theoretical

justification, we then develope an analytical model that is largely based on the practices of the

company we are studying. We use the model to investigate the price-quantity relation in a business-

to-business (B2B) market where the product life cycle is short, capacity is inflexible, and prices

are set through one-shot negotiations. Our model suggests that the non-monotonic price-quantity

relation is rooted in how the seller values the capacity when negotiating with a buyer. Large buyers

accelerate the selling process and small buyers are helpful in consuming the residual capacity.

However, satisfying mid-sized buyers may be costly because supplying these buyers can make it

difficult to utilize the remaining capacity, which is too much for small buyers but not enough for

large buyers. Technically, a value function for the remaining capacity that is first convex and then

concave (or S-shaped) is sufficient to lead to a non-monotonic price curve. Such a value function

can arise quite naturally in practice because demand is expected to be finite and thus capacity is

valuable neither too higher nor too lower than the expected demand. Finally, we show that our

model fits the data better and it can yield the price-quantity curves found in the data.

Knowledge gleaned on the price-quantity relation will be useful in B2B markets that have

similar economics to the semiconductor industry, where capacity is finite and inflexible and prices

are negotiated. Due to the impact of one transaction on subsequent transactions, it is important

for the seller to control the capacity allocated to each buyer, if possible, prior to price negotiations.

To optimize the trade-off between the profit from the current buyer and that from future buyers,

a good understanding of the price-quantity relation is necessary. This knowledge will also help the

seller optimize the posted price, which balances the profit between buyers who choose to take the

price and those who choose to bargain.

The rest of this paper is organized in the following way. We present a brief literature review in

Section 2. In Section 3, we introduce the industry and firm practices. In Section 4, we show our

empirical observation through linear and nonlinear regressions. We then build a model in Section

5 and analyze the problem in Section 6. We discuss the managerial implications of our finding in
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Section 7 and conclude in Section 8. All the proofs are in the electronic companion.

2 Related Literature

Our work is related to four areas of research. The first area is about the quantity-discount pricing

policy. In the operations manangement and marketing literature, quantity-discount pricing policy

has been widely studied as a tool for price discrimination (e.g., Spence 1977 and Oren et al. 1982)

and channel coordination (e.g., Jeuland and Shugan 1983 and Weng 1995). In these papers, it

is assumed that one party will offer the contract in a take-it-or-leave-it fashion and buyers with

greater demand receive lower prices. Assuming that one party has full bargaining power simplifies

the analysis, but it also ignores prevailing practices in which buyers negotiate. Our study assumes

that the seller does not have the power to dictate the price for every buyer.

The second related area is B2B price bargaining. In the marketing literature, Kahli and Park

(1989) analyzed a two-party bargaining problem wherein the inventory policies of the seller and the

buyer are described by a simple economic order quantity (EOQ) model and they showed that the

optimal discount increases with purchase quantity. In the economics literature, Snyder (1998) and

Chipty and Snyder (1999) discussed the impact of buyer demand size on price discount. Snyder

(1998) showed that when many suppliers compete to sell to one buyer at a time in a repeated

game, the price offered to the seller in equilibrium initially increases with buyer size and then

decreases with buyer size. However, the result requires that suppliers cooperate and buyers appear

sequentially over an infinite horizon, which are both very strong assumptions in supply chains.

More importantly, our data exhibits a more complicated price pattern that is not explained by

their model. In a very different setting from ours, Chipty and Snyder (1999) showed that a merger

enhances (worsens) buyers’ bargaining position if the supplier’s payoff function is concave (convex)

in total transaction size.

Other studies on B2B bargaining have assumed that the size of the pie is given and explored

how the pie is allocated among channel members. While Dukes et al. (2006) and Lovejoy (2010)

focused on the impact of channel structure, Nagarajan and Bassok (2008) considered suppliers

in an assembly chain who form multilateral bargaining coalitions and compete for a position in

the bargaining sequence. We supplement this branch of literature by considering a seller that
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sequentially negotiates with a group of buyers, investigating the impact of a buyer’s relative quantity

size both empirically and analytically, and discussing the plausibility and possible implications of

the non-monotonic discount curve.

Our research is also related to revenue management. Kuo et al. (2011) is the first paper

to study revenue management for limited inventories when buyers negotiate. They considered a

dynamic setting with fixed compositions of price-takers and bargainers and assumed that each

buyer only buys one unit of the product and that the posted price is updated frequently. The

authors characterized the optimal posted price and the resulting negotiation outcome as a function

of inventory and time. They also showed that negotiation is an effective tool to achieve price

discrimination. In contrast, our paper considers a dynamic, capacity-rationing problem in a B2B

market in which buyers request different quantities and quantities influence prices. Our work is

also related to research on dynamic and stochastic knapsack problems that study the optimal

admission or pricing policies with limited capacity. Talluri and van Ryzin (2004) categorize this

type of problems as revenue management with group arrivals but they offer no solutions. While

early studies such as Gallego and van Ryzin (1994) and Kleywegt and Papastavrou (1998) showed

that the optimal expected revenue is concave in capacity if all demands require the same amount

of resources, Kleywegt and Papastavrou (2001) showed that concavity does not hold in general

when demands are heterogeneous, which provides support for our analysis. However, Kleywegt and

Papastavrou (2001) focused on characterizing the conditions under which concavity holds, and we

focus on characterizing the property of the value function under which the price-quantity relation

is non-monotonic.

Lastly, our research is related to capacity management in the semiconductor industry. Wu et

al. (2005) provide a good review of the literature on capacity planning in the high-tech industry. In

the specific setting of semiconductor industry, Karabuk and Wu (2003) studied how to cope with

both demand and capacity uncertainties and coordinate marketing and manufacturing decisions in

strategic capacity planning. Cohen et al. (2003) proposed a model to estimate the imputed costs

of a equipment supplier in deciding the timing of production. Terwiesch et al. (2005) empirically

studied the demand forecast sharing process between a buyer of customized equipment and a set of

equipment suppliers. Karabuk and Wu (2005) studies the incentive issues when product managers

compete for capacity allocations. Peng et al. (2012) worked with Intel and developed an equipment
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procurement framework that allows Intel to make a combination of base and flexible capacity reser-

vations with suppliers. Different from all these studies, this paper helps semiconductor companies

understand the value of their capacities when customers arrive sequentially and randomly.

To summarize, our paper makes the following contributions. First, we provide an empirical

analysis that reveals the existence of a non-monotonic price-quantity relation in the semiconductor

industry. Second, we develop a model to investigate this phenomenon and find a plausible ex-

planation. Third, we show a simple and sufficient condition for the price-quantity relation to be

non-monotonic.

3 Industry and Firm Practices

Market Structure. The microprocessor market is intensely competitive, with rapid technological

advancements, short product life cycles, and regular pricing activities. Many competing sellers

such as Intel, Nvidia, and Advanced Micro Devices (AMD), sell multiple product lines primarily to

original equipment manufacturers (OEMs), such as Hewlett-Packard (HP), Lenovo, and Dell.

Capacity Inflexibility. For sellers to remain competitive, they need production capacity with up-to-

date process technology, which requires heavy capital investments. Some sellers like Intel (which

is known as an integrated device manufacturer) manufacture products in house, while others like

AMD (known as a fabless company) only focus on product design and outsource production to third-

party foundries. In both cases, because the manufacturing facilities are costly and construction lead

times are long, capacities are inflexible during a selling season. Although capacity configuration at

a manufacturing facility can be altered, doing so disrupts flows in the manufacturing facility and

causes increased manufacturing cycle times (Karabuk and Wu 2003). Another important factor is

that sellers allocate the capacity to product lines based on demand forecasts and start production

several month before demand realizes. The forecasts represent sales commitments from product line

managers and sometimes (non-binding) purchase commitments from customers. Once the capacity

is allocated accordingly to a product, the production starts almost immediately. By doing so, sellers

can first increase the capacity utilization. Second, due to the long production lead time, which is on

average six to twelve weeks, sellers can build up inventory in advance in order to satisfy customers

that normally require immediate delivery. Last but not least, semiconductor manufacturing entails
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significant learning and it takes time for yields to ramp up and for quality to improve. Thus, when

facing a supply shortage, it is not only costly but also risky to seek an alternative source. Given

these facts, it is important for sellers’ product managers to provide accurate forecasts and to sell

according to allocated capacities.

Price Negotiation. Although each product has a posted price, the final price for each buyer is

usually set through negotiations. Major buyers are sophisticated, drive hard bargains, and often

enjoy higher annual revenues than sellers (Cooper 2008). Buyers know that the marginal production

cost of microprocessors is low and sellers are eager to discount prices to fully utilize their capacities.

Moreover, buyers can allocate their business among competing sellers. Lacking full pricing power,

sellers are unable to use pricing strategies, such as take-it-or-leave-it price schedules or a menu of

contracts, and have to engage in negotiations. Once a price is settled, the duration of contract can

vary for different buyers and products; price renegotiations happen frequently but not in all cases.1

In our data set, approximately 45% of the purchases did not involve any renegotiation.

Procurement Quantity. The purchase quantity, however, is normally not a term for negotiation.

To produce their products, buyers need other inputs from different suppliers, so it is costly to

manipulate purchase quantities once production plans have been made. In principle, buyers can

allocate their requirements among alternative semiconductor firms, but normally at a very early

stage before production plans are finalized.2 This is because products offered by different sellers

differ in technical features and it normally requires a buyer to design the final product in a specific

way in order to use the component. In addition, sellers’ brand images in the consumer market may

matter, so substitutions cannot be easily made. As a result, buyers’ procurement managers prefer

to stick to their internal production plans and procure the desired quantity at the best possible

price. In summary, buyers determine their purchase quantities based on their production plans

prior to negotiating with suppliers, and incur costs if they are unable to procure these amounts

and must switch to an alternative seller. Their contracts with sellers typically do not include any

commitment or requirement for minimum product purchases.

1Companies may use different types of contracts in terms of price flexibility, which is manifested in contract
specifications about how frequently and to what extent the price can be renegotiated. Hence, price renegotiation
happens when a contracted price expires.

2For example, Apple Inc. allocated about one-third of the A9 processor orders to Taiwan Semiconductor Manufac-
turing Company in April 2015, but the production of 2015 iPhones and iPads that use the A9 processor was not started
until August. Sources: http://appleinsider.com/articles/15/04/15/apple-makes-last-minute-decision-to-use-tsmc-for-
30-of-a9-chip-orders-for-next-iphone/; http://www.macrumors.com/2015/08/07/iphone-6s-production-late-august/.
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Technology Upgrades. Another aspect of this industry with a major impact on negotiations is the

risk of obsolescence. Sellers are aware that technological advancements from rivals can cause a

rapid decline in demand for existing products. Although they are aware of development cycles in

the industry and can anticipate when rivals will introduce products, they must constantly consider

the likelihood of a demand shock and the possibility of having to salvage inventories (Karabuk and

Wu 2003).

4 Empirical Observation and Analysis

The data provided by a major global semiconductor company for use in this study encompasses

3,826 products and 251 buyers over a three-year period. Each record in the data set consists

of customer ID, product ID, product category, product brand (subcategory), sales territory, bill

quantity, bill value in USD, unit price, and date of transaction. The products sold include central

processing units (CPUs), graphics processing units (GPUs), and embedded chips, among others.

4.1 Data Preparation

4.1.1 Fixed-Price Contracts

As a buyer normally purchases a product through multiple transactions over time, the price may be

renegotiated. In this paper, we focus on purchases in which prices are fixed over the entire product

life cycle. We say that such transactions are made under fixed-price contracts. The analysis for

fixed-price contracts or one-shot price bargaining is simpler than for repeated negotiations.

Let I and J be the indices of buyer and product, respectively. Let Tij be the set of dates at

which buyer i purchased product j. Let qijt and pijt denote the transaction quantity and price

for customer i and product j at time t ∈ Tij . We define an instance θij as the set of transactions

related to buyer i ∈ I and product j ∈ J ; i.e., θij := {(t, qijt, pijt) : t ∈ Tij}. As stated earlier, in this

industry it is a common practice for a buyer to enter a price negotiation with a fixed target quantity.

For fixed-price contracts, we have pijt = pij for all t ∈ Tij , and the life-cycle purchase quantity is

the target for the price bargaining. Hence, we focus on the relationship between the total purchase

quantity, TQij =
∑

t∈Tij qijt, and the fixed price pij for such instances. Of course, transaction-level

data may contain information about factors that impact negotiations, such as when a purchase
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starts and how long it lasts. We therefore use the transaction-level data to construct measures for

these factors.

