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ABSTRACT

This paper proposes a procedure for transfer function idemti~
fication (specification) based on least-squares estimates of
transfer function weights using the original or filtered series.
The corner method is then used to identify 2 parsimonious rational
form of the transfer function. The procedure is illustrated in a
simulated example; it is shown how this straightforward approach
outperforms other identification methods such as Box and Jenkins'

prewhitening and Haugh and Box' double prewhitening techniques.

1. INTRODUCTION

The transfer function model is one of the most widely used
time-series models in several areas of application such as engin-
eering, ecomomics and management science. Yet in spite of its
popularity, the identification or specification stage of transfer
function analysis is not sufficiently developed, in particular for

multiple-input models.
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The best known identification approach is due to Box and
Jenkins (1976), who propose a comprehensive procedure for the
one-input situation by studying the sample cross-correlation
function (SCCF) between the prewhitened input series and the
corresponding filtered output series (filtered by the ARMA model
of the input series). While their method is promising for the
ome-input situatiom, it is difficult to generalize it for mul-
tiple-input models. Priestley (1971) recommends prewhitening both
input and output series and obtaining the transfer function weights
of the prewhitened series using least-squares estimation. Haugh
and Box (1977) also suggest studying the SCCF of the prewhitened
input and output series from which they identify the transfer
function model. We refer to the Priestley, and Haugh and Box
approaéh as the double prewhitening method. Fask and Robinson
(1977) generalize the double prewhitening method to multivariate
dynamic models. Granger and Newbold (1977a,b) also apply this
method for the identification of a two-way causal system. Al-
though double prewhitening has been widely used, it is more diffi-
cult to apply than the Box and Jenkins method, even in the one-
input situation. The major difficulties are that a model is
frequently over-structured due to the prewhitening factors, and
that the lag structure is often cumbersome to derive.

Tiao et al (1979) use samﬁle cross-correlation and partial
correlation matrices of a set of multiple series for the ideati-
fication of multiple ARIMA models. Since the transfer function
model can be viewed as a special case of the multiple ARIMA model,
their method can be applied to transfer function identification.
Unfortunately, their method imposes an extra structure between the
factors on the residuals and the transfer function, causing the
transfer function model to be over-structured.

As an alternative to time-domain analysis, transfer function
jdentification has also been explored using a frequency-domain
approach (spectral methods), e.g., Box and Jenkins (1976) and
Priestley (1971). However, it is rather difficult to apply spec-

tral methods in practice.
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The present paper proposes a procedure which mainly applies
linear least-squares estimation on the original or filtered series
for transfer function identificationm, similar to Priestley's
(1969) suggestion for the one-input situation. Another least-
squares approach was developed by Caines, Sethi and Brotherton
(1977), who used a Cholesky least-squares algorithm for transfer
function analysis. However, their method is aimed at model esti-
mation rather than identification and their results are difficult
to extend to multiple-input models. Although the procedure in the
preseut paper is simple and straightforward, it performs very
well. In addition to its simplicity, the method is easily extended
to models with intervention components, which are often difficult

to handle with other methods.

2. STATISTICAL BACKGROUND

Without loss of generality, we study the following two-input
transfer function model:
wl(B) wz(B)
Tp=et 6_1T§')'X1t+62(3) Xpr ¥ 8 2.1
t=1,2,...,N

where Xlt and th are input series (or exogenous variables), Yt is
the output series (or endogenous variable), € the noise series,
and c a constant. All series are stationary and follow ARMA
(autoregressive-moving average) processes. The ARMA process for

the noise series is

¢(B)et = B(B)et (2.2)
with P
¢(B) =1 - ¢,B - ...~ ¢_BY ,
and 1 P q
8(B) =1 - GlB - ... - OqB s

where B is a backward shift operator (Bet = st-l) and et's are

independently identically distributed. The rational polynomial
wi(B)/Gi(B) is the transfer function between Yt and Xit where

si-l b
+ mizB + ... ¢t wisiB ) B

- i
w, (B) = (w;,
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and (2.3)

Gi(B) =1 - GilB - .- GiriB
The roots of the polymomials Gi(B), 6(B) and 8(B) lie outside the
unit circle. The noise series &, must be independent of each
input series, but the input series may be correlated with each
other.
The transfer function component wi(B)/éi(B) can also be
expressed as

2
V.(B) = V. +v, B t Vi, B+ ...,

where V (B), a linear form of the transfer function, has a finite
number of terms if 6 (B) = 1 and an infinite number of terms if
Gi(B) # 1. Since all roots of the §. (B) polynomial lie outside the
unit circle, the transfer function w, (B)/G (B) can always be
approximated by V. (B) with a finite number of terms, say K, i in
practice. We tefer to vij as the j-th transfer function (or
impulse response) weight for the input series X, i

The task of transfer function identification is to find
appropriate estimates of the V. (B) polynomials and to express them

in rational forms mi(B)/Gi(B) Both elements are discussed below.

