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The e�ectiveness of US energy e�ciency
building labels
Omar Isaac Asensio1,2 and Magali A. Delmas3*

Information programs are promising strategies to encourage investments in energy e�ciency in commercial buildings.
However, the realized e�ectiveness of these programs has not yet been estimated on a large scale. Here we take advantage
of a large sample of monthly electricity consumption data for 178,777 commercial buildings in Los Angeles to analyse energy
savings and emissions reductions from threemajor programs designed to encourage e�ciency: the USDepartment of Energy’s
Better Buildings Challenge, the US Environmental Protection Agency’s Energy Star program and the US Green Building
Council’s Leadership in Energy and Environmental Design (LEED) program. Usingmatching techniques, we find energy savings
that range from 18% to 30%, depending on the program. These savings represent a reduction of 210 million kilowatt-hours
or 145 kilotons of CO2 equivalent emissions per year. However, we also find that these programs do not substantially reduce
emissions in small and medium sized buildings, which represent about two-thirds of commercial sector building emissions.

Energy supplied in buildings accounts for an estimated 8.8
gigatons of CO2 emissions globally or about one-third of
total energy use and carbon emissions1. The United Nations

Environment Program (UNEP) andmany energy experts argue that
the buildings sector has the largest potential for delivering long-
term and cost-effective emissions reductions in both developing and
developed countries2. A recent analysis by the National Research
Council contends that the full development of cost-effective energy
efficiency technologies in buildings could eliminate the need to
construct new electricity-generating plants in the United States3. A
critical question is what kind of programs can catalyse reductions in
emissions. This question is especially important given the current
lack of global carbon regulation. In the United States, there are
three major voluntary information programs aimed at reducing
building emissions: The US Environmental Protection Agency’s
(EPA) Energy Star Program, the US Green Building Council’s
(USGBC) Leadership in Energy and Environmental Design (LEED),
and the US Department of Energy’s (DOE) Better Buildings
Challenge. Participation in these programs has increased rapidly
over the past 10 years and has reached 21 billion square feet (sqft)
of floor space (see refs 4–6 and Supplementary Note 1). These
programs aim to encourage private investment in energy efficiency.
Examples of such investments include structural upgrades for
indoor heating, ventilating and air conditioning (HVAC); smart
energy management systems; and efficient lighting, sensors and
other controls.

Information programs reduce barriers to investment and
encourage energy efficiency through two main mechanisms. The
first mechanism involves lowering search and information costs for
energy planning decisions. This often includes subsidized building
audits that provide tailored information about potential savings
through available technologies, and benchmarking of best practices
through a network of peers. This is a main focus of the DOE Better
Buildings Challenge, which provides energy audits to support US
commercial and industrial building ownerswho commit to reducing

energy and water consumption in existing buildings by 20 percent
or more over 10 years7. The program provides public recognition
for performance but it does not offer a separate certification
label. A recent meta-analysis of peer-reviewed studies in energy
conservation found that technical audits, such as those provided to
many Better Buildings Challenge partners, were effective to reduce
energy consumption in the residential sector8.

A second mechanism by which information programs can
promote voluntary energy efficiency adoption involves market
signalling through a prominently displayed energy efficiency label.
Labelling is the focus of both the LEED and Energy Star programs,
which provide third-party certification for efficient buildings based
on a comparative 1–100 Energy Star score. Only those buildings
that receive an Energy Star score of 75 (75th percentile or better)
compared to similar buildings nationwide are eligible to apply
for the Energy Star or LEED certification label in a given year.
Unlike Energy Star, which is a government supported label for
energy efficiency, LEED is privately supported. The USGBC rates
LEED buildings based on a tiered rating scheme, which includes
reductions in energy use, but also focuses on improvements such
as water use, materials and resources, indoor environmental quality,
and sustainable design.

Each program has unique institutional features (see Supplemen-
tary Note 1), but largely attracts different segments of the commer-
cial real estatemarket, withminor overlap in participation. For those
buildings not eligible to participate in either Energy Star or LEED
certification programs, the Better Buildings initiative provides a
market entry point for energy efficiency investment and participa-
tion in existing buildings.

These programs are often described as green clubs, in which
voluntary participation provides reputation benefits to its mem-
bers9. Building owners and managers who participate in these
programs often gain recognition for their more efficient build-
ings through market mechanisms that sometimes include premi-
ums such as increased asset prices and tenant rents10–13. These
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Table 1 |Annual building emissions by building class (2005–2012).