4.1.2 Normalization

Widely varying prices and market sizes for different products compel us to normalize the data to

the same scale. Prices of the 425 brands (or product subcategories) range from several dollars

to more than $100 per unit. Thus, an observed price that is the lowest for one product may be

higher than any observed price for another product. For that reason, in place of the price and total

quantity, we use two ratio metrics: (1) effective discount (ED) and (2) demand share (DS ). Define

EDij := 1− pij/ max
i′∈I,t∈T

pi′jt; (1)

DSij := TQij/
∑
i′∈I

TQi′j , (2)

where T := ∪Tij . Both variables have the range of [0, 1]. ED is a measure of price level relative

to the highest price ever paid for the product. Note that the posted prices of the seller who offers

this data set are very stable, usually lasting for more than a year, so for a fixed-price contract the

nominal discount rate is almost constant over time and ED is very close or equal to the nominal

discount rate. DS is a measure of total quantity relative to the market size of the product. The

advantage of ED and DS is that they simultaneously control the mean and the variation across

different products.3 However, the demand shares in a large amount of instances are concentrated

around zero (as shown in Figure 1 on the left) due to the 20-80 rule: 80% of customers contribute

only 20% of sales. Therefore, it is difficult to examine how quantity affects price discount in the

majority of instances if we use DS. To avoid such a shortcoming, we use a power transformed of

demand share (PTDS ) which is defined as PTDS = DSγ for a γ ∈ (0, 1). PTDS has serveral

advantages. First, it is a monotonic transformation of DS, so the price-quantity relationship is

preserved. Second, its empirical distribution is more spread out (as shown in Figure 1 on the

right). Third, the range [0, 1] is preserved and maintaining the unit range makes it convenient

to interpret the results. As shown in Table 2, the distribution has the highest spread when γ is

3Note that how the demand share of a customer evolves over time is irrelevant for our analysis. We only use the
ex-post demand share as a normalized quantity, which is constant over time.

9



Figure 1: Histograms for the Selected Subset of Fixed-Price Contracts
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Table 2: Measuring the Distributions of Power-Transformed Demand Share

DS0.15 DS0.20 DS0.25 DS0.30 DS0.35 DS0.40 DS0.45

St.Dev. 0.1409 0.1556 0.1624 0.1642 0.1626 0.1589 0.1539

W 0.9873 0.9743 0.9572 0.9365 0.9131 0.8875 0.8604

Note. The Shapiro-Wilk W statistic measures the straightness of the normal

probability plot of a variable; larger values of W indicate better normality.

between 0.25 and 0.35, and γ = 0.25 yields a distribution that is the closest to normal in this

range.4 In this paper, we focus on the fourth-root transformation (i.e., γ = 0.25). Later, to check

the robustness, we will also show the results for γ =0.15, 0.2, 0.3, and 0.35. Thus, our objective

reduces to identifying the relation between EDij and PTDSij while controlling for other factors.

4.1.3 Data Filtering

The data set corresponds to a three-year time period from January 1, 2009 to March 25, 2012.

Instances that started prior to January 1, 2009, and those that lasted beyond March 25, 2012, have

missing data (or are truncated). Because prices in the microprocessor market are decreasing over

time, instances that started early with left-truncation will appear to have smaller total quantities

and higher prices than subsequent instances. Similarly, instances that started late with right-

truncation will appear to have smaller total quantities and lower prices than preceding instances.

Mixing these two effects may generate a non-monotonic relation between price and quantity. To

mitigate this truncation effect, we focus on instances with an observed starting date at least one

4Note that our primary goal is to spread out the distribution as much as possible.
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quarter later than January 1, 2009, and an observed ending date at least one quarter earlier than

March 25, 2012. There are 6,573 instances (about 53%) that satisfy such criteria. Furthermore,

to focus on regular purchases but not transactions for one-time substitutions or sample testing,

which follow different selling processes, we drop another 312 instances (about 4.7%) that have

only one purchase record. Finally, products that have an extremely small number of buyers are

often customized and may follow a different selling process. In addition, such products tend to have

extreme-demand-share buyers as well as narrow price dispersions. Hence, our proxies for the posted

price of such products could be downward-biased. To avoid this bias or lack of good proxy, we drop

another 1,551 instances (about 18%) and consider products that have more than three buyers. In

this way, we obtain a subset of data with 2,346 fixed-price instances and 2,364 price-renegotiated

instances. In the electronic companion, we use the Heckman selection model to correct for the

selection bias and show that our data filtering does not change the price-quantity pattern.

4.2 Variables

Aside from the demand share, other variables may also influence a customer’s discount. According

to the generalized Nash bargaining model (Nash 1950; Roth and Malouf 1979), these variables

fall into three broad categories: the seller’s outside options, the buyer’s outside options, and their

respective bargaining powers. As far as we can imagine, the seller’s outside options are affected

by production cost, salvage value, buyer-side competition, time of purchase, capacity or inventory

level, and demand uncertainty. The buyer’s outside options are affected by the value of adopting

a different product, seller-side competition, posted price, and time of purchase. Bargaining powers

are affected by the value of the business relationship, the bargaining skills of salespersons and

procurement managers, and the buyer’s reputation for committing to a forecast. In the following,

we explain the variables included in our regression. Table 3 provides the summary statistics for the

portion of data we use, and Table 4 shows the correlation among the variables.

Power transformation of Demand Share. We first focus on the relationship between ED and

the fourth root of demand share (r4ds). Later, we will consider other power transformations of

demand share (e.g., DS0.15, DS0.2, DS0.3, and DS0.35) to check the robustness.

Cbase. This variable counts the total number of buyers for a product, and is thus a measure of

a product’s popularity and the buyer-side competition.
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Table 3: Summary Statistics for Fixed-Price Instances (N = 2,346)

Variables Mean S.D. Min Max Variables Mean S.D. Min Max

ED .1126 .1781 0 .9986 lndod 3.9237 1.8581 0 6.9527

DS .0516 .0942 3.8e-6 .9263 lndrt 4.5246 1.3531 0 6.8977

DS0.25 .3818 .1624 .0440 .9811 M3 .2928 .4552 0 1

Cbase 19.66 13.43 4 48 CapL .4614 .3052 .1761 1.176

TSQ 8.37e5 2.35e6 826 3.06e7 Cshr .0516 .1038 2.24e-6 .7897

Herf .2593 .1787 .0561 .9815 Vrate .3112 .2506 0 .9375

TSQ. The total sales quantity of a product, which also implies the popularity of the product.

Herf. This is the Herfindahl Index for the demand structure of a product, which measures the

degree of demand concentration. It is calculated as the square root of the sum of the square of

demand shares across all the buyers (Weinstock 1982).

lndod. The discount received by a buyer for a product is related to the time when the buyer starts

to purchase, because effective prices (or price-performance ratio) in the semiconductor industry are

decreasing over time in general. The later a buyer arrives for a product, the greater discount

(relative to the highest price) he may obtain due to better outside options. Hence, to capture

such a time effect, we use the logarithm of days of delay, which is calculated as the difference in

number of days between the starting date of an instance and the first date that the product was

ever purchased. Note that, as relative measures, lndod and ED are compatible.5 In addition, lndod

is also a measure of demand uncertainty, because uncertainty is resolved over time.

lndrt. The discount may be also related to the rate of purchase given the same total quantity,

so we also control the logarithm of duration of an instance. It is calculated as the number of days

between the first date and the last date of an instance. We can see that the life span of an instance

in the data set is fairly short, with an average duration of 232 days.

M3. Another dimension of the time of purchase is related to the seller’s financial cycle. It is well

known that the end-of-quarter effect may bring buyers an edge in the bargaining. We introduce

M3 as a binary variable with a value equal to 1 if the date of the price negotiation is in the third

month of a quarter and 0 otherwise.

5Another candidate may be the days of delay relative to the introduction date of a product. Compare two scenarios.
In scenario I, the first customer delays her purchase 0 days and receives the highest price among all the customers.
In scenario II, the first customer delays her purchase 100 days and also receives the highest price. Other customers
purchase one day after and all receive the same effective discount. Hence, the absolute delay is irrelevant.
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CapL. The remaining capacity level at the time of price negotiation is a consideration for

both the seller and the buyer. However, we do not have information about the capacity level. We

approximate the total capacity level using the total sales of a product divided by the semiconductor

industry capacity-utilization rate (about 85%),6 and the available capacity level for a buyer using

the difference between the total capacity level and the cumulative contracted sales prior to this

buyer. We then use CapL =(available capacity level)/(total sales) as a control variable.

Cshr. A buyer that contributes to a large portion of the seller’s overall sales can have significant

bargaining power. To capture the bargaining power of a buyer in this regard, we calculate Cshr

(i.e., customer share) as 100 times the total quantity purchased by a buyer over the observed period

divided by the seller’s total sales volume across all products and the observed period. This measures

the value of a buyer to the seller.7 Note that using the total purchase value as a control variable

may cause an issue of endogeneity as the value depends on the price discount.

Vrate. Since we use the highest price paid for a product as the approximation of the posted

price, the larger the price variation of a product, the greater the computed ED. Hence, we should

control the price variation of a product. However, prices depend on discounts received by buyers.

To avoid the endogeneity issue, we use the fraction of price-renegotiated instances to measure a

product’s price variation, given that buyers with renegotiable-price contracts are more likely to get

the posted price at the beginning and price variations are larger than with fixed-price contracts.

In addition, Vrate measures the uncertainty of the product’s value, because price renegotiations

normally happen when uncertainties are resolved. For fixed-price contracts, discounts are likely to

be larger when uncertainties are higher.

Product-line (or brand) fixed effect. To capture product-line-specific impacts such as the seller-

side competition, production cost and salvage value, we use binary variables for the major 16 brands

that have at least 100 observed instances in the original data set. It is important to note that the

seller’s salespeople are organized by product lines. Hence, negotiated prices of a product are all

subject to the same impact from the bargaining ability of a salesperson or a group of salespeople.

6http://www.semiconductors.org/industry statistics/industry statistics/, accessed March 2015. We obtain very
similar results if we use random utilization rates (e.g., a normally distributed random variable with mean 0.85 and
standard deviation 0.1, capped by 0 and 1).

7Note that Cshr is a ex-post measure and it may not accurately capture a buyer’s bargaining power at the beginning
of the observed period. However, as we can see later, Cshr is highly collinear with the buyer fixed effects, indicating
that the bargaining power dynamics do not change drastically.
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Table 4: Correlation Matrix for the Selected Fixed-Price Instances

ED r4ds Cbase TSQ Herf lndod lndrt M3 CapL Cshr Vrate

ED 1.00

r4ds 0.06 1.00

Cbase -0.22 -0.42 1.00

TSQ 0.02 -0.15 0.10 1.00

Herf 0.15 0.07 -0.63 -0.09 1.00

lndod 0.30 -0.13 -0.22 0.07 0.24 1.00

lndrt -0.16 0.14 -0.01 0.06 0.00 -0.11 1.00

M3 0.03 0.08 -0.13 -0.01 0.05 0.02 -0.09 1.00

CapL -0.16 0.38 -0.07 -0.07 -0.11 -0.65 0.12 -0.00 1.00

Cshr 0.22 0.29 -0.32 -0.01 0.20 -0.02 0.10 0.05 0.13 1.00

Vrate 0.36 -0.18 0.05 -0.02 -0.04 0.24 -0.13 0.01 -0.21 0.05 1.00

In other words, the impact of salesperson ability is product-line-specific and thus can be captured

by the product-line fixed effect.

Buyer fixed effect. Apart from purchasing value, a buyer’s bargaining power is also affected by

unobservable factors, such as the experience of the procurement manager and the reputation for

honoring a commitment. Hence, we use binary variables to control the buyer fixed effect for the 10

major buyers in terms of total purchase value with the seller and use others as the reference.

Quarter fixed effect. To capture the industry dynamics that are cyclical within a financial year,

we use the first quarter as the reference and binary variables for the other three quarters.

Location fixed effect. The degree of market competition on both the buyer and seller sides may

depend on the location. We use binary variables for nine of the ten recorded sales territories, such

as greater China and North America. Additionally, location may also be an indicator of cost level

and demand uncertainty.

Interaction effect. The impact of capacity level may interact with time elapsed. The likelihood

of a technology shock occurring increases over time after a product is introduced; once a shock

occurs, the seller may have to salvage the remaining capacity. Hence, the capacity has less and less

value as time elapses and we thus include the interaction between CapL and lndod.

Though we try to control for as many variables as possible, we still confront the “omitted

variable” problem due to a lack of information. Thus, consistent estimators can be obtained only

when the omitted variables are uncorrelated with our regressors. The factors we do not control for

here are the net cost of switching to an alternative product and contract terms other than price and
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quantity for a buyer. We show in the electronic companion that under certain mild assumptions, the

estimated coefficients are just the scaled true marginal effects when these two factors are relevant

but missing. Hence, the shape of the price-quantity relationship will be preserved. Last, note that

we consider only the instances with one-shot bargaining (or fixed-price contract) for new products,

and thus it is reasonable not to consider any reference effect from previous prices or discounts.

4.3 Regression Analysis

In this section, we try to identify the empirical relationship between the effective discount and

demand share in two steps. The first step is to explore the underlying pattern by segmenting the

demand share and computing the average effective discount received by buyers in each segment.