2.1 Estimating the Transfer Function Weights

For sufficiently large Ki’s, (2.1) can be expressed as

K
- . 1
Yt =c + (v10 + vllB + ...+ lelB ) Xlt
K, .
+ (v20 + VZIB + ...t VZKZB ) XZt tE,- (2.4)
Using
K = Max(K,, K,),
n=N-K,
B =1lc v " ik, Y20 Y21 VK, I'
and T = Mgy Tgep » Yganls
K K
_ 0 1 1 .0 1 2
x=101 X % X, % % %5Th
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where
x) =8 %% and x0 -
i i ~i

~

X ke1) Xike2) " Ligeny 10

the ordinary least-squares (OLS) estimate of B can be expressed as

~
PN

SRS S 2.5)

Two problems may arise in the above least-squares estimation.
First, if one of the input series contains an autoregressive (AR)
factor with roots close to one, i.e., if the series is close to
nonstationarity, the §'§ matrix may be near-singular and result in
ill-conditioning for matrix inversion. This can be observed as
follows: if we standardize the matrix §'§ by its diagonal ele-
ments, the new matrix approximately contains the sample autocorre-
lations and cross-correlations of the Xlt and x2t as its elements.
Thus if ome of the input series contains an autoregressive poly-
nomial with roots close to the unit circle, a number of sample
autocorrelations will be very close to one. This difficulty is
less serious if an input series follows a moving (MA) process
since the sample autocorrelations of an MA process will not be
close to one even if the root of the MA polynomial is ome (Box and
Jenkins 1976). Second, the noise series €, may not be white noise,
therefore the OLS estimates of B may not be efficient.

To avoid the difficulty of inverting an ill-conditioned £'X,
we suggest to examine the ARMA models of the input series and then
take appropriate action. As argued earlier, only the roots of the
AR polynomials are important: if the absolute values of all these
roots are rather large there is no problem in using the originmal
data. However, if some of the roots are close to one, a common
filter on the input and output series is used in order to make
§'§ well-conditioned.

Common filters have been used previously, primarily because
they do not alter the transfer function weights if the series are
stationary (Priestley 1971, Granger and Newbold 1977b). For exam-
ple, Sims (1972) employed an ad hoc filter (1-.’75B)2 in a well-
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known study of causality between money and income. Although the
choice of a filter can be flexible, we do offer a selection cri-
terion, namely that it eliminates the AR factors with roots close
to one. If there are more than one such factors they can be com-
bined in one common filter. As an example, if three input series
X., X. and X, follow the ARMA processes

1’ "2 3
(1-.9B) (1-.48%) X, = a
: ' 1t 1t ’
4 = -
(1 - .3B)(1 - .8B") X, = (1 - .TBa, ,
_ - 4
and (1 - .5B) X3t = (1 .9B )a3t ,
a choice of (1 - .9B)(1 - .834) is recommended as a common filter.

It should be pointed out that common filtering is done for
numerical accuracy rather than statistical efficiency. Its nece-
ssity depends on the roots of the AR polynomials and the precision
of the computer. In some situations, filtering could be avoided
by using double precision computing. Alternatively, the multi-
collinearity could be handled by ridge regression analysis (e.g.,
Erickson 1981). Also, since a filter with roots close to unity
may create an MA polynomial near non-invertibility when €, is
white noise, it should be avoided. For instance, the filter
(1-.7B) (1-.7BA) may be safer in the above example.