Number of
buildings

Square footage
(in million sqft)

Metric tons
of CO2

Percentage of
building emissions

Square footage in
EnergyStar, LEEDor LABBC
(in million sqft)

% of square footage in
Energy Star, LEED or LABBC

Class A 456 107.7 585,410.71 36.4 66.98 91.04
Class B 3,452 125.5 437,936.05 27.3 4.77 6.48
Class C 14,698 238.3 582,999.95 36.3 1.82 2.47
Total 18,606 471.5 1,606,346.71 100 73.57 100
Buildings located in Los Angeles Department of Water and Power territory.

economic returns reflect expectations of lower energy costs for
building occupants. However, while the evidence on green premi-
ums has received increased attention, the realized environmental
performance of these investments is as yet largely undetermined.
While there have been program estimates associated with buildings
participating in these programs, these estimates have not been able
to clearly isolate the effects of each program.

One principal limitation of such analyses has been the lack of
access to longitudinal high-resolution building energy performance
data14,15. Another difficulty for program evaluation arises in the fact
that participating firms in voluntary programs seldom constitute
random samples. We also never directly observe the alternative
states among participants in which an investment or participation
decision is not made, making it difficult to construct valid control
groups for program evaluation16. Further, cross-sectional analyses
of programs can bemisleading because of endogeneity issues, which
can be due to a number of reasons, including technology adoption,
pricing and consumer preferences, all of which potentially limit our
ability to make causal inferences.

Recently, scholars have called for better research designs and
rigorous observational studies that utilize both pre- and post-
performance data14,17. They have argued that the most rigorous
approaches in program evaluation are to use randomized controlled
trials17–19 and quasi-experimental research designs20,21. Experiments
are useful, but are often cost prohibitive or infeasible22,23. In such
cases, matching strategies, particularly those used in combination
with other methods, can be used tomitigate covariate imbalances in
models based on observational data24–26.

In this Article, we perform a comparative analysis of the
effectiveness of energy efficiency labelling strategies in the Better
Buildings Challenge, Energy Star and LEED programs in the com-
mercial buildings sector, enabled by access to monthly electricity
consumption data for all commercial buildings in Los Angeles from
2005–201227. We find that all these programs deliver high magni-
tudes of energy savings that range from 18% to 30%, depending
on the program. These savings represent a reduction of 210 million
kilowatt-hours (kWh) or 145 kilotons of carbon dioxide equivalent
(CO2e) emissions per year. Due to the long lifespan of buildings
and retrofits, these savings are likely to persist, particularly in larger,
more energy-intensive buildings. However, due to eligibility rules
and participant self-selection, we find that current information
programs do not substantially target emissions reductions in small
and medium sized buildings, particularly in the 75th percentile and
below by consumption, which represents up to two-thirds of com-
mercial sector building emissions and the long tail for greenhouse
gas mitigation efforts from building efficiency improvements.

Program evaluation overview
Our data set includes 178,777 buildings with 16.5 million panel
observations. Because participation is not randomly assigned, we
use matching strategies to compare the performance of participat-
ing buildings against similar buildings that are not part of these
programs. In this way, we control for overt sources of bias due to
systematic differences between participating and non-participating

buildings, which affect evaluation outcomes, and then we test
the sensitivity of our estimates to hidden bias. Matching strate-
gies mimic randomization by identifying a comparison group of
buildings that is statistically similar to treated buildings, based
on observable characteristics. We use computational advances in
matching algorithms to match buildings on a more comprehen-
sive set of characteristics than previous literature. In doing so, we
quantify an important source of evaluation error when estimating
emissions reductions.

Los Angeles is an ideal setting to study energy efficiency for three
reasons. First, unlikemany other cities thatmay be at earlier stages of
adoption, we can already observe significant participation in these
three programs simultaneously during this period for a total of
192 million sqft of commercial floor space in 254 buildings. Second,
Los Angeles is the largest market in the US for green building
investments, and is often considered a model for other cities28.
Third, we have access to high-resolution data at the building level,
which allows us to go beyond simulations or predictive modelling
to assess emissions reductions29.

Characteristics of building participants
Participating buildings for Better Buildings Challenge, Energy Star
and LEED certified buildings in Los Angeles are generally larger and
more energy intensive (in kWh per month and kWh per sqft) than
non-participating buildings. Participating buildings are also more
likely to have been renovated, which is to be expected as building
owners and managers often consider capital investments for energy
efficiency during periods of renovation. These differences are signif-
icant both in means and distributions from the general population
(Supplementary Table 1). Thus, a simple comparison of mean out-
comes for participating and non-participating buildings is unlikely
to yield accurate estimates of the causal effect of program partic-
ipation. For example, during the period from 2005–2009, partici-
pating buildings are significantly more energy intensive (1.134 kWh
per sqft) than an average non-participating building (0.893 kWh
per sqft). Participating buildings are also commonly designated as
Class A buildings, the more coveted and higher quality real estate
assets, and to a lesser extent, Class B or Class C buildings, which
indicates positive selection. Buildings may be classified as A, B, or
C in descending quality based on such parameters as desirability of
location, age of building, building infrastructure and maintenance.
Building class designations are subjective ratings used by real estate
professionals to gauge building quality, and may vary from market
to market. For example, Class C buildings are only about 2% by
square footage in participating buildings (Table 1).However, Class C
buildings, whichmost often represent smaller, ageing buildings, still
account for a substantial 36.3% of commercial sector emissions or
583 kilotons of CO2 emissions in Los Angeles. These baseline differ-
ences suggest that counterfactual strategies based on a comparison
group of average non-participating buildings would be ineffective
reference groups versus more rigorously matched controls.