Based on the observed pattern, if one exists, we obtain a reasonably well-fitted functional form

through piecewise polynomial regression in the second step. Our analyses in the two steps are both

necessary and complementary. The first step provides us with information about the shape of the

function, the possible location(s) of the knot(s), and the order of polynomial functions we need.

The second step allows us to test the statistical significance of the functional form.

4.3.1 Average Discounts by Segments

For robustness, we consider two different ways of segmentation, the details of which are given in

Table 5. In model (i), we divide the instances into six segments according to r4ds. We use wider

ranges for the first and last segments in order to include more instances in the “tails.” In model

(ii), we use nine segments. Incorporating the aforementioned variables, we run the linear regression

ED =
∑

k>1 ak · segk + b′X+ ε for each model, where segk is a binary indicator for segment k, X is

the vector of controlled covariates (including the constant), and ε is the error term. The estimation

results for a are summarized in Table 5 and b in Table 7.8

We can see that in both models the marginal impact of demand share on discount displays a

similar non-monotonic pattern. In model (i), the estimated coefficient increases with demand share

for the first four segments, then decreases in segment 5, and increases again in segment 6. In model

8We use the regress command with the robust option in STATA. With this option, STATA estimates the standard
errors using the Huber-White sandwich estimators. The robust standard errors can effectively deal with minor
problems regarding normality, heteroscedasticity, and some observations that exhibit large residuals. The point
estimates of the coefficients are exactly the same as those in ordinary OLS.
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Table 5: Summary Statistics and Regression Results for Demand Share Segments

Model Segmt.
Range Summary Stats. of r4ds Regression

of r4ds Mean S.D. Obs. Coef. Robust S.E. P value

(i)

1 0˜0.2 .1581 .0313 235 - - -

2 0.2˜0.35 .2772 .0423 916 .0141 .0097 0.149

3 0.35˜0.5 .4142 .0433 683 .0245 .0111 0.028

4 0.5˜0.65 .5669 .0406 335 .0428 .0153 0.005

5 0.65˜0.8 .7187 .0439 145 .0348 .0178 0.052

6 0.8˜1 .8625 .0459 32 .0933 .0312 0.003

(ii)

1 0˜0.15 .1226 .0199 85 - - -

2 0.15˜0.25 .2087 .0267 423 .0023 .0156 0.885

3 0.25˜0.35 .2993 .0289 643 .0031 .0159 0.843

4 0.35˜0.45 .3949 .0293 518 .0171 .0168 0.308

5 0.45˜0.55 .4965 .0286 291 .0145 .0183 0.429

6 0.55˜0.65 .5922 .0285 209 .0409 .0206 0.048

7 0.65˜0.75 .6977 .0303 106 .0194 .0230 0.398

8 0.75˜0.85 .7905 .0269 55 .0425 .0257 0.098

9 0.85˜1 .8987 .0374 16 .1223 .0476 0.010

(ii), the coefficient increases until segment 6, then decreases in segment 7, and increases again.

These results indicate that the discount is likely to be an N-shaped function of demand share. In

Figure 2, we plot the average discount received by each segment and the smooth line connecting

them. In both graphs, all the other controlled variables take their mean values.

Although the smooth lines look like an “N” in both graphs of Figure 2, it is still difficult to tell

how significantly the underlying shape is an N based solely on the results we have obtained so far.

Rather, what we can learn is that it may be inappropriate to use a simple monotone function or

a polynomial function to describe the shape given the irregular pattern; that is, the shape is more

likely to be a combination of a monotonically increasing curve and a V-shaped curve, which are

easier to fit by polynomial functions separately. In the next step, we propose a piecewise polynomial

function to fit the data and test the significance of the non-monotonicity.

4.3.2 Piecewise Polynomial Regression

To reduce the number of parameters while maintaining adequate flexibility, we use a two-segment,

piecewise-quadratic function with an unknown knot to fit the data in model (iii).9 Hence, we let

9A polynomial of degree three can also generate an N-shaped curve. However, a degree-three polynomial is concave
on the left of “N,” meaning that discount increases rapidly with demand share for very small buyers. According to
our empirical observation, the discount curve should be linear or convex first, so it is difficult to have a good fit for
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Figure 2: Average Marginal Impact of Demand Share in Model (i) and (ii)

Note. In both graphs, all other covariates take their mean values.

the data decide whether the function is linear or quadratic in each segment and where the two

smooth lines are connected. We let B denote the location of the knot to be estimated and run a

least-square regression with the following nonlinear model:

ED = a1 · (r4ds−B)− + a2 · (r4ds−B)2
− + a3 · (r4ds−B)+ + a4 · (r4ds−B)2

+ + b′X + ε, (3)

where x− = min {x, 0}, x+ = max {x, 0}, X is the vector of controlled covariates (including the

constant), and ε is the error term. We run this nonlinear-least-square (NLS) regression in Stata

with the command nl and we notice that the estimates are sensitive to initial values for the iteration

performed by nl. To minimize the reliance on the initial guesses, we first run the NLS regression

to estimate B and then run an ordinary-least-square (OLS) regression using the estimated B to

obtain other parameters. We report the estimates for a1 to a4 and B in Table 6, and b in Table 7.

We can see from Table 6 that a1 is significant (at the 5% level) but a2 is not, meaning that

a linear relationship is significant in the first (left) segment. In the second (right) segment, a3 is

significant at the 10% level (for the two-sided test) and a4 is significant at the 5% level, meaning that

a quadratic relationship is significant. Because B = 0.5668 is highly significant (at the 0.1% level),

the relationship thus cannot be described by a single linear or quadratic function. If we assume in

a degree-three polynomial. Although polynomials of high degrees can approximate any shape of curve, they have
potential problems of overfitting and multicollinearity. In contrast, piecewise polynomials of lower degrees are capable
of offering adequate flexibility, while having fewer parameters.
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Table 6: Results of the Piecewise Polynomial Regressions

Model (iii) Model (iv)

Estimate Robust S.E. P value Estimate Robust S.E. P value

a1 0.2338 0.1058 0.027 0.1030 0.0319 0.001

a2 0.2981 0.2208 0.177 - - -

a3 -0.4378 0.2306 0.058 -0.3422 0.2001 0.087

a4 2.0449 0.8653 0.018 1.9251 0.9564 0.044

B 0.5668 0.0346 0.000 0.5794 0.0449 0.000

Model (v) Model (vi)

Estimate Robust S.E. P value Estimate Robust S.E. P value

a1 0.1857 0.1101 0.092 0.1355 0.0973 0.164

a2 0.2477 0.2805 0.377 0.0861 0.1726 0.618

a3 -0.1252 0.1759 0.477 -0.3958 0.3127 0.206

a4 0.7575 0.5609 0.177 2.6182 1.4140 0.064

B 0.5050 - - 0.6286 - -

advance in model (iv) that the relationship is linear in the first (left) segment and quadratic in the

second (right) segment, we will get similar results. Note that the minimum of the quadratic curve

is achieved at r4ds = − a3
2a4

+B ≈ 0.1 +B > B, meaning that discount first decreases with demand

share and then increases in this segment. Regarding the significance of non-monotonicity, we just

need to test the null hypothsis that a3 ≥ 0. For this one-sided test, we have P values less than

5% for both model (iii) and (iv). Hence, we can now claim quite confidently that the empirical

relationship between discount and demand share is indeed N-shaped.

To check the sensitivity of the estimated shape to the location of the knot, we run two linear

regressions based on model (iii) with B = 0.5668±2×0.0309. We call the two regressions model (v)

and (vi), respectively, and we plot the predicted average effective discount agains r4ds in Figure 3.

Although setting a biased knot could smooth out the decreasing part of the curve, we still observe

N-shaped curves with both model (v) and (vi).

Finally, we find that the predicted discount decreases with the number of buyers for a product,

increases with a buyer’s business size with the seller,10 increases with the number of delayed days,

and increases with the remaining capacity level. Additionally, impacts from time that has elapsed

and capacity level influence each other in a negative way. In other words, the impact of capacity

level deteriorates over time, and the impact of time delay decreases with capacity level. It is

interesting to find that the effective discount is not significantly correlated with the end-of-quarter

10Cshr and buyer fixed effect are colinear and Cshr will be significant if buyer fixed effect is not included.
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Figure 3: Average Marginal Impact of Demand Share: Sensitivity to Knot Location

Notes. The lines show the predicted marginal effect of r4ds on ED , with other covariates taking their mean values.

Table 7: Summary of Regression Results

Variables
(i)
ED

(ii)
ED

(iii)
ED

(iv)
ED

(v)
ED

(vi)
ED

f(r4ds) Tab. 5 Tab. 5 Tab. 6 Tab. 6 Tab. 6 Tab. 6

Cbase -1.13e-3*** -1.21e-3*** -1.14e-3*** -1.15e-3*** -1.11e-3*** -1.16e-3***

(3.89e-4) (3.88e-4) (3.91e-4) (3.92e-4) (3.92e-4) (3.92e-4)

TSQ 8.41e-10 5.90e-10 6.42e-10 9.34e-10 7.33e-10 7.87e-10

(1.26e-9) (1.31e-9) (1.29e-9) (1.27e-9) (1.30e-9) (1.28e-09)

Herf -.0008 -.0059 -.0044 -.0053 .0005 -.0052

(.0271) (.0270) (.0271) (.0272) (.0272) (.0272)

lndod .0382*** .0382*** .0384*** .0385*** .0382*** .0384***

(.0047) (.0048) (.0047) (.0047) (.0047) (.0047)

lndrt -.0049 -.0049 -.0049 -.0051 -.0050 -.0051

(.0039) (.0040) (.0039) (.0039) (.0040) (.0040)

M3 -.0013 -.0007 -.0013 -.0014 -.0014 -.0014

(.0074) (.0074) (.0074) (.0074) (.0074) (.0074)

CapL .0873*** .0866*** .0855*** .0865*** .0846*** .0854***

(.0225) (.0225) (.0225) (.0224) (.0225) (.0225)

Cshr .2129 .2221 .1975 .2095 .2035 .2087

(.1718) (.1734) (.1726) (.1716) (.1720) (.1719)

Vrate .1931*** .1919*** .1936*** .1938*** .1942*** .1932***

(.0127) (.0127) (.0127) (.0127) (.0127) (.0127)

CapL*lndod -.0289*** -.0293*** -.0296*** -.0297*** -.0293*** -.0298***

(.0057) (.0058) (.0057) (.0057) (.0057) (.0057)

Constant -.1136*** -.0994*** -.0805*** -.0902*** -.0706** -.0588*

(.0329) (.0353) (.0346) (.0328) (.0323) (.0343)

F.E.s Yes Yes Yes Yes Yes Yes

R2 0.3817 0.3824 0.3835 0.3830 0.3820 0.3829

Notes. Robust standard errors are in parentheses. *p<0.1; **p<0.05; ***p<0.01. F.E.: Fixed Effect.
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effect and the demand concentration rate for the fixed-price contracts. The reasons may be that

fixed-price contracts entail long-term considerations and that demand concentration is not a good

measure for product popularity for this type of contract.

4.4 Robustness Checks

First, to check whether discount is influencing demand share simultaneously, we regress r4ds against

ED and other control variables using dummies for three quarters as instrumental variables. We

find no support for simultaneity. Second, we run four additional nonlinear-piecewise-polynomial

regressions using DS0.15, DS0.2, DS0.3, and DS0.35, respectively, in place of r4ds in (3), and we

get similar non-monotonic curves. Third, we find that omitting the buyer’s net cost of switching

and the value of other contract terms will not affect the non-monotonic pattern if certain mild

conditions hold. Lastly, we can show that an “N” shape is still observed and significant even after

correcting for sample selection biases. The details of the robustness checks are presented in the

electronic companion.

4.5 Further Discussions

Our observations from the regressions are particularly interesting in that they are somewhat in-

consistent with the conventional wisdom—and our intuition—which says that buyers with larger

quantities should receive lower prices. While our intuition is correct for small- and large-quantity

buyers, we are not aware of a discount valley for medium-sized buyers.

Why do we see such a discount curve? No existing theories in the literature can explain our

observation. As we have discussed in Section 2, although existing theories can predict increasing

or V-shaped discount curves, they work under very different premises and cannot be combined to

generate other discount curves. Hence, we do not yet fully understand the mechanism of price

negotiation in B2B markets like the semiconductor industry.

Our empirical finding has important implications for both buyers and sellers. Because larger

quantities may not lead to lower prices, it may not be wise for a buyer to increase the purchase

size. However, there should not be an arbitrage opportunity for a buyer, because the total purchase

cost still increases with quantity.11 For the seller, it may be imperative to rethink posted pricing

11We find that in only 7% of instances across the entire data set, a buyer pays less in total than another buyer of
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and capacity rationing, given this non-monotonic relationship between price and quantity. We

will continue discussion in the following sections, in which we try to use an analytical model to

understand and explore the rationale behind our observation.