The second problem can be resolved by estimating E with
generalized least squares (GLS) rather than OLS. If the covari-
ance matrix E of € (t=K, K+1,...,N) is known the GLS estimator of
B is:

~

= @k ksl (2.6)

ot

which is consistent and efficient. The direct computation of (2.6)
is complicated. It may be easier to obtain E by using OLS esti-

mation on the transfocrmed series ¥ and ¥. Since Z-l can be ex-

pressed as H'H, we obtain
-1

1ot

= XN %

et

) (2.7)
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where ¥ = HX, (2.8)

1
]}

HY . (2.9)

~ o~

Following Ljung and Box (1979) the transformations (2.8) and
(2.9) are approximately equivalent to filtering the input and
output series by the ARMA model of the noise series. In prac-
tice, the noise model is unknown but can be identified from
ARMA analysis on the OLS residuals. An iterative process of
filtering and OLS estimation could then be started until the
estimates converge. Such a procedure is similar to estimating
regression coefficients with the well-known Cochrane-Orcutt
(1949) method for simple AR(1) situations.

Since the purpose of the least-squares procedures is identi-
fication of transfer functioms, we find iﬁ not necessary to apply
the igterative process. In our experience, the OLS estimates
based on the filtered series are usually very satisfactory. For
more accurate estimates we recommend joint estimation of the
transfer function weights and noise parameters by using nonlinear
least-squares. This can be done easily with computer programs
such as BMDQ2T (Liu 1979).

2.2 Expressing the Transfer Function Weights in Rational Form

In many instances a more parsimonious representation of
transfer function weights may be obtéined by expressing the Vi(B)
in rational form. This task is equivalent to finding the values
T, 8, and bi in (2.3). Box and Jenkins (1976) use the pattern of
the transfer function weights for this purpose, similar to their
ARMA identification method. A cut-off pattern implies that ri=0
and is simple to model. A tail-out pattern implies that a denomi-
nator polynomial is present, but it appears difficult to apply Box
and Jenkins' guidelines in this case. The authors propose to use
a modification of the corner method for ARMA identification
(Beguin, Gourieroux and Monfort 1980) for this purpose.

Let v,

’

i,max
where the vij's are the true transfer function weights for the

be the maximum value of lvijl, j=0,1,2, ..., Ki’
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rational polynomial wi(B)/éi(B) and let nij vij/vi,max‘ Then,
for each explanatory variable Xi we can construct a (g x g) matrix

D(f,g) and its determinant A(f,g), where

-

g Ng-q o Mg

Ne+1 Ng s Ngege

D(f,8)

Ngrg-1  Nfrg-2 g

— -

>0, g>1, and nj = 0 if j¢<0. The subscript i is omitted for
simplicity. Now, for any integer M large enough to be greater than
T, and (si+bi), we can build an (M+1)xM array E with A(f,g) as its
fg-th element, where £=0,1,2, ..., M, and g=1,2. ..., M. Then the
transfer function weights vij have a representation wi(B)/éi(B)
with orders r,s and b, if and only if the g array has the follow=

ing structure:

i
¢ 8 1 2 .. r r+1 o “
0 0 0 0 0 0
1 0 0 0 0 0
b-1 0 0 ..o 0 L 0 |
b A(b,1) A(b,2) .. A(b,r) A(b,r+1) ... Aa(b,M)
) ) . ) ) o
s+b-1| A(s+b-1,1) A(s+b-1,2) ... X X .. X
s+b A(s+b,1)  A(s+b,2) ... x 0

. . . . . ‘i
M aAM,1) A(M,2) ... x 0 . 0
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"t

where an "x' means that the term is different from zero. The
pattern implies the orders r, s and b if and only if the first b
rows and the lower right-hand cormer starting at the (s+b+1)th row
and the (r+1)th column of the C array are all zeroes. Details of
the corner method are discussed in Beguin, Gourieroux and Monfort
(1980).

In practice the vij are estimated by the Gij’ which are
subject to random errors. Consequently, one will find some small
values in the C array for the zeroes indicated above. However,
the upper and lower-rlght nand corner will show a sudden drop 1in
array values. As an illustration, the method 1is applied to the
gas furnace data in Box and Jenkins (1976). The estimated trams-

fer function weights are:

3 0o 1 2 3 . 5 5 - 3 9 w0 112 12

G‘-OZ 10~06-53-63-38-32-32-06 26 - 10 - d6 - Je - Ll

3

The C array 1is:

g 1 2 3 4 5 6 7
£
0 -.02 .00 -.00 .00 -.00 .00 -.00
1 11 .01 .00 00 =-.00 ~-.00 -.00
2 -.07 .07 -.03 .01 -.00 .00 ~-.00
3 ) 31 -.17 12 -.08 05 -.03
4 -.72  -.09 29 -.01 ~-.07 .02 .00
5 -1.00 .58 -.33 15 -.07 01 ~-.00
6 -.59 [-.01 09 01 -.04 01 0
7 -.36 .09 -.02 02 -.02 .01 -.01

and indicates clearly that b=3, s=3 and r=1, which is the final
model obtained in Box and Jenkins (1976).