Descriptive statistics also reveal significant differences in build-
ing characteristics between programs (see Supplementary Table 2).
For example, building construction year, renovations and quality
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Table 2 | List of balancing characteristics used in matching.

Observable building characteristic Data source

Physical building characteristics
Year built CoStar/public record
Year renovated CoStar

Building location/climate
Climate zone Public utility/NOAA

Occupancy characteristics
Rentable building area (square footage) CoStar/public record
Property type CoStar
Occupancy rate (percentage leased) CoStar

Building quality
Building class CoStar
CoStar rating∗ CoStar

Industry characteristics
SIC industry code Public record
Utility customer class Public utility

Building operating expenses
Average rent CoStar
Taxes per sqft CoStar

∗The CoStar building rating system is a national rating system for commercial buildings, which
captures a number of characteristics including architectural attributes, structural and systems
specifications, amenities, site and landscaping treatments and detailed property type
specifics. Ratings reflect commercial real estate quality as valued by investors.

ratings all differ substantially between programs. These differences
in participant profiles before matching reveal both different target-
ing strategies by program managers and administrators, and self-
selection into the respective programs. See Supplementary Note 2
for a more detailed discussion on observable bias.

Matching algorithms
A few studies evaluating building performance data have used
matching procedures based on propensity scores to control for
overt bias, or the fact that the treatment and control groups
differ in ways that matter for the outcomes under study10,30. These
studies typically use a single covariate based on building location
(for example, proximity, or linear distance) to enable comparisons
between buildings30. The main identification assumption, although
largely unproven, is that buildings close to each other are more
similar to buildings that are far away. However, matching buildings
on a single distance measure does not address two important
potential sources of selection bias. The first is due to remaining
imbalances in other relevant covariates, which can bias estimates;
and the second is due to the lack of sampling density in the region of
the common support, which is often prevalent in finite samples16. In
our review of the literature, few published studies report the degree
of covariate imbalance in matching studies with observational data,
and none that we are aware of in the energy efficiency literature.

In our analysis, we match on an expanded set of covariates
compared to those previously available in the literature. We use
several matching strategies to enable performance comparisons—
including genetic matching, which uses a search algorithm to
automatically find the optimal covariate balance in the reference
group31–34. See Methods for more details. Our reference group
consists of the universe of all commercial buildings in the service
territory of the Los Angeles Department of Water and Power
(LADWP), the nation’s largest municipal utility. This includes
56 neighbouring cities and 1.4 million customers. We match
buildings on 12 characteristics found in the literature to affect
building energy consumption (Table 2). These include: location
(climate zone); physical building characteristics (square footage,
year built, year renovated); occupancy (percentage leased, tenant
type); building use type (property type); industry characteristics

Table 3 | Program energy savings.

Program Average
treatment
e�ect

Std. Err.
(Abadie–Imbens)

P value N matched
observations

LABBC −18.69 10.95 0.09 35,939
LEED certified −29.99 12.06 0.06 35,439
Energy Star −19.31 5.81 0.02 35,416

Estimates using matching procedures with weather and time controls.

(Standard Industrial Classification (SIC) industry code, utility
customer class); building operating expenses (average rents, taxes
per sqft); and building quality (building class). We also include the
CoStar analyst ratings (scored from 1–5) to mitigate hidden bias
and capture other unobserved characteristics quantitatively. The
CoStar rating is a national rating scheme for commercial buildings
that considers a combination of factors typically unobserved
by evaluators, such as building amenities, construction quality,
architectural attributes, management, location/accessibility, systems
standards and specifications, detailed property specifics andmarket
factors. Using this approach, we believe that we substantially reduce
observable bias arising from participant selection (see Fig. 1).

Energy savings of information programs
To evaluate the impact of participation in information programs
on building energy savings (measured as the percentage energy
change in kilowatt-hours (kWh) per sqft), we implement matching
procedures and then conduct post-matching regressions to adjust
for time variation on building energy use. In post-matching regres-
sions, we include important seasonality and time controls, such as
heating and cooling degree-days, to adjust for weather variation and
any calendar shocks on consumption. See the Methods section for
details. In Table 3, we report the final estimates of energy savings for
each program in the City of Los Angeles. The estimates are robust
to several matching procedures and specifications, which yield
quantitatively similar results, and we report the most conservative
estimates. The energy savings from the Los Angeles Better Buildings
Challenge (LABBC) program is −18.69%, significant at the 10%
level. These savings are the result of building technology upgrades
identified through LABBC audits in 91 participating buildings
totalling 35 million sqft of floor space. The most common building
upgrades includeHVAC systems (72%), lighting and controls (14%),
and improvements in building envelope (6%). Other upgrades (8%)
include deep renovations in pumping, ventilation and sensor tech-
nology. These building efficiency upgrades are primarily struc-
tural, although a few implemented projects include behaviourally
informed changes such as data server optimization and computer
power management. The savings for Energy Star and LEED pro-
grams are−19.31% (p< 0.02) and−29.99% (p< 0.06), respectively,
over the period 2005–2012. We find that building efficiency invest-
ments across all three programs show significant progress towards
long-run environmental policy goals of 20% savings over ten years.