5 Modelling and Verification

In order to study the rationale behind the empirical observation, we build an analytical model in

this section. We focus on selling a particular product and make the following key assumptions. (i)

The capacity is fixed and does not expire over time. (ii) Buyers arrive sequentially and randomly.

(iii) A technology shock will end the buyer arrival process. (iv) The seller can decide the capacity

allocation. (v) Prices are determined by Nash bargaining. We then verify with the data that the

non-monotonicity is rooted in how the seller values capacity by comparing different models in terms

of goodness-of-fit as well as the statistical significance of non-monotonicity in each model.

5.1 The Model

Consider a seller A (she) that sells a new product to a group of OEMs. A has a fixed capacity κ

due to a long production lead time and a short product life cycle. To be specific, we denote κ as

the maximum amount of the product that can be produced during the product life cycle. In light

of current industry practice, major microprocessor companies produce according to their forecasts

and normally start production immediately after the capacity is set up. Thus, the capacity does not

expire over time until the end of the product life cycle. The selling starts at time 0 and ends when

there are no more buyers or the capacity is sold out or salvaged. There are M potential buyers who

arrive stochastically for supply contracts. We consider a general non-homogeneous Poisson arrival

process wherein the arrival rate of the i-th buyer after the arrival of the (i-1)-th buyer is λi <∞ for

i = 1, 2, · · · ,M . For simplicity, we assume that the arrival process is only determined by market

characteristics and is independent of buyer identities or the history of the arrival process.

As stated earlier, in the semiconductor industry, technological advancements of competing prod-

ucts will lead to obsolescence of the focal product. When such a technological shock happens, po-

tential buyers will change their adoption decisions. However, for buyers that have already adopted

the same product who buys less. This number is only 4% among fixed-price instances.
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the product and integrated it into their product designs, the switching cost will be high; thus, ex-

isting buyers will continue their purchase until they phase out products that use the focal product.

We assume that the arrival time of the technological shock is exponentially distributed with rate λ0

and that seller A salvages the remaining capacity at marginal value s when the shock arrives. Let

δi ∈ (0, 1) represents the probability of the shock arriving after the (i− 1)-th and prior to the i-th

buyer. Using the memoryless property of exponential distribution, we can check that δi = λ0
λ0+λi

.

Let Di denote the total purchase requirement (or demand) of the i-th buyer and Qi the capacity

allocated to buyer i. We assume that buyers accept partial fulfillment as long as Qi ∈ [ηDi, Di],

where η ∈ (0, 1] is plausibly an industry standard that is exogenous and identical for all the buyers.

Hence, if η < 1, seller A faces a dynamic capacity management problem wherein she must decide

the degree of fulfillment ρi for buyer i in order to maximize the total expected revenue. Let Ki be

the total available capacity when buyer i arrives, so Ki/Di is the maximum level of fulfillment and

ρi ∈ [η, 1] ∩ [0,Ki/Di]. Note that ρi is not relevant if Ki/Di < η.

Demand is unknown to the seller ex ante but is exogenously given because each buyer’s pro-

duction plan is determined in advance and the production needs inputs from different suppliers so

that it is costly for buyer i to manipulate Di. Although demand may not be exogenous from a

buyer’s point of view, that is not a concern of this paper. From the seller’s standpoint, demand

can be correlated and thus the distribution of each oncoming demand is history-dependent because

buyers may be subject to the same demand shock and (or) competition in the same market. We

define “history” as the set of information that is revealed to the seller. Let ψ(t) denote the history

up to time t, and ψi the history up to the arrival of buyer i. We assume that Di follows distribu-

tion function (cdf) F (·|ψi−1), where ψ0 = Ø. For the purpose of analysis, we make the following

technical assumptions: (1) that the expectation of the demand from a buyer is always finite, and

(2) that there exists a lower envelope for the possible forms of F .

Technical Assumption 1.
´ +∞

0 DdF (D|ψ) <∞ for any ψ ∈ H, where H stands for the set of

all possible histories.

Technical Assumption 2. There exists an increasing and continuous function F0(·) such that

(i) F0(0) = 0, (ii) F0(+∞) = 1, and (iii) F0(x) ≤ F (x|ψ) for any x ∈ [0,+∞) and ψ ∈ H.
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The sequence of events with the i-th buyer is modeled as follows. (1) Buyer i arrives at ti and

proposes an acceptable range [ηDi, Di] for quantity. (2) Seller A decides ρi. (3) Buyer i stays if

ρi ≥ η and leaves permenently if otherwise. (4) If buyer i stays, they settle the transaction price wi

for quantity Qi = ρiDi through Nash bargaining, in which information is assumed to be symmetric

for simplicity.

Let βi denote the exogenous, relative bargaining power of buyer i against seller A. It captures

exogenous factors such as bargaining skills and net cost of keeping a long-term relationship. We

assume that βi is known given the identity of buyer i. Conditional on history ψ, the bargaining

power β of a potential buyer follows distribution B (·|ψ). The generalized Nash bargaining model

predicts that if player j’s payoff and outside option for the focal transaction are Πj(w) and dj

given the transaction price w, where j ∈ {A} ∪ {1, 2, · · · ,M}, then the bargaining results in price

w∗ = arg maxw (Πi(w)− di)βi · (ΠA(w)− dA)1−βi . In particular, if Πi(w) − di + ΠA(w) − dA is

independent of w, then w∗ splits the pie between the buyer and the seller in proportion to their

respective bargaining powers.

For buyer i, let ri and r′i denote the profit margins before subtracting the cost of the product

purchased from seller A and an alternative supplier, respectively, p the posted price for A’s product,

c̃i the marginal cost of buying from the alternative, Q′i the quantity available from the alternative,

and ρ′i the corresponding fill rate. In addition, let li =
Q′i
Qi

=
ρ′i·Di

ρi·Di
=

ρ′i
ρi

. Accordingly, the total

payoff for buyer i is Πi(wi) = (ri − wi) ·Qi and the outside option is

di = max {Qi · (ri − p) , Q′i · (r′i − c̃i)}

=Qi ·max {ri − p, li · (r′i − c̃i)}

=Qi · [ri −min {p, ri − li · r′i + li · c̃i}] . (4)

Let c̄i = ri − li · r′i + li · c̃i represent the net marginal cost of buying from the alternative supplier

in order to keep the same margin ri. If c̄i > p, it is not credible for buyer i to switch, so the

outside option is to buy from seller A at the posted price. This is possible because products are

not perfectly substitutable, and c̄i includes switching costs such as searching, redesigning, damage

to the brand image, and so on. We assume that c̄i is unknown to the seller ex ante but will be

revealed during the negotiation. For a potential customer who has not arrived, c̄ follows distribution

G (·|ψ) given history ψ. Regarding the link between li and Di or Qi, we can verify with simulation
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Table 8: Summary of Notations

λi
Buyer arrival rate after

the (i− 1)-th buyer
ρi Fill rate for buyer i β Bargaining power

λ0 Arrival rate of the tech shock η Lower bound of fill rate B Distribution of β

δn
Probability of tech shock
when n buyers have arrived

ti Arrival time of buyer i ΠA Seller’s payoff

s Marginal salvage value ψi History up to time ti Πi Buyer i’s payoff

κ The total capacity F Distribution of demand d Outside option

Ki Capacity available to buyer i c̄
Net marginal cost of buying
from an alternative supplier

p The posted price

Di Demand of buyer i G Distribution of c̄ w Transaction price

Qi Capacity allocated to buyer i cL Lower bound of c̄ V The value function

that when η > 0.8, the correlations between li and Di and between li and Qi, respectively, are

highly insignificant and thus ∂li/∂Di ≈ 0 and ∂li/∂Qi ≈ 0.12 Hence, we make the Assumption 3 to

simplify our analysis. Admittedly, if η is small this assumption may not hold and the price-quantity

relationship will become more complicated.

Technical Assumption 3. ∂li/∂Di = ∂li/∂Qi = 0 for all i ∈ {1, 2, · · · ,M}.

For seller A, let V (K, p, ψ(t)) represent the expected revenue obtained after time t given re-

maining capacity K, posted price p, and history ψ(t). Therefore, when bargaining with buyer

i, seller A has expected payoff ΠA(wi) = wiQi + V (Ki −Qi, p, ψi) and outside option dA =

V (Ki, p, ψi) · I {c̄i ≤ p}+ [pQi + V (Ki −Qi, p, ψi)] · I {c̄i > p}, where I {·} is an indicator function.

In addition, we assume that c̄i ≥ cL > s for every i so that the bargaining always has a solution

(i.e., cL, the highest possible price a customer would like to pay, is higher than the marginal value

for the seller). Hence, we have the following lemma, which determines whether buyer i pays the

posted price or engages in the price bargaining. Notice that βi and c̄i are known when the buyer

arrives and are thus taken as certain in the bargaining.

12First, it is the industry standard to fill at least 90% by any seller according to our interaction with practitioners.
Note that ρi may not be a monotonic function of Di given the complexity of the value function. Thus, the intuition
is that, when η is close to 1, ρi could stick to a boundary or bounce back and forth between η and 1 as Di changes.
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Lemma 1. If c̄i > p, buyer i pays the posted price; If c̄i ≤ p, Nash bargaining results in

wi = βi ·
V (Ki, p, ψi)− V (Ki −Qi, p, ψi)

Qi
+ (1− βi) · c̄i. (5)

Lemma 1 simply says that the chance of a buyer engaging in a price negotiation increases with

the posted price p. Hence, the higher the posted price, the more bargainers. It also says that the

negotiated price is a function of the available capacity and transaction quantity. Based on Lemma

1, we know that as long as ∂V/∂K ≥ 0, our model satisfies the property that larger quantities

entail larger total payments.13 In order to understand how wi is affected by Ki and Qi, we need to

know more about value function V as well as other factors.

5.2 Source of Non-Monotonicity

In our model, we propose that buyer bargaining power β and net switching cost c̄ are not the

source of price-quantity non-monotonicity and thus assume for simplicity that they are independent

of purchase quantity Q. To verify our conjecture, we compare three different models by running

nonlinear regressions. To proceed, first note that from Lemma 1 we have

wij = I {c̄ij ≥ pj} · pj + I {c̄ij < pj} · [βij · M v̂ij + (1− βij) · ĉij ] · pj , (6)

where M v̂ij = [V (Kij , pj , ψij)− V (Kij −Qij , pj , ψij)] / (pjQij) and ĉij = c̄ij/pj . Accordingly, we

can derive the discount received by buyer i for product j:

1− wij
pj

= I {ĉij < 1} · [1− βij · M v̂ij − (1− βij) · ĉij ] . (7)

Now we can see that three factors can possibly contribute to the non-monotonicity we are after:

ĉij , βij , and M v̂ij . Hence, we consider three different models. In preparation, we define φ (x) =

a1·(x−B)−+a2·(x−B)2
−+a3·(x−B)++a4·(x−B)2

+, which is the piece-wise polynomial function

we used to capture the non-monotonicity in the empirical analysis. In model (I), we assumes that

the non-monotonicity is rooted in how the seller values capacity. In particular, ĉ = b′c·Xc, β = b′b·Xb,

and M v̂ = φ (r4ds) + b′v · Xv. In model (II), we assume that the non-monotonicity is originated

from the net switching cost. In particular, ĉ = φ (r4ds) + b′c ·Xc, β = b′b ·Xb, and M v̂ = b′v ·Xv. In

model (III), we assume that the non-monotonicity is due to quantity-dependent bargaining power.

13It is easy to check that ∂ (wiQi) /∂Qi = βiV
′
K (Ki −Qi, p, ψi) + (1 − βi) · c̄i.
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In particular, ĉ = b′c ·Xc, β = φ (r4ds) + b′b ·Xb, and M v̂ = b′v ·Xv. Note that although the three

models have the same components, they are different in structures. Regarding other explanatory

variables, we use lndod and 10 major brand names for Xc, Cshr and V rate for Xb, and Cbase,

lndod, CapL, and three quarters for Xv. At last, we run three nonlinear regressions based on the

following equation:

EDij = I {ĉij < 1} · [1− βij · M v̂ij − (1− βij) · ĉij ] + ε̂ij . (8)

The results are summarized in Table 9. Notice that the non-monotonicity is statistically sig-

nificant only in model (I). In addition, given the same number of parameters or degree of freedom

(d.f.), model (I) has the highest R2 and the lowest sum of squared residuals (SS). If we can assume

that ε̂ is normally distributed, we can use Akaike’s Information Criterion (AIC) (Akaike 1981) to

compute the evidence ratio (i.e., how much more likely) of one model against another. We first

compute the corrected AIC value defined by

AICC = N · ln
(
SS

N

)
+

2 · J ·N
N − J − 1

, (9)

where N is the number of observations and J is the number of parameters in the model plus one.