In recent work, de Gooijer and Heuts (1981) examine the
application of the cormer method to the identification of
ARMA(p,q) models and report that it fails to work well in practice.
However, we find that the C-arrays in their paper indicate the

simulated models quite clearly. The corner method indicates a few
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candidates for the values of b,s and r, thereby providing an
efficient guideline to transfer function identification. The
principle of parsimony should be applied in cases where more than
one combination of parameters is feasible. Since the 8(B) poly-
nomials are usually simple in practice, the use-of the corner
method to transfer function identification seems to be less diffi-
cult than for ARMA models. -

3. A PROCEDURE FOR THE IDENTIFICATION OF A TRANSFER FUNCTION MODEL

Based on the results in Section 2, we now present a five-step
procedure which introduces filtering and least-squares estimation

in the transfer function identification.

Step 1:
Build ARMA models for all input series after the series are

appropriately differenced to achieve stationarity. If no AR
factors are found or the roots of the AR factors are large (not
close to 1), proceed to Step 2. If there are processes with AR
roots close to 1, choose a common filter from the AR factors.

Apply this filter to all input series and the output series.

Step 2:

Perform least-squares estimation of the transfer function
weights for the series obtained from Step 1. The values Ki should
be chosen from subject-matter considerations and should be suffi-
ciently large to avoid truncation bias. It is also important to
check the SACF of the residuals since they provide information
about the reliability of the usual least-squares hypothesis test-
ing. It is recommended to omit the unnecessary terms in (2.4) if

it is clear that they can be deleted.

Step 3:
Build an ARMA model for the residuals computed from the
linear model selected in Step 2. If the residuals are white

noise, proceed to Step 5. If not, go to Step 4.
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Step 4:
Using the Step 3 ARMA model as a filter, perform OLS estima-

tion of the transfer function weights based on the filtered series.
Alternatively, we can also estimate the full transfer funciion -
noise model jointly by nonlinear least squares. The significance
tests of the weights can be carried out in the usual regression

manner.

Step 5:

If no prefiltering was used in Step 1, the noise model is the
one obtained in Step 4. Otherwise compute the noise of the orig-
inal output series by using the transfer function weights from
Step 2 or 4 and identify an ARMA model for the noise. Then,
obtain a rational form wi(B)/éi(B) for input series Xi by using
the corner method on Vi(B)’ 1f necessary. Note that the corner
method should be used only if some of the impulse response weights
are significant.

4. EXAMPLE

To illustrate the identification method a simulated example
is presented in this section.

The simulation model is

2 3
1.5 + 3B~ . . , t=1,...,100 (4.1)

v = (28° + wBHX. + 5 Xyt e,
1-B + .24B

t 1t

The models for ¢ _, X e and X2t are

t 1
(1-1.38B + .4B%)e. = e e, ~ N(0,2)
. . t t t ’ )
(1 - 1.4B + .4332))(1 =b_, b ~N(0,1),
t t t
and
(1 - .7B)X2t =< S N(0,2) ,

where e, is independent of bt and Ceo and bt and c, are contem-

poraneously correlated with correlation 0.7.