Across 125.9 million sqft of total participating floor space in the
three programs, this is an annual reduction of 210.2 million kWh of
city energy use. Using EPA (eGrid2012) emissions factors based on
LADWP’s local electricity mix, the savings amount to 145 kilotons
of non-baseload CO2 emissions per year. To put these numbers in
context, the savings from Los Angeles commercial sector building
improvements are the equivalent of burning 70.6 kilotons of coal
each year. We contrast the magnitudes of these savings from capital
upgrades versus behavioural intervention programs commonly
employed in the residential sector, which yield significantly lower
percentage savings by an order of magnitude, ranging from 2–3%
for the highest-quality studies8.
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Figure 1 | Bias reduction in matched samples for the three energy programs. Reducing observable bias by nearest-neighbour matching with replacement
for LABBC Buildings (a), Energy Star Buildings (b) and LEED buildings (c).

Reducing evaluation error
We also evaluated energy savings using more conventional
regression-based methods (Supplementary Table 6, row 1). We
find that without adjusting for covariate imbalances, the estimates
of energy savings are overstated by at least 7 percentage points
(for example, shifting point estimates of building energy savings
from −18% to −25%). For a 50 million sqft city energy efficiency
program for example, a 7 percentage point evaluation error due
to an improperly specified reference group would be the equiv-
alent of 47 million additional kWh per year or approximately
US$5.2 million in utility bills incorrectly attributed to energy sav-
ings. These results confirm the potential benefits of matching in
combination with other methods, especially as a means to mitigate
bias resulting from how the evaluation is done and what buildings
data are collected and observed.

We find that participating green buildings are not a random
draw from the general population, but rather a self-selected set
of buildings with observable characteristics, which clearly indicate
higher quality (for example, positive selection). This is an important
finding, and so by matching on a rich set of covariates, we reduce
selection bias based on multiple criteria (see Fig. 1). We note that
while matching is not perfect, we believe that we eliminate or
substantially reduce bias, particularly for LABBC and Energy Star
buildings, as the bias reduction by Building Class after matching
is close to or equal to 100% (Supplementary Tables 3–5). See the
Methods section for further discussion.

Our study is not without limitations. First, our estimates are
internally valid for the sample period and geography analysed. Los
Angeles is the largest market for green building investments and
remains the second largest metropolitan area in the US by popu-
lation. Our estimates may be indicative of anticipated performance
in other cities and regions, but the actual returns will depend on
specific market conditions, investment levels and building use pro-
files.We know, for example, that resource efficiency investments can
be negatively affected during economic downturns35. Second, it is
possible that a building makes efficiency investments without par-
ticipating in one of these programs. Also, some efficient buildings
could get certified without additional investments. However, this is
unlikely because the programs have very specific requirements that
would not normally be included during construction or renovation.
Third, while electricity is the major energy source for commercial
buildings in theUS, natural gas is also an important source of energy
consumption. It will be useful to evaluate impacts on natural gas
consumption in future work.

Program cost-e�ectiveness
We are able to calculate program cost-effectiveness for LABBC
participants, for which we have financial data reported to us
by program administrators. We find a program cost of 5.54
cents per reduced kilowatt-hour (kWh), which includes both
public and private expenditures. This cost-effectiveness ratio

compares favourably with prior estimates of returns to demand-
side management programs36–38 commonly used for government
policy analysis, in which private spending is typically unobserved.
This figure, however, does not include benefits in the form of
higher property values and tenant rents. Total public expenditures of
US$4.2 million for the LABBC program through 2012, include: $3.5
million in direct costs for conducting the audits and approximately
US$700,000 in administrative costs. Private expenditures include
an estimated US$74 million in building efficiency investments
by building owners and managers. In qualitative interviews with
commercial building owners and managers, the most cited reasons
for participating are: savings with utilities, lower operating and
maintenance costs, recognition from tenants, access to technology
providers and local support. Unfortunately, financial operating
data for specific properties participating in Energy Star and LEED
programs are not disclosed as part of the certification process. As
project implementation costs are proprietary and kept confidential
by individual owners and managers, we are not able to generate
cost-effectiveness estimates for these programs in the current study.
From an evaluator’s perspective, this is important future work.
The estimated mitigation cost of 5.54 cents per reduced kWh
in commercial buildings is comparable to the 5 cents per kWh
previously estimated for behavioural energy conservation research
and development programs most commonly employed in the
residential sector18, keeping in mind, however, that capital upgrades
are subject to much larger investment hurdles and criteria.