Next, we can obtain the evidence ratio defined by

Evidence Ratio =
Pr{model (I) is correct}
Pr{model (II) is correct}

= exp

(
AIC

(II)
C −AIC(I)

C

2

)
. (10)

Accordingly, we know that model (I) is 2.26×1015 times more likely against model (II) and 239 times

more likely against model (III) to be the correct one. In other words, the evidence is overwhelmingly

in favor of model (I). Therefore, combining all the results, we conclude that model (I) is the correct

model among the three.

Regarding other possible models, the most plausible is the combination of model (II) and (III).

However, there will be a serious collinearity problem when we let β depend on r4ds in (II) or let

ĉ depend on r4ds in (III). Hence, more complicated models cannot provide better explanations.

Lastly, if we add r4ds as a linear part of ĉ in model (I), the estimated coefficient is not significant,

so it is reasonable to assume that ĉ is not correlated with r4ds.
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Table 9: Selected Regression Results for the Three Alternative Models

(I) (II) (III)

a1 -0.6508*** (0.2148) -0.2475* (0.1354) 1.0113** (0.4718)

a2 -1.0167** (0.4417) -0.3875 (0.3095) 1.1682 (0.9095)

a3 1.8758*** (0.5942) 0.4899 (0.3113) -1.5467 (1.5779)

a4 -8.7269*** (2.7016) -2.0765 (1.2606) 5.0896 (6.7346)

B 0.5865*** (0.0196) 0.5795*** (0.0397) 0.6297*** (0.0474)

R2 0.5140 0.4991 0.5117

d.f. 27 27 27

SS 50.6148 52.1636 50.8517

AICC -8945 -8874 -8934

Notes. Standard errors are in parentheses. SS: sum of squared errors.

*p<0.1; **p<0.05; ***p<0.01.

6 Theoretical Analysis

In this section, we first derive a sufficient condition on the value function for the price-quantity

curve to be non-monotonic. We then analyze the seller’s problem, formulate the value function,

and investigate its property. Finally, we try to simulate the price curve given a certain form of the

value function.

6.1 A Sufficient Condition for Non-Monotonicity

We assume V is a non-decreasing and twice-differentiable function of capacity K. To simplify the

notation, we write V (K, p, ψi) = Vi (K). We know that how the price wi changes with quantity Qi

depends on the sign of the first-order derivative of wi in (5) with respect to Qi:

∂wi
∂Qi

=
βi
Qi

[
V ′i (K −Qi)−

Vi(K)− Vi (K −Qi)
Qi

]
. (11)

Given that βi
Qi

> 0, the sign of ∂wi
∂Qi

depends on that of V ′i (K −Qi) − Vi(K)−Vi(K−Qi)
Qi

. A simple

examination leads us to the following proposition.

Proposition 1. If Vi (x) is concave for any x ∈ [0,K], then wi increases with Qi. If Vi (x) is

convex for any x ∈ [0,K], then wi decreases with Qi.

Although the above results are simple, they are surprising. Our initial intuition is that the

value function should be concave and the price should decrease with quantity. However, in order

to have the quantity discount, our simple model requires the value function to be convex. Figure
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Figure 4: The Intuition Behind Proposition 1

4 illustrates the intuition behind Proposition 1. Note that given buyer i’s outside option and the

bargaining power, wi depends on the seller’s average opportunity cost of selling Qi units. We can

see that as Qi increases, the average opportunity cost increases if the value function is concave

and decreases if the value function is convex. Based on this observation, we suspect that the value

function may not be simply convex or concave, which may be the reason for a non-monotonic price-

quantity relation. In fact, we can show that a simple combination of convexity and concavity for

the value function will generate a non-monotonic price-quantity curve.

Proposition 2. If there exists x′ ∈ (0,K) such that Vi (x) is strictly convex for x ∈ [0, x′], strictly

concave for x ∈ [x′,K], and V ′i (0) < Vi(K)/K, then there exists x′′ ∈ (0,K) such that wi increases

with Qi for Qi ∈ [0,K − x′′] and decreases with Qi for Qi ∈ [K − x′′,K].

Proposition 2 provides us with a sufficient condition for the price-quantity relation to be non-

monotonic. We call such a property convex-concave. Actually, it is reasonable to expect the value

function to be convex-concave or S-shaped. When the capacity is very low, the seller is unlikely to

fulfill any buyer’s need and will have to salvage the capacity. As the capacity increases, it becomes

more and more likely that the capacity is sufficient to satisfy more buyers’ needs. When the capacity

is very high, it may exceed demand and the seller may have to salvage a portion. We can infer from

Figure 4 that when the value function is convex-concave and the capacity level is high enough, the

average cost of selling Q units for the seller first increases and then decreases with Q, which leads

to a non-monotonic price-quantity relation.

However, this result alone is not satisfactory, because it cannot explain the pricing pattern we
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observe in the data. The discussion in the previous paragraph is based on perturbing the purchase

quantity of a single buyer with a fixed-value function. Notice that the seller may update the

estimation of future demand based on the demand of the current buyer. Thus, the shape of the

value function may be different for buyers with different purchase quantities, which may explain the

empirical pattern. In the following, we try to verify our conjecture by formulating and analyzing

the value function.

6.2 Formulating the Value Function

Assume that K units of capacity is available after the (i− 1)-th buyer leaves. Let us consider the

value of this remaining capacity in four cases that constitute the sample space. First, the leftover

capacity will be salvaged with probability δi. Second, if buyer i arrives, the buyer walks away

immediately if the capacity is insufficient. Hence, if K < ηDi, the seller’s expected revenue at ti

is Vi (K). Third, if K ≥ ηDi and c̄i > p, the expected revenue is pQi + Vi (K −Qi). Fourth, if

K ≥ ηDi and c̄i ≤ p, the expected revenue is (1− βi) c̄iQi+βi [Vi (K)− Vi (K −Qi)]+Vi (K −Qi).

Note that Qi = ρ∗ (K,Di, βi, ψi) ·Di can differ for different parameter values. As a result,

Vi−1 (K) = δi · s ·K + (1− δi) ·

{ˆ +∞

K/η

Vi (K) dF (D|ψi−1)

+

ˆ 1

0

ˆ K/η

0

ˆ +∞

p

[pρ∗D + Vi (K − ρ∗D)] dG (c̄|ψi−1) dF (D|ψi−1) dB (β|ψi−1)

+

ˆ 1

0

ˆ K/η

0

ˆ p

cL

[βVi (K) + (1− β)Vi (K − ρ∗D)] dG (c̄|ψi−1) dF (D|ψi−1) dB (β|ψi−1)

+

ˆ 1

0

ˆ K/η

0

ˆ p

cL

(1− β) c̄ρ∗DdG (c̄|ψi−1) dF (D|ψi−1) dB (β|ψi−1)

}
. (12)

Apparently, this is a complicated function and it is not obvious how Vi−1 (K) is affected by

various parameters. Hence, we try to derive approximations for the value function in two cases:

one with a finite buyer group and the other with a very large buyer group (i.e., M →∞).

6.3 An Approximation with Finite M

In this section, we derive an upper and a lower bound for Vi−1 (K) and we present the results in

Theorem 1. In preparation, we define
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ν(p, ψM−1) = p− s−Eβ,c̄ [(p− (1− β)c̄− βs) · I {c̄ ≤ p} |ψM−1] . (13)

The key idea of the proof for the lower bound is the following. First, setting ρ = 1 in (12) leads to

a lower bound of Vi−1 (K). We then utilize the fact that the lower bound is a separable function

for D and we iteratively plug the lower bound into (12). We complete the proof by induction.

The proof for the upper bound is similar, except that we use ρ∗ ≤ 1. An essential tool we use

is the law of iterative expectation, based on which we have Eβ,c̄ [ν(p, ψi−1)|ψi−2] = ν(p, ψi−2) and
´ +∞

0

´ λK
0 DdF (D|ψi−1) dF (D′|ψi−2) = E [E [D · I {D ≤ λK} |ψi−1] |ψi−2] =

´ λK
0 DdF (D|ψi−2).

Theorem 1. For any 1 ≤ i ≤M and K ≥ 0,

Vi−1 (K) ≥sK +
(

1− δli
)
· ν(p, ψi−1) ·

ˆ K·λM+1−i

0
DdF (D|ψi−1) , (14)

Vi−1 (K) ≤sK + (1− δui ) · ν(p, ψi−1) ·
ˆ K/η

0
DdF (D|ψi−1) , (15)

where δli = δi − (1− δi)
(
1− δli+1

)
F0 (K − λK), δui = δi − (1− δi)

(
1− δui+1

)
, and δuM = δlM = δM .

Because limK→+∞ F0 (K − λK) = 1, we have limK→+∞ δ
l
i = δui . Therefore, the upper and

lower bounds converge as K goes to infinity. Both the upper and lower bounds take a functional

form similar to V̂M−1 (K,λ), and it is reasonable to expect that Vi−1 (K) is similar to the bounds

as long as they are close enough. We may also conclude that the shape of the value function is

largely dependent on the demand distribution of the next buyer. However, the gap between the

upper and lower bounds increases with M . Hence, the bounds will perform well when M is not

extremely large. Otherwise, it may be useful to get bounds that are independent of M .

6.4 An Approximation with Infinite M

In this case, we assume that the buyer arrival rate is constantly λb. Hence, the probability of

ending the selling process is constantly δ = λ0
λ0+λb

. Before we analyze Vi−1 (K), note that we

can write it as E [R (K, {Dn, βn, c̄n, tn − tn−1}∞n=i) |ψi−1], where R is the total revenue, which is

a function of the future demand, buyer bargaining power, net marginal cost of buying outside,

and arrival times. Similarly, Vi (K) = E
[
R
(
K, {Dn, βn, c̄n, tn − tn−1}∞n=i+1

)
|ψi
]
. Based on our
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assumptions, {Dn, βn, c̄n, tn − tn−1}∞n=i and {Dn, βn, c̄n, tn − tn−1}∞n=i+1 are statistically equivalent

given information ψi−1. Thus, using this condition and the law of iterative expectation, we get

E [Vi (K) |ψi−1] = E
[
R
(
K, {Dn, βn, c̄n, tn − tn−1}∞n=i+1

)
|ψi−1

]
= Vi−1 (K). Leveraging this prop-

erty of the value function, we obtain an upper bound and a lower bound for Vi−1 (K). In preparation,

let

Hi (K) = E [p− (p− (1− β)c̄) · I {c̄ ≤ p} |ψM−1] ·
ˆ K/η

0

DdF (D|ψi−1) , (16)

which is an approximate measure for the expected revenue obtained from the i-th buyer. Let

hi(K) = E
[
Vi

(
[K −Di]

+
)
|ψi−1

]
/Vi−1 (K) . (17)

It is easy to see that hi(K) ∈ [0, 1]. Now we can introduce the following theorem.

Theorem 2. For any i ≥ 1 and K ≥ 0, we have

s ·K + 1−δ
δ ·Hi (K)

1 + 1−δ
δ · [1− hi(K)] · (1−E [β|ψi−1] ·G(p|ψi−1))

≤ Vi−1 (K) ≤ s ·K +
1− δ
δ
·Hi (K) . (18)

If ∂
∂KVi (K) ≥ s for any i ≥ 1, K ≥ 0, and ψi, then limK→∞ hi(K) = 1.

Let Ui−1 and Li−1 be the upper and lower bounds in (18), respectively. We have that Li−1 =

Ui−1/ (1 + Zi), where Zi = 1−δ
δ · [1− hi(K)] · (1−E [β|ψi−1] ·G(p|ψi−1)). We can see that the

percentage gap, Ui−1−Li−1

Ui−1
= Zi

1+Zi
, goes to zero as K → ∞. The absolute gap, Ui−1 − Li−1 =

Zi
1+Zi

·Ui−1, also goes to zero if s = 0. When s > 0, the size of the absolute gap depends on Zi ·K.

The condition ∂
∂KVi (K) ≥ s should be satisfied by definition, because we assume that the seller

can always salvage the capacity at marginal value s, and thus s should be the lowest marginal value

for Vi (K). This means that the bounds will perform particularly well at the beginning of the selling

season, when the capacity is relatively large compared with the average buying quantity. The gap

is also decreasing in δ, E [β|ψi−1], and G(p|ψi−1). In other words, the bounds are closer to the true

value function when the leftover capacity is more likely to be salvaged, buyers are more powerful

on average, and buyers are more likely to engage in price bargaining.

6.5 Discussion

Note that Hi (K) can be written in the form of a′ ·
´K·a′′

0 DdF (D|ψi−1), where a′ and a′′ are

parameters independent of K. Hence, the upper and lower bounds given by Theorem 1 and 2 can
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all be written in the form of a · s ·K + a′ ·
´K·a′′

0 DdF (D|ψi−1), where a, a′, and a′′ are parameters

independent of K. Moreover, we learn from Eq. (20) that the value function of a single-period

problem takes a similar form. Therefore, we are basically approximating the value function by a

single-period problem in which the seller treats the next buyer as the last one. This is very likely

to be the mental heuristic used by a salesperson. More importantly, the approximations in both

cases suggest that the shape of the value function depends much on the demand distribution of the

next buyer, which supports our conjecture in Section 6.1. We find that if the demand is normally

distributed, the value function is very likely to be convex-concave as described in Proposition 2.