Following Box and Jenkins' guidelines, the ARMA models for

Yt’ Xlt and XZt are obtained as(l)
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(1 - 2.17 B + 1.95 B2 - 1.02 8+ 28 B“‘)Yt = at , c‘rg = 42.377,
: 2 _ 22 _
(1-1.348+.37B)x1t-6t, Ob-l‘IOZ,

and _ oA ~2 _

(1 - .69 B) Xy = & <= 2.118

The AR polynomial for X1£ can be factored into (1 - .95B)
(1 - 39B). Comparing the AR factors in the input series, we
choose (1 - .95B) as a common filter. Table I lists the OLS and
TABLE I

Estimates of Transfer Function Weights

1) OLS om ; '2) JLS on ( (3) GLS 2an c4) JLS oo

§ original ; prefiltered prefiltered i prewhitened
' serlies i serles serles i series
i 7, o9 tix ., KT i e
z -1.023 1.30 , 0.028 0.16 0.019 0.96 2.350 2.6
b, | 0.8 0.2 ©0.304 1.13 - - 20,472 1.40
LWy bo0.233 9.23 l -0.126 0.42 1 - - 0.002 0.01
7., -0.362 3.36 5 -0.051 3.17 - - 7.208  9.62 |
74 1.871 YA 1.910 5.56 1.903 * 30 1,386 4 39
i, 1389 313 31.770 12.34 3.350 16.25 2259 o.ow
2 0.228 3.93 ; 2.259 ).86 - - . -2.238  5.38
6 J.150 9.14 1 0.091 3.30 - - 1,493 4.5
7, | -0.807 9.77 - -0.270 2.92 - - -0.365  1.31
g 2.494 0.35 | 0.513 1.39 - - ).410  1.18
Ty 1 0154 3,33 -9.320 1,37 -9.11 3.35 ).158  J.61
751 ) 190 3.35 -3 )81 3.0 -=0.J36 3.22 ) 1l dle
75, 1.360 2.37 1197 5.29 262 s 294 . ls
754 L 384 3.08 4116 20.30 +.313 19.32 2,503 0.l
C,, | oe187 7.49 ¢ 4.001 20.02 4.266 18.52 -1.273 0«8
i Tyg 1 2:967 5.30 | 2.547 12.85 2.333 14.01 2.162  D.54
! Vi o 1,332 2.85 ¢ 1.371 1,00 1.619 3.30 -0.328  1.29
vy, 1 1.716 3.39 1 1134 5.91 1.165 5.11 7.203  2.32
728 1.373 3.90 ! 0.374 2.6 3.780 +.09 -0.290  I.77
g % - - - - 3.308 165 -9.211  1.19
i Y210 0 - - - - 0.336 1.85 0.307  1.39
% 6211 - - ! - - 0.432 2.54 J.011 J.06
! 7512 - - - - 0.129 0.31 -0.136 .74
A - - - . 0.004 0.03 ) 171 0.96
oo - - - - 034 2.91 - -
| 2| s 3. 166 ' 2,509 5.570

i |

*The t-values in columms !, 2 and 4 are provided for information saly.
They do aot necessarily reflect the correct significance levels of the
estimates.

(1)The backcasting method is used in the estimation of ARIMA
models.
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GLS estimates of the transfer function weights and their t-values
for the original and the prefiltered series.

The computations in TABLE I (except for the first column) are
performed in single precision on IBM 3032 using BMDQ2T (Liu 1979).
when single precision is used in computing the OLS estimates of
transfer function weights for the original series, the computation
:s rejected because the §'§ matrix is too close to singularity.
The estimates can be obtained (as shown in column 1) by using
jouble precision. The results in co:umn 1 seem to exhibit the
simulated pattern well even though Xlt is highly autocorrelated.
However. in other simulation tests we found that erroneous results
are obtained even if double precision is used. When prefiltering
is performed prior to OLS estimation (column 2), the transfer
function weights can be estimated in single precision. These
weights also exhibit the simulated pattern well. Since the resi-
duals of the model in column 2 follow an AR(1) process, the trans-
fer function weights are also estimated by using nonlinear least
squares, incorporating this noise process (column 3). Longer lags
are used since they are shown to be necessary in the previous two
analyses. It is easy to identify the orders r1=0, 51:2 and b1=3
from these estimates. As far as the model for X2t is concerned, we
mav use the corner method described in Section 2.2. The C-array
for the transfer function weights of X2t is shown in TABLE II and
indicates that r2=2, 52=2 and b.=2. An ekXamination of the resi-