External validity
Wecompared the performance of our sample of 178,777 LosAngeles
commercial buildings against other commercial buildings in the
United States. We converted the annual building consumption
in electric energy use intensity (EUI) in kBtu/sqft/year and
compared this with an external sample of commercial buildings
from the Building Performance Database (BPD) maintained by the
Lawrence Berkeley National Laboratory. The BPD is currently the
largest publicly available national data set on building energy use
in the United States14. As of May 2016, the BPD contains annual
electricity data for 128,876 commercial buildings in all 50 states.
These data were aggregated from smaller data sets and collected
by various organizations, cities, utilities, publicly funded energy
efficiency programs and building portfolio owners. In Fig. 2, we
show that the distribution of LA commercial buildings follows a
similar electric EUI profile as compared to commercial buildings
in the rest of the country. This suggests that, at similar investment
levels, the expected reductions in site EUI values, which determine
output emissions reductions, could follow a similar distributional
profile in other cities and regions. Los Angeles remains a leading
market for green building improvements. However, the actual
distributional profile of efficiency investments in other cities and
regions will depend on specific market conditions, investment levels
and building use profiles.
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Figure 2 | Comparison of site Energy Use Intensity. EUI distribution of Los
Angeles commercial buildings (black) versus a national data set from the
Building Performance Database (BPD) assembled by the Lawrence Berkeley
National Lab (grey).

Discussion and Policy recommendations
Commercial building owners and managers face steep investment
hurdles. For the 91 initially enrolled buildings in the LABBC,
total project costs for implementing the recommended energy
conservation measures in 35 million sqft of floor space are
an estimated US$82.81 million in 2012 dollars. The minimum
investment levels per building range from US$136,000 up to about
US$8.4 million for the largest buildings, net of available rebates
and incentives. We observe a 30–40% project implementation rate
in the LABBC program. This compliance rate following energy
efficiency audits is consistent with previous studies39. Although the
magnitude of these required investments may easily be justified for
larger investors who own and operate larger Class A or Class B
buildings, we note that even a 10% rental premiumwould be hard to
justify financially in smaller, ageing infrastructure such as in Class C
buildings. Investor strategies by asset class could partially explain the
dominant participation among premium Class A buildings and the
weaker participation among Class B or Class C buildings. However,
weak participation at the lower end of the market is also structural.
For instance, even for highly motivated Class C investors, only a
fraction of buildings with net leases, for example, where tenants
share in utility costs (as opposed to gross leases where tenants
face zero marginal costs for utilities), have the ability to pass along
investment costs to tenants. This suggests that a large share of
the market becomes inaccessible to major private investment due
to principal agent problems. Thus, the fact that participation and
investments are primarily observed in larger commercial buildings
(that is, 50,000 sqft and above) suggests that more effort might be
required to attract smaller, capital-constrained investors.

Targeted information programs are needed to address both inv-
estment inefficiencies and energy use externalities40–43. Barriers to
investments in energy efficiency still remain. For example, the
evidence suggests that individual building owners and managers
appear to be more sensitive to total implementation costs rather
than to actual energy savings39,44. Research also shows that top
management support45 and the sequencing of recommendations
can affect individual adoption decisions at a portfolio level46. When
managers decide to invest, we show that structural upgrades are
effective at reducing energy intensity in commercial buildings at
an impressive performance level consistent with long-run emissions
and energy reduction goals. These structural investments in build-
ing technologies are cost-effective versus demand-sidemanagement
or new generation, but requiremajor capital outlays, albeit at a lower
level than investing in new capacity. For every public dollar invested
in the community-based Los Angeles Better Buildings Challenge,

this yielded an estimated return of US$17.6 in private infrastructure
spending through 2012.Given the limits to public finance in funding
capital upgrades in existing buildings and infrastructure, public–
private partnerships aligned towards grand challenges may serve to
extend the traditional boundaries of the public sector and increase
directed innovation towards meeting societal goals.

Voluntary energy efficiency labelling programs are effectively
targeting the most energy-intensive office buildings at the high end
of the market. This is because existing programs and incentives
currently result in positive selection—larger premium office space
under professional management and owned by investors who seek
rental and asset price premiums. From an emissions reduction point
of view, the need for broader participation in energy efficiency is
particularly relevant for building owners and managers in the least
efficient three-quarters of buildings, particularly those buildings
ineligible for energy efficiency labelling. These non-participating
buildings tend to be smaller Class B and Class C buildings, but they
are greater in number and in aggregate represent a significant two-
thirds of greenhouse gas emissions inventories in the commercial
building stock (Table 1).