Proposition 3. If the demand is normally distributed, then the bounds are all convex-concave.

Other distributions—for example, any unimodal distribution—may also generate S-shaped bounds,

and it is quite natural to expect a unimodal demand distribution.

6.6 Plotting the Price Curve

From (5) we know that the negotiated transaction price wi is a linear combination of both parties’

outside options. The seller’s outside option is the average opportunity cost of selling Qi, which

depends on Qi, capacity Ki, and the value function. In this section, we first investigate the perfor-

mance and the shape of the bounds given a normal demand distribution and then try to plot the

price curve using different parameter settings.

Without loss of generality, we consider negotiating with buyer i for quantity Qi at time ti. As

in the regression models, we control for capacity level, bargaining power, posted price, demand

uncertainty, as well as all the other buyer-, product-, and market-related factors. In the base case,

we set K = 10, βi = 0.8, E [β|ψi] = βi, p = 8, s = 1, cL = 6, c̄i = 7, G (c̄|ψi) = 1−exp (cL − c̄), and

η = 0.9. We assume that arrival rates satisfy λi
λ0

= M−i
i2
, which means that buyer arrival rate is linear

in the number of potential buyers and the technology-shock arrival rate increases quadratically in

the number of buyers that have arrived. In addition, we assume that the demand of the next buyer is

normally distributed with mean µ and standard deviation σ = µ·CV , where CV = 0.25 is a constant.

When observing Qi, the seller updates belief and set µ = min {12, 16− sm ×Qi} where sm captures

the market structure—larger sm means more concentrated demand. This way of updating means

that if buyer i is very large, the rest of the buyers are likely to be small, especially when the seller
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Figure 5: Illustrations of Bounds for the Value Function

Note. The three sets of lines illustrate the upper and lower bounds of Vi for different M and δ. In the case

of finite M : “+” for M − i = 3; “–” for M − i = 4; “•” for M − i = 5. In the case of infinite M : “+” for

δ = 0.2; “–” for δ = 0.3; “•” for δ = 0.4.

knows in advance the market structure and the identities of the buyers. F0 is normal distribution

with mean 12 and standard deviation 12 ·CV . Finally, we set hi(K) ≈ 1− s ·E [Di|ψi−1] /Vi−1 (K).

See the proof of Theorem 2 for justifications.

In Figure 5, we present three numerical examples of the bounds for both finite and infinite M .

We can see that the bounds for finite M perform better with smaller M ; the performance of the

bounds for infinite M depends on the assumption of δ, and they work better with larger δ. In both

cases, the bounds are S-shaped given the normal demand distribution.

In Figure 6, we use the upper bounds in each case (of finite vs. infinite M) as the approximation

of the value function and generate the negotiated price for three different scenarios. With an S-

shaped value function, we obtain a price-quantity curve in all scenarios that is reversed-N-shaped,

which is consistent with our empirical observations.

7 Managerial Implications

According to our model, the reason some buyers are receiving lower discounts than who buy less

is as follows: large buyers accelerate the selling process and small buyers are helpful in consuming

the residual capacity. However, satisfying mid-sized buyers may be costly because supplying these

buyers can make it difficult to utilize the remaining capacity, which is too much for small buyers
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Figure 6: Model-Generated Price-Quantity Relation

Note. Case F-I: βi = 0.8; M = 3; sm = 0.9; CV = 0.2. Case I-I: βi = 0.8; δ = 0.4; sm = 0.9; CV = 0.2.

Case F-II: βi = 0.5; M = 3; sm = 1; CV = 0.25. Case I-II: βi = 0.5; δ = 0.4; sm = 1; CV = 0.25.

Case F-III: βi = 0.5; M = 5; sm = 1.1; CV = 0.3. Case I-III: βi = 0.5; δ = 0.6; sm = 1.1; CV = 0.3.

but not enough for large buyers. In this section, we begin by discussing the capacity allocation

decision for the seller given the non-monotonic price-quantity relation. Basically, the seller need

to avoid mid-sized transactions by controlling the capacity allocation. Next, we discuss how the

posted price should be set given its influence in the selling process.

7.1 Dynamic Capacity Rationing

In this setting the seller should control the capacity that is allocated to each buyer in the accept-

able range. Given the complexity of the value function and the price-quantity relation, it is not

immediately clear whether the seller should increase or decrease the allocated capacity. Based on

our model, we derive a simple rule for deciding the quantity.

Proposition 4. The seller should increase ρi if ri > V ′i (K −Qi) and decrease if ri < V ′i (K −Qi).

The above result suggests that the rationing decision depends on the remaining capacity level,

purchase quantity, demand distribution, and the buyer’s profit margin before subtracting the cost

of this component product. If we hold ri constant, the allocated capacity should be reduced when

K − Qi is close to the mean of the demand from the next buyer; otherwise, the seller should sell

as much as possible. The logic is straightforward: the seller need to avoid losing the next major

buyer due to insufficient capacity. Mathematically, due to the shape of the value function, it is
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more likely to have high V ′i (K −Qi) when K − Qi is neither too high nor too low. On the other

hand, if we hold V ′i (K −Qi) constant, then capacity reduction is more likely to benefit the seller

when the buyer has a lower profit margin. The logic is clear: reserve capacity for buyers who are

willing to pay more. Overall, the lesson is that allocation decisions cannot be based solely on the

capacity levels and purchase quantities. Further, incorrect assumptions on the value function lead

to suboptimal decisions.

7.2 Posted-Price Optimization

When the posted price is determined by marketing people, two important factors related to the

selling process should be considered. First, we learn from Lemma 1 that the posted price determines

not only the price a buyer pays but also the number of price-takers. A price that is too low undercuts

the seller’s profitability; a price that is too high encourages more buyers to engage in bargaining.

Second, the seller’s revenue is a function of both the posted price and the average discount received

by bargainers. Incorrect anticipations of the average discount will lead to suboptimal posted prices.

Our model can be used by sellers to optimize the posted price while considering the price-taker-

bargainer trade-off and a non-monotonic price-quantity relationship with bargainers. The optimal

posted price is p∗ = arg maxp V0 (κ, p).

7.3 Implications for Other Industries

There are other industries that resemble the semiconductor industry. For example, in the travel

industry, airline companies and hotels have limited capacities and these capacities have to be sold

within a limited period. Customers in these industries include bulk buyers such as travel agencies

and resellers who purchase different quantities and negotiated prices. Findings from our study

may carry over to such businesses. Other examples may include movie theaters, concerts, and

sports events. There are a few important differences between the semiconductor industry and the

others. In the semiconductor industry the obsolescence date is stochastic and deterministic for the

others. Also, purchase quantities may be subject to negotiations in other industries. However,

other industries may behave as if they have stochastic obsolescence dates due to the uncertainty in

arrivals of buyers (i.e., the seller is not sure if another buyer will come along before the capacity

is salvaged). In addition, even if the quantity is subject to negotiation, we may still observe a
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non-monotonic price-quantity relationship in other industries, because selling mid-sized quantities

is still costly for sellers given fixed capacities. Theoretically, Lemma 1 and Eq. (6) still hold even

if both price and quantity are determined in Nash bargaining. Therefore, the formulation of the

value function as well as the subsequent analysis is unchanged.

8 Concluding Remarks

In this data-driven research, we study the price-quantity relation in B2B markets where the product

life cycle is short and prices are set through one-shot negotiations. Using data from the micropro-

cessor market, we found that, statistically, the transaction price can be a non-monotonic function

of the transaction quantity. Contrary to our intuition, larger quantities—in a certain range—can

actually lead to higher prices. We showed the robustness of this statistical result with multiple

linear regression models. While existing theories cannot explain our observation, we built a model

that allows us to delve into this phenomenon and understand the rationale behind it.

Our analysis reveals that it is fairly plausible for the price-quantity relation to be non-monotonic.

A sufficient condition for a non-monotonic price-quantity curve is the value function being convex-

concave in capacity. Although we normally assume that the value function is increasing and concave

in capacity, our model shows that this need not be true in B2B markets. Instead, if the demand is

normally distributed, the value function is likely to be convex-concave. More importantly, we found

that a convex-concave value function is enough to explain our empirical observation: an N-shaped

discount curve. We confirmed this finding by generating a price-quantity curve that is reversed

N-shaped, using our model and the assumption of normally distributed demand.

To show that our theory is more likely to be the correct one against other explanations, we

either control for other factors in the empirical model or fit different structured models to the data.

We also show conditions under which omitted variables do not affect the non-monotonic pattern.

Admittedly, certain behavior biases could also possibly cause this pricing pattern. Verifying such

possibilities, however, entails completely different modelling frameworks. It is almost impossible to

include these different models in the same paper. Therefore, we hope our work can stimulate future

research on behavioral explanations of the empirical observation. Other limitations of our work

include the assumptions of static Nash bargaining and fixed capacity, which might be restrictive
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for certain semiconductor companies. Future research may obtain different price-quantity relations

by considering dynamic strategic bargaining and expiration of capacity over time.
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Electronic Companion for “Higher Prices for Larger

Quantities? Non-Monotonic Price-Quantity Relations

in B2B Markets”

1 Robustness Checks

1.1 Simultaneity

One possible concern regarding our regression models is that they suffer simultaneity between

price and quantity; i.e., not only is discount affected by demand share but demand share may

also be affected by discount. This is not valid in our problem, because each buyer’s production

plan is determined in advance and the production needs inputs other than microprocessors from

different suppliers so that it can be costly for buyers to manipulate their demand. To verify

this practice with our data, we pick the Quarter from which an instance started in a year as an

instrumental variable (IV). Quarter is a categorical variable used to control for time fixed effects in

our previous regressions. Note that Quarter can directly influence ED given the cyclical nature of

the semiconductor industry; However, Quarter can hardly relate to demand share directly because it

is very unlikely that buyers of a particular demand share prefer to start a purchase from a particular

quarter or are required to do so. Using Stata command ivregress and the gmm estimator, we regress

r4ds against ED and other control variables with dummies of three quarters as the IVs for ED. The

details about the Stata command can be found at http://www.stata.com/manuals13/rivregress.pdf.

The estimated coefficient for ED is -0.0227 with robust standard error 0.1719 and P value 0.895,

which indicates that ED does not affect r4ds. We test the over-identifying restriction using the

Hansen’s J statistic (Hansen 1982) and obtain χ2(2) = 0.1217 and P value = 0.9410, which indicate

that the IVs are valid. Therefore, the data suggests that quantity is not a term for negotiation.

1.2 Alternative Transformations of Demand Share

To check the robustness of power transformations of demand share, we run four additional nonlinear-

piecewise-polynomial regressions using DS0.15, DS0.2, DS0.3, and DS0.35, respectively, in place of



Table 10: Regressions with Alternative Transformations of Demand Share

DS0.15 DS0.2 DS0.3 DS0.35

a1 .2543** (.1047) .2390** (.1027) .2242** (.1117) .2335* (.1210)

a2 .3705* (.2220) .3263 (.2108) .2843 (.2371) .3072 (.2760)

a3 -.6653** (.3374) -.5221** (.2664) -.3978* (.2125) -.3560* (.1928)

a4 4.6090** (1.9210) 2.8293** (1.1836) 1.6585** (.7133) 1.3402** (.5815)

B .7159*** (.0265) .6352*** (.0317) .5060*** (.0386) .4517*** (.0412)

Notes. B is obtained by NLS regression, and others are obtained by OLS regression

given B. Robust standard errors are in parentheses. *p<0.1; **p<0.05; ***p<0.01.

r4ds in (3). The results are summarized in Table 10. In all four models, we can get similar non-

monotonic curves composed of an increasing piece on the left and a quadratic piece on the right.

Although a3 is only significant at 10% level for DS0.3 and DS0.35, the results are meaningful as

discussed earlier. First, we use robust standard errors that are generally greater than the ordinary

standard errors. Second, we require a continuous discount curve, but the results will be more

significant if we allow the curve to be discontinuous at the knot. Third, the P value should be

halved for one-sided test, so the non-monotonicity is actually significant at 5% level. Hence, power

transformations of demand share not only preserve the unit range, but also offer a robust way to

study the price-quantity relationship.

1.3 Omitted Variables

Here we focus on the discussion of linear regressions, given that we only run nonlinear regressions

to estimate knot B. Let f(DS) denote the vector of demand-share-related variables, X the vector

of other covariates included in our model, and Z = (Z1, Z2)′ the vector of those not included. As

discussed earlier, Z1 is the buyer’s net cost of switching to an alternative product, and Z2 is the value

of other contract terms for the buyer. We show in Section 5.2 that the demand-share-dependent

switching cost is not supported by the data, so it seems plausible to assume that Z1 is uncorrelated

with f(DS). Hence, Z1 = b′z1 · X + εz1, wherein bz1 is a constant vector and εz1 is a random

variable that is independent of f(DS). Next, price discount and other contract terms, if any, are

determined through the same bargaining process, so Z2 = bz2 (γ′ds · f(DS) + γ′x ·X + γz1 · Z1)+εz2.