2
duals of the model in column 3 revealed an AR(2) process, consis-

TABLE II
C-Array for the Transfer Function Weights of th

g | 1 2 3 4 5 6 7

£
0 1-0.03 0.00 =-0.00 0.00 <-0.00  0.00 =0.00
1 |-0.01 0.01 0.00 _0.00 _0.00 __0.00 _ 0.00
2 [70.29 009 0.0I -0.00 -0.00 -0.00 0,00
3 100 o072 _0.550 0.35 0.24 0.17 0.12
4 | 094 0.23 [-0.00 -0.05 -0.03 _ 0.01 0.0
s 0.66 0.08 | 0.02 0.01 0.00 0.00  0.00
6 ‘ 0.38 -0.064 | 0.00 0.00 0.00 =-0.00  0.00
1 7 1027 0.01| 0.00 0.0 0.00 0.00 0.00
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tent with the originally simulated model. The final estimates and

standard errors (in parentheses) of the parameters are:

B, = 1.698 (.213) 5, = 965 (.063)
By, = 3.987 (.191) jy = -228 (.038)
w21 = 1.406 (.194) 01 = 1.271 (.094)
wy, = 3.176 (.196) 5, =-.429 (.093)
52 = 2.466

e

For the purpose of comparison, we also performed two other
identification methods on the simulated data. First, following
Priestley (1971), and Haugh and Box (1977), we may regress it on
Bt and Et using the model in (2.4). The least-squares estimates
of the transfer function weights and their t-values are listed in
the last column of TABLE I. From these weights we obtain the

model for the prewhitened series as

. 2 3 by 30
3, = (wyy *owppB tw BT Fw BT BY BT,
2. .3
Wy, + w22B + w23B + mZhB P
+ ( ) B c, te
1-6,, B £t
21

Substituting ét, Bt’ and &t with the corresponding prewhitening
models, we obtain a tentative model for the system. Note that
this tentative model is much more complicated than the simulated
model. It requires a great deal of experience and effort to
simplify it to the actual model.

Secondly, if we apply Box and Jenkins'(1976) single pre-
whitening method to each pair of input and out series, we obtain
the SCCF between the prewhitened input series and the corres-
ponding filtered output series (i.e., rBa,(l) and rEE"(B)) as
shown in TABLE III. The patterns of the SCCF in this situation
are somewhat misleading due to the high correlation between the

two input series.
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TABLE III
SCCF's for the Simulated Example

Lag -7 -6 -3 -4 -3 -2 -1 o i 2 3 4 5 6 7

tss.(ﬂ) .05 -.01 -.09 -.07 -.10 -.06 -.13 .09 .06 .12 .42* .36* - 08 -.05 .00

rES"“') 213 .20 . 16 .13 .08 .07 .07 .06 .06 .12 .41* .31% .33% .20% 16

*The standard errors of the sample cross-correlatons are about .10, "*"

15 used to denmote significance at p < .05. The definition of rw(i) 1s
the same as 1n Box and Jenkins (1976).

In conclusion the simulated example illustrates the perform-
ance and simplicity of the proposed identification procedure

while the other two methods provide not as good results.

6. DISCUSSION

This paper proposes filtering and least-squares estimation
to obtain transfer function weights and the corner method to
identify the rational form of the model. In practice, it 1s
oot necessary to prefilter the data unless one or more input
series have autoregressive roots close to one in absolute value.
In that case, the choice of a common filter is flexible because
it does not alter the transfer function of a stationary svstem.

Unlike the proposed procedure, the double prewhitening
method produces results which are heavily dependent on the choice
of a prewhitening model. A simple prewhitening model may not
whiten the series completely, thereby casting doubt on the use
of the nice theoretical results in this approach. An elaborate
model, on the other hand, will typically cause the transfer
function to be over-structured.

The procedure is simpler when applied to original as opposed
to prefiltered series. Therefore, it may be advisable in some
cases to analyze the original data by using double precision
computations or even ridge regression techniques. However, since
model identification is an exploratory process, it is desirable to

work with stationary as opposed to near-nonstationmary input series.
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Efficient estimates of the transfer function weights mav de
obtained by applying OLS estimation on the series, filtered ov the
ARMA model of the output residuals, or by performing joint estima-
tion of transfer function weights and ARMA coefficients by using
nonlinear least-squares. In most cases the OLS and GLS estimates
of the weights are rather close even if the OLS residuals are not
white noise, but their t-values may be quite different.

The corner method provides a mechanical way of finding the
orders of wi(B) and 6i(B) when éi(B) is not 1. Other methods,
such as the S-array technique by Gray, Kellev and McIntire (1978).
may also be applied to identify a rational form. However, the

corner method appears to be very informative and e2asy to use.
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