In our participant interviews with major capital investors,
we asked whether the future of investing in commercial energy
efficiency would likely come from their portfolios of non-certified
buildings—towhich one investor replied: ‘The current programs are
not targeting poorer performing buildings.’

We argue that potential policy responses may be needed not only
at city or regional level, but also at the state and federal level. For
example, mandated information disclosure programs, which would
require all commercial buildings to measure and disclose their
energy use,might help to broadenparticipation andmotivate poorer
performers. First, they provide all performers with benchmarking
information about relative consumption. Gathering building energy
use data for the entire building population establishes a performance
baseline that allows building owners to compare their buildings to
similar buildings, but also to evaluate the magnitude of potential
energy savings. Second, market pressure created by consumers and
investors might create incentives for building owners to reduce their
energy use when such information is shared throughout a city or in-
dustry. However, practical implementation may require significant
investments to integrate information systems between utilities and
jurisdictions for secure uploading and information management.

In summary, our study shows that increases in the availability
of data can allow evaluators to become more accurate in societal
accounting of energy and emissions reductions. Tracking these
investments in the private sector presents challenges not just for
evaluation efforts, but also for attributing its underlying causes.
Without careful research design,whenprivate investments in energy
efficiency are made, we cannot be sure whether these investments
are the result of strategic community policies, or whether they result
merely from private considerations at the individual building or
project level. The answer is that both of these considerations may
be necessary to accelerate new investment. While energy savings
are a primary outcome of building energy labels, we suggest further
research into other outcomes, such as rental prices, vacancies and
contracts. This will help clarify strategies that support long-run
benefits, which could help broaden participation.

Methods
Identification strategy. We are interested in causal estimates of program
participation for our three information programs (LEED, Energy Star and
LABBC). This means we have three treatments and the counterfactual is a world
in which these programs do not exist and there are no additional efficiency
investments related to program participation. We estimate energy savings for
each program in two steps. First, we match on observable building characteristics
to maximize covariate balance between participating and non-participating
buildings, independent of the outcome Y . Next, we conduct post-matching
regressions that include statistical controls for weather and seasonality on
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building energy use. Using notation for the Neyman–Rubin causal model, the
quantity of interest is the average treatment effect on the treated (ATT),
commonly expressed as:

ATT=E{E(YiXi|,Ti=1)−E(Yi|Xi,Ti=0|Ti=1)} (1)

We select on observables and maintain two standard identifying assumptions.
First, for each building i, the observed building covariates, X i, are conditionally
independent of the treatment (for example, conditional independence). Second,
buildings with the same covariates have a positive probability of being
participants or non-participants, 0 < Pr(T = 1|X i) < 1 in the common support
(for example, common overlap). The unit of analysis is at the building level.

Data. The data set consists of the universe of all commercial buildings in the
Los Angeles Department of Water and Power (LADWP) service territory from
2005–2012. This includes 16,536,241 observations of 178,777 buildings in the
City of Los Angeles and 56 neighbouring cities. We also acquired detailed
building stock characteristics from CoStar, the premier commercial real estate
database. CoStar provides building level information including physical building
and occupancy characteristics and various measures of building quality. The 12
matching characteristics are listed in Table 2. To mitigate hidden bias, we include
the CoStar rating (scored from 1–5), which captures several potentially
unobserved factors quantitatively. The CoStar rating is a national rating system
for commercial buildings that captures several characteristics commonly
unobserved by evaluators, such as architectural attributes, structural and building
system specifications, amenities, site and landscaping treatments, detailed
property type specifics and other market factors. We also obtained local weather
station data from the National Oceanic and Atmospheric Administration
(NOAA) to calculate heating and cooling degree-days for each building to its
nearest weather station by zip code.

Matching procedures. We evaluate several matching procedures and
specifications. We evaluate matching procedures based on propensity scores and
based on the genetic search algorithm. Supplementary Figs 1 and 2 shows the
estimated propensity scores, for example, the conditional probability of treatment,
using 1:1 nearest-neighbour matching (NNM), which is one of the most
frequently employed matching procedures in the literature. The left-hand side in
Supplementary Fig. 1 shows the density of estimated propensity scores for all
non-participating commercial buildings and the right-hand side shows the
density of estimated propensity scores for participating commercial buildings
before matching. In Supplementary Fig. 2, we show the results after matching and
sufficient sampling density in the region of common support, which is favourable
in this application due to the high ratio of non-participating to participating
buildings. We use observations on the common support and impose a calliper of
0.25 standard deviation to ensure that only the closest building matches are used
to estimate treatment effects. We allow for replacement in the matching
procedures, meaning that matched reference buildings can be re-used in the pool
of available matches.