Therefore, if ED is determined by a linear model that ED = γ′ds · f(DS) + γ′x · X + γ′z · Z + ε1,



wherein γz = (γz1, γz2)′. Defining γ0 = (1 + γz2bz2) · (γ′x + γz1b
′
z1) and plugging Z into ED, we get

ED = (1 + γz2bz2) · γ′ds · f(DS) + γ′0X + ε0. (19)

We can see that the true marginal effect of f(DS) is just scaled if we regress ED against f(DS)

and X, and thus the underlying non-monotonic pattern will not be affected.

1.4 Sample Selection Bias

Recall that we dropped products with three or fewer customers because we do not have good proxies

of the posted price for these products. Such a selection may cause biases because different products

may have different price-quantity patterns. To correct for potential biases, we assume that the

effective discount is censored for products with three or fewer customers and adopt the Heckman

selection model or the Type-II Tobit model (Greene 2012). The full maximum likelihood method

is used with the STATA command, Heckman. We run five selection models, (S1) - (S5), each with

a different power-transformed demand share. For the ordinary regression, we use the same set of

variables as in (3) except that we fix the knots according to the results in Table 6 and 10. In

addition, we define Lds = (ptds−B)− and Rds = (ptds−B)+. For the selection equation, we

include 1) Herf , which measures the downstream market structure, 2) TSQ, which captures the

size of the market, 3) AvgP , the average price of a product that captures the product quality and

market segment, 4) Lifecycle, the life cycle of a product, 5) quarterly fixed effect, and 6) brand

fixed effect. As shown in Table 11, an “N” shape is still observed and significant.

2 Technical Proofs

Proof of Lemma 1. If c̄i > p, then Πi(wi) − di = (p− wi)Qi and ΠA(wi) − dA = (wi − p)Qi.

Hence, it must be that wi = p. If c̄i ≤ p, Πi(wi) − di = (c̄i − wi)Qi and ΠA(wi) − dA = wiQi +

Vi (Ki −Qi, p) − Vi (Ki, p). Hence, Πi(wi) − di = (c̄i − wi)Qi = βi (Πi(wi)− di + ΠA(wi)− dA) =

βi (c̄iQi + Vi (Ki −Qi, p)− Vi (Ki, p)), which results in (5). �



Table 11: Test of Selection Bias on the Price-Quantity Relationship

DS0.15 DS0.2 DS0.25 DS0.3 DS0.35

DS-related
Variables

in the
Ordinary

Regression

Lds
.2561**

(.1035)

.2408**

(.1015)

.2337**

(.1046)

.2267**

(.1105)

.2363**

(.1197)

Lds2
.3699*

(.2223)

.3262

(.2106)

.3059

(.2183)

.2857

(.2359)

.3093

(.2743)

Rds
-.6331*

(.3340)

-.4971*

(.2637)

-.4249*

(.2283)

-.3803*

(.2101)

-.3405*

(.1906)

Rds2
4.4135**

(1.8983)

2.7097**

(1.1696)

1.9726**

(.8580)

1.5916**

(.7044)

1.2862**

(.5741)

Dependent
Variables

in the
Selection
Equation

Herf
-4.4533***

(.1936)

-4.4533***

(.1936)

-4.4533***

(.1936)

-4.4533***

(.1936)

-4.4533***

(.1936)

TSQ
7.2E-7***

(1.3E-7)

7.2E-7***

(1.3E-7)

7.2E-7***

(1.3E-7)

7.2E-7***

(1.3E-7)

7.2E-7***

(1.3E-7)

AvgP
-6.8E-4***

(2.3E-4)

-6.8E-4***

(2.3E-4)

-6.8E-4***

(2.3E-4)

-6.8E-4***

(2.3E-4)

-6.8E-4***

(2.3E-4)

Lifecycle
2.1E-3***

(2.1E-4)

2.1E-3***

(2.1E-4)

2.1E-3***

(2.1E-4)

2.1E-3***

(2.1E-4)

2.1E-3***

(2.1E-4)

Quarter F.E. Yes Yes Yes Yes Yes

Brand F.E. Yes Yes Yes Yes Yes

Notes. Robust standard errors are in parentheses. *p<0.1; **p<0.05; ***p<0.01.

Proof of Proposition 1. Suppose Vi (x) is concave for any x ∈ [0,K]. Thus, we have V ′i (x) <

V ′i (K −Qi) for any x ∈ [K −Qi,K]. As a result, we have

Vi(K)− Vi (K −Qi)
Qi

=
1

Qi

ˆ K

K−Qi

V ′i (x)dx <
1

Qi

ˆ K

K−Qi

V ′i (K −Qi) dx = V ′i (K −Qi) .

Similarly, we can get the result for Vi (x) being convex for any x ∈ [0,K]. �

Proof of Proposition 2. Let L(x) = Vi(K)−Vi(x)
K−x , and we have L(0) > V ′i (0) and limx→K L(x) =

V ′i (K). By continuity, there exist x′′ ∈ (0,K) such that L(x) > V ′i (x) for ∀x ∈ [0, x′′). We claim

that x′′ < K and L(x) ≤ V ′i (x) for some x ∈ [x′′,K]. Suppose this claim is not true. We have

L′(x) = 1
K−x [L(x)− V ′i (x)] > 0 for ∀x ∈ [0,K] and thus L(x) is strictly increasing on [0,K]. In

addition, because Vi (x) is concave on [x′,K], we have V ′i (x) > V ′i (K) > L(x) on [x′,K), which is

a contradiction.

Now let x′′ = min {x ∈ [0,K) : L(x) ≤ V ′i (x)}. By continuity, we must have L(x′′) = V ′i (x′′),

which indicates L′(x′′) = 0. Suppose x′ < x′′. Concavity requires that V ′i (x) > V ′i (x′′) = L(x′′) >



L(x) on (x′, x′′), which is a contradiction. Hence, x′ ≥ x′′. Now, suppose ∃x0 ∈ (x′′,K) such that

L(x0) > V ′i (x0). We consider two cases: (I) x′ ≤ x0 and (II) x′ > x0. In case (I), V ′i (x) decreases

for all x > x0 by concavity. However, L(x) increases as long as L(x) > V ′i (x). In order to have

limx→K L(x) = V ′i (K), we need that L(x) decreases while L(x) > V ′i (x), which is a contradiction.

In case (II), we have that x′′ < x0 < x′ and V ′i (x) increases for all x ≤ x0 by convexity. However,

L′(x′′) = 0 < V ′′i (x′′), so by continuity there exist ε > 0 such that

L(x′′ + ε)− L(x′′)

ε
<
V ′i (x′′ + ε)− V ′i (x′′)

ε
.

Therefore, in order to have L(x0) > V ′i (x0), we need L(x) to increase while L(x) < V ′i (x), which

is a contradiction. As a result, L(x) ≤ V ′i (x) for all x ∈ [x′,K). Suppose L(x) = V ′i (x) for all

x ∈ [x′,K). We then have L(x) = limx→K L(x) = V ′i (K) for all x ∈ [x′,K), but V ′i (x) > V ′i (K) for

some x ∈ [x′,K) by concavity, which is a contradiction. The result follows. �

Proof of Theorem 1. Part I. We begin with the last (i.e., the M -th) buyer. Given that no more

selling opportunities will exist after the last buyer, we have VM (K) = sK. From Lemma 1, we

know that the price for the M -th buyer is wM = p or wM = βM · s+ (1− βM ) · c̄M . Thus, we have

wM > s and the seller should sell as much to the last buyer as possible; i.e., ρ∗M = min {1,K/DM}.

Plugging VM (K) = sK and QM = K ∧DM into (12), we can obtain

VM−1 (K) = sK + (1− δM ) · ν(p, ψM−1) ·

[ˆ K

0
DdF (D|ψM−1) +

ˆ K/η

K
KdF (D|ψM−1)

]
. (20)

Although in general Vi−1 (K) in (12) is not a separable function for the three random variables, β, c̄,

and D, we find in (20) that D can be multiplicatively separated from β and c̄. Basically, ν(p, ψM−1)

is only related to β and c̄, and it measures the expected margin obtained from a buyer above the

salvage value. Note that ν(p, ψM−1) is finite because β ∈ [0, 1] and c̄ ∈ [cL, p]. Furthermore, under

the assumption of finite demand expectation, we have that
´K/η
K KdF (D|ψM−1) approaches zero

as K increases, so this term can be ignored when K → +∞.

Lemma 2. limK→+∞
´K/η
K KdF (D|ψ) = 0 given that

´ +∞
0 DdF (D|ψ) < +∞.



Proof. First, we have

ˆ +∞

0
DdF (D|ψ) =

ˆ K

0
DdF (D|ψ) +

ˆ K/η

K
DdF (D|ψ) +

ˆ +∞

K/η
DdF (D|ψ) <∞

for any K > 0. Second,
´ +∞

0 DdF (D|ψ) = limK→∞
´K

0 DdF (D|ψ). Thus,

lim
K→∞

ˆ K/η

K
DdF (D|ψ) = lim

K→∞

ˆ +∞

K/η
DdF (D|ψ) = 0.

Furthermore,
´K/η
K KdF (D|ψ) ≤

´K/η
K DdF (D|ψ), so limK→∞

´K/η
K KdF (D|ψ) = 0.

Therefore, based on (20), for any scalar λ ∈ (0, 1), we can easily have a lower bound V̂M−1 (K,λ)

for VM−1 (K):

VM−1 (K) ≥ sK + (1− δM ) · ν(p, ψM−1) ·
ˆ λK

0
DdF (D|ψM−1) = V̂M−1 (K,λ) . (21)

We can see that the shape of V̂M−1 (K,λ) (i.e., how V̂M−1 (K) changes with K) depends on the

shape of distribution F (·|ψM−1). If F (·|ψM−1) is exponential, then V̂M−1 (K,λ) is increasing and

concave in K. If F (·|ψM−1) is normal, then V̂M−1 (K,λ) is S-shaped. Using the result for the last

buyer, we move on and consider Vi−1 (K) in general.

Part II. We now show the proof for the lower bound. To prove by induction, we suppose for

i < M that

Vi (K) ≥ sK +
(

1− δli+1

)
· ν(p, ψi) ·

ˆ K·λM−i

0
DdF (D|ψi−1) .

Now, using (12), we have

Vi−1 (K) ≥sK + (1− δi) ·{(
1− δli+1

)
·Eβ,c̄ [ν(p, ψi)|ψi−1] ·

ˆ +∞

K/η

ˆ K·λM−i

0
DdF (D|ψi) dF

(
D′|ψi−1

)
+
(

1− δli+1

)
·Eβ,c̄ [ν(p, ψi)|ψi−1] ·

ˆ K/η

0

ˆ (K−D′)+·λM−i

0
DdF (D|ψi) dF

(
D′|ψi−1

)
+ ν(p, ψi−1) ·

ˆ K/η

0
D′dF

(
D′|ψi−1

)}



=sK + (1− δi) · ν(p, ψi−1) ·

{(
1− δli+1

)
·
ˆ +∞

0

ˆ K·λM−i

0
DdF (D|ψi) dF

(
D′|ψi−1

)
−
(

1− δli+1

)
·
ˆ K/η

0

ˆ K·λM−i

0
DdF (D|ψi) dF

(
D′|ψi−1

)
+
(

1− δli+1

)
·
ˆ K/η

0

ˆ (K−D′)+·λM−i

0
DdF (D|ψi) dF

(
D′|ψi−1

)
+

ˆ K/η

0
D′dF

(
D′|ψi−1

)}

=sK + (1− δi) · ν(p, ψi−1) ·

{(
1− δli+1

)
·
ˆ K·λM−i

0
DdF (D|ψi−1)

−
(

1− δli+1

)
·
ˆ K/η

0

ˆ K·λM−i

(K−D′)+·λM−i

DdF (D|ψi) dF
(
D′|ψi−1

)
+

ˆ K/η

0
D′dF

(
D′|ψi−1

)}
.