We also implement the genetic matching algorithm using procedures
described in refs 34,47. Genetic matching uses a search algorithm that attempts to
find the optimal matches by automatically determining the weight each covariate
is given. Genetic matching solves the problem of ‘researcher discretion’ in model
selection and avoids the manual process of iteratively checking covariate balance
in post-matched samples and then re-estimating propensity scores. By using an
automated process to search the available reference data, the search algorithm
does not require the evaluator to make stronger functional form assumptions
about the data generating process. We evaluate the performance of genetic
matching against other commonly used matching strategies based on propensity
scores, particularly in reducing median bias and other balance measures. In the
energy efficiency application, we find that genetic matching performs at least as
well as 1:1 nearest-neighbour matching with replacement in various measures of
matching success. These include paired t-tests for balancing variables, p values
from Kolmogorov–Smirnov (K–S) distributional tests, and empirical
quantile–quantile (QQ) plots. For further comparisons, we also evaluate other
matching procedures such as calliper, kernel and radius-matching to further
analyse trade-offs between bias reduction and efficiency.

Assessing match quality. One common indicator to assess match quality for a
given covariate is the standardized percent bias. The standardized percent bias
(SB) is defined as48:

SB=
100(XTreat−XControl)√

S2Treat+S2Control/2
(2)

where XControl is the mean of the control group and XTreat is the mean of the
treatment group; S2Control is the variance of the control group and S2Treat is the
variance of the treatment group. In Fig. 1, we report the reductions in

standardized bias across our covariates after matching. Other commonly used
measures for evaluating match quality may include paired t-tests, K–S
distributional tests and empirical quantile–quantile (QQ) plots. We show that
matching procedures effectively mitigate systematic differences in covariate
distributions and achieve a high degree of balancing across a broad set of
observable building characteristics after matching. The performance of different
matching algorithms varies case by case and depends largely on the data sample
and distribution24.

Supplementary Table 6 lists the detailed results of estimated program level
energy savings using several matching algorithms including: NNM, radius, and
kernel matching methods along with genetic matching where the objective
function is either minimizing difference in p-values or minimizing distance in
quantile–quantile (QQ) plots between treatment and matched controls. We report
Abadie–Imbens standard errors49. See ref. 50 for a detailed review of the relative
merits of these matching strategies in the empirical literature, particularly in
evaluating trade-offs between bias reduction and efficiency of estimation. In
Supplementary Table 6, the energy savings (average treatment effects on the
treated) for participating buildings are in the range of 19–25%. Both NNM
(k = 1) and genetic matching lead to optimal balancing characteristics (zero
median bias) in estimates of program level energy savings without time-based
weather controls, although standard errors are larger with the genetic matching
algorithm. From the standpoint of bias reduction, genetic matching performs at
least as well as 1:1 NNM with replacement, as both approaches converge to a
central estimate of −19%. In Supplementary Table 7, we report the final matching
results for each of the three programs by genetic matching. The estimates range
from −19 to −30%. The median bias across covariates after matching is 0%
for LABBC, 16.7% for LEED certified buildings and 5.6% for Energy Star
certified buildings.

We eliminate or substantially reduce standardized bias via matching
procedures based on propensity scores and/or the genetic search algorithm. We
do observe a higher median bias after matching for the LEED buildings, due to
sampling and size distribution of buildings in Los Angeles. For instance, LEED
buildings are characteristically large Class A buildings with an average building
area of 457,918 sqft and, notably, 15% of LEED buildings in the sample are
1 million sqft or larger. Consequently, there are fewer large non-certified Class A
office buildings available in the reference set. Thus, 12% of Class C observations
and 22% of Class B observations have been matched sub-optimally with Class A
LEED buildings. This explains the higher conditional bias for LEED buildings
after matching (Supplementary Table 5). Given our sample, we are able to reduce
observable bias for LABBC and Energy Star buildings, close to or equal 100%
(Supplementary Tables 3 and 4).

We may be additionally concerned about time-varying or seasonal effects on
building energy consumption, particularly due to outside weather variation. For
the final estimates of energy savings listed in Table 3, we first use NNM with
replacement to extract a vector of covariate weights in the effective sample, and
additionally include heating and cooling degree-days to report weather-adjusted
treatment effects in post-matching regressions. The weather vector for heating
degree-days (HDD) and cooling degree-days (CDD) in a given month is

HDDd ,i=max

{
0,

N∑
d=1

65−θoutside

}
i

CDDd ,i=max

{
0,

N∑
d=1

θoutside−65

}
i

(3)

By US convention, the indoor base temperature is 65 ◦F (ref. 8). All buildings
were matched to its nearest weather station by zip code. For a discussion of the
importance of weather controls in evaluating energy information programs,
see refs 8,51.