Here for the first equality, we add and subtract
(
1− δli+1

)
·
´K/η

0

´K·λM−i

0 DdF (D|ψi) dF (D′|ψi−1)

in the curly braces. Further, we have

ˆ K/η

0

ˆ K·λM−i

(K−D′)+·λM−i

DdF (D|ψi) dF
(
D′|ψi−1

)
≤
ˆ +∞

0

ˆ K·λM−i

(K−D′)+·λM−i

DdF (D|ψi) dF
(
D′|ψi−1

)
= E

[
E
[
D · I

{
(K −D′)+ · λM−i ≤ D ≤ K · λM−i

}
|ψi
]
|ψi−1

]
= E

[
D · I

{
(K −D′)+ · λM−i ≤ D ≤ K · λM−i

}
|ψi−1

]
=

ˆ +∞

0

ˆ K·λM−i

(K−D′)+·λM−i

DdF (D|ψi−1) dF
(
D′|ψi−1

)
=

ˆ K·λM−i

0

ˆ +∞

K−D/λM−i

DdF
(
D′|ψi−1

)
dF (D|ψi−1)

=

ˆ K·λM−i

0
D ·
[
1− F

(
K −D/λM−i|ψi−1

)]
dF (D|ψi−1)

≤
ˆ K·λM−i+1

0
D ·
[
1− F

(
K −D/λM−i|ψi−1

)]
dF (D|ψi−1) +

ˆ K·λM−i

K·λM−i+1

DdF (D|ψi−1)

≤ [1− F (K − λK|ψi−1)] ·
ˆ K·λM−i+1

0
DdF (D|ψi−1) +

ˆ K·λM−i

K·λM−i+1

DdF (D|ψi−1)

≤ [1− F0 (K − λK)] ·
ˆ K·λM−i+1

0
DdF (D|ψi−1) +

ˆ K·λM−i

K·λM−i+1

DdF (D|ψi−1) .

Here, we first extend the range of integral for D′ to [0,+∞) given that D and F are both positive.



Next, we rewrite the double integral as iterated expectations. Third, we apply the law of iterated

expectations. Fourth, we write the expectation as a double integral again. Fifth, we change the

sequence of integral and then simplify the expression in the next step. Sixth, we split the integral

into two parts and apply F
(
K −D/λM−i|ψi−1

)
≤ 1 for the part from K · λM−i+1 to K · λM−i.

Seventh, given 0 ≤ D ≤ K · λM−i+1, we have F (K − λK|ψi−1) ≤ F
(
K −D/λM−i|ψi−1

)
. Finally,

by assumption, we have F0 (K − λK) ≤ F (K − λK|ψi−1). Now we can write

Vi−1 (K) ≥sK + (1− δi) · ν(p, ψi−1) ·

{(
1− δli+1

)
·
ˆ K·λM−i

0
DdF (D|ψi−1)

−
(

1− δli+1

)
·
ˆ K·λM−i

K·λM−i+1

DdF (D|ψi−1)

−
(

1− δli+1

)
· [1− F0 (K − λK)] ·

ˆ K·λM−i+1

0
DdF (D|ψi−1)

+

ˆ K/η

0
DdF (D|ψi−1)

}

=sK + (1− δi) · ν(p, ψi−1) ·

{(
1− δli+1

)
· F0 (K − λK) ·

ˆ K·λM−i+1

0
DdF (D|ψi−1)

+

ˆ K/η

0
DdF (D|ψi−1)

}

≥sK +
[
1− δi + (1− δi) ·

(
1− δli+1

)
· F0 (K − λK)

]
· ν(p, ψi−1) ·

ˆ K·λM−i+1

0
DdF (D|ψi−1)

=sK +
(

1− δli
)
· ν(p, ψi−1) ·

ˆ K·λM+1−i

0
DdF (D|ψi−1) .

Part III. We now show the proof for the upper bound. First, for i = M , we easily have

VM−1 (K) ≤ sK + (1− δM ) · ν(p, ψM−1) ·
ˆ K/η

0
DdF (D|ψM−1)

according to (20). Then suppose we have the upper bound for Vi (K): sK + V̄i (K). Accordingly,



we can use this in (12) to obtain

Vi−1 (K) ≤ δisK + (1− δi) ·{ˆ 1

0

ˆ +∞

K/η

ˆ +∞

cL

[
sK + V̄i (K)

]
dG (c̄|ψi−1) dF (D|ψi−1) dB (β|ψi−1)

+

ˆ 1

0

ˆ K/η

0

ˆ +∞

p

[
pρ∗D + s (K − ρ∗D) + V̄i (K)

]
dG (c̄|ψi−1) dF (D|ψi−1) dB (β|ψi−1)

+

ˆ 1

0

ˆ K/η

0

ˆ p

cL

[
sK + V̄i (K)− (1− β) sρ∗D

]
dG (c̄|ψi−1) dF (D|ψi−1) dB (β|ψi−1)

+

ˆ 1

0

ˆ K/η

0

ˆ p

cL

(1− β) c̄ρ∗DdG (c̄|ψi−1) dF (D|ψi−1) dB (β|ψi−1)

}

= sK + (1− δi) ·
{
Ec̄,D,β

[
V̄i (K) |ψi−1

]
+

ˆ 1

0

ˆ K/η

0

ˆ +∞

p
(p− s)ρ∗DdG (c̄|ψi−1) dF (D|ψi−1) dB (β|ψi−1)

+

ˆ 1

0

ˆ K/η

0

ˆ p

cL

(1− β) (c̄− s)ρ∗DdG (c̄|ψi−1) dF (D|ψi−1) dB (β|ψi−1)

}

≤ sK + (1− δi) ·

{
Ec̄,D,β

[
V̄i (K) |ψi−1

]
+ ν(p, ψi−1) ·

ˆ K/η

0
DdF (D|ψi−1)

}

= sK +
(
1− δi + (1− δi)

(
1− δui+1

))
· ν(p, ψi−1) ·

ˆ K/η

0
DdF (D|ψi−1) .

Note that we use the fact that
´ (K−ρ∗D)/η

0 DdF (D|ψi) ≤
´K/η

0 DdF (D|ψi) for the first inequality.

We use that ρ∗ ≤ 1 for the second inequality given that p > s and c̄ > s.�

Proof of Theorem 2. LetGi−1(c̄) = G (c̄|ψi−1), Fi−1(D) = F (D|ψi−1), andBi−1(β) = B (β|ψi−1).

We first divide both sides of Eq. (12) by 1− δ and add to the right side

0 =

ˆ K/η

0
Vi (K) dFi−1(D)

−
ˆ 1

0

ˆ K/η

0

ˆ +∞

p
Vi (K) dGi−1 (c̄) dFi−1(D)dBi−1(β)

−
ˆ 1

0

ˆ K/η

0

ˆ p

cL

Vi (K) dGi−1 (c̄) dFi−1(D)dBi−1(β).



Accordingly, we obtain

Vi−1 (K)

1− δ
=

δ

1− δ
· s ·K + E [Vi (K) |ψi−1]

+

ˆ 1

0

ˆ K/η

0

ˆ +∞

p
[Vi (K − ρ∗D)− Vi (K)] dGi−1 (c̄) dFi−1(D)dBi−1(β)

+

ˆ 1

0

ˆ K/η

0

ˆ p

cL

(1− β) [Vi (K − ρ∗D)− Vi (K)] dGi−1 (c̄) dFi−1(D)dBi−1(β)

+ p

ˆ 1

0

ˆ K/η

0

ˆ +∞

p
ρ∗DdGi−1 (c̄) dFi−1(D)dBi−1(β)

+

ˆ 1

0

ˆ K/η

0

ˆ p

cL

(1− β) c̄ρ∗DdGi−1 (c̄) dFi−1(D)dBi−1(β). (22)

Because E [Vi (K) |ψi−1] = Vi−1 (K), Vi (K − ρ∗D) ≤ Vi (K), and ρ∗ ≤ 1, we have

δ

1− δ
· [Vi−1 (K)− s ·K] ≤ 0 + 0 +Hi (K) ,

which results in Vi−1 (K) ≤ s ·K + 1−δ
δ ·Hi (K).

To derive the lower bound, we start from (22) and use the optimality of ρ∗. We have

ˆ 1

0

ˆ K/η

0

ˆ +∞

p
[pρ∗D + Vi (K − ρ∗D)] dGi−1 (c̄) dFi−1(D)dBi−1(β)

≥
ˆ 1

0

ˆ K/η

0

ˆ +∞

p

[
pD + Vi

(
[K −D]+

)]
dGi−1 (c̄) dFi−1(D)dBi−1(β).

Similarly, we apply this logic to the case of c̄i ≤ p. As a result, we get

δ

1− δ
· [Vi−1 (K)− s ·K] ≥ (1−E [β|ψi−1] ·Gi−1(p)) ·

ˆ K/η

0

[
Vi
(
[K −D]+

)
− Vi (K)

]
dFi−1(D)

+Hi (K)

≥ Hi (K)− (1−E [β|ψi−1] ·Gi−1(p)) · [1− hi (K)]Vi−1 (K) .

For the last inequality above, we use the fact that Vi
(
[K −Di]

+) ≤ Vi (K) and

ˆ +∞

0

[
Vi−1 (K)− Vi

(
[K −D]+

)]
dFi−1(D)

≥
ˆ K/η

0

[
Vi−1 (K)− Vi

(
[K −D]+

)]
dFi−1(D).



Hence, we have Vi−1 (K) ≥
(
sK + 1−δ

δ ·Hi (K)
)
/
(
1 + 1−δ

δ · (1−E [β|ψi−1] ·Gi−1(p)) · [1− hi (K)]
)
.

To show limK→∞ hi(K) = 1, we need to check two cases: s = 0 and s 6= 0. If s = 0, then we

know from the upper bound that Vi (K) is bounded by Hi+1 (K), which is bounded as K →∞. In

this case, we can show that from the ψi−1 point of view, Vi
(
[K −Di]

+) converges in probability

to Vi (K) as K → ∞. To this end, note that given any ψi both Vi
(
[K −Di]

+) and Vi (K) are

increasing in K but are bounded. Hence, they converge to the same limit C̄ (ψi), and for any ε > 0,

there exist K (ψi) < ∞ such that |Vi (K) − Vi
(
[K −Di]

+) | < ε. Because K (ψi) is finite, there

exist K∗ε,ξ <∞ for any ξ > 0 such that Pr
{
K∗ε,ξ < K (ψi) |ψi−1

}
< ξ. In other words, for any ε > 0

and ξ > 0, there exist K∗ε,ξ <∞ such that for K ≥ K∗ε,ξ we have

Pr
{
Vi (K)− Vi

(
[K −Di]

+) > ε|ψi−1

}
< ξ.

Therefore, Vi
(
[K −Di]

+) converges in probability to Vi (K) and thus

E
[
Vi
(
[K −Di]

+) |ψi−1

]
→ E [Vi (K) |ψi−1] .

If s 6= 0, then Vi (K) is unbounded. However, we know from the upper bound that Vi (K)− sK

is bounded by Hi+1 (K). Because ∂
∂KVi (K) ≥ s, we have that Vi (K)−sK is increasing in K. As a

result, Ṽi(K) = Vi (K)− sK converges to a limit. Applying the same logic as for the case of s = 0,

we know that E
[
Ṽi
(
[K −Di]

+) |ψi−1

]
→ E

[
Ṽi (K) |ψi−1

]
. Accordingly, we have

E
[
Vi (K)− sK − Vi

(
[K −Di]

+)+ s [K −Di]
+ |ψi−1

]
→ 0.

Since E
[
sK − s [K −Di]

+ |ψi−1

]
= E [s ·min {K,Di} |ψi−1] → E [sDi|ψi−1] < ∞, we know that

E
[
Vi (K)− Vi

(
[K −Di]

+) |ψi−1

]
→ E [sDi|ψi−1]. Therefore,

hi(K) =
E
[
Vi
(
[K −Di]

+) |ψi−1

]
E [Vi (K) |ψi−1]

= 1−
E
[
Vi (K)− Vi

(
[K −Di]

+) |ψi−1

]
E [Vi (K) |ψi−1]

→ 1. �



Proof of Proposition 3. Let the probability density function be f(x) = a · exp
(
− (x−b)2

2c

)
.

Note that the critical component in all the bounds is
´K/η

0 DidF (Di|ψi−1) and
´K

0 DidF (Di|ψi−1).

Without a loss of generality, we focus on A(K) =
´K

0 xdF (x). The second-order condition gives

∂2A
∂K2 = f(K) + K · f ′(K). It is easy to check that f ′(x) = −x−b

c · f(x). Hence, we have ∂2A
∂K2 =

f(K) ·
[
1− K(K−b)

c

]
, which has zero points K∗1,2 = b±

√
b2+4c
2 . It is clear that only one non-negative

zero point exists because c > 0. Therefore, A(K) is convex-concave. Given sK is linear, we know

that the bounds are all convex-concave. �

Proof of Proposition 4. Note that ΠA = wi (Qi) ·Qi + Vi (K −Qi), where wi (Qi) is given by

(5). Thus, ΠA can be written as

βi [Vi (K)− Vi (K − ρiDi)] + (1− βi)Di

[
riρi − ρ′i

(
r′i − c̃i

)]
+ Vi (K − ρiDi) .

Taking the first-order derivative of ΠA with respect to ρi, we get

∂ΠA/∂ρi = (1− βi)Di

[
ri − V ′i (K − ρiDi)

]
.

The result follows. �
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