Robustness checks. We conducted several important robustness checks. We
carefully considered the selection of covariates and matching specifications to
reduce or eliminate observable bias. We explored alternative specifications such
as the inclusions of higher order terms and interactions. We also evaluated the
sensitivity of our estimates to hidden bias using Rosenbaum’s bounds52. In
Supplementary Table 8, we report results of our sensitivity analyses for hidden
bias. In calculating Rosenbaum’s bounds, we estimate thresholds for changes in
statistical inference for different values of the sensitivity parameter Γ . This allows
us to estimate changes in p values or significance levels in the presence of a
potentially unobserved confounder. The critical gamma values are 1.21 for the
LABBC program, 2.13 for the Energy Star program and 1.53 for the LEED
program. For the Energy Star program, for example, the critical gamma value of
2.13 means that an unobserved covariate would have to affect the outcome kWh
consumption by 2.1 times (roughly double the energy intensity in kWh/sqft)
before we would change our inference at the 90% confidence level. To change our
inference, an unobserved confounder for the LEED program should need to
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change the energy intensity of participating buildings by approximately 53% and
for LABBC the figure is approximately 21%. Although we acknowledge that all
studies are sensitive to sufficiently large biases, for our outcome of interest in
kWh consumption per sqft, we believe these values may be sufficiently robust to
small hidden bias, particularly for unobservable factors that may be uncorrelated
to the covariates. Given our sample size, we are able to reduce conditional bias for
LABBC and Energy Star buildings, close to or equal 100% (Supplementary
Tables 3 and 4).

One possible source of hidden bias could be due to the influence of
‘forward-looking’ management. Previous research has suggested that
‘forward-looking’ management could play an indirect role in returns to green
buildings through the hiring of more effective building managers10, although this
phenomenon has not been test empirically. We looked at the average
consumption of professionally managed buildings versus non-professionally
managed buildings, such as whenever a building had on-site property manager.
We tested whether the presence of on-site management could be a proxy for more
‘forward-looking’ management under the hypothesis that on-site managers might
be able to run the buildings more efficiently53. In our sample, we find no
significant difference in the mean energy consumption of participating buildings
with or without on-site management (0.64 kWh/sqft for participating buildings
with on-site management versus 0.65 kWh/sqft for participating buildings
without on-site management; t-test p-value 0.28). We therefore do not include the
on-site manager dummy in the set of matching covariates. We confirmed this
result by including the on-site manager dummy in the set of matching covariates
and found no appreciable change in inference for our program estimates.
Management quality, whether forward looking or not, is inherently unobservable
with our data. As we include the 1–5 CoStar rating, which we expect to be weakly
correlated with management quality, we acknowledge that we have only an
indirect mitigation of this possible unobservable characteristic. Understanding
the influence of management quality, particularly in an empirical setting with
some sort of exogenous variation, would be great to explore as future research.

As further robustness tests, we also conduct placebo tests to validate our
matching specifications. This is especially important given that we have no
experimental benchmark to compare our causal estimates of program
participation. Placebo tests are commonly underutilized in observational studies
and are the conceptual equivalent of administering a sugar pill in a clinical trial26.
In a placebo test, one attempts to find a stratum of data, and an outcome to test
for the presence of treatment effects where none is logically possible. We
implemented placebo tests in two ways. First, we obtained a list of ‘prospect’
buildings from LABBC program managers. These are buildings targeted by
program managers for possible energy efficiency retrofits based on observable
characteristics, but who have not yet been contacted nor are participating in the
program. If our estimates are robust, then we expect to find zero treatment effect
for ‘prospect’ buildings after matching on the same set of 12 building covariates
and over the same period. In total, we matched 13,344 observations for 82
prospect buildings in our sample. The estimated treatment effect for prospect
buildings over the same period is −2% versus matched controls, but not
significant, meaning not statistically different from zero. We repeated placebo
tests for prospect buildings versus reference groups of matched buildings that did
not participate in Energy Star or LEED programs, and were also able to recover
treatment effects not statistically different from zero after matching. We also
conducted placebo tests ‘in time’ by evaluating the performance of participating
buildings prior to retrofitting. Using this approach, we also found nonsignificant
effects after matching on identical sets of covariates prior to program
participation. These placebo tests give further credence to the robustness of our
matching procedures and causal estimates. See Supplementary Note 3 and
Supplementary Tables 9–11 for additional information on placebo tests in
observational data.

Code availability. Computer code files and anonymized log files are available on
Figshare (doi: http://dx.doi.org/10.6084/m9.figshare.4625119, ref. 54).

Data availability. Aggregated data that support the plots and findings in this
paper are publicly available at http://energyatlas.ucla.edu. In California, access to
individual electricity account information is protected as private information and
may not be posted publicly. Financial data regarding participation and investment
in the Los Angeles Better Buildings Challenge program are available upon request
with the approval of the LABBC. Access to the external sample of commercial
buildings from the Buildings Performance Database (BPD) is publicly available at:
https://bpd.lbl.gov. Local weather station data used for calculating heating and
cooling degree-days is available from the National Oceanic and Atmospheric
Administration (NOAA) Quality Controlled Local Climatological Data (QCLCD)
at https://www.ncdc.noaa.gov. Access to individual building and occupant
characteristics is restricted under a commercial licence from CoStar.